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We formulate a precise theoretical model for the linear instability of gravity waves in a cylindrical
reduction cell. This model is new and complete because it overcomes basically all assumptions that
are usually made in metal pad roll theory: it is non-shallow, includes viscous and magnetic damping,
includes interfacial tension, is valid for any combination of metal and captures bot horizontal and
vertical magnetic field effects. We confront the calculated viscous damping rates to experimental
measures and the linear stability theory to direct numerical simulations done with two independent
numerical solvers SFEMaNS and OpenFOAM and find excellent agreement.
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I. INTRODUCTION

The metal pad roll instability is a magnetohydrodynamical phenomenon that disturbs the production of Aluminium
in Hall-Heroult reduction cells. A small background magnetic field that reigns in the Aluminium factory can interact
with the electrolysis current to create a magnetic coupling between transverse gravity waves. Above a threshold
electrolysis current or beneath a minimal Cryolite layer depth, this coupling can drive rotating gravity waves on the
interface between the Cryolite and the Aluminium. This is undesired as such waves can cause short-circuits between
the Carbon anodes and the Aluminium bath which makes the industrial process less efficient.

The first physical descriptions of the metal pad roll instability go back to [1, 2], but many other models have
been developed in order to map out the metal pad roll instability in Aluminium reduction cells [3–11]. With their
very shallow character (several meters in lateral extend, only a few centimeters in height), Hall-Heroult cells can be
accurately modeled using shallow layer expansions, (see [8]). Most often they are so large that all capillary, viscous
and magnetic dissipation effects are ignored at first order and inviscid instability criteria then take the form of β > βc.
Here β is a non-dimensional number defined below and βc only depends on the geometry of the cell and of the vertical
magnetic field.

Although linear theory can explain the physical origin of the instability it is not adapted to predict the nonlinear
development or the amplitudes of the destabilized waves. Several two-dimensional and nonlinear shallow models have
therefore been derived and perfected over the years to account for the complex magnetic fields that may occur in
industrial cell configurations [8, 12–14]. These models are so economical to run that they can effectively be used
to design stabler reductions cells. As numerical resources increased over time, it also became possible to do direct
numerical simulations of the full three-dimensional nonlinear dynamics of reduction cells. This approach is much
more computationally demanding and was initiated by [15–17] who used a finite element ALE-method. Not much
later, commercial codes ANSYS & CFX were interfaced in [18, 19]. A finite volume level-set method was developed
by [20, 21] and a finite-element method with mobile grid was developed in [22–24]. Each of these advanced numerical
tools have been carefully tested and applied to Aluminium reduction cells, but true quantitive comparisons between
direct numerical simulations and theoretical models remain relatively scarce. This for several reasons: (i) theoretical
models often ignore dissipative effects, which cannot be ignored in DNS. (ii) most theory is dedicated to shallow cells
but not all the direct numerical simulations are done in shallow cells. (iii) many direct numerical simulations focus
on realistic cell geometries for which no simple theoretical model is available. The result is that most metal pad roll
theory is rather disconnected from what happen in the direct numerical simulations.

This brings us to the first motivation for this study. We believe that there are too few clear overlaps between
theory and direct numerical simulations, making it difficult to estimate what theoretical mechanisms are operational
in which simulations. In this article, we aim to provide a complete description of the metal pad roll phenomenon,
that combines theory, direct numerical simulations and even some (hydrodynamical) experiments.

Our second motivation for this study is to be found in the context of liquid metal battery fluid dynamics. In recent
times, the metal pad roll phenomenon has also been studied in these three-layer systems [35–37, 48–51]. Although
we can imagine that future large scale liquid battery systems may become as shallow as Hall-Heroult reduction cells,
present day prototypes are laboratory scale and certainly not always shallow. To interpret the numerical simulations
of [35–37] a new theory that is non-shallow, viscous and includes magnetic damping effects and capilarity seems
necessary. But first we needed to learn how to manage only two fluid layers.

We finally also have a third motivation which is more a numerical one. All the numerical simulations presented here
will be done here with two independent multiphase MHD solvers, SFEMaNS and OpenFOAM that arrive as relatively
new players in the area of metal pad roll simulations. Our first solver SFEMaNS is being developed since 2001 and
was initially designed to solve MHD problems in axisymmetric geometries. The discretization is done using Fourier
expansions in the azimuthal direction and finite elements in the (r, z)-plane. First designed to study dynamo problems
in axisymmetric domains (see [25, 26]), the code has been modified to account for non-axisymmetric geometries [27].
More recently, it has been further upgraded to solve multiphase MHD problems using a level-set method that is fully
explained in [28]. In [29] we used SFEMaNS to study the Tayler instability in liquid metal battery systems and some
preliminary simulations on metal pad roll instability are mentioned in [28]. Our second solver is based on the finite
volume library OpenFOAM [30]. Since 2010 this code is capable of solving quasi-static MHD and it was used to
study Tayler instability [31, 32] and electrovortex flow [33, 34]. A volume-of-fluid model is used to implement multiple
liquid phases and has allowed to perform several studies on metal pad roll instability in liquid metal batteries [35–37].
Although both codes have been used in previous studies, we still haven’t passed a fine non-axisymmetric benchmark
involving both codes at the same time. We found that the metal pad roll instability is perfect for this and in order
to measure the true numerical cost of a well-resolved simulation we evidently needed a precise theoretical model to
compare with.

In §2, we formulate our theoretical model for the linear instability of gravity waves in a cylindrical reduction cell.
Cylindrical cells are perhaps not realistic for industrial devices, but they have been studied before in theory [9, 10] and
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FIG. 1. Sketch of cylindrical model cell and notations. (a) Two fluid layers with different densities ρ1, ρ2 and respective
heights H1, H2 are stably superposed in a cylindrical container of radius R due to gravity g. The layers have different electrical
conductivity and kinematic viscosity denoted as σi, νi , i = 1, 2 A vertical electrical current runs Jez through the cell (red full
line) which generates an azimuthal magnetic field Bθ (red dashed line). We also suppose a homogenous and vertical background
magnetic field Bz (bleu dashed line). (b) We use cylindrical coordinates (r, θ, z) and denote Vi, , i = 1, 2 for both fluid regions.
Σi , i = 1, 2 refer to the rigid boundaries, S to the free interface at rest, M to the meniscus region. ni is the external normal
on both fluid regions.

in numerical simulations [15, 23]. Our model is new and complete because it overcomes basically all assumptions that
are usually made in metal pad roll theory: it is non-shallow, includes magnetic damping, includes interfacial tension,
is valid for any combination of conducting fluids and includes viscous damping. The price to pay for this generality
is that the theory is a perturbation theory with limited range of validity. We will demonstrate that even large cells
can be unstable in the range covered by our theory, but the true novelties will be visible in small cells, that are much
more prone to viscous and magnetic damping and capillary effects.

In §3, we discuss some purely hydrodynamical experiments that serve as tests for the theoretically calculated
viscous damping rates. These datapoints appear as interesting by-product of a novel experimental study on orbital
sloshing in two and three layer fluid systems that is to appear [38]. Orbital sloshing corresponds to prescribing a
circular translation to a container (used to swirl for exemple a glass of wine) and it drives exactly the same wave
mode that is commonly associated with the metal pad roll instability. In this experimental study, we employed the
working fluids Paraffinum Perliquidum and Wacker R© silicone oil AK 35 forming a stable interface, which fulfills in
good approximation the idealized free-moving contact line boundary condition assumed in our theory. We compare
measured interfacial damping rates for different layer heights with the theoretical predictions and found very good
agreement.

In §4, we apply the theoretical model to two different reduction cells, a small laboratory-scale cylindrical reduction
cell and a large industrial scale cell. For the large cells, we limit ourselves to applying the theoretical model, demon-
strating here that perturbation methods can be used even in such huge cells. The small cell is more hypothetical and
was briefly discussed in [22, 23] as a test-case for their multiphase MHD solver. With a radius of only R = 0.035 m,
the small lab-scale cell can only become unstable when very large ambient magnetic fields are present, far above what
we can have in Aluminium factories, but close to what we had in the experiments of [39, 40]. The biggest advantage
and interest of the small cell geometry is that very well resolved direct numerical simulations are amenable allowing
to compare gravity wave frequencies, viscous dissipation rates, magnetic dissipation rates and finally metal pad roll
instability growth rates for various parameter sets and waves and using different numerical resolutions.

In §5, we conclude and discuss some perspectives of our study.
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II. THEORETICAL ANALYSIS

A. Cylindrical reduction cell at equilibrium

The cylindrical cell is sketched in figure 1. We align the axis of symmetry with the z-axis of a cylindrical coordinate
system (r, θ, z) with unit vectors (er, eθ, ez). At equilibrium, the Cryolite and Aluminium layers (subscripts i = 1, 2)
occupy the volumes

V1 : (r, θ, z) ∈ [0, R]× [0, 2π[×[0, H1]

V2 : (r, θ, z) ∈ [0, R]× [0, 2π[×[−H2, 0] (1)

R is the radius of the cell and Hi is the height of both layers. We denote δVi the boundary of each fluid domain and
split δVi = Σi ∪ S, with Σi the rigid boundary and S the interface at rest. ni is the outward normal on δVi.

The electrical conductivity, density, kinematic viscosity of both fluids are denoted by σi, ρi, νi. The surface tension
of the interface in between both fluids is denoted by γ1|2. We suppose that the interface connects with a contact
angle of 90o to the lateral wall and that it is not pinned. This is a strong hypothesis that is necessary to allow for an
equilibrium state with a flat interface. Capillarity is not often considered in metal pad roll theory since the capillary
length is always very small compared to the system size in realistic cells. In small cells, capillarity may be relevant
and since it may be easily included in the model, we decide to consider its effect.

If the cell is at (magnetohydrodynamical) equilibrium, both fluids are at rest. The fluids are subject to gravity
g = −g ez. A homogenous electrical current density J = Jez runs through the cell (in reduction cells, J < 0
always). A magnetic field B = Bθeθ + Bzez is present. The azimuthal (or horizontal) field Bθ = µ0Jr/2 increases
radially and is self-generated by the electrical current in the cell. The vertical component of the magnetic field Bz is
supposed constant and entirely due to an external source. The defined state is a magnetohydrodynamical equilibrium
configuration if the hydrodynamic pressure is Pi = P∗−ρigz−µ0J

2r2/4 and the electrical potential is Φi = Φ∗−Jz/σi
with P∗,Φ∗ arbitrary and constant offsets.

B. Linearized problem in the quasi-static limit

From many previous studies we know that the defined equilibrium state can become unstable. We perform a linear
stability analysis that takes into account viscous dissipation, magnetic dissipation, surface tension, without making a
shallow layer approximation. We start by linearizing the governing equations about the equilibrium state. Denoting
B = max(µ0JR,Bz) the typical scale for the magnetic field strength, we will suppose that the Lundquist numbers
Lui in both layers remain very low:

Lui = σiµ0BR/
√
ρiµ0 � 1 (2)

This hypothesis allows us to use the quasi-static approximation of MHD, in which the electrical field derives from
the electrical potential. Denoting with (ui, pi, bi, ji, ϕi) perturbations for flow, pressure, magnetic induction, current
density and electrical potential, we find the linearized perturbation equations of the magnetohydrodynamical stability
problem as

ρi∂tui + ∇pi = J × bi + ji ×B + ρiνi∇2ui (3a)

∇ · ui = 0 (3b)

ji = σi(−∇ϕi + ui ×B) , ∇ · ji = 0 (3c)

∇× bi = µ0 ji , ∇ · bi = 0 (3d)

for i = 1, 2. The essential inviscid hydrodynamical boundary condition on the rigid boundaries Σi is that of imper-
meability

ui · ni = 0|Σi
(4)

to which we must add ui×ni = 0|Σi in viscous fluids. On the interface S, that we locate at z = η(r, θ, t), the essential
inviscid boundary conditions are

∂tη = u1,z|z=0 (5a)

∂tη = u2,z|z=0 (5b)

−γ1|2∇2η + (ρ2 − ρ1)gη = p2|z=0 − p1|z=0 (5c)
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In viscous flows, we must add the continuity of tangential flow-components and the continuity of tangential viscous
stresses (explicit formulae are not required in the article). For what concerns the electrical boundary conditions on
the rigid boundaries Σi, we will suppose

j1,r|r=R = 0 (6a)

j2,r|r=R = 0 (6b)

ϕ1|z=H1 = 0 (6c)

j2,z|z=−H2 = 0 (6d)

The cylindrical wall is always isolating. The top boundary is treated as an electrical contact with a perfect conductor
(iso-potential surface), mimicking the fact that the Carbon anode is a very good conductor compared to Cryolite.
The bottom boundary is treated as an electrical contact with an isolating material, mimicking the fact that the steel
cathode is weakly conducting compared to the liquid Aluminium. These idealized boundary conditions have been
used by many authors and are relevant to reduction cells. On the free interface S, we need to satisfy

0 = j1,z|z=0 − j2,z|z=0 (7a)

J(σ−1
2 − σ−1

1 )η = ϕ2|z=0 − ϕ1|z=0 (7b)

Equation (7b) plays an essential role for the metal pad roll instability, since it expresses how electrical potential
perturbations ϕi (and so currents ji) relate to interface movements. Finally, for the magnetic induction that is driven
by the electrical currents, we will suppose the following simplifying boundary condition on the cylindrical boundary

er × bi|r=R = 0 (8)

Boundary conditions at other places are not required in the analysis. This condition is simplifying as it will allow us
to avoid the explicit calculation of the magnetic field, which never is an easy task in finite fluid domains surrounded
by a current-free exterior. A similar boundary condition was used in a previous study [29] on the Tayler instability
and it had little impact on that instability.

The linearized problem is now completely defined and so we can search for linear eigenmodes. Due to the stationarity
of the equilibrium state, we can search for fundamental solutions with a simple exponential time-dependence. More
precisely, if f represents any of the relevant fields or components, we can propose

f = f̂ est (9)

and find the admissible (complex) eigenmodes f̂ and (complex) eigenvalues s ∈ C. We can call Re(s) the growth rate
and Im(s) the frequency. If Re(s) > 0, the eigenmode is linearly unstable and if Im(s) 6= 0 the solution is wave-like.

Using a numerical approach it is possible to solve this linear eigenvalue problem exactly. In the following parts
of this theoretical section, we use a perturbative approach. We model how free inviscid gravity waves are weakly
stabilized, destabilized or detuned in frequency, by magnetohydrodynamical and viscous effects that are supposed to
be weak enough so that the waves conserve their structural integrity.

C. Free inviscid gravito-capillary waves

Our perturbative approach expands on the free inviscid gravito-capillary waves that exist as the family of eigenso-
lutions, in absence of electrolysis current (J = 0), vertical magnetic field (Bz = 0) and without viscosity (ν = 0). In
that case, we can propose a hydrodynamical solution

[ui, pi, η] = [ûi, p̂i, η̂] eiωt (10)

to the linearized problem defined above. The hydrodynamical fields ûi, p̂i, η̂ correspond to the classical potential wave
solution (see [41]): ûi

p̂i
η̂

 =

 ∇φ̂i
−ρi(iω)φ̂i
∂zφ̂i/(iω)

 with

 φ̂1

φ̂2

η̂

 = A

 cosh(k(z −H1))/ sinh(kH1)
− cosh(k(z +H2))/ sinh(kH2)

ik/ω

 Jm(kr) eimθ (11)

The number A is arbitrary here and has the dimension of hydrodynamic potential. The functions Jm are Bessel-
functions, m ∈ Z is the azimuthal wavenumber and k is a radial wavenumber that can take any value

k = κmn/R , J ′m(κmn) = 0 (12)
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Here κmn is a notation for the n-th zero of the derivative of the Bessel function Jm. Only these choices of k can assure
that ur|r=R = 0 is satisfied. The natural frequency ω of the (free) waves is

ω = ±

√
(ρ2 − ρ1)gk + γ1|2k3

ρ2 tanh−1(kH2) + ρ1 tanh−1(kH1)
(13)

and may be either positive or negative for fixed m. The solution presented here (see (10)) has a simple harmonic form,
but the real flow is always real-valued. Taking the real part of (10), one finds rotating waves with positive rotation
speed if mω < 0 (anti-clockwise when seen from above) and negative rotation speed if mω > 0 (clockwise when seen
from above). Two oppositely rotating waves can also be superposed to give standing waves.

D. Sufficient conditions to apply perturbation methods

Perturbation methods may only be used when the Lorentz force and the viscous forces appear as small perturbations
in the momentum balance. Symbolically, this means that

[J × bi], [ji ×B], [ρiνi∇2ui]� [ρi∂tui], [∇pi] (14)

in terms of orders of magnitude (denoted using square brackets). This sets limitations on the parameter space that
can be explored and we want to estimate these limits here.

For simplicity, we assume J,B, ω ≥ 0 to avoid the use of absolute values. We use [x] = R as space scale rather
than k−1 since this is more explicit (and anyway similar to k−1 for long wave-length waves). We denote [ui] = U the
velocity scale that is arbitrary in this linear approach. For hydrodynamic waves, we can estimate

[ρi∂tui] ∼ ρiωU , [pi] ∼ ρiωRU (15)

The viscous term has an order of magnitude

[ρiνi∇2ui] ∼ ρiνiU/R2 (16)

We introduce B as the order of magnitude of the imposed magnetic field

[B] ∼ B =

{
µ0JR −→ azimuthal
Bz −→ vertical

(17)

We can use two independent estimates, related to either the azimuthal or to the vertical magnetic field. From Ohm’s
law (3c), we then estimate the magnitude of the induction term as

[σiui ×B] ∼ σiUB (18)

Still in Ohm’s law (3c), the electrical potential term may have the same order of magnitude, but interface deformations
caused by waves can also lead to a different magnitude that can be estimated from boundary conditions (5a), (5b)
and (7b). This yields the following two different estimates for the electrical current density

[ji] ∼ [−σi∇ϕi] ∼
{
JU/ωR −→ interface deformations
σiUB −→ induction by the flow

(19)

Using Ampère’s law (3d), we can calculate the associated magnetic field perturbation magnitudes

[bi] ∼
{

µ0JU/ω
µ0σiURB

(20)

All orders of magnitude of the different fields have now been estimated so we can now re-express the initial inequalities
(14). The trivial but sufficient condition to model viscous effects perturbatively is

[ρiνi∇2ui]� [ρi∂tui] ⇔ Rei =
ωR2

νi
� 1 (21)
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which we recognize as a contraint on Reynolds numbers based on the properties of the wave. A set of sufficient
conditions that allow to model the effect of the Lorentz-force using perturbation methods is then

[J × bi]� [ρi∂tui] ⇔


µ0J

2

ρiω2
� 1

µ0σiJRB

ρiω
� 1

(22a)

[ji ×B]� [ρi∂tui] ⇔


JB

ρiω2R
� 1

σiB
2

ρiω
� 1

(22b)

Each time we have two estimates that relate to the two choices (19) we can make. We will suppose that these a-priori
sufficient conditions (21) and (22) are verified. However, it is impossible to evaluate how necessary they are. A
posteriori, when we have calculated the growth rates, we will be able to provide more reasonable estimates of the
domain of validity of our perturbative model.

E. Simplifying assumptions in other studies on metal pad roll instability

Most existing theoretical work on metal pad roll instabilities has not been done with a perturbative approach, but
other simplifying assumptions have frequently been made. Here we discuss these assumptions and their impact, to be
able to situate how the present model is similar or different.

A first frequently made assumption is that of shallow fluid layers. This is very relevant to model the long wavelength
waves that occur in realistic Hall-Heroult cells, that are very wide (4−10 m in lateral extend) but very shallow (5−30 cm
high). The shallow layer hypothesis is however not so adapted to the small laboratory scale reduction cells studied
numerically in this article and in [22, 23], nor to the experimental set-up of [39, 40], nor to the metal pad roll studies
in liquid metal batteries of [35, 36]. We do not use the shallow approximation in our theory, but will expand our
formula in this limit in order to be able to compare to the existing models of [9, 10].

A second frequent assumption is that of inviscid fluids. This is simplifying for the analysis and since viscous effects
are not crucial to the physical mechanism of the metal pad roll instability, the only thing that is missed is a dissipative
mechanism. In realistic cells, far from the instability threshold, viscosity is less important, but in small cells near the
instability threshold, one must account for the viscous damping in order to have a precise theory. We will provide a
explicit formula for the viscous damping rate of waves in cylindrical geometry.

A third assumption relates to Ohm’s law. A very popular assumption in metal pad roll theory is

[σiui ×B]� [−σi∇ϕi] ⇔ σiωRB

J
� 1 (23)

and when this inequality is satisfied, the dominant contribution to the electrical current perturbation is caused
by interface movements rather than by field induction in the bulk of the flow. In this limit, the magneto-static
approximation

ji ≈ −σi∇ϕi (24)

may be used as a first order approximation, rather than the quasi-static Ohm’s law (3c). Physically, we then calculate
the current density perturbation as if the metal slabs were solids at rest. This hypothesis is quite well adapted to
realistic Hall-Heroult cells, in particular since B = Bz always remains fairly low (∼ 1mT). For what concerns the
horizontal magnetic field B = µ0JR, it seems more easy to violate

σiµ0ωR
2 � 1 (25)

in large cells. Note that this number looks as a magnetic Reynolds number based on wave-speed. The physical
effect of the term σiui ×Bzez is well known: it creates a magnetic damping and in [42] this damping was calculated
in rectangular fluid containers with isolating walls. The physical effect of the term σiui × (µ0Jr/2)eθ is less well
described. It may be stabilizing but it can also be destabilizing as we know from the Tayler instability [29]. Below we
will study the effect of both terms and for the magnetic damping due to the vertical magnetic field, we will provide
an explicit formula.
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A fourth frequently made assumption is that

[J × bi]� [ji ×B] ⇔ µ0JR

B
� 1 (26)

which allows to approximate

Lorentz forcei ≈ ji ×B (27)

The induced field bi does not need to be calculated which is very practical as bi is never easy to compute in finite
fluid domains with realistic boundary conditions. Considering the definition (17) of B, this condition µ0JR/B � 1 is
only realizable when the vertical magnetic field dominates the horizontal field, rarely the case in industrial-size cells.
In [43], the effect of the term J × bi was studied and it was shown to have little impact on the instability. In the
following, we will not ignore this term and find that it mainly modifies the frequency of waves.

A fifth assumption is that capillarity is not important. For gravity waves, this means that

klc � 1 , lc =

√
γ1|2

(ρ2 − ρ1)g
(28)

in other words, the capilllary length lc needs to much smaller than the wavelength 2π/k. This condition is very
well verified by long-wavelength waves in industrial Hall-Heroult cells. In small cells, it will be harder to hold this
inequality and surface tension will modify the frequency of the waves and the metal pad roll instability significantly.
Therefore, we include surface tension in this model.

Finally, a sixth assumption is that the electrical conductivity of both layers is very different:

σ1

σ2
� 1 (29)

This is more a fact than an assumption in Hall-Heroult cells. Combined with the shallow nature of the cells and the
electrical top and bottom boundary conditions, it allows to estimate that currents are mainly vertical in the electrolyte
and mainly horizontal in the Aluminium. As a result, metal pad roll instability growth rates do not depend on the
electrical conductivity of the layers. In this article, we will find both σ1 and σ2 in our growth rate formula. This
allows us to explore how strongly one can relax conductivities of both layers in direct numerical simulations, since
weaker conductivity jumps are more easily manageable for multiphase MHD codes.

F. Perturbative calculation of growth rates and frequency shifts

In this section, we find a theoretical expression for the complex eigenvalue s that characterizes the exponential
behavior (∼ exp(st)) of the linear eigenmode. We will model the effect of the Lorentz-force and viscosity perturbatively
and since these calculations are rather technical it is useful to give a quick idea of our purpose. The theoretical
expression for s will be split as

s = iω + (λ+ iδ)︸ ︷︷ ︸
α

(30)

Here ω is the inviscid gravity wave frequency and α is a small complex shift induced by Lorentz and viscous forces.
We define λ = Re(α), the growth rate of the gravity wave and δ = Im(α) is the frequency shift. The growth rate
formula is decomposed of several independent terms

λ = λv︸︷︷︸
destab.

+ λvv + λhh︸ ︷︷ ︸
quasi−static

+ λvisc︸ ︷︷ ︸
visc. damping

(31)

The first term λv ≶ 0 is the potentially destabilizing term. It relates to the Lorentz-force interaction of the electrical
current perturbation ji caused by interface deformations with the background vertical magnetic field Bz (hence suffix

v). The terms λvv, λhh are quasi-static MHD corrections. The term λvv < 0 is always negative and relates to
magnetic damping caused by Bz. The term λhh related to the azimuthal field may be slightly positive, but is most
often negative and always very small. These quasi-static effects are rarely modeled in metal pad roll theory since they
are quadratic in magnetic field strength. The term λvisc < 0 captures the viscous damping of gravity waves. For the
frequency shift, we similarly split

δ = δh + δvh + δvisc (32)
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The term δh relates to the Lorentz-force interaction of ji caused by interface deformations with the background
horizontal (azimuthal) magnetic field Bθ = µ0Jr/2 (hence suffix h). In agreement with previous studies [3, 7] we find
that this coupling cannot be destabilizing. The term δvh is a small quasi-static correction related to both Bθ and Bz.
Finally, δvisc is a frequency shift caused by viscosity. We now calculate all these different terms.

1. MPR instability in the magneto-static and inviscid limit : growth rate λv and frequency shift δh

In this section, we focus on the leading terms in the growth rate and frequency shift formulae, λv and δh. This
may done in the inviscid limit νi = 0 and assuming that σiωRB/J � 1 so that the magnetostatic approximation of
Ohm’s law ji ≈ −σi∇ϕi may be used. Viscous and magnetic dissipation are outcasted in this entire section.

We propose the following Ansatz to the linear inviscid and magneto-static limit of the linearized problem defined
in section II B :

[ui, pi, η, ji, ϕi, bi] =
([

ûi, p̂i, η̂, ĵi, ϕ̂i, b̂i

]
+
[
ũi, p̃i, η̃, j̃i, ϕ̃i, b̃i

])
eiωt eαt (33)

In this notation, tilded variables are small perturbations with respect to the hatted variables, just as the complex
shift α is small with respect to ω that will be frequency of the gravity waves. We inject this Ansatz into the governing
equations and we treat the Lorentz force term perturbatively.

At leading order, we find the balance

ρi(iω)ûi + ∇p̂i = 0 , ∇ · ûi = 0 , ĵi = −σi∇ϕ̂i , ∇ · ĵi = 0 , ∇× b̂i = µ0 ĵi , ∇ · b̂i = 0 (34)

Notice that the Lorentz-force is absent in the momentum equation. Boundary conditions for the hatted fields can be
copied from (4 → 8) and by replacing ∂t → iω. We need to solve this problem in order to specify all the first order
quantities. The hydrodynamical fields ûi, p̂i, η̂ and the frequency ω were already given above. The electrical potential
ϕ̂i is harmonic (∇2ϕ̂i = 0) and related to the surface elevation η̂ by the jump condition (7b). We find it as[

ϕ̂1

ϕ̂2

]
=
JkA

ω

σ−1
1 − σ−1

2

σ−1
1 tanh(kH1) + σ−1

2 tanh−1(kH2)

[
−i sinh(k(z −H1))/(σ1 cosh(kH1))
−i cosh(k(z +H2))/(σ2 sinh(kH2))

]
Jm(kr) eimθ (35)

The isolating sidewall condition is automatically satisfied since J ′m(kR) = 0, by definition (see (12)) and electrical

top and bottom boundary conditions too. Electrical currents ĵi = −σi∇ϕi are easily calculated from the previous

potentials. The magnetic field perturbations b̂i can be calculated in a (difficult) step by using for example the Biot-

Savart law, but this will not be necessary here: b̂i will not be explicitly required to evaluate the complex shift α. It
is instructive to notice the systematic quadratures between the different leading order fields :

{φ̂i , ûi,r , ûi,z , ĵi,θ , b̂i,r , b̂i,z}
A exp(imθ)

∈ R ,
{η̂i , ûi,θ , ϕ̂i , ĵi,r , ĵi,z , b̂i,θ}

A exp(imθ)
∈ iR , (36)

As shown below, this information alone allows to understand why vertical magnetic fields are destabilizing and why
horizontal magnetic fields can only induce a frequency shift in the perturbative limit.

All the leading order fields that are needed for the calculation of the shift α are now specified and so, we can write
the next order in the perturbation problem. From the momentum and mass balance, we have

αρiûi + iωρiũi + ∇p̃i = ĵi ×B + J × b̂i (37a)

∇ · ũi = 0 (37b)

Note that the (small) Lorentz-force is now present in the right hand of the momentum balance and that it can be

calculated using the first order fields ĵi and b̂i. Equations for the corrections j̃i, ϕ̃i, b̃i do not require consideration
as they do not affect the eigenvalue shift α. The hydrodynamical boundary conditions for the tilded variables can be
copied from (4) and (5) except for the kinematic boundary conditions that are different

αη̂ + iωη̃ = ũi,z|z=0 (38)

Next to iωη̃, we find the term αη̂ that is proportional to the small shift α. To find an equation for α, we express
a solvability condition (also known as the Fredholm alternative). Here this condition corresponds to summing the
combination

∫
Vi

[û∗i · (37a) +p̂∗i (37b) ]dV over both fluid regions i = 1, 2, which yields∑
i=1,2

∫
Vi

[
û∗i · (αρiûi + iωρiũi + ∇p̃i) + p̂∗i∇ · ũi

]
dV =

∑
i=1,2

∫
Vi

û∗i · (ĵi ×B + J × b̂i) dV︸ ︷︷ ︸
P

(39)
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We introduce the notation P for the ”power” injected by the Lorentz-force. In the left hand side, we can use partial
integration to bring all spatial derivates back to the hatted variables. Using the leading order balances (34) and some
basic vector calculus, we then find that this reduces to

α

2∑
i=1

∫
Vi

ρi|ûi|2dV︸ ︷︷ ︸
T1

+

2∑
i=1

∮
δVi

(
p̂∗i ũi + p̃iû

∗
i

)
· ni dS︸ ︷︷ ︸

T2

= P (40)

The first group of terms T1 is proportional to kinetic energy. Using the boundary conditions for the hatted and tilded
variables, we can reduce the second group T2 to

T2 = α

∫
S

(p̂∗2 − p̂∗1) |z=0 η̂ dS

= α

∫
S

(
−γ1|2∇2η̂∗ + (ρ2 − ρ1)gη̂∗

)
η̂ dS = α

∫
S

(
γ1|2|∇η̂|2 + (ρ2 − ρ1)g|η̂|2

)
|z=0 dS

= α
[
(ρ2 − ρ1)g + γ1|2k

2
] ∫
S
|η̂|2 dS︸ ︷︷ ︸

K

(41)

In writing the alternative to the second equation, we used the boundary condition ∂rη̂|r=R = 0, that is always satisfied
by our inviscid gravity waves if the contact angle is 900. This also allows to see that T2 is proportional to potential
energy. The quantity K ∈ R is a notation that will be used in what follows and it can be explicitly calculated using
the expression for η̂ (see Appendix A). In summary, T1 + T2 is proportional to the mechanical energy. Using partial
integration, the fact that waves derive from harmonic potentials and the hydrodynamic boundary conditions, one can
further demonstrate that T1 = T2, for the simple harmonic wave under study :

T1 = α

[
ρ1

∮
δV1

φ̂∗1∇φ̂1 · n1dS + ρ2

∮
δV2

φ̂∗2∇φ̂2 · n2dS

]
= α

∫
S

(−iρ1ωφ̂
∗
1 + iρ2ωφ̂

∗
2)|z=0 η̂ dS

= α

∫
S

(p̂∗2 − p̂∗1)|z=0 η̂ dS = T2 (42)

This has as consequence that the solvability condition (39) reduces to a mere 2αK = P and the equation for the
eigenvalue shift to α = P/2K. We split P = Pv + Ph with

Pv =
∑
i=1,2

∫
Vi

û∗i · (ĵi ×Bzez) dV , Ph =
∑
i=1,2

∫
Vi

û∗i ·
[
ĵi × (µ0Jr/2)eθ + Jez × b̂i

]
dV (43a)

to separate the contributions due to the vertical and the horizontal magnetic fields. In the formula for Ph, the second

term involves the magnetic field b̂i. Using the potential nature of the flow and ∇× (Jez) = 0, we can rewrite

û∗i ·
(
Jez × b̂i

)
= ∇φ̂∗i ·

(
Jez × b̂i

)
= ∇ ·

(
φ̂∗i

(
Jez × b̂i

))
+ φ̂∗i Jez · (∇× b̂i) (44)

Using Ampère’s law ∇× b̂i = µ0ĵi and integrating over the volume then yields

Ph =
∑
i=1,2

∫
Vi

{
û∗i ·

[
ĵi × (µ0Jr/2)eθ

]
+ µ0Jφ̂

∗
i ĵi,z

}
dV + J

∫
φ̂∗i

(
b̂i × ni

)
· ez dS︸ ︷︷ ︸

=0

(45)

This allows to understand why the use of the simplifying magnetic boundary condition (8), indeed allows to calculate

Ph without knowledge of b̂i. Both integrals Pv and Ph have been explicitly evaluated (see Appendix A). From the
quadrature rules of (36) we can readily identify that Pv ∈ R by symbolically calculating the real or imaginary character
of the (mixed) products in the integranda, e.g.

û∗i · (ĵi ×Bzez) =

∣∣∣∣∣∣∣
û∗r,i ĵr,i 0

û∗θ,i ĵθ,i 0

û∗z,i ĵz,i Bz

∣∣∣∣∣∣∣ −→

∣∣∣∣∣∣
R iR 0
iR R 0
R iR R

∣∣∣∣∣∣ ∈ R (46)
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and similar for Ph ∈ iR. This implies that the eigenvalue shift α can be decomposed as

α =
Pv
2K︸︷︷︸
λv

+
Ph
2K︸︷︷︸
iδv

(47)

According to our model and at this order of the expansion, only the vertical magnetic field component Bz can
destabilize gravity waves that will grow at rates λv. The self-generated, horizontal magnetic field is not destabilizing
but shifts the frequency of the wave by δh. This result is coherent with the analysis of [3, 7]. All formulae can be
evaluated analytically and yield the explicit formula

λv =
ω

2

JBz
(ρ2 − ρ1)g + γ1|2k2

m

(kR)2 −m2

(
tanh(kH1) +

kH2

sinh2(kH2)
+

1

tanh(kH2)

)
Λ (48a)

δh =
ω

4

µ0J
2k−1

(ρ2 − ρ1)g + γ1|2k2

(kR)2 − 2m2

(kR)2 −m2

(
kH1

sinh(kH1) cosh(kH1)

)
Λ (48b)

where

Λ =
σ−1

1 − σ−1
2

σ−1
1 tanh(kH1) + σ−1

2 tanh−1(kH2)
(48c)

We have validated these formula by comparing them with numerical evaluations of the integrals of Pv,Ph,K computed
using a simple quadrature rule on a two-dimensional r− z grid. In both λv and δh, we see dimensionless factors that
balance the typical strength of the Lorentz force (JBz in λv, µ0J

2k−1 in δh) with respect to gravitational and capillary
restoring forces ((ρ2 − ρ1)g + γ1|2k

2). We see that the growth rate λv ∼ m, so axisymmetric waves with m = 0 can
never be destabilized. The number Λ is a conductivity dependent factor that is not often seen in metal pad literature.
It clearly shows that a jump in electrical conductivity σ1 6= σ2 is essential for instability.

We can derive an inviscid instability criterion for the common case of σ1 � σ2. Since (kR)2 −m2 > 0 always (see
Appendix A), inviscid instability or λv > 0 requires

Sgn(JBzmω) > 0 ⇒ wave is MPR-unstable (49)

In reduction cells, we further have J < 0 as the reduction current flows from top to bottom and if Bz > 0, this
criterion learns us that only rotating waves with mω < 1 can be destabilized. This corresponds to waves that rotate
in the positive or anti-clockwise direction when seen from above and coincides with what can be expected from the
Sele-mechanism [2]. Note also that there is no threshold for the inviscid MPR-instability, also coherent with previous
results [9, 10].

The general formula for the growth rate take simpler asymptotic forms in the limit of large conductivity jumps and
for deep or shallow fluid layers. In the deep limit kHi � 1 and with σ1/σ2 � 1 we find

λv,deep ≈
JBz

(ρ2 − ρ1)g + γ1|2k2

mωdeep
(kR)2 −m2

(50a)

δh,deep ≈ 0 (50b)

where

ωdeep ≈

√
(ρ2 − ρ1)gk + γ1|2k3

ρ1 + ρ2
(51)

For shallow layers kHi � 1 and with σ1/σ2 � (kH1)(kH2) we have

λv,shallow ≈
JBz

(ρ2 − ρ1)g + γ1|2k2

mωshallow
(kR)2 −m2

1

(kH1)(kH2)
(52a)

δh,shallow ≈
ωshallow

4

µ0J
2k−1

(ρ2 − ρ1)g + γ1|2k2

(kR)2 − 2m2

(kR)2 −m2

1

kH1
(52b)

where

ωshallow ≈

√
(ρ2 − ρ1)gk2 + γ1|2k4

ρ1H
−1
1 + ρ2H

−1
2

(53)
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The shallow approximation is commonly adopted in metal pad roll literature and for long-wavelength waves, surface
tension usually is ignored. In that limit, we can rewrite the growth rate formula as

λv,shallow ≈
JBz√

(ρ2 − ρ1)g(ρ1H
−1
1 + ρ2H

−1
2 )

R

H1H2

m

κmn(κmn −m2)
(54)

In this formula, we separated a wave-dependent factor that only depends on κmn and m, from a factor that groups
all other physical and geometrical parameters. It allows to see that the growth rate increases proportionally to the
lateral extend R of the shallow cell (if J is held fixed). Alternatively, we can also write

λv,shallow ≈
mωshallow
κ2
mn −m2

β

κ2
mn

, β =
JBz

(ρ2 − ρ1)g

R2

H1H2
(55)

The shallow-limit growth rate is proportional to the non-dimensional group β, that appeared in many previous studies
on metal pad roll instability. In Appendix B, we develop further on this small gap limit and show that the growth
rate formula (55) is compatible with existing shallow layer models of [9, 10] in the double limit of asymptotically small
kHi � 1 and β � 1.

In Appendix C, we explore the effect of symmetric top and bottom boundary conditions (fixed potential or fixed
normal current) on the metal pad roll instability, also studied in [44]. The mixed electrical boundary conditions we
used here in the body of the article (fixed potential on top, fixed normal current on the bottom), always yield much
more unstable cells in the shallow limit. In deep cells, the precise choice for the electrical top and bottom boundary
conditions has no influence.

2. Quasi-static corrections : damping λvv & λhh, frequency shift δvh

When the magnetic field strength B = µ0JR or Bz is too high, the simplifying assumption σiωRB/J � 1 is no
longer satisfied. In that case, the quasi-static approximation of MHD is required to include how fluid flows can modify
the electrical current density through induction. We need to use

ji = σi(−∇ϕi + ui ×B) (56)

in replacement of the static approximation ji ≈ −σi∇ϕi of the previous section, at least in the Aluminum layer where
σ2 � σ1. Next to the terms λv and δh this will yield quasi-static corrections λvv ∼ B2

z , λhh ∼ B2
θ and δvh ∼ BθBz to

the growth rate and frequency shift.
If the quasi-static version of Ohm’s law is to be used, we need to extend the perturbation Ansatz (33) to

[ui, pi, η, ji, ϕi] =
([

ûi, p̂i, η̂, ĵi + Ĵ
v

i + Ĵ
h

i , ϕ̂i + Ψ̂v
i + Ψ̂h

i , b̂i + B̂
v

i + B̂
h

i

]
+
[
ũi, p̃i, η̃, j̃i, ϕ̃i, b̃i

])
eiωt eαt (57)

Fields ûi, p̂i, η̂, ϕ̂i, ĵi, b̂i are identical to those of the previous section and capture all magneto-hydrodynamical effects
related to surface elevation considered before. Quasi-static corrections for the electrical potential and the current
densities relate to either the vertical magnetic (superscripts v) or horizontal magnetic field (superscript h). We define
the current density corrections as

Ĵ
v

i = σi(−∇Ψ̂v
i + ûi ×Bzez) , Ĵ

h

i = σi(−∇Ψ̂h
i + ûi × (µ0Jr/2)eθ) (58)

and they need to satisfy ∇ · Ĵ
v

i = ∇ · Ĵ
h

i = 0. In terms of the electrical potentials, this defines Laplace and Poisson
problems

∇2Ψ̂v
i = 0 , ∇2Ψ̂h

i = −µ0Jûz,i (59)

that need to be solved together with inhomogeneous boundary conditions:

Ψ̂v
1|z=H1

= 0 , Ψ̂h
1 |z=H1

= 0 (60a)

∂zΨ̂
v
2|z=−H2 = 0 , ∂zΨ̂

h
2 |z=−H2 = (µ0Jr/2)û2,r|z=−H2 (60b)

∂rΨ̂
v
i |r=R = Bzûi,θ|r=R , ∂rΨ̂

h
i |r=R = −(µ0JR/2)ûi,z|r=R (60c)

Ψ̂v
1|z=0 = Ψ̂v

2|z=0 , Ψ̂h
1 |z=0 = Ψ̂h

2 |z=0 (60d)

σ1∂zΨ̂
v
1|z=0 = σ2∂zΨ̂

v
2|z=0 , σ1

(
−∂zΨ̂h

1 + (µ0Jr/2)û1,r

)
z=0

= σ2

(
−∂zΨ̂h

2 + (µ0Jr/2)û2,r

)
z=0

(60e)
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These problems have no simple analytical solution but we can find Ψ̂v
i and Ψ̂h

i numerically. The field profiles are Fourier

expanded along θ: Ψ̂v
i = fvi (r, z) exp(imθ) , Ψ̂h

i = fhi (r, z) exp(imθ) and the remaining two-dimensional problem for
fvi and fhi is solved using a standard second order finite difference method on a uniform grid with 2× (M +1)2 points:{

region 1 : (iδr, jδz1)
region 2 : (iδr,−jδz2)

, ∀i, j ∈ {0, 1, . . . ,M}

Here δr = R/M , δz1 = H1/M , δz2 = H2/M . Radial and vertical derivatives appearing in the boundary conditions
are discretised using second order decentered finite difference formula. At the axis, we use the regularity condition

Ψ̂v
i |r=0 = Ψ̂h

i |r=0 = 0 for m 6= 0. The numerical code itself is provided as supplementary material.

As in the previous section, we do not need to calculate the quasistatic magnetic field corrections B̂
v

i and B̂
h

i provided
that they satisfy the boundary condition (8). We can deduce the following rules of quadrature

{ψ̂hi , Ĵ hi,r , Ĵ hi,z , Ĵ vi,θ , B̂vi,r , B̂vi,z , B̂hi,θ}
A exp(imθ)

∈ R ,
{ψ̂vi , Ĵ vi,r , Ĵ vi,z , Ĵ hi,θ , B̂hi,r , B̂hi,z , B̂vi,θ}

A exp(imθ)
∈ iR , (61)

Supposing that the quasi-static field corrections are known, we recalculate the complex eigenvalue shift α by writing
a modified solvability condition. This leads here to

2αK = P +
∑
i=1,2

∫
Vi

û∗i ·
[(

Ĵ
v

i + Ĵ
h

i

)
×B + J ×

(
B̂
v

i + B̂
h

i

)]
dV︸ ︷︷ ︸

Q

(62)

The quantities K and P are as before. The new term Q isolates the effect of the quasistatic field corrections. We split
it in three parts

Q = Qvv +Qhh +Qvh (63)

with

Qvv =
∑
i=1,2

∫
Vi

û∗i ·
(
Ĵ
v

i ×Bzez
)

dV

Qhh =
∑
i=1,2

∫
Vi

û∗i ·
(
Ĵ
h

i × (µ0Jr/2)eθ + J × B̂
h

i

)
dV

Qvh =
∑
i=1,2

∫
Vi

û∗i ·
(
Ĵ
h

i ×Bzez + Ĵ
v

i × (µ0Jr/2)eθ + J × B̂
v

i

)
dV (64)

Analyzing the integrals using the quadrature rules of (61), we readily deduce that Qvv,Qhh ∈ R whereas Qvh ∈ iR.
With α = λ+ iδ we have modified formulae for the growth rate λ and frequency shift δ

λ = λv +
Qvv
2K︸︷︷︸
λvv

+
Qhh
2K︸︷︷︸
λhh

, δ = δh + Im

(
Qvh
2K

)
︸ ︷︷ ︸

δvh

(65)

In practice, the integrals in Qvv, Qhh, Qvh are calculated numerically using the field profiles provided by the finite
difference code. We use a simple trapezoidal quadrature rule to calculate the two-dimensional integral over (r, z).

The need to use a numerical approach to find the quasi-static corrections is slightly unsatisfying. Given the fact
that σ1 � σ2, induction in the top electrolyte layer is very weak and we can approximate

Ĵ
v

1 ≈ Ĵ
h

1 ≈ 0 (66)

in the electrolyte. We then need to solve (59), only in the Aluminium layer, together with boundary conditions (60b),
(60c) and with (60e) replaced by

∂zΨ̂
v
2|z=0 ≈ 0 , ∂zΨ̂

h
2 |z=0 ≈ (µ0Jr/2)û2,r|z=0 (67)
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Analytical solutions can be presented in terms of infinite series of harmonic functions. The calculation is quite

laborious for Ψ̂h
2 and is not presented here. For Ψ̂v

2, it is more amenable and we have

Ψ̂v
2 =

C0

( r
R

)m
+

+∞∑
j=1

CjIm(jπr/H2) cos(jπz/H2)

 eimθ (68)

Here Im is a modified Bessel function and C0, C1, C2, . . . expansion coefficients. These coefficients are calculated by

expressing the inhomogeneous boundary condition ∂rΨ̂
v
2|r=R = ûθ,2|r=RBz that is projected onto the set of basis

functions {cos(jπz/H2) , j ∈ N} using the orthogonality relation∫ 0

−H2

cos
jπz

H2
cos

j′πz

H2
= δj,j′

{
H2 , j = 0

H2/2 , j 6= 0
(69)

This yields

C0 = −i
ABz
kH2

Jm(kR) , Cj = −i
ABz
jπ

4mJm(kR)

(kR)(Im+1(jπR/H2) + Im−1(jπR/H2))

k2

k2 + (jπ/H2)2
sinh(kH2) (70)

With this information we can calculate the integral Qvv, best rewritten as

Qvv ≈ −σ2

∫
V2

||û∗i ×Bzez||2dV +

∫
V2

û∗i ·
(
−σ2∇Ψ̂v

2 ×Bzez
)

dV (71)

This yields λvv ≈ Qvv/2K:

λvv ≈
σ2B

2
z

ρ1

tanh(kH1)
+

ρ2

tanh(kH2)

{
−1

4

(
1

tanh(kH2)
+

kH2

sinh2(kH2)

)

+

(
1

k2R2 −m2

) m

kH2
+ 4m2

+∞∑
j=1

(
1

jπ

)
k3

R(k2 + (jπ/H2)2)2)

Im(jπR/H2)

Im+1(jπR/H2) + Im−1(jπR/H2)

 (72)

The first term in the curly brackets is negative and relates to the magnetic damping rate that we would have in

containers with perfectly conducting walls (where Ψ̂v
2 = 0). The collection of terms on the second line is positive and

it captures how the use of electrically insulating radial boundaries can render the magnetic damping less efficient.
This physical observation is coherent with [42]. In practice, we observe a fast exponential decay of the terms in the
sum over j, thus the faster as the cell is shallow. All following calculations are done by truncating the sum over j
to the first 50 terms and we have checked the validity of this formula by comparing it with the result from the finite
difference code (demonstrated below).

We can expand the previous formula for the magnetic damping rate in the shallow limit, kHi � 1 and we find

λvv,shallow ≈
σ2B

2
z

ρ1

(
H2

H1

)
+ ρ2

(
−1

2
+

m

k2R2 −m2

)
(73)

All terms in the sum over j do not contribute significantly. Only the z-independent part of the potential C0(r/R)m exp imθ
has a significant weight. In the deep limit kHi � 1, no simplified formula can be derived from (72), because too many
terms remain significant in the sum over j. This is due to the fact that the cosinusöıdal basis used in the expansion
is not adapted to the deep limit. It is possible to derive deep limit formula using Fourier transform methods.

3. Viscous corrections : damping λvisc, frequency shift δvisc

We finally also include the viscous effects in the perturbative calculation. Leading order viscous effects can be
modeled as if the cell was in a purely hydrodynamical state J = Bz = 0, which then is a rather classical problem.
Early work goes back to [45] who calculated viscous damping of waves in cylinders with only one fluid (ρ1 = 0).
The theory was successfully compared to experimental measurements in well polished cylinders, but not in brimful
cylinders and not with all liquids. Viscous damping of gravity waves may significantly depend on the complex contact
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line dynamics and on surface contamination (see discussions in e.g. [45, 46]) making the theoretical calculation of
surface wave damping rates much more delicate than initially suspected.

Viscous damping rate formulas for waves in cylinders filled with two layers of fluid are not immediately available
and they are calculated here. We ignore surface contamination effects and also the damping that is associated by
what happens in the contact line region, too complex to model correctly. In the appendix D, we provide all details
of our calculation. The method that we use is different from that of [45], but more closely relates to the asymptotic
framework we have been using in the previous sections. In a nutshell, we further extend the asymptotic Ansatz (57)
to

[ui + ui, pi + pi, . . .] =
([

ûi + ûi, p̂i + p̂i, . . .
]

+
[
ũi + ũi, p̃i + p̃i, . . .

])
e(iω+α)t (74)

for the flow and pressure variables. The fields ûi, p̂i are the inviscid gravity wave profiles. Barred variables designate
boundary layer corrections that only exist in O(

√
νi/ω) wide layers near the rigid walls. We calculate these viscous

boundary layers, ignoring the specificity of the contact line region and ignoring contributions from the free interface
that often are much weaker. Mass conservation in the viscous boundary layer causes a wall-normal pumping flow that
enters our model through modifications in the solvability condition (39), via boundary terms. After having discarded
unphysical terms that relate to the bad modeling of the contact line region, we find

λvisc = − 1√
2

∑
i=1,2


√
νi|ω|
R2

ρi

[
k(R−Hi) sinh−2(kHi) +

(
k2R2 +m2

k2R2 −m2

)
tanh−1(kHi)

]
[
ρ1 tanh−1(kH1) + ρ2 tanh−1(kH2)

]
 (75)

and we also show that viscosity induces a small frequency shift

δvisc = Sgn(ω)λvisc (76)

This shift always lowers the absolute value of the frequency of the wave. In appendix D, we further show that the
damping rate λvisc is identical to what results from the energy equation method used by [45], which gives us extra
confidence about the formula.

In the shallow limit kHi � 1, damping on bottom and top boundaries dominates and we can derive the asymptotic
form

λvisc,shallow ≈ −
1√
2

ρ1H
−2
1

√
ν1 + ρ2H

−2
2

√
ν2

ρ1H
−1
1 + ρ2H

−1
2

√
|ωshallow| (77)

In the deep limit, kHi � 1, damping on the radial wall dominates and we can use

λvisc,deep ≈ −
1√
2

(
k2R2 +m2

k2R2 −m2

)
1

R

ρ1
√
ν1 + ρ2

√
ν2

ρ1 + ρ2

√
|ωdeep| (78)

as asymptotically valid formula.

G. Applicability of the perturbative model: necessary conditions

We have provided sufficient conditions to apply the perturbation method, but necessary conditions can be derived
a posteriori by expressing that∣∣∣∣λvω

∣∣∣∣� 1 ,

∣∣∣∣λvvω
∣∣∣∣� 1 ,

∣∣∣∣λhhω
∣∣∣∣� 1 ,

∣∣∣∣λviscω

∣∣∣∣� 1 ,

∣∣∣∣δhω
∣∣∣∣� 1 ,

∣∣∣∣δvhω
∣∣∣∣� 1 (79)

When these conditions are not verified, the theoretical formula become unsure or even wrong. This needs to be kept
in mind before applying the theoretical formula.

III. EXPERIMENTAL STUDY OF VISCOUS DAMPING RATES

In [38], a detailed experimental study on orbital sloshing of waves in two and three fluid layer systems has been
performed. In this configuration, the cylinder is horizontally translated along a circular path, which mainly drives
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a large scale rotating wave (m,n) = (1, 1), also the wave that is most frequently associated with the metal pad roll
instability. By putting the orbital shaker suddenly to a stop, one can measure the viscous decay of this rotating
gravity wave and compare this to the theoretical formula (75) for the viscous damping rate λvisc.

The experimental set-up is shown in figure 2 (a): cylindrical containers of different aspect ratios were made from
polished acrylic glass. For the present study we employed containers with dimensions R = 5 cm and total height
H1 +H2 = 10 cm varying H2 = 0.15 cm to H2 = 0.85 cm in steps of 0.05 cm. Both top and bottom caps of the cylinder
contain ten supply holes to attach up to ten ultrasound probes circulatory distributed around the central point with a
distance of 42 mm. A small 5 mm thick layer of acrylic glass was kept between the probes and the observation volume
ensuring non-invasive ultrasound measurements of interfacial motion. The upper cap additionally contains a small
filling hole of 4 mm diameter enabling to degas the cell and to effortlessly adjust the position of the interface. The
entire sample is placed on a sample holder, which facilitates ultrasound measurements also from below. This way, up
to 20 ultrasound probes can be simultaneously employed making it possible to precisely reconstruct wave modes. The
Ultrasound Doppler Velocimeter DOP 3010 from Signal-Processing was employed to drive up to ten ultrasound probes
which produce beeps and listen for echoes. By directly identifying and tracking the ultrasound echo reflected at the
interface, the interfacial wave motion can be precisely measured for amplitudes in the range 0.15 mm . A . 10 mm.
This novel acoustic measurement method can be also applied in opaque liquid metals. Finally, the sample holder is
mounted onto a Kuhner LS-X lab-shaking table (420× 420 mm), which can prescribe an ideal circular translation

rorbital(t) =
ds
2

(cos Ωtex + sin Ωtey) (80)

to the container with constant frequency Ω and shaking diameter ds. The shaker was modified to allow for a continuous
adjustment of the shaking diameter up to ds = 70 mm and to set shaking frequencies from Ω = 20 rpm up to
Ω = 500 rpm in steps of 1 rpm.

Different working liquids were tested in [38] in order to realize long-time stable interfaces in two- and three-layer
systems with distinct wave properties and boundary conditions. For the present study we specially tailored a fluid
combination. A top layer of Paraffinum Perliquidum (ρ1 = 0.846 g/cm3, ν1 = 36 mm2/s, γ1 ≈ 30 mN/m) with a
bottom layer of Wacker R© silicone oil AK 35 (ρ2 = 0.955 g/cm3, ν2 = 35 mm2/s, γ2 = 20.7 mN/m) is getting very close
to the idealized boundary condition supposed in this study. A meniscus was not visible and we observed an almost
free-sliding contact line.

To measure the experimental damping rates we followed a strict protocol. Pre-measurements were conducted to
find the eigenfrequency Ω of the mode (m,n) = (1, 1) for each choice of H2, since it is known from [47], that at
resonance the forced wave motion is most similar to free gravity waves. We then drive the rotating wave at the
resonant frequency, adjusting the shaking diameter ds in order to drive waves that on the one hand are large enough
to allow damping rate measurements, and on the other hand small enough to remain in the linear, non-breaking wave
regime (amplitudes between 3 mm and 5 mm in practice). After the wave is settled in a saturated state, we turn off
the shaking table. Subsequently, we give the wave some time (about one up to two periods) to transform into a ”free”
gravity wave. Then we determined the exponential decay rate −λ by fitting the ansatz

A(t) = A0e
λt cos(Ωt− δ) (81)

to the measured wave-amplitude. Here A0 denotes the initial wave amplitude that also needs to fitted and introduces
some uncertainty. In figure 2 (b) we compare the measured damping rates to the theoretical formula. Error bars were
estimated by using different fitting time intervals. The measured decay rates are in very good agreement with the
theoretical viscous damping rate. The theory slightly underestimates the measured damping rates. Figure 2 (b) also
shows the theoretical damping rates in the shallow and deep water limits. The points of contact demonstrate that we
have compared the damping rates in the full transitional regime between these simplified asymptotic limits that are
more frequently analyzed in the literature.

The full experimental study of orbital sloshing of two and three-layer fluid systems will be presented in a separate
article [38]. Here we can conclude that our perturbation theory can suitably predict the viscous damping rates of
gravity waves of two-layer systems if the simplified boundary conditions at the contact line are fulfilled.

IV. APPLICATION TO SMALL AND LARGE REDUCTION CELLS

We now return back to the metal pad roll problem and apply our theory to two different reduction cells, a small one
and a large one. To better see the strong geometrical difference between both cells, we show a sideview of both cells
in figure 3, together with our parameter choices. We use realistic values of σi, ρi, νi. Surface tension will be either
absent γ1|2 = 0 or equal to γ1|2 = 0.5 N/m [22] and g = 9.81m/s2, µ0 = 4π 10−7.
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(a) experimental set-up used to measure viscous wave damping
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FIG. 2. (a) Photograph of the experimental set-up showing the cylindrical observation sample mounted on a Kuhner LS-X
lab-shaker and different further individual parts to compose samples of various aspect ratios. In this picture, the cylinder was
filled with silicon oil (top), water (middle) and paraffin oil (bottom) to realize a stable three-layer system and the water layer
was colored to increase the visibility. (b) measured damping rates λ in comparison with the theoretical viscous damping rate
due to equation (75) for different interfacial heights H2. The theoretical damping rate is also shown within the shallow (77)
and deep (78) water limits.
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cell R H1 H2 ρ1 ρ2 σ1 σ2 ν1 ν2 −J Bz

(a) 0.035 0.075 0.075 2150 2300 250 3.5 106 1.2 10−6 5.2 10−7 ≤ 2× 104 ≤ 0.1

(b) 0.5→ 2.5 0.05 0.30 ” ” ” ” ” ” 1.5× 104 0.001

FIG. 3. Physical parameters and sideview of the set-up for two configurations studied in the article. Values of R,Hi in m,
ρi in kg m−3, σi in S m−1, νi in m2 s−1, J in A m−2, Bz in T. Configuration (a) is a small experimental cell inspired by the
cylindrical cell studied in [22, 23]. Configuration (b) is a big cell with realistic heights of fluids and a large lateral extent (in
this plot R = 1 m). The sideview was scaled to clearly see the difference in geometry

A. Small, laboratory scale cell

The small cell has radius R = 0.035 m and Hi = 0.075 m. It bares little ressemblance with the large and shallow
industrial Hall-Heroult cells but it is representative of a laboratory scale device such as that discussed in [22, 23] or
in the experiments of [39, 40]. Small cells can only be destabilized with high enough J or Bz. We decide to keep J
within realistic levels and for Bz we take the liberty to impose very high magnetic fields Bz, similar to what was done
in [39, 40] and [22, 23].

1. Theoretical results

In Table I we provide numerical values for wavenumbers k and frequencies ω of several waves (m,n) together with
all the different terms λv, λvv, λhh, λvisc that may affect the growth rate and δh, δvh that contribute to the frequency
shift. Most data is presented relative to J, JBz, J

2 in order to allow for more general use. Data for axisymmetric waves
with m = 0 is not reported since they can never become unstable according to our theory. Focussing on λv/JBz, we
see the large scale sloshing mode (m,n) = (1, 1) is not the only unstable wave. Without surface tension, the higher
m modes are even more unstable, with surface tension, not. Waves with smaller radial structures, with n ≥ 2 are
always much less destabilized. The relative frequency shift δh/J

2 is always extremely low. The notation→ 0 suggests
here values lower than 10−19. This smallness is only partly due to the µ0-factor in the formula.The quasi-static static
corrections λvv/B

2
z , λhh/J

2, δvh/JBz are independent of surface tension. The magnetic damping due to the vertical
magnetic field λvv/B

2
z increases with m and n. For λhh/J

2 we also find very small values. Here this mainly due
to a µ2

0 factor and we have checked that there are no problems with numerical precision. Remarkable is the fact
that λhh/J

2 > 0 for the fundamental wave (1, 1), so that this mode could in principle be very weakly destabilized
without Bz provided that J would become unrealistically high. For the quasi-static frequency correction δvh/JBz
values are low and there is no clearly observable trend. In the last column, we see that the viscous dissipation of the
waves increases with m. Surface tension increases the viscous dissipation, mainly because the frequency of the waves
increases drastically.

From the previous table, it is clear that all horizontal field effects will be negligible when J ∼ 104 A m−2. In the
small cell geometry, we can therefore approximate the growth rate and frequency shift as

λ ≈ λv + λvv + λvisc , δ ≈ δvisc (82)

In figure 4, we show lines of marginal instability in the J − Bz plane calculated using this data, for cases with and
without surface tension. The first wave to be destabilized is the large scale sloshing wave with (m,n) = (1, 1) followed
by the other waves (m, 1) with m ≥ 2. In absence of surface tension, the marginal stability curves for the different
waves are very close to each other, so many different waves will become unstable at the same time. With surface
tension, the high m modes are much less destabilized and there is a clear preference for the (1, 1) mode. No waves
with smaller radial structures (n ≥ 2) can become unstable in the shown part of parameter space.

In figure 5-(a), we visualize the current excesses ĵi, Ĵ
v

i and Ĵ
h

i that are associated with the fundamental wave
(1, 1) and for an equilibrium electrolysis current J that flows from top to bottom. The deformed interface is suggested
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(m,n) k (m−1) ω λv/|JBz| δh/J
2 λvv/B

2
z λhh/J

2 δvh/JBz λvisc

(1, 1)a 52.6 4.17 1.19 10−3 5.81× 10−14 −66.3 0.207× 10−14 −9.58× 10−7 −6.82 10−2

(2, 1) 87.3 5.37 1.37 10−3 0.016× 10−14 −78.7 −0.871× 10−14 −5.31× 10−7 −1.06 10−1

(3, 1) 120 6.30 1.48 10−3 → 0 −86.6 −1.59× 10−14 −3.56× 10−7 −1.41 10−1

(1, 2) 152 7.09 1.76 10−4 → 0 −189 −0.302× 10−14 −0.308× 10−7 −5.21 10−2

(2, 2) 192 7.96 2.64 10−4 → 0 −185 −0.764× 10−14 −0.333× 10−7 −6.14 10−2

(3, 2) 229 8.70 3.21 10−4 → 0 −183 −1.200× 10−14 −0.318× 10−7 −7.13 10−2

(1, 1)b 52.6 5.80 8.54 10−4 4.17× 10−14 −8.05 10−2

(2, 1) 87.3 10.2 7.23 10−4 9.35× 10−17 (same as above) −1.45 10−1

(3, 1) 120 15.3 6.11 10−4 → 0 −2.20 10−1

(1, 2) 152 21.1 5.90 10−5 → 0 −8.99 10−2

(2, 2) 192 29.2 7.19 10−5 → 0 (same as above) −1.18 10−1

(3, 2) 229 37.8 7.40 10−5 → 0 −1.48 10−1

a without surface tension
b with surface tension γ1|2 = 0.5N/m

TABLE I. Theoretical values for wavenumbers k (in m−1), inviscid frequencies ω (in s−1), relative growth rates λv/JBz (in
s−1A−1m2T−1) and frequency shifts δh/J

2 (in s−1A−2m4), quasistatic corrections of the growth rate λvv/B
2
z (in s−1T−2),

λhh/J
2 (in s−1A−2m4) and frequency δvh/JBz (in s−1A−1m2T−1) and viscous damping term λvisc (in s−1) of different waves

(m,n) in a small cell with dimensions R = .035 m, H1 = 0.075 m, H2 = 0.075 m.

0 0.5 1 1.5 2

J (A/m2) 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

B
 (

T
)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

STABLE

UNSTABLE

(a) without surface tension γ1|2 = 0

0 0.5 1 1.5 2

J (A/m2) 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

B
 (

T
)

(1,1)

(2,1)

(3,1)
STABLE

UNSTABLE

(b) with surface tension γ1|2 = 0.5N/m

FIG. 4. Marginal stability curves for metal pad roll instability of waves (m,n) with and without surface tension. In the
diagonally barred regions the cell is stable. The large scale sloshing wave (m,n) = (1, 1) always becomes unstable first.

by the black line. The current lines ĵi, due to the interface motion, loop in a symmetrical way in both fluid layers.

The quasi-static corrections Ĵ
v

i , Ĵ
h

i on the other hand, loop inside the Aluminium and remain well away from the
boundaries so that the approximatively isolating boundary conditions are well verified. In panel (b), we plot power
densities

û∗i ·
(
ĵi ×Bzez

)
, û∗i ·

(
Ĵ
v

i ×Bzez
)

, û∗i ·
(
Ĵ
h

i × (µ0Jr/2eθ

)
+ µ0Jφ̂

∗
i ûi,z (83)

that appear in the integranda of Pv, Qvv and Qhh. This allows to visually locate where the instability is powered or
inversely where magnetic damping can take place. In this small cell configuration, we see that both the Cryolite and
the Aluminium participate in a symmetric way in the destabilization through Pv. The density that defines Qvv is
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(a) streamlines of current densities (b) Lorentz force power densities

FIG. 5. Small cell geometry. Current excess lines together with normalized power density plots for the fundamental wave

(1, 1). The interface deformation is suggested by the thick black line. The magneto-static current perturbation ĵi driven by

the motion of the interface motion exists in both fluid layers, quasi-static corrections Ĵ
v

i and Ĵ
h

loop in the Aluminium layer
where the conductivity is higher.

(m,n) model ω λv/JBz λvv/B
2
z λvisc

(1, 1) exact 4.169 1.189 10−3 −66.3 −0.0682

” deep 4.171 1.185 10−3 - −0.0684

” shallow 8.284 1.513 10−4 −64.2 −0.0245

(2,1) exact 5.372 1.370 10−3 −78.7 −0.1056

” deep 5.372 1.370 10−3 - −0.1056

” shallow 13.740 8.184 10−3 −98.0 −0.0315

TABLE II. Comparison of exact theoretical formula with deep and shallow limits for inviscid frequencies ω (in s−1), relative
growth rates λv/JBz (in s−1A−1m2T−1), relative damping term λvv/B

2
z (in s−1T−2), viscous damping rates λvisc (in s−1).

Surface tension is ignored. For the small cell under study, the deep formula provide a very accurate description as opposed to
the shallow limit formula, which is not well adapted.

negative in the bottom Aluminium layer where the flow induction may take place. Although Qhh is negligibly small
in this small reduction cell, we notice that

û∗i ·
(
Ĵ
h

i × (µ0Jr/2eθ

)
︸ ︷︷ ︸

<0

+µ0Jφ̂
∗
i ûi,z︸ ︷︷ ︸

>0

(84)

in the power-density that determines Qhh (panel (b), right plot). The first term is stabilizing (< 0, blue spots) and
the second is destabilizing (> 0 red spots). Both terms do not operate at the same place in space.

In the theoretical section, we have provided exact formulas for the frequency ω and growth rate λv (48) together
with deep and shallow limits. In table II, we apply the different formulas to the case of this small cell. We focus on
two waves (m,n) = (1, 1), (2, 1) and ignore surface tension. The deep limit formula (50) clearly provides an excellent
approximation, which is not really a surprise considering that the small cell is rather tall (see figure 3-(a)). The
shallow-limit formulas (52) are not adapted to capture the metal pad roll instability in this cell.

In table III we compare the theoretical calculation of λvv/B
2
z using formula (72) to numerically calculated values.

The numerical values are obtained using numerical quadrature and the field profiles Ψ̂v
i that result from the finite

difference code. Increasing the spatial resolution M = 100, 200, 400, 800 in that code, we observe how the values of
the damping rates converge towards the theoretical prediction of (72). This validates our finite difference solver, but
also suggests that (72) provides an excellent description of the magnetic damping rate.

In figure 6, we study how λv/JBz and λvv/B
2
z of the fundamental wave (m,n) = (1, 1) would hypothetically vary

with the electrical conductivity of the top (Cryolite) layer. We use the numerical approach to calculate λvv/B
2
z , since

the conductivity σ1 varies from the realistic value 250 S/m up to σ1 = σ2 so that the top layer will participate in
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(m,n) num (100)a num (200) num (400) num (800) theoreticalb

(1, 1) −66.47 −66.37 −66.34 −66.33 −66.31

(2, 1) −79.08 −78.82 −78.76 −78.75 −78.71

(3, 1) −87.19 −86.77 −86.66 −86.63 −86.60

a numerical calculations of λvv/B2
z for varying grid-size

b theoretical calculation of λvv/B2
z using (72)

TABLE III. The relative magnetic damping rates λvv/B
2
z (in s−1T−2) for different waves (m,n) can be calculated numerically

using a finite finite difference solver with variable spatial resolution M = 100, 200, 400, 800 or theoretically, using (72). The
numerical values converge towards the theoretical estimate.

10
2

10
3

10
4

10
5

10
6

10
7

1

2

4

6

8

10

12

v
 /

 J
 B

z

10
-4

1
 = 250 S/m

1
 = 

2
/100

1
 = 

2

(a) growth rate

10
2

10
3

10
4

10
5

10
6

10
7

1

-300

-250

-200

-150

-100

-50

0

v
v
 /

 B
z2
 

1
 = 250 S/m

1
 = 

2
/100

1
 = 

2

(b) magnetic damping

FIG. 6. Variation of the relative growth rate λv/JBz (panel (a)) and magnetic damping term λvv/B
2
z (panel (b)) when σ1 is

artificially increased. From σ1 = 250 S/m to σ1 = σ2/100 there is only a weak modification of the growth rate and magnetic
damping. This suggests that, in direct numerical simulations, one can significantly relax the conductivity jump, without
modifying the linear instability characteristics. At σ1 = σ2, the instability vanishes: a strong difference in conductivity is
essential for the metal pad roll instability.

the damping. From σ1 = 250 S/m towards σ1 = σ2/100, we observe little changes in both λv/JBz and λvv/B
2
z .

The conductivity of the electrolyte can be significantly increased without modifying the essence of the instability
mechanism and the magnetic damping rate. A further increase of σ1 does affect the instability, that even vanishes at
σ1 = σ2. There can be no metal pad roll instability without a significant jump in conductivity.

2. Numerical results & comparison

The numerical study is done with SFEMaNS and OpenFOAM and ignoring surface tension. In both codes, we
have varied the grid-size to assess the numerical convergence. We introduce the non-dimensional measure h = δx/R
to characterize the grid size. In SFEMaNS the cell-size δx is non-uniform in the plane (r, z) and the cells are refined
near the interface. Therefore we provide intervals h = (hmin → hmax) to characterize the SFEMaNS grid. All the
simulations reported in the paper have been done with 30 real Fourier modes in the azimuthal direction. In SFEMaNS,
we relax the conductivity jump by taking σ1 = σ2/100. This stabilizes the numerical calculations and as explained
above, should not modify the linear instability mechanism. In OpenFOAM only purely orthogonal cells are used
with h = 0.05 or smaller. The cells are flattened towards the interface with an aspect ratio of 5 at most. Interface
compression ensures that the interface is typically smeared over 2-3 cells.

In a first series of tests, we put J = 0, Bz = 0, initialize the numerical simulations with low amplitude gravity wave
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wave (m,n) = (1, 1) h ω + δvisc λvisc λvv (10 mT) λvv (25 mT) λvv (50 mT)

SFEMaNS (0.86→ 5)× 10−2 4.086 −0.0773 −0.1032 −0.1375 −0.2480

(0.43→ 5)× 10−2 4.101 −0.0805 −0.0066 −0.0412 −0.1533

(0.2→ 5)× 10−2 4.096 −0.0805 −0.0069 −0.0421 −0.1539

OpenFOAM 5.00× 10−2 4.078 −0.0519 −0.0071 −0.0404 −0.1527

4.00× 10−2 4.078 −0.0590 −0.0053 −0.0401 −0.1511

3.33× 10−2 4.105 −0.0646 −0.0056 −0.0387 −0.1507

2.50× 10−2 4.102 −0.0678 - - -

2.00× 10−2 4.107 −0.0717 - - -

1.539× 10−2 4.104 −0.0724 - - -

Theory 4.101 −0.0682 −0.0066 −0.0414 −0.1658

wave (m,n) = (2, 1) h ω + δvisc λvisc λvv (10 mT) λvv (25 mT) λvv (50 mT)

SFEMaNS (0.86→ 10.7)× 10−2 5.087 −0.1981 −0.0039 −0.0331 −0.1290

(0.43→ 5)× 10−2 5.150 −0.1251 −0.0084 −0.0478 −0.1807

(0.2→ 5)× 10−2 5.084 −0.1236 −0.0085 −0.0473 −0.1804

Theory 5.267 −0.1056 −0.0079 −0.0492 −0.1968

TABLE IV. In absence of electrolysis current and without surface tension, gravity waves are damped by viscous and magnetic
dissipation. Using both SFEMaNS and OpenFOAM, we simulate the decay of large scale gravity waves (m,n) = (1, 1), (2, 1)
with or without imposed magnetic field Bz = 0, 10, 25, 50 mT and using different grids wih typical mesh-sizes h = δx/R. We
measure the frequency ω + δvisc(s

−1), the viscous damping rate λvisc(s
−1) and the magnetic damping rates λvv(s−1) of the

waves and we compare with the theoretical estimates provided by the perturbative analysis.

profiles for (m,n) = (1, 1), (2, 1) and let these waves decay in time. We measure numerical values for the frequency
and viscous damping rates of these waves and compare these measures with the viscously corrected frequency ω+δvisc
and damping rate λvisc of our theoretical model. All results are gathered in table IV. Both solvers OpenFOAM and
SFEMaNS clearly show convergence in gravity wave frequency ω + δvisc as the grid is refined and the measured
frequencies closely match with the theoretical value. For the fundamental wave (1, 1), the absolute error between
theory and numerics reaches levels of 0.01 s−1 and relative errors of the order of 2.4 10−3. For the wave (m,n) = (2, 1)
there is a larger mismatch but the agreement still is very good. For the viscous damping rates λvisc, we also observe
convergence in both codes as the grid is refined. Waves are slightly more damped in the numerical simulations than
predicted by theory and there is a noticeable difference between both codes: the same waves are more viscously
damped in SFEMaNS than in OpenFOAM. The OpenFOAM measure is closer to theoretical estimate, but we must
remind that theory is also slightly uncertain due to the neglected contact line effects.

In a second series of tests, we measure the damping rates of gravity waves in presence of non-zero external magnetic
fields Bz 6= 0, without electrolysis current (J = 0). We do simulations for increasing magnetic field Bz = 10, 25, 50mT.
If λ denotes the (negative) growth rate of the waves in the numerical simulations using a mesh with cell-size h and
λvisc the viscous growth rate measured for this mesh, we then calculate numerical values λvv = λ− λvisc in order to
filter the code- and grid-dependent viscous damping that was considered in the previous section. Table IV gathers
numerical measures for λvv that can be compared with the theoretical estimates for waves (1, 1), (2, 1). The agreement
with the theoretical value is very good but clearly requires a sufficiently fine grid. For the lower Bz = 10, 25 mT, there
is an excellent agreement. For high Bz = 50 mT there is a small mismatch that we accredit to the fact that we are
leaving the asymptotical regime of validity of the theoretical model. We note that the magnetic damping rates −λvv
are slightly lower in OpenFOAM than in the simulations done with SFEMaNS.

In a third series of tests, we perform simulations of the metal pad roll instability with both J and Bz present. We
fix the magnetic field strength to Bz = 16 mT previously used by [23] in a similar small reduction cell. We increase the
current density in the interval J ∈ −[7795, 25984] A m−2 that corresponds to electrolysis currents of I = [30, 100]A,
running downwards through the cell. From theory, we can estimate that metal pad roll instability should occur
when |J | is above a threshold current density located at Jc = 4476 A m−2. In figure 7, we show that metal pad roll
instability indeed sets in when |J | = 7795 A/m2 > Jc and in both numerical codes. We have plotted the interface
deformation during one rotation period of the saturated rotating wave, which clearly is dominated by the fundamental
(m,n) = (1, 1) wave rotating in anti-clockwise direction (mω < 0), when seen from above. This corresponds to what
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(a) Weakly nonlinear regime (OpenFOAM)

(b) Weakly nonlinear regime (SFEMaNS)

(c) Strongly nonlinear
regime (SFEMaNS)

FIG. 7. Visualisaton of the interface between the Cryolite and Aluminum in the numerical simulations. (a) and (b) show the
weakly nonlinearly regime in which a rotating gravity wave saturates in magnitude. 8 snapshots are shown over one period T
of the large scale sloshing wave (m,n) = (1, 1). J = −7795 A/m2, Bz = 16 mT. (c) Further away from threshold, the interface
may violently destabilize and develop large deformations, here for J = −20000A/m2, Bz = 16 mT.

can be expected from the theory and from the Sele-mechanism [2]. In a more systematic series of computations we
have measured the growth rate of the metal pad roll instability as a function of J . They are plotted in figure 8(a) next
to the theoretical estimate λ ≈ λv +λvv +λvisc. We observe an excellent agreement with the theoretical line that, we
remember, grows linearly because λv ∼ |JBz|. The fact that both codes find straight lines with the same slope is an
indication that both codes capture the destabilizing mechanism behind λv very well. The SFEMaNS growth rates are
slightly beneath the OpenFOAM values, which is not unexpected owing to the small difference in viscous damping
rates (from table IV: λvisc ≈ −0.0805 (SFEMaNS), λvisc ≈ −0.0678 (OpenFOAM, h = 0.025)).
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FIG. 8. (a) Comparison of theoretical and numerical growth rates for the large scale sloshing wave (m,n) = (1, 1) as a function
of |J |. (b) Saturation amplitudes of rotating wave as a function of |J |. Small cell configuration with Bz = 16 mT and ignoring
surface tension.

The numerical simulations further provide insights in the nonlinear regime, not modeled by our theory. In figure 8(b),
we show a diagram that gathers maximal amplitudes ηmax of saturated rotating gravity waves as a function of current
density. This suggests a supercritical bifurcation. We can propose a weakly nonlinear fit ηmax = 1.5× 10−4

√
|J | − Jc

in MKSA units (based on the OpenFOAM data). In non-dimensional form and using the theoretical formula for the
growth rate λ, we can rewrite this fit as

If λ > 0 :
ηmax

R
≈ 2

√
λ

|ω|
(85)

In the perturbative limit, the weakly nonlinear saturation process is mainly hydrodynamical. Therefore, we expect
that this non-dimensional relation is more generally applicable to estimate the weakly nonlinear saturation amplitudes
of the fundamental wave (1, 1) in tall (deep) reduction cells. The task of finding a theoretical confirmation of this law
would be formidable, but is out of scope here.

The weakly nonlinear regime exists in a limited parameter range. When we push the electrical current density even
higher, above |J | ∼ 15000A/m2, we can get violent secondary instabilities with both numerical solvers. The interface
undergoes strong deformations which ultimately lead to a blow up of the numerical calculation. To illustrate this
phenomenon, we show in figure 7(c) the interface obtained with J = −20000 A/m2 using SFEMaNS. The origin of this
secondary instability is unknown, but similar explosive behavior was also observed in liquid metal battery geometry
[35, 36].

B. Large, industrial scale cells

In this section, we apply the theory to investigate metal pad roll instability in large, industrial scale cells, with
H1 = 0.05 m,H2 = 0.30 m and large radii R ∈ [0.5, 2.5] m, so that we can ignore surface tension.

In Table V we provide numerical values for all the relevant quantities determining the stability and frequency shifts
of different waves (m,n) in a R = 1 m cell. As in the small cell, axisymmetric waves, with m = 0 are never unstable.
In the column for λv/JBz, we see that the fundamental wave (1, 1) will always be the most destabilized wave, by
far. Since viscous dissipation is also lowest for this wave, we can expect to see predominantly this wave. The relative
frequency shift δh/J

2 can be either positive or negative and decays as m or n increase. Although the numbers are
small, this effect will no longer be negligible for current densities of the order J ∼ 104 A m−2). For the quasi-static
corrections λvv/B

2
z , λhh/J

2 and δvh/JBz we find the same trends as in the small cell. With λhh/J
2 = 8.06×10−14 we

can seemingly have a very weak destabilization of the wave (1, 1) even with Bz = 0. However, unrealistic currents of
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(m,n) k ω λv/JBz δh/J
2 λvv/B

2
z λhh/J

2 δvh/JBz λvisc

(1, 1) 1.84 0.31 1.79× 10−3 2.27× 10−10 −18.8 8.06× 10−14 −0.45× 10−6 −0.77× 10−2

(2, 1) 3.05 0.51 1.01× 10−3 0.58× 10−10 −28.8 −0.11× 10−11 −0.94× 10−6 −0.98× 10−2

(3, 1) 4.20 0.69 0.73× 10−3 −0.07× 10−10 −36.2 −0.31× 10−11 −1.38× 10−6 −1.13× 10−2

(1, 2) 5.33 0.85 0.07× 10−3 1.21× 10−10 −104 −0.08× 10−11 −0.20× 10−6 −1.07× 10−2

(2, 2) 6.71 1.05 0.08× 10−3 0.86× 10−10 −105 −0.27× 10−11 −0.32× 10−6 −1.12× 10−2

(3, 2) 8.02 1.22 0.09× 10−3 0.64× 10−10 −109 −0.51× 10−11 −0.39× 10−6 −1.14× 10−2

TABLE V. Theoretical values for wavenumbers k (in m−1), inviscid frequencies ω (in s−1), relative growth rates λv/JBz (in
s−1A−1m2T−1) and frequency shifts δh/J

2 (in s−1A−2m4), quasistatic corrections of the growth rate λvv/B
2
z (in s−1T−2),

λhh/J
2 (in s−1A−2m4) and frequency δvh/JBz (in s−1A−1m2T−1) and viscous damping term λvisc (in s−1) of different waves

(m,n) in a large cell with dimensions R = 1 m, H1 = 0.05 m, H2 = 0.3 m. Surface tension is ignored.
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FIG. 9. Growth rate λ and shifted frequency ω+δ of various gravity waves (m,n) in large cells with varying radius. Dimensions
are R ∈ [0.5, 2.5]m, H1 = 0.05m, H2 = 0.35m and we take realistic values for current density and vertical magnetic field
J = 1.5 × 104A m−2 and Bz = 1mT. The dashed lines in panel (b) correspond to the unperturbed gravity wave frequency ω
and allow to see the impact of the shift δ.

the order of |J | > 3.1×105A m−2 would still be required to overcome the weak viscous dissipation λvisc. Furthermore,
at such high values of J , we surely violate δh � ω by far and one necessary condition for using perturbation methods
is then violated so that our model likely is no longer valid in that very high J-range. It seems safe to say that this
strange destabilization is anecdotical in real life.

We fix J = 1.5 × 104 A m−2 and Bz = 1mT to realistic values and let the radius of the cell vary in the range
R ∈ [0.5, 2.5] m. Due to the low vertical magnetic field strength and the low values of λhh/J

2 we can neglect all
quasi-static MHD effects in the large cell and use

λ ≈ λv + λvisc , δ ≈ δh + δvisc (86)

as a suitable approximation. Figure 9 displays how the growth rate λ and the shifted frequency ω + δ vary with
R. In panel (a), we clearly see that the growth rate increases linearly with R, in agreement with the shallow limit
formula (54). The large scale sloshing mode (1, 1) always remains the most unstable mode even for the very big cells.
In panel (b), the dashed lines show that the inviscid frequency ω decays with R. This is coherent with theory that
predicts ωshallow ∼ R−1. The full lines show the shifted frequency, ω + δ that clearly deviate from ω. This shift is

here mostly due to the δh, i.e. caused by the Lorentz-force interaction of electrical currents ĵi with the horizontal
magnetic field µ0Jr/2 eθ. Note finally, that λ� ω and δ � ω seem verified for all but the largest cells, which suggests
that perturbation methods may be applicable to model realistically large reduction cells.
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(m,n) model ω λv/JBz λvv/B
2
z λvisc δh/J

2

(1, 1) exact 0.311 1.79× 10−3 −18.83 −0.767× 10−2 2.27× 10−10

” shallow 0.314 1.75× 10−3 −18.79 −0.751× 10−2 2.30× 10−10

(2, 1) exact 0.508 1.01× 10−3 −28.78 −0.983× 10−2 0.58× 10−10

” shallow 0.521 0.95× 10−3 −28.70 −0.967× 10−2 0.59× 10−10

TABLE VI. Comparison of exact theoretical formula with shallow limits for inviscid frequencies ω (in s−1) and relative growth
rates λv/JBz (in s−1A−1m2T−1), relative magnetic damping term λvv/B

2
z (in s−1T−2), viscous damping term λvisc (in s−1)

and relative frequency shift δh/J
2 (in s−1A−2m4). In the large cell under study, the shallow limit formula provide a very

accurate description.

(a) streamlines of current densities (b) Lorentz force power densities

FIG. 10. Large cell geometry R = 1m. Current excess lines together with normalized power density plots for the fundamental
wave (1, 1).

In figure 10, we visualize the current excesses ĵi, Ĵ
v

i , Ĵ
h

i together with the power densities (83) in a similar way

as to what we did in figure 10 for the small cell. In panel (a), we see that ĵi is mainly vertical in the electrolyte and
horizontal in the Aluminium. This is remarkably different from what we had in the small cell, but also corresponds

to what was assumed in all available shallow layer descriptions of metal pad roll instability. Even though Ĵ
v

i and Ĵ
h

i

have negligible impact, it is recomforting to see that these currents are also almost horizontal and remain well within
the Aluminium layer. In panel (b), we plot the power densities (83) that enter in the definition of Pv, Qvv and Qhh.
Contrary to the small cell, we see that destabilization through Pv is mainly powered in the bottom layer where the

currents ĵi are horizontal.

V. APPLICATION TO A LIQUID METAL BATTERY

In [35, 36], the metal pad roll instability was numerically studied in Mg||NaCl − KCl − MgCl2||Sb liquid metal
batteries (LMBs). In these batteries there are not two, but three layers of conducting fluid, with the following
material properties

(ρ1, ρ2, ρ3) = (1577, 1715, 6270) kg m−3

(σ1, σ2, σ3) = (3.6 .106, 80, 8.7 .105) S m−1

(ν1, ν2, ν3) = (6.7, 6.8, 2.0) .10−7 m2 s−1

(87)

and interfacial tensions

(γ1|2, γ2|3) = (0.19, 0.095) N m−1. (88)
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(a) simulation of metal pad roll in Mg-Sb
liquid metal battery
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FIG. 11. (a) snapshot of a numerical simulations the metal pad roll instability in Mg-Sb liquid metal battery. J = 104 A m−2,
Bz = 10mT. (b) Growth rate of the metal pad roll instability in the numerical simulations and according to our two-layer
theory.

Top (Mg) and bottom (Sb) layers 1 and 3 are very good conductors, but the middle layer 2 (NaCl−KCl−MgCl2) is
a badly conducting molten salt electrolyte. [35] performed a series of numerical simulations for Bz = 10 mT and for
varying electrical currents I = JπR2 passing through a cylindrical cell with dimensions.

R = 0.05 m , (H1, H2, H3) = (0.045, 0.01, 0.045) m (89)

Metal pad roll instability was found and growth rate measurements were published. It was observed that due to the
large density jump between layers 2 and 3, the motion mainly deforms the upper interface, separating layers 1 and 2.
The lower interface only slightly deforms and doesn’t really participate and this could also be seen in the frequency
of the wave that matched very closely that of the two layer system (only 1 and 2). This motivated us to try to apply
our two layer theory to this 3-layer cell system.

The following ”technical” operations are necessary in order to apply the theory. We entirely ignore region 3 and all
what may occur there. This is a valid hypothesis, since with significant interface motion there will be no contribution
to the destablizing and stabilizing mechanisms there. At the 2|3 interface, the electrical boundary condition, as seen
from the electrolyte is very similar to the one we had on the top cap of our cylindrical Hall-Heroult cell: the electrolyte
encounters there a much better conductor which we can idealize as perfect. This means that if we interchange regions
1↔ 2 and inverse the sense of gravity g → −g, we can apply all the previous formula.

In figure 11, we show the result of that quantitive comparison. The dashed line corresponds to our theory, without
adjustable parameter. The data-points are those of fig. 9 in [35]. The agreement is surprisingly good.

The fact that we find the right slope with our two-layer theory implies that λv is certainly correctly calculated.
The threshold also seems approximatively right and suggests that the combined magnetic and viscous damping rates
λvv + λvisc is also more or less correctly calculated. The magnetic damping λvv only occurs in the well-conducting
Mg layer where fluid is sufficiently moving, so we expect this term to be correct. This implies that λvisc also is
nearly correct which is more surprising. The viscous damping rate formula used here was derived by supposing no-slip
conditions on both top and bottom walls. Here in this LMB, the true viscous boundary condition at the 2|3 interface
formally is not no-slip and should rather be the expression of the continuity of velocity and tangential constraint.
Now, considering that the bottom fluid 3 is much more heavy and has at the same a much larger dynamical viscosity
ρ3ν3, we may expect that layer 3 is only very weakly entrained by the motion of the salt. Continuity of velocity then
suggests a boundary condition that should be close to a no-slip condition :

u2,r|z=−H2 ≈ 0 , u2,θ|z=−H2 (90)

This explains why we think that also viscous damping is more or less correctly calculated here.
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VI. CONCLUSION

In this article, we have formulated a theoretical model for the metal pad roll instability in cylindrical reduction
cells. Using perturbation methods, we have derived analytical formulas for the destabilization, the magnetic damping
and the viscous damping of gravity waves in cylinders. Our model is new and very complete, since have overcome
all common limitations of metal pad roll theory: no assumptions were made on the shallowness, capillary effects
are included, we include viscosity, we went beyond the commonly adopted magneto-static approach and we consider
arbitrary fluids. We are confident with all the provided theoretical formulas since they were rigorously tested against
numerical calculations of the interaction integrals. From the general formula, we have derived asymptotical expressions
for deep and shallow reductions. In the Appendix B, we further demonstrated that our model exactly links to previous
shallow and inviscid theories for metal pad rolling in cylindrical geometry.

The theoretical expression for the viscous damping rates was tested in experiments, using an orbital sloshing device,
fully described in [38]. We found excellent agreement with our theoretical formula. Improvement is still possible by
taking into account damping caused by viscous dissipation near the free interface (reachable) and by finding a better
boundary layer model near the moving contact line (difficult).

We have applied our theoretical model to a first type of tiny reduction cell, representative of laboratory scale
experiments. This cell was previously numerically studied by [22, 23]. It is so small that it requires huge magnetic
fields to destabilize, just as high as the fields used in the experiments of [39, 40]. One particularity of the small cell
is that the fundamental wave (1, 1) is not the only wave to become unstable nor that is always is the most unstable
wave. We have also shown that capillary effects have a very significant impact in small cells. The main advantage
of studying a small cell is that high precision direct numerical simulations are possible. As such, the small reduction
cell defines a perfect benchmark for any multiphase MHD solver. Our solvers SFEMaNS and OpenFOAM arrive as
relatively new players in the area of multiphase MHD codes and both pass here a very demanding test. Both codes
yield sensibly the same results. In a detailed cross-comparison of theoretical viscous damping rates, magnetic damping
rates and instability growth rates with numerical measures we have found excellent agreement. This type of combined
approach was quite long to put into practice but really instructive. It allowed us to gradually perfection and debug
our numerical solvers and our theory. We know also have a good knowledge of what is truly required in terms of
numerical resolution to perform well-resolved calculations of metal pad rolling with SFEMaNS and OpenFOAM.

For large industrial scale cells we limited ourselves to some theoretical aspects only. A first important point to raise
is that even large reductions cells may be modelled using perturbation method in limited parameter regimes. Viscous
effects and quasi-static corrections always remain small in large cells in agreement with what is frequently assumed.
Our theory predicts that the large scale sloshing mode (1, 1) always remains the most unstable wave in large cells
by far. The self-generated horizontal magnetic field µ0Jr/2 eθ cannot destabilize waves at first order, but modifies
the wave frequencies through δh. This has not been tested numerically, but is in agreement with previous findings
[3, 7]. We expect that this frequency shift is indeed measurable in large cells. A remarkable detail was that we found
that quasi-static effects may destabliize the fundamental wave (1, 1) very weakly even in absence of Bz. Numerical
application in our study suggests that this unreported phenomenon is negligible thus explaining perhaps why it is so
unreported. Probably this phenomenon relates in a weak way to the Tayler instability [29, 31, 32] that also has an
inductive origin (quasi-static MHD is necessary), is also caused by the term J × b and is also only destabilizing for
m = 1 modes.

We finally also applied our theoretical model to metal pad roll instabilities that can occur in Mg− Sb liquid metal
batteries. There the bottom layer is so heavy that it doesn’t participate actively in the destabilization and stabilization
of the gravity waves. With some minimal technical maneuvers that are justified, we find that our model explains very
well the numerical measures of the growth rates reported in [35].

This study can have many follow ups. First of all, we think that our new and precise theory really can be used
to benchmark multiphase MHD codes and we can invite all other scientists working on the topic to benchmark their
multiphase MHD solvers on this small reduction cell set-up. Secondly, it is possible to adapt the method to rectangular
geometry in order to propose a theoretical model for the experiments of [39, 40]. The inviscid and magneto-static
model certainly exists already, but magnetic and viscous damping are not negligible in that set-up and still need to be
included. Thirdly, we plan to extend this two-layer model to three layers of fluid in relation to be able to model the
metal pad roll instability in arbitrary liquid metal batteries. As shown by several authors [37, 50, 51], waves on both
interfaces may couple more or less depending on the density differences between the layers. To correctly capture the
metal pad roll instability in arbitrary liquid metal batteries one must include this possibility. This model is already
in the make and we hope to report on this topic soon.
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Appendix A: Supplementary information for the analytical calculation of λv and δh

We provide some extra technical information on the analytical calculation of Pv,Ph,K that fix the growth rate λv
and the frequency shift δh in the quasistatic inviscid limit. With the definition (41) of K and the expression for η̂, we
find

K =
[
(ρ2 − ρ1)g + γ1|2k

2
] 2π|A|2k2

ω2

∫ R

0

J2
m(kr) r dr (A1)

The radial integral can be evaluated analytically. Using equation (11) of [52], p.-135, together with J ′m(kR) = 0 for
our surface waves profiles, we have ∫ R

0

J2
m(kr) r dr =

1

2k2
(k2R2 −m2)J2

m(kR) (A2)

This formula also demonstrates that (k2R2−m2) > 0, a property that we have used in the text. The volume integral

that defines Pv is transformed into a surface integral by remarking that ∇φ̂∗i · (−σi∇ϕ̂i ×Bzez) = ∇ · [−σiφ̂∗i∇ϕ̂i ×
Bzez)] in the integrandum. This yields

Pv = 2π(−im)Bz

(
σ1

∫ H1

0

φ̂∗1ϕ̂1|r=R dz + σ2

∫ 0

−H2

φ̂∗2ϕ̂2|r=R dz

)

=
2πmJBz|A|2Λ

2ω
J2
m(kR)

[
tanh(kH1) + (kH2) sinh−2(kH2) + tanh−1(kH2)

]
(A3)

with Λ defined in (48c). The calculation of the frequency shift δh is a bit more tricky since there are much more terms
to evaluate. The formula ∫ R

0

Jm(kr)∂r[Jm(kr)] r2 dr =
m2

2k2
J2
m(kR) (A4)

is useful to simplify a radial integral that is encountered. We have checked the validity of our analytical formula for
λv and δh by performing numerical calculations of the integrals Pv,Ph,K on a discrete grid.

Appendix B: Linking our growth rate formula for λv to existing shallow water models

Both [9] and [10] provide shallow water models for the metal pad roll instability in cylindrical geometry, in the
inviscid and magnetostatic limit, ignoring surface tension. Here we show how these models link to our growth rate
formula λv. We start from the model of [10] and to avoid conflicts in notation, we adapt their formula to our setting.
The two-dimensional problem to be solved in the shallow approximation is

∂2
ttη − c2∇2η = 0 , ∇2χ = βη (B1)

Here η(r, θ, t) relates to the surface elevation and χ(r, θ, t) to the electrical potential. The wave-speed c and parameter
β are defined as

c2 =
(ρ2 − ρ1)g

ρ1H
−1
1 + ρ1H

−1
2

, β =
JBz

(ρ2 − ρ1)gH1H2
(B2)

Note that the β used here is not a non-dimensional number. In the right hand side of the equation for χ of (B1), we
find +βη (rather than −βη in [10]) because in the present article, we use the convention that the electrolysis current
density is J = Jez (rather then J = −Jez in [10]). On the lateral sidewall r = R, we need to meet the conditions

∂rχ|r=R = 0 , ∂rη|r=R = −R−1∂θχ|r=R (B3)

Solutions of (B1) take the form

η = AJm(kr) ei(mθ+ωt) , χ =
(
−Aβk−2Jm(kr) +Brm

)
ei(mθ+ωt) (B4)
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with k2 = ω2/c2 and A,B arbitrary constants. Note that we choose exponential factors exp(i(mθ + ωt)) just as in
the present article (rather then exp(i(mθ − ωt)) in [10]). By expressing the boundary conditions, we can find the
dispersion relation, here in non-dimensional form

βJm+1(κ) = −iκ2J ′m(κ) (B5)

with κ = kR and

β =
JBz

(ρ2 − ρ1)g

R2

H1H2
(B6)

the non-dimensional number we have encountered in the shallow limit (see 52a) with γ1|2 = 0. We now find an
approximative solution of (B5) in the limit of small β � 1. We propose an expansion

κ = κ(0) + βκ(1) +O(β2) (B7)

inject it into (B5) and expand the dispersion relation using Taylor series in powers of β. At order O(β0), we find the
constraint

0 = −i
(
κ(0)

)2

J ′m(κ(0)) ⇒ κ(0) = κmn (B8)

The leading order value of the non-dimensional radial wavenumber takes the same values as the ones we have in our
model (see (12)), κ(0) = 0 is not an option here. At order O(β1), we have the constraint

Jm+1(κmn) = −i
[
κ(1) (κmn)

2
J ′′m(κmn) + 2κ(1)κmnJ

′
m(κmn)

]
(B9)

With J ′m(κmn) = 0 and using the recurrence relations and the Bessel differential equation we can simplify

Jm+1(κmn) =
m

κmn
Jm(κmn) , J ′′m(κmn) = −

(
κ2
mn −m2

κ2
mn

)
Jm(κmn) (B10)

This yields

iκ(1) =
m

κmn(κmn −m2)
(B11)

The small wavenumber shift κ(1) affects the complex frequency ω of the waves as ω = ± cκR by definition in the shallow
layer approximation. We propose a small β-expansion of ω

ω = ω(0) + βω(1) +O(β2) (B12)

and find

ω(0) = ωshallow = ±cκmn
R

, ω(1) = ±β cκ
(1)

R
(B13)

We recognize ω(0) as the eigenfrequency ωshallow of the non-dispersive gravity waves in the shallow layer limit. The
complex frequency shift α used in our model is defined as

α = iω − iω(0) = β
mω(0)

κ2
mn −m2

1

κ2
mn

(B14)

This exactly cöıncides with our shallow limit formula (52a) of the growth rate λv with γ1|2 = 0 . In the inviscid,
magnetostatic, shallow and small β-limit, without surface tension, the model of [10] (same for [9]) rigorously links to
our result.
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Appendix C: The effect of symmetrical electrical boundary conditions on top and bottom electrodes

The top and bottom boundary conditions (6c) and (6d) for the electrical potential and currents (6c) are well
adapted to model metal pad roll instability in Hall-Heroult cells, because they mimic the fact that the top Carbon
anodes are well conducting with respect to the Cryolite, that the cathode bottom vessel is a less good conductor than
Aluminium. Nevertheless, this is an approximation and we found it interesting to study the impact of using different
top and bottom boundary conditions, namely

(zero ϕ) ϕ1|z=H1
= ϕ2|z=−H2

= 0 (C1a)

(zero jz) j1,z|z=H1
= j2,z|z=−H2

= 0 (C1b)

For these different electrical boundary conditions, we find the potentials
(zero ϕ)

[
ϕ̂1

ϕ̂2

]
=
JkA

ω

σ−1
1 − σ−1

2

σ−1
1 tanh(kH1) + σ−1

2 tanh(kH2)

[
−i sinh(k(z −H1))/(σ1 cosh(kH1))

−i sinh(k(z +H2))/(σ2 cosh(kH2))

]
Jm(kr)eimθ

(C2a)

(zero jz)

[
ϕ̂1

ϕ̂2

]
=
JkA

ω

σ−1
1 − σ−1

2

σ−1
1 tanh−1(kH1) + σ−1

2 tanh−1(kH2)

[
i cosh(k(z −H1))/(σ1 sinh(kH1))

−i cosh(k(z +H2))/(σ2 sinh(kH2))

]
Jm(kr)eimθ

(C2b)

in the magneto-static inviscid limit. We then recalculate Pv and find the growth rate

λv =
ω

2

JBz
(ρ2 − ρ1)g + γ1|2k2

m

(kR)2 −m2
Λ (C3)

with

(zero ϕ) Λ =
(σ−1

1 − σ−1
2 ) [tanh(kH1) + tanh(kH2)]

σ−1
1 tanh(kH1) + σ−1

2 tanh(kH2)
(C4a)

(zero jz) Λ =
(σ−1

1 − σ−1
2 )

[
(kH1) sinh−2(kH1) + tanh−1(kH1) + (kH2) sinh−2(kH2) + tanh−1(kH2)

]
σ−1

1 tanh−1(kH1) + σ−1
2 tanh−1(kH2)

(C4b)

In the deep limit kHi � 1 and for large conductivity jumps σ1 � σ2, we find that

λv,deep ≈
JBz

(ρ2 − ρ1)g + γ1|2k2

mωdeep
(kR)2 −m2

(C5)

in both alternative boundary condition cases, which is also the exact same formula as (50a). The fact that top and
bottom boundary conditions do not have an impact on the growth rate in deep cells is not a surprise: all the motion
occurs near the interface, far away from the top and bottom boundaries. In the shallow limit kHi � 1 and for large
conductivity jumps σ1 � σ2, we have

(zero ϕ) λv,shallow ≈
JBz

(ρ2 − ρ1)g + γ1|2k2

[
1

2

(
1 +

H2

H1

)]
mωshallow
κ2
mn −m2

(C6a)

(zero jz) λv,shallow ≈
JBz

(ρ2 − ρ1)g + γ1|2k2

(
1 +

H1

H2

)
mωshallow
κ2
mn −m2

(C6b)

These formulas are very different from the shallow-limit formula in the mixed type boundary condition case. Com-
paring all three cases of top and bottom boundary conditions, we can conclude that the mixed type boundaries, used
in the body of the text, always yield the most unstable cells in the shallow limit.
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Appendix D: Calculation of viscous effects caused by boundary layers on rigid walls

To find the leading order viscous damping rates, we must account for dissipation in the boundary layer regions
that come in 4 different types. We have (1) strong Stokes boundary layers near the rigid walls Σi, (2) weak Stokes
boundary layers near the interface S, (3) complex boundary layers in corners of the rigid surface Σi and 4) very
complex (moving) boundary layers near the meniscus M. Damping caused in regions 1 and 2 is straightforward to
model, but corners and meniscus regions 3 and 4 are really difficult to deal with and so they are not often considered
in theoretical calculations.

Using the (energy-equation) method of [41], [45] calculated the viscous damping of gravity waves in cylinders. This
calculation included dissipation caused by boundary layers in regions 1 (strong influence) and 2 (weak influence), but
ignored what happens in regions 3 and 4. We have extended this approach to our two-fluid system, but prefer here
an alternative approach that better relates to our perturbative framework. This approach better illustrates why it is
dangerous to ignore the complex boundary layer structure near the contact line in region 4.

1. First approach : viscosity enters through modifications in the solvability condition

We temporarily skip the use of indices i since both fluid regions are dealt with similarly and this avoids overloaded
notation. We focus on the effect of boundary layers in region 1, near rigid walls Σi. We extend the asymptotic Ansatz
(57) to

[u + u, p+ p, . . .] =
([

û + ûi, p̂+ p̂, . . .
]

+
[
ũ + ũ, p̃+ p̃, . . .

])
e(iω+α)t (D1)

for the flow and pressure variables. The fields û, p̂ are the inviscid gravity wave profiles. Barred variables designate
boundary layer corrections that only exist in O(

√
ν/ω) wide boundary layer regions in the immediate vicinity of the

rigid walls and the free surface. The corrections are required in order to meet the no-slip condition

u|Σ + u|Σ = 0 (D2)

In a first step in analysis, we calculate the leading order structure of u|Σ. Let x be the position vector in the fluid
regions, xΣ the position vector of the rigid surface Σ and n the unit outward normal. We introduce a rescaled
wall-normal coordinate

ζ =

√
|ω|
ν

(xΣ − x) · n (D3)

When the viscosity is low or more precisely when the Reynolds number

Re =
|ω|R2

ν
� 1 (D4)

is high, this wall normal coordinate ζ is quickly increasing away from the boundaries and inward the fluid. As such,
it is well adapted to capture the quick boundary layer variations. We suppose that the wall-normal dependence of
boundary layer corrections is entirely carried by ζ (this is only true away from corners and the meniscus). To express
the momentum and mass balance in near wall regions, we replace

∇ · u ≈∇⊥ · u⊥ −
√
|ω|
ν
∂ζ(u · n) , ∇p ≈∇⊥p− n

√
|ω|
ν
∂ζp , ∇2u ≈ |ω|

ν
∂2
ζζu (D5)

Here ⊥ refers to the part of the vector field that is tangential to the boundary and un = u · n. Using this and the
fact that tilded fields are O(Re−1/2) smaller than hatted fields, we get the leading balance

∂ζ p̂ = 0 , ∂ζ(û · n) = 0 , i Sgn(ω) û⊥ = ∂2
ζζû⊥ (D6)

We can easily solve these equations and using the no-slip condition on the rigid surface, û|Σ + û|ζ=0 = 0 together
with the constraint that boundary layer corrections decay to zero as ζ → +∞, we find the leading order boundary
layer correction

p̂ = 0 , û · n = 0 , û⊥ = −û⊥|Σ exp (−Γζ) (D7)
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We abbreviate Γ = (1 + i Sgn(ω))/
√

2. This boundary layer correction produces a small wall-normal flow ũ · n that
can be calculated using mass-conservation. We need to have

∂ζ(ũ · n) =

√
ν

|ω|
∇⊥ · û⊥ ⇒ ũ · n =

1

Γ

√
ν

|ω|
∇⊥ · û⊥|Σ exp (−Γζ) (D8)

Expressing impenetrability ũ · n|Σ + ũ · n|ζ=0 = 0, we then find that

ũi · ni|Σi = − 1

Γ

√
νi
|ω|

∇⊥ · ûi,⊥|Σi (D9)

bringing back in the indices i = 1, 2 referring to the different fluid regions. This relation has the following meaning:
a small inviscid flow (with tildes) is forced in the bulk (without bars) as a reaction to a small mass flux of viscous
origin that sprout out from the boundary layers. This phenomenon is usually called ”boundary layer pumping”.

The viscous modification of the boundary condition enters our perturbative model on metal pad roll instability
through the solvability condition (62), more precisely through the boundary terms marked by T2. In the viscous
model, we need to replace

T2 = αK +D (D10)

where

D =
∑
i=1,2

∫
Σi

p̂∗i ũi · ni|Σi dS = − 1

Γ

∑
i=1,2

√
νi
|ω|

∫
Σi

p̂∗i∇⊥ · ûi,⊥|Σi dS (D11)

is the power that is dissipated in the boundary regions near the rigid walls. Let us now express these contributions at

the different parts of the boundary and in both fluids. Considering that the flow is potential, so that û⊥ = ∇⊥φ̂ and

the fact that ∇2
⊥φ̂i = −k2φ̂i on top and bottom plates, ∇2

⊥φ̂i = (k2 −m2/R2)φ̂i on the radial walls, we then have

ũi,r|r=R =
1

Γ

√
νi
|ω|

(−k2 +m2/R2)φ̂i|r=R (D12a)

ũ1,z|z=H1
=

1

Γ

√
ν1

ω
k2φ̂1|z=H1

(D12b)

−ũ2,z|z=−H2
=

1

Γ

√
ν2

|ω|
k2φ̂2|z=−H2

(D12c)

The power that is dissipated in the boundary layers is then

D = 2πR

[∫ H1

0

p̂∗1ũ1,r|r=R dz +

∫ 0

−H2

p̂∗2ũ2,r|r=R dz

]
︸ ︷︷ ︸

Dside

+ 2π

∫ R

0

p̂∗1ũ1,z|z=H1
r dr︸ ︷︷ ︸

Dtop

+ 2π

∫ R

0

p̂∗2(−ũ2,z)|z=−H2
r dr︸ ︷︷ ︸

Dbot

(D13)

Physically, we expect that Re(D) ≥ 0, since only then it can yield a damping. Using (D12) and p̂∗i = ρi(iω)φ̂∗i , we
can now find out how each surface contributes to the dissipated power

Dside = −2πΓ

(
k2 − m2

R2

)[√
ν1|ω|ρ1R

∫ H1

0

|φ̂1|r=R|2dz +
√
ν2|ω|ρ2R

∫ 0

−H2

|φ̂2|r=R|2dz

]
(D14a)

Dtop = 2πΓk2

[√
ν1|ω|ρ1

∫ R

0

|φ̂1|z=H1
|2 r dr

]
(D14b)

Dbot = 2πΓk2

[√
ν2|ω|ρ2

∫ R

0

|φ̂2|z=−H2 |2 r dr

]
(D14c)

The contributions from the top and bottom clearly have the right sign, but Dside causes serious troubles. With
k2 − (m2/R2) > 0, this calculation results in Dside < 0 which is very unphysical, but nevertheless a mathematical
fact.
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The problem we have here finds its origin in the contact line region. If we omit a correct description of boundary
layers near the contact line, we can certainly miss some essential terms that can balance the unphysical term Dside.
We do not want to calculate these complex layers, but we can isolate the problematic contribution in Dside that arises

near the meniscus. Using p̂∗i = ρi(iω)φ̂∗i and a partial integration, we transform (D11) into

D = Γ
∑
i=1,2

ρi
√
νi|ω|

∫
Σi

|ûi,⊥|2dS︸ ︷︷ ︸
Dreg

+ Γ(2πR)
[
ρ1

√
ν1|ω| φ̂∗1û1,z − ρ2

√
ν2|ω| φ̂∗2û2,z

]∣∣∣
(r,z)=(R,0)︸ ︷︷ ︸

Dprob

(D15)

The term Dreg is a well-behaving part that always has Re(Dreg) ≥ 0. Under the square brackets of Dreg, we recognize a
typical measure of kinetic energy in the entire boundary layer region over the solid walls. The term Dprob concentrates
all the bad behaving terms and is located in the contact line region (r, z) = (R, 0). This contribution would at least be
partly canceled by a better modeling of the boundary layer in this region. In absence of a better contact line model,
we brutally discard these problematic terms Dprob and keep only the well behaving term Dreg in what follows. This
yields a complex frequency shift α = λvisc + iδvisc with

λvisc = −Re(Dreg)
2K

= − 1√
2

∑
i=1,2


√
νi|ω|
R2

ρi

[
k(R−Hi) sinh−2(kHi) +

(
k2R2 +m2

k2R2 −m2

)
tanh−1(kHi)

]
[
ρ2 tanh−1(kH2) + ρ1 tanh−1(kH1)

]
 (D16a)

and

δvisc = − Im(Dreg)
2K

= Sgn(ω) svisc (D16b)

that are given in the body of the article.

2. Second approach : viscous damping using the mechanical energy balance

The formula for the viscous damping rate λvisc may alternatively be obtained using the method of [45] and this is
briefly demonstrated here. The method of [45] starts from the mechanical energy balance, that is

d

dt

∑
i=1,2

1

2

∫
Vi
ρ||ui||2dV


︸ ︷︷ ︸

Ec

+
d

dt

(
1

2

∫
S

(
(ρ2 − ρ1)gη2 + γ1|2||∇2η||

)
dS

)
︸ ︷︷ ︸

Ep

= −
∑
i=1,2

ρiνi

∫
Vi
||∇× ui||2dV︸ ︷︷ ︸

Dvisc

+
∑
i=1,2

ρiνi

∫
S

[(∇× ui)× ui] · ni dS︸ ︷︷ ︸
D′

visc

(D17)

in this problem. This equation can be derived by summing the momentum balances of both fluid regions respectively
multiplied with ui and using all the boundary conditions together with many partial integrations. In the left hand
side, we recognize the time-derivative of mechanical energy. In the right hand side, we find viscous dissipation and the
surface integral only is relevant near the free interface. Damping there is weak and we will ignore this term in what
follows D′visc ≈ 0 to lowest order. In this balance, we then inject the flow profiles of a viscously decaying rotating
gravity wave

ui ≈
[(

ûi + ûi

)
ei(ω+δvisc)t + c.c.

]
eλvisct (D18)

η ≈
[
η̂ ei(ω+δvisc)t + c.c.

]
eλvisct (D19)

Here c.c. denotes the ”complex conjugated part” . It is crucial to use real-valued flows in this energetic approach,
otherwise one can easily get damping rates that are wrong by a factor of two. We calculate the kinetic and potential
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energy approximatively by ignoring the boundary layer corrections and find

Ec ≈

∑
i=1,2

∫
Vi
ρ||ûi||2dV

 e2λvisct = Ke2λvisct

Ep ≈
(∫

S

(
(ρ2 − ρ1)g|η̂|2 + γ1|2||∇2η̂||

)
dS

)
e2λvisct = Ke2λvisct (D20)

We use here the notation K for the integrals that were previously encountered in the article. Viscous dissipation is
located in the boundary layers since only ûi carries vorticity, so

Dvisc ≈ −2
∑
i=1,2

ρiνi

∫
Vi
||∇× ûi||2dV (D21)

Using the boundary layer profiles of (D7), one can find that

||∇× ûi||2 ≈
|ω|
νi
||ûi,⊥|Σi

||2 e−
√

2ζ (D22)

Here we only include the dominant contributions that arise due to the sharp wall-normal variation of the tangential
flow near the walls. Integration over the boundary layer regions (meaning ζ ∈ [0,+∞[) yields

Dvisc ≈ −
2√
2

∑
i=1,2

ρi
√
νi|ω|

∫
Σi

|ûi,⊥|2dS (D23)

Comparing with (D15), we can notice that Dvisc = −2Re(Dreg). Expressing the energy balance, we find 4λviscK =
Dvisc, and so λvisc = −Re(Dreg)/2K as before. This second method of [45] yields precisely the damping rate (D16a)
and certainly is more simple to implement. However, it does not provide the viscous detuning nor does it highlight
the problems that can arise near the contact line.
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