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ABSTRACT: 36 

Background and Purpose:  37 

Range prediction in particle therapy is associated with an uncertainty originating from the 38 

calculation of stopping-power ratio (SPR) based on x-ray computed tomography (CT). Here, 39 

we assessed the intra- and inter-patient variability of tissue properties in primary brain-tumor 40 

patients using dual-energy CT (DECT) and quantified its influence on current SPR prediction. 41 

 42 

Material and Methods:  43 

Based on 102 patient DECT scans, SPR distributions were derived from a patient-specific 44 

DECT-based approach. Tissue-specific and global deviations between this method and the 45 

state-of-the-art CT-number-to-SPR conversion applying a Hounsfield look-up table (HLUT) 46 

were quantified. To isolate systematic deviations between both, the HLUT was optimized 47 

using DECT. Subsequently, the influence of soft tissue diversity and age-related variations in 48 

bone composition on SPR were assessed.  49 

 50 

Results:  51 

An intra-patient ± inter-patient soft tissue diversity of (4.4±0.7)% in SPR was obtained after 52 

conservative consideration of noise-induced variation. Between adults and children younger 53 

than 6 years, age-related variations in bone composition resulted in a median SPR difference 54 

of approximately 5%.  55 

 56 

Conclusions:  57 

Patient-specific DECT-based stopping-power prediction can intrinsically incorporate most of 58 

the SPR variability arising from tissue mixtures, inter-patient and intra-tissue variations. Since 59 

the state-of-the-art HLUT - even after cohort-specific optimization - cannot fully consider the 60 



broad tissue variability, patient-specific DECT-based stopping-power prediction is advisable 61 

in particle therapy.  62 



MANUSCRIPT: 63 

Introduction 64 

To facilitate accurate and high-conformal radiation treatment planning, a reliable 65 

determination of the individual tissue compositions of each patient is worthwhile [1]. 66 

Especially in proton and ion-beam therapy, a precise range prediction from x-ray computed 67 

tomography (CT) is essential to translate the particle beam’s physical advantage into a further 68 

improved clinical outcome [2–4].  69 

The current acquisition of single-energy CT scans and their conversion from CT number to 70 

stopping-power ratio (SPR) using a generic Hounsfield look-up table (HLUT) are restricted to 71 

specific material compositions and cannot adequately account for tissue diversity [5,6]. The 72 

associated CT-related uncertainty of range calculation is covered by considerable safety 73 

margins added in beam direction or is incorporated in robust optimization techniques leading 74 

to an increased dose to healthy tissue, which is worth to be reduced [7–10]. Since there are 75 

substantial intra- and inter-patient variations in elemental composition of human tissues [5], 76 

appropriate and adequately commissioned imaging techniques are desirable to accurately 77 

quantify the respective tissue distribution and variability. 78 

With the advent of clinical dual-energy CT (DECT) scanners in radiology and radiotherapy, 79 

additional tissue information can be obtained from two CT scans of different x-ray spectra 80 

allowing for a better material differentiation compared with single-energy CT [11,12]. Hence, 81 

the clinical application of DECT for proton treatment planning [13] is expected to inherently 82 

incorporate most of intra- and inter-patient tissue variability in a patient-specific SPR 83 

prediction [14–16], since the empirical component in CT-based SPR calculation is strongly 84 

mitigated. In recently published studies, the reliability and superior accuracy of DECT-based 85 

SPR prediction as an alternative to the current state-of-the-art application of a generic HLUT 86 

were demonstrated under clinical conditions in an anthropomorphic head phantom [17] and in 87 

biological tissue samples [18–20], and finally transferred to relative range shifts obtained in 88 



patients [21,22]. Consequently, DECT can presumably contribute to a reduction of the CT-89 

related range uncertainty and associated safety margins. 90 

In this study, DECT scans acquired for proton treatment planning of 102 primary brain-tumor 91 

patients were retrospectively evaluated to assess the intra- and inter-patient variability of CT-92 

based SPR prediction originating from various tissue types, tissue mixtures and intra-tissue 93 

variations. 94 

 95 

Material and Methods 96 

Patient cohort and DECT imaging 97 

In total, 102 primary brain-tumor patients (40 women, 40 men and 22 children younger than 98 

20 years) treated with proton therapy at OncoRay (Dresden, Germany) were selected covering 99 

a wide range of brain-tumor entities (36 glioblastoma, 25 astrocytoma, 13 meningioma, 100 

9 sarcoma, 7 adenoma, 7 glioma, 2 craniopharyngioma, 2 ependymoma and 1 germinoma) 101 

and patient age (1-80 years, median age of 45 years). This retrospective study was approved 102 

by the local ethics committee (EK535122015). 103 

For each patient, a DECT scan (80/140 kVp) with 1×1×2 mm3 voxel spacing and 104 

CTDIvol32cm of 20.8 mGy was acquired at a single-source CT scanner SOMATOM Definition 105 

AS (Siemens Healthineers, Forchheim, Germany) [13]. Image reconstruction was performed 106 

using the iterative reconstruction kernel Q34f/5 (SAFIRE at maximal strength), which 107 

includes a beam hardening correction for bone, to reduce image noise and patient-size 108 

dependent CT number variations. An image noise level (CT number variation expressed by 109 

± two standard deviations) of 5 HU was determined for this scan setting in a homogeneous 110 

brain region of an anthropomorphic head phantom (Proton Therapy Dosimetry Head, Model 111 

731-HN, CIRS, Inc., Norfolk, VA). 112 

 113 

 114 



Tissue parameter extraction 115 

The DECT scans were post-processed in the SYNGO.VIA environment (Siemens Healthineers, 116 

Forchheim, Germany) to calculate 79 keV pseudo-monoenergetic CT (MonoCT), 170 keV 117 

MonoCT and effective atomic number (EAN) datasets using the modules SYNGO.CT DE 118 

MONOENERGETIC PLUS and SYNGO.CT DE RHO/Z. Based on an individual CT scanner 119 

calibration [13], the relative electron density (RED) was obtained from 170 keV MonoCT 120 

datasets. Dividing 79 keV MonoCT by RED resulted in the relative photon attenuation cross 121 

section (RCS). Both quantities are then inserted in the Bethe equation [23] to directly 122 

determine the SPR (DirectSPR). This approach, referred to as RhoSigma [16], was 123 

implemented as described in [17,21]. An image noise level of 6 HU (corresponding to two 124 

standard deviations) was obtained for the calculated SPR datasets in the anthropomorphic 125 

head phantom. 126 

To consider only voxels within the patient, an external contour was automatically created 127 

based on the 80/140 kVp DECT scan using a threshold of -500 HU. This contour, covering 128 

the patient surface, was subsequently shrunk by 3 (5) voxels in x (y) direction to exclude 129 

remaining parts of immobilization devices. In scan direction, the datasets were restricted to 130 

only include the head from chin to calvaria. Within this defined volume, the frequency 131 

distribution of voxelwise correlations of two tissue parameters were determined, i.e., SPR and 132 

RED depending on CT number 𝐻 as well as EAN and RCS depending on RED as shown in 133 

Figure 1. 134 

The intra- and inter-patient variability was quantified based on the frequency distribution of 135 

(𝐻,	SPR) correlations to assess the degree of non-uniqueness of a heuristic CT-number-to-136 

SPR conversion. The diversity of human soft tissues due to tissue mixtures and different 137 

tissue types was characterized by the frequency-weighted average spread 𝜔 in SPR covering 138 

95% of all CT voxels within the soft-tissue region (−125	HU ≤ 𝐻 ≤ 75	HU): 139 



𝜔 =
1

𝑁Total
9𝑁(𝐻) ∙ ;𝑝=>.@,	SPR(𝐻) − 𝑝A.@,	SPR(𝐻)B
C

 (1) 

with 𝑁Total as total number of voxels, 𝑁(𝐻) as number of voxels with respective CT number, 140 

𝑝D,EFG as 𝑥th SPR percentile. 141 

Within the bony region (100	HU ≤ 𝐻 ≤ 1800	HU), the variation of slope 𝛼 of an intensity-142 

weighted linear regression within the (𝐻,	SPR) domain serves as measure for variations in 143 

human bones. 144 

Significant variations between adults and children were assessed by two-sample t-tests with 145 

significance criterion of 5%. 146 

 147 

Compensation of systematic deviations in stopping-power prediction  148 

As previously demonstrated for brain-tumor patients, CT-based SPR prediction significantly 149 

differs between the application of an HLUT and a DECT-based DirectSPR method [21]. This 150 

results in a systematic global SPR and range deviation, which is very likely caused by tissue 151 

compositions and tissue distributions differing from HLUT calibration conditions [24]. 152 

Hence, the SPR difference between the HLUT and DirectSPR approach is influenced by a 153 

combination of this systematic deviation as well as the intra- and inter-patient variability 154 

reflecting the ambiguity of the heuristic CT-number-to-SPR conversion. To isolate the 155 

influence of tissue variability on SPR prediction, the HLUT was adapted by minimizing the 156 

systematic deviation between both methods. For this purpose, the median SPR of each CT 157 

number was obtained from the frequency distribution of (𝐻,	SPR) correlations. Subsequently, 158 

the Hounsfield scale was divided in four classes corresponding to various tissue types: low-159 

density (−950	HU ≤ 𝐻 ≤ −160	HU), adipose (−140	HU ≤ 𝐻 ≤ −40	HU), muscle and brain 160 

(−20	HU ≤ 𝐻 ≤ 40	HU) as well as bone tissue (100	HU ≤ 𝐻 ≤ 1800	HU). For each tissue 161 

class, the median SPR distribution was described by an intensity-weighted linear regression 162 

depending on the relative occurrence of the respective CT number within the patients. The 163 



transitions between different classes were linearly connected, which finally resulted in the 164 

cohort-specifically adapted HLUT. 165 

 166 

Assessment of SPR and range deviations 167 

The mean signed and absolute SPR deviation between both CT-based SPR prediction 168 

approaches (SPRHLUT − SPRRhoSigma) was calculated including all CT voxels within the 169 

patient’s external contour. Tissue-dependent SPR differences were quantified using only CT 170 

voxels of the respective tissue class as defined above. 171 

To check whether the findings obtained on SPR level could be transferred to range deviations, 172 

passively scattered proton treatment plans of two representative patients were recalculated on 173 

SPR datasets derived from RhoSigma, clinical and adapted HLUT using XIO (Elekta AB, 174 

Stockholm, Sweden) with a 1×1×1 mm3 dose calculation grid. The distal range at 80% of 175 

prescribed dose was determined for more than 5000 line-dose profiles in beam direction to 176 

assess proton range shifts. 177 

 178 

Results 179 

Tissue occurence 180 

The investigated body region (head) mainly contains soft tissues (adipose, brain and muscles) 181 

and bones with a mean fraction ± one standard deviation between different patients of (78.6 ±182 

2.5)% and (18.9 ± 2.3)%, respectively. The remaining, small fraction of apparent low-183 

density tissue of (2.5% ± 0.5%) is mostly caused by a sub-voxel mixture of air cavities and 184 

various soft tissues or even bones. 185 

 186 

Soft tissue diversity 187 

As illustrated in Figure 1, children and adults showed a similar soft tissue distribution in all 188 

physical quantities studied. The soft tissue region is dominated by brain (𝐻 ≈ 40HU, 𝑅𝐸𝐷 ≈189 



1.034) and adipose tissue (𝐻 ≈ −100HU, 𝑅𝐸𝐷 ≈ 0.920). Even though, a broad SPR 190 

distribution with a mean intra-patient SPR spread ± one standard deviation of 𝜔 = (5.6 ±191 

0.7)% was found. This was induced by various tissue types, intra-tissue variations and 192 

mixtures between brain and adipose tissue (indicated by a clearly visible line between the 193 

tissue peaks) as well as between soft and low-density or bone tissues. The intra-patient SPR 194 

spread within the soft tissue region differed significantly between children and adults (𝑝 ≪195 

0.001, Figure 2). The increased soft tissue diversity in adults may potentially arise from the 196 

large intrinsic variability within adipose tissues, e.g. the varying relative amount of lipids 197 

from 61.4% to 87.3% [5], in combination with a slightly higher mean relative amount of 198 

adipose tissue in adults (16.5 ± 4.0)% compared to children (12.7 ± 4.0)% (cf., equation 1). 199 

 200 

Variations in bone composition 201 

The distribution of bones differed between adults and children as indicated by a linear fit for 202 

SPR(𝐻) and RED(𝐻) and power-function fit for EAN(RED) and RCS(RED) in Figure 1. 203 

Bones in children revealed a smaller effective atomic number at same electron density and an 204 

age-related significant reduction of the slope within the SPR(𝐻) domain (Figure 2), which are 205 

presumably associated with a smaller relative amount of calcium embedded [5,25]. Since the 206 

calcium content in bones increases with age, the influence of the photoelectric effect on CT 207 

number also increases. 208 

 209 

Compensation of systematic SPR deviations 210 

To reduce systematic deviations in CT-number-to-SPR conversion, the HLUT was optimized 211 

based on the DECT-derived SPR (Figure 3). The HLUT refinement was performed separately 212 

for each patient cohort considering the difference in bone composition (Figure 2). The SPR 213 

differences before (Figure 4A) and after HLUT adaptation (Figure 4B) for adults and children 214 

demonstrated that a HLUT refinement can effectively compensate systematic deviations in 215 



stopping-power prediction between the RhoSigma and HLUT approach. The HLUT 216 

adaptation resulted in a significant reduction of systematic SPR deviations ± one standard 217 

deviation from (2.0 ± 0.6)% to (0.1 ± 0.6)% for low-density tissues, (1.9 ± 0.2)% to (0.1 ±218 

0.2)% for soft tissues, (-2.4 ± 0.9)% to (-0.3 ± 0.7)% for bones and (1.1 ± 0.3)% to (0.0 ±219 

0.3)% in total considering all 102 patients (Figure 5A).  220 

 221 

Residual intra- and inter-patient SPR variability 222 

After removing systematic deviations between the HLUT and RhoSigma approach, the 223 

residual SPR deviations between both methods were assessed. The intra-patient SPR 224 

deviations of a representative child and adult were comparable to SPR differences including 225 

all patients within the respective cohort (Figure 4). The SPR variability within one patient 226 

(e.g., 𝜔 = 5.6% for soft tissues) is considerably larger than the variability between patients 227 

(e.g., one standard deviation of 𝜔 is 0.7% for soft tissues). The broad distribution of SPR 228 

deviations within adipose tissue (Figure 4) results in SPR differences up to 10% (relative to 229 

the SPR of water), considering (𝐻,	SPR) correlations with a relative amount larger than 230 

0.01‰, and leads to a mean intra-patient SPR spread ± one standard deviation of 𝜔 = (9.8 ±231 

1.2)% for adipose tissues only. 232 

Despite the HLUT refinement, the intra-patient SPR variation remained almost unchanged in 233 

soft tissues (Figure 4B). SPR variations in a single patient after (before) HLUT adaptation 234 

translated into mean absolute SPR deviations of approximately 3% (4%) for low-density 235 

tissues, 3% (6%) for bones as well as 1% (2%) for soft tissues. The latter corresponds to the 236 

mean intra-patient SPR spread of 𝜔 = 5.6% within soft tissues (Figure 5B). The large inter-237 

patient variation of SPR deviations in bones (Figure 5, interquartile range) illustrated the high 238 

variability in bone composition between patients. 239 

 240 

 241 



Discussion 242 

The evaluation of DECT scans of 102 primary brain-tumor patients revealed a considerable 243 

intra-patient soft tissue diversity leading to a broad SPR distribution with a frequency-244 

weighted average spread of 𝜔 = (5.6 ± 0.7)%. However, this SPR spread does not only stem 245 

from different tissue types, tissue mixtures and intra-tissue variability, but also from image 246 

noise. The influence of image noise on SPR prediction was minimized by applying an 247 

iterative image reconstruction algorithm at maximal strength. It was estimated as 1.2% 248 

(relative to the SPR of water), which equals twice the image noise level (± two standard 249 

deviations) of 6 HU in the calculated SPR dataset. This results in a noise-corrected mean SPR 250 

spread of 𝜔 = 5.5%	(4.4%) using quadratic (linear) subtraction. This intra-patient SPR 251 

variability in the soft tissue region is associated with a mean absolute SPR deviation between 252 

the RhoSigma and HLUT approach of 1.2% (cf., Figure 5). 253 

Furthermore, differences in bone composition between adults and children were observed. An 254 

HLUT specified for adults would cause a SPR underestimation in bone of approximately 5% 255 

for children younger than 6 years. To further validate the detected age-related changes in bone 256 

composition, the investigated pediatric patient cohort may be extended in follow-up studies 257 

allowing for a better age resolution. Additional studies may also analyze whether DECT can 258 

further improve the quantification of senile osteoporosis in patients [26,27]. 259 

A refinement of the HLUT based on DECT-derived tissue information can on average reduce 260 

the systematic global and tissue-specific SPR deviations between both CT-number-to-SPR 261 

conversion methods. These systematic deviations originate from different tissue compositions 262 

and distributions in patients as compared to the tissue surrogates used for HLUT specification 263 

[24]. As exemplarily shown in Figure 6 for a representative child and adult, the mean relative 264 

range deviation between RhoSigma and HLUT can also be reduced by applying the adapted 265 

HLUT (Figure 6). However, depending on the tissues traversed in beam direction, CT-based 266 

SPR prediction using either the adapted HLUT or RhoSigma can still result in range 267 



differences of about 1% as illustrated by the standard deviation of the obtained range shifts 268 

(Figure 6). The HLUT adaptation presented in this study was only based on the tissue 269 

diversity within brain-tumor patients. In a further study, we are going to rather focus on the 270 

irradiated volume of each patient including also immobilization devices. In addition, we also 271 

consider patients with tumors located in other body regions such as thorax or pelvis to 272 

comprehensively evaluate their influence on a HLUT refinement. 273 

Within this study, the integral intra- and inter-patient variability of tissue properties were 274 

determined in primary brain-tumor patients without distinguishing different organs or 275 

anatomical structures. Further evaluations could individually assess the variability of specific 276 

tissue types to update or supplement already existing patient tissue databases [5,25]. 277 

Moreover, the intra- and inter-patient variability of other body regions is to be evaluated (e.g., 278 

thorax and pelvis) to assess potential differences in tissue composition and distribution. 279 

 280 

Conclusions 281 

The presented investigation of the intra- and inter-patient SPR variability, as assessed in 102 282 

primary brain-tumor patients using dual-energy CT for the first time, highlights a general 283 

limitation of the state-of-the-art HLUT approach. The age-related bone variation (inter-patient 284 

SPR deviations of roughly 5% between young children and adults) and the considerable soft 285 

tissue variability in general (mean intra-patient SPR spread of 4-6% for a defined CT number) 286 

cannot be fully accounted for by a generic HLUT. This leads to unavoidable deviations in 287 

SPR prediction. The resulting contribution on SPR accuracy was so far only partly considered 288 

in the uncertainty estimation of the HLUT approach and demonstrates a further advantage of a 289 

DECT-based DirectSPR approach. Hence, an accurate patient-specific SPR prediction using 290 

dual-energy CT is advisable for particle treatment planning, since it correctly handles tissue 291 

mixtures and intrinsically incorporates most of intra- and inter-patient variability.  292 
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FIGURES 389 

 390 

Figure 1: Frequency distribution of tissue parameters derived from dual-energy CT for 391 

children (blue) and adults (red). The superposition of both datasets appears purple. Dashed 392 

lines illustrate correlation in bony region.   393 



 394 

Figure 2: Age-related variation of (A) stopping-power ratio (SPR) spread in soft tissue (tissue 395 

diversity) and (B) the slope within bones (change in calcium content) for correlations between 396 

CT number and SPR. Patients were sorted in five groups depending on age (illustrated by 397 

vertical lines). Boxplots are defined according to Figure 5. 398 

 399 

 400 

 401 

Figure 3: Frequency distribution of correlations between CT number and stopping-power 402 

ratio (SPR) for the (A) pediatric (younger than 20 years) and (B) adult patient cohort.  403 



 404 

Figure 4: Difference in stopping-power ratio (SPR) between the dual-energy CT based SPR 405 

prediction (RhoSigma) and (A) clinically applied or (B) cohort-specifically adapted 406 

Hounsfield look-up table (HLUT) to visually compare the frequency distribution in one 407 

patient with the entire patient cohort. The colored (grey-shaded) frequency distribution covers 408 

all correlations with a frequency larger (lower) than 10-3%.   409 



 410 

Figure 5: Global and tissue-specific mean (A) signed and (B) absolute SPR deviation 411 

between the dual-energy CT based SPR prediction and clinically applied or adapted 412 

Hounsfield look-up table (HLUT). The relative amount is quoted for each tissue type below.  413 



 414 

Figure 6: Dose difference as well as mean absolute and relative range deviation (dR) between 415 

the dual-energy CT based stopping-power prediction and clinically applied or adapted 416 

Hounsfield look-up table (HLUT) for two single treatment fields and the summed treatment 417 

plan.  418 
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