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Abstract The paper studies the response of a cluster of bubbles to osmotic
pressure, and steady and oscillatory shearing by resolved numerical simula-
tions. In contrast to other investigations, the movement of the interstitial fluid
is fully resolved. To that end, an immersed-boundary method is employed,
yielding the trajectory of each bubble and the flow and pressure field of the
fluid. Additionally, a physically motivated collision model ensures realistic bub-
ble interactions. Furthermore, a suitable numerical configuration is proposed
which allows imposing osmotic pressure and shear in a way that integrates well
into the simulation without generating artefacts. This method allows for the
realistic investigation of the compression of bubbles across the jamming limit,
demonstrating the influence of the inertia of the interstitial fluid. Applying
oscillatory shearing with varying osmotic pressure, shear stress and frequency,
the occurrence of shear bands is demonstrated and the influence on rheometric
measurements is discussed.

Keywords Bubbles · Simulation · Rheology · Foam

1 Introduction

The flowing behavior of foam is very complex, due to the interaction of several
mechanisms such as drainage of liquid, attraction, repulsion, sliding motion
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or coalescence of bubbles, or distribution of surfactants. Understanding and
simulating the flow of foam is interesting on its own, but could also help to
improve industrial processes like froth flotation, food technology or production
of insulation devices. To that end, a constitutive law is required, linking the
stress σ and the corresponding strain rate γ̇ [1].
Such data is usually obtained in a rheometer. However, measuring foam in a
rheometer is not an easy task [2], especially for high shear rates [3]. The stress
in general is small, requiring very sensitive torque measurements. Because of
the yield stress of foam, special precautions have to be taken to avoid slip
between foam and wall. Also, due to drainage the liquid content might change
over time. This can be avoided by constantly feeding liquid to the top of the
foam in a steady drainage setup. At high liquid fractions, however, convective
rolls are induced disturbing the shearing motion [4]. Consequently, rheometer
measurements are only applicable for low liquid fraction. For high liquid frac-
tions Φ close to the jamming transition point of Φc = 0.64, experiments with
concentrated emulsions have yielded interesting insights [5]. However, due to
the significantly higher density of the dispersed phase the dynamics might not
be completely comparable to foam.
Another way of probing the rheology of wet foam close to the jamming tran-
sition is to perform numerical simulations. Durian [6] modeled bubbles as
spherical objects interacting via a simplified collision model. This approach
has been adapted by several later studies, generally using a spring-dashpot-
interaction between the spheres [7–10]. Most of these investigations, however,
do not resolve the flow of the interstitial liquid.

The liquid is only taken into account by an adapted collision model de-
scribing the interaction of the spherical objects when close to contact. In the
case of foam the situation is particular due to the low density of the bubbles
compared to the interstitial liquid. This gives rise to the question whether its
inertia plays any role with dynamic loading.
In the present study, we will also use such a wet collision model for the contact
of spherical bubbles. It has been constructed specifically for bubbles based on
detailed physical considerations [11]. Additionally, the interstitial liquid flow
together with the corresponding forces on the bubbles is resolved. This ex-
tended modeling can also be applied far below the jamming limit.

2 Material and Methods

2.1 Numerical method

The simulations were carried out with the in-house code PRIME [12,13]. It
solves the three-dimensional, unsteady Navier-Stokes equation (NSE) for in-
compressible fluids on a staggered Cartesian grid to describe the liquid motion.
Gravity forces are excluded in this study, which is a particular advantage of the
simulation approach, because gravity usually yields substantial inhomogeneity
of the foam properties experiments. The bubbles are treated as light spheres,
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using an immersed-boundary method [14]. Their surface is represented by a
number of Lagrangian marker points. At these points, additional volume forces
are introduced into the NSE, ensuring a no-slip boundary condition between
bubble and liquid. The counteracting forces are included in an equation of mo-
tion for each bubble, yielding its velocity and rotation. However, if the surfaces
of two bubbles are less than two grid points away from each other, the liquid
motion between them is not sufficiently resolved by the fluid grid, yielding an
underestimation of the forces in this area. Thus, the Lagrangian points in this
region are switched off and additional collision forces are introduced in the
bubbles equation of motion. The collision forces are derived from an explicit
model only relying on material parameters (given in Table 1), distance deficit
∆ = R1 +R2 − |xc,1 − xc,2| and relative velocity ur = (u2 − u1) with normal
and tangential contribution ur,n and ur,t, respectively.

It includes an elastic normal force F coll
elastic accounting for the deformation

of the bubble, a dissipative normal force F coll
viscous accounting for unresolved

viscous flow in the collision zone, and a dissipative tangential force F coll
tang ac-

counting for viscous friction on tangential movement. These forces are defined
as

F coll
elastic

R0σ
= 18.5

(
∆

R0

)2

+ 2.0
∆

R0
(1)

F coll
viscous = ur,nµfK

(
∆

R0
+ 0.0002

)−0.5

f (R0, ∆, h0) (2)

F coll
tang =

16

5
πµfur,tR0 ln

(
h0
R0

)
. (3)

Detailed information on the model, the constantK and the function f (R0, ∆, h0)
are given in [11]. This model contains the thickness of a stagnant film h0 as a
parameter, resulting from the relative impact velocity between two colliding
bubbles. However, if the bubbles form stagnant clusters such an impact ve-
locity loses relevance. The stagnant film thickness is set to h0 = 1µm which
is a compromise between impacting bubbles (h0 ≈ 5µm) and steady contact
(h0 ≈ 100nm) [15].

2.2 Setup

The numerical setup is depicted in Figure 1. Simulations were carried out in
a rectangular domain which is periodic in horizontal directions and bounded
by a free-slip wall in vertical direction. The domain contains 200 fully mobile
bubbles with a box-shaped distribution of the bubble radius 1.1 mm ≤ Ri ≤
1.3 mm, with the index i designating an individual bubble, so that the mean
radius is R0 =1.2 mm. Additionally, 33 confining bubbles form a soft upper
confinement for the fully mobile bubbles. The same is employed at the opposite
site. Hence, in total 266 bubbles are simulated. The confining bubbles can move
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Fig. 1: Setup for the numerical investigation showing the domain, the softwall region (orange
areas) confining the mobile bubbles by a factor hc. Arrows represent the normal (green) and
shear (purple) forces applied in the softwall region.

freely as well but in addition experience a vertical force when approaching a
certain vertical position, called softwall here and marked in Figure 1. The pur-
pose of this configuration is to mimic an infinitely large bubble cluster. In the
horizontal directions this is achieved by periodic boundary conditions. How-
ever, if all three directions were periodic, no compression or dynamic shearing
could be introduced. Thus, in the vertical direction adjustable walls are ap-
plied. If the walls are solid and flat, this induces the formation of layers close
to the wall, which in turn biasses the shearing behavior. For that reason the
softwall approach was designed. The distance between both softwalls hcLy is
expressed by the relative distance hc and the domain height Ly. For ease of
computation the normal collision forces between bubble and softwall are com-
puted with the same algorithm that provides the collision forces between two
bubbles, here adjusted to the present needs:

Fwall
elastic

R0σ
=

1

10

2 (Ri −R0)

R0

[
18.5

(
∆sw

R0

)2

+ 2.0
∆sw

R0

]
(4)

Fwall
viscous =

1

10

2 (Ri −R0)

R0

[
ur,nµfK

(
∆sw

R0
+ 0.0002

)−0.5

f (R0, ∆sw, h0)

]
.(5)

This softwall region is designed to emulate the behaviour of an infinite
domain filled with bubbles. Therefore, the collision forces for a given overlap
∆sw between bubble surface and softwall are by a factor of 10 smaller than
collision forces that would arise from the overlap with a bubble. Consequently,
bubbles do penetrate the softwall as they would penetrate a rearrangeable
bubble cluster. Also, the collision force with the softwall depends linearly on
the radius and is 17 % larger than average for the largest bubbles in the present
distribution. This follows the idea that smaller bubbles do more easily find a
gap in an existing cluster than larger bubbles. In that way, the formation
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of crystalline bubble structures at the softwall is effectively suppressed (see
Figure 2a).
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Fig. 2: Bubble cluster under compression. (a) Resulting static bubble positions, (b) corre-
sponding distribution of gas fraction over height for medium confinement of hc = 0.80.

The confining bubbles can also be exposed to an oscillatory tangential
force with amplitude τ0 and frequency ω0, inducing shearing motion. The
instantaneous shear force is distributed equally to all 33 confining bubbles
and introduced in their equation of motion. The fluid is not influenced by
the softwall. Important physical and numerical parameter as well as similarity
numbers are summarized in Table 1.

In the present investigation a no-slip condition was imposed at the bubble
surfaces. This accounts for surfaces fully covered with surfactant rigidifying
the surface [16]. In studies of foam rheology the no-slip condition is realistic
because usually high amounts of surfactants are employed in such experiments
to generate stable bubble sizes as, for example, by Denkov et al. [17,18].

Considerable effort was spent on devising the setup proposed here taking
care that the boundaries of the computational domain do not generate arte-
facts or behavior that differs too much from the one in the core of the domain.
If this is not achieved much larger domains might have to be used. Possible
artefacts are crystalline bubble layers that would result in an anisotropic effec-
tive viscosity. The soft-wall avoids this problem, as depicted in figure 2b. The
factor of 10 in the force and the inhomogeneous size-dependency were chosen
based on various tests in case of static compression. When using a factor of
1, 2 or 5 artificial layering of bubbles was still observed to some extent, e.g.
corresponding to peaks of more than 20 % in Figure 2b. If the factor is 10
or somewhat larger a nearly homogeneous distribution is achieved. Factors
substantially larger than 10, however, results in a very small slope of the gas
fraction between 0 and 0.6 gas fraction at the border of the cluster in Fig-
ure 2b, so that the boundary of the cluster is not well defined. As a result,
some bubbles stick out of the cluster and are easily moveable in horizontal
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Table 1: Physical and numerical parameter of the simulations conducted.

parameter symbol value

bubble diameter Ri 1.1 mm ≤ Ri ≤ 1.3 mm
mean bubble diameter R0 1.2 mm

gas density ρb 12 kg m−3

surface tension σ 0.03 Pa m
liquid density ρf 1000 kg m−3

liquid viscosity µf 0.001 Pa s

total number of bubbles Nb 266
bubbles in one softwall 33

domain size Lx × Ly × Lz 13.3×26.6×13.3 mm3

lagrangian points per bubble 1692
grid points for fluid nx × ny × nz 128×256×128

spatial resolution 100 µm
temporal resolution 20 µs

reference pressure pref = σ/R0 25 Pa

direction because they lose contact to it, which would bias the shear studies
relying on a compact cluster.

3 Results

3.1 Static compression

In a first investigation, only normal collision forces and no tangential forces
were introduced in the softwall region as described in Section 2.2. Decreas-
ing the distance hc between the softwalls causes a compression process of the
bubble cluster, then reaching a stationary state. The sum of the normal forces
introduced in the softwalls by definition yields the osmotic pressure posm of the
bubble cluster [19]. The corresponding gas fraction is derived by computing
the gas fraction in horizontal slices and then averaging over height, employing
a sin2 weight function and proper normalization. Figure 2 shows a snapshot of
a stationary bubble cluster, the weight function and the evolution of osmotic
pressure and gas fraction over time. The sin2 weight is necessary, because the
average liquid fraction from a box-shaped weight would be strongly dependent
on the position of the edge of the box.
Now, different random initial bubble positions are considered, all with Φg =
0.5. In separate simulations different distances hc between the softwalls were
imposed, resulting in different osmotic pressures and different gas fractions.
Figure 3 reports on the relation between final, stationary gas fraction and os-
motic pressure. In some cases a stationary state was not completely reached.
Thus, plotted values result from fitting an exponential function to the devel-
opment of the gas fraction in time and determining the asymptotic value. The
results are sufficiently independent from the initial bubble distribution and
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Fig. 3: Gas fraction resulting from different osmotic pressure applied in the softwall region.
Each symbol represents the final stationary state of an individual simulation. These were
started with three different, randomly generated initial bubble distributions (labeled set 1 -
set 3).

show a clear relation. The gas fraction for vanishing osmotic pressure equals
approximately 62 %, which is about 3% smaller than the theoretical value of 64
% for random close packing. This might result from the fact, that the periodic
boundary conditions impose a periodic structure, deviating from the perfectly
relaxed state. The collision model should not be at the origin, because it does
not contain any static friction and thus, collision forces vanish in the steady
state at the jamming limit. The slope of the curve, indicated by the line in
figure 3, is about

∆posm/pref
∆Φg

= 0.72. (6)

This value is in agreement with findings on the static osmotic pressure in
monodisperse emulsions, which scatters roughly between 0.4 and 0.8 [20].
Additionally, the simulations allow to analyze the temporal evolution. Figure 4
shows the temporal evolution of the gas fraction. For small confinements, i.e.
confinement below the jamming limit, the gas fraction is monotonically in-
creasing in time. However, for strong confinement, an overshoot of the gas
fraction and decaying oscillations towards the steady state are visible. Since
the inertia of the bubbles is negligible, this can only be caused by the inertia of
the interstitial liquid. This idea can be supported by modelling the cluster by
a damped spring pendulum. The mass ms is given by the mass of the intersti-
tial fluid, the damping ds by the viscous flow through packed spheres (Blake
equation []) and the spring stiffness ks by the stiffness of the cluster under
compression, as measured in Figure 3. From this, one can derive an equation
of motion for the position xs of the outer rim of the cluster

0 = ksxs + dsẋs +msẍs (7)

ms = ρfΦg ≈ 400 (8)

ds = 72
µf

4R0

Φ2
g

(1− Φg)3
≈ 2 · 104 (9)
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Fig. 4: Evolution of the gas fraction over time for static compression. The same initial bubble
distribution is confined with different distances between the softwalls hc, yielding different
evolutions of the gas fraction Φg toward the steady state Φg,∞.

ks =
∂posm
∂Φg

∂Φg

∂xs

2

hc
≈ 1 · 105. (10)

from these approximations follows the undamped angular frequency fs =√
ks/ms/2π ≈ 2.5Hz and the damping ratio ζ = 0.5ds/

√
msks ≈ 1.5. This

means, the system is slightly overdamped but close to critically damped. Thus,
in case of stronger confinement a small overshoot occurs. Also, the correspond-
ing timescale corresponds with the undamped angular frequency.

3.2 Steady shearing

In the next step, a constant tangential shear stress τ0 is applied in one softwall
region and the counteracting stress −τ0 in the opposite region, as described
in Section 2.2. For strong shear stress this results in monotonously increasing
global shear deformation α of the cluster. The corresponding global shear rate
γ̇(t) = ∂α/∂t is computed from the two times 33 confining bubbles by dividing
their average horizontal velocity by the average of their vertical distance, i.e.

γ̇(t) =

∑33
i=1 ui(t)−

∑66
i=34 ui(t)∑33

i=1 yi(t)−
∑66

i=34 yi(t)
. (11)

The corresponding osmotic pressure is derived by summing up the vertical
collision forces f colli,y experienced by bubbles in contact with the softwall, ap-
pearing on one side

posm(t) =

∑33
i=1 f

coll
y,i (t)−

∑66
i=34 f

coll
y,i (t)

2LxLz
. (12)

Figure 5 shows the resulting deformation rate γ̇, gas fraction and osmotic
pressure as a function of the normalized shear stress. The error bars visualize
the standard deviation of the respective quantity, which is a measure for the
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fluctuations that occur during shearing. Below a certain threshold, the so-
called yield stress, the deformation rate equals zero. Above this threshold, the
cluster starts to yield.
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Fig. 5: Steady shear of bubble clusters. (a) Deformation rate, (b) osmotic pressure, and
(c) resulting gas fraction as a result of the applied shear stress τ0 with different levels of
confinement hc. Error bars indicate the fluctuations.

Figure 6 shows the shear stress as a function of the deformation rate. The
yield stress was derived by fitting a Herschel-Bulkley law [21]. In case of the
weakest confinement no yield stress is present, which is in agreement with [22].
The insert in Figure 6 links the derived yield stress to the corresponding os-
motic pressure derived from Figure 5b. In good approximation the yield stress
depends linearly on the osmotic pressure. The yield stress increases with in-
creasing gas fraction. Along with the yielding, the osmotic pressure for a given
confinement increases and the gas fraction decreases. This is due to the effect
of dilatancy [23]. Beyond the values provided, the good agreement with the
Herschel-Bulkley law demonstrates that the somewhat involved construction
of the boundary conditions pays off, in that it provides the same behaviour as
in a large volume.
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Herschel-Bulkley relation. Inset: relation between yield stress and osmotic pressure at the
yield point.

3.3 Dynamic shearing

Now, after the stationary state of static compression is reached, oscillating
tangential stress τ = τ0 cos(ω0t) is applied, resulting in an oscillatory shearing
motion of the cluster. Figure 7 shows the average amplitude and the phasing
of the shear rate as a function of the confinement hc, the applied tangential
stress amplitude τ0 and its frequency ω0. Figure 7a and 7b demonstrate the
influence of the shear stress on the shear rate for a constant frequency of 2Hz.
For purely solid behavior, the phase shift between force and shear rate should
be −90 degrees, for purely viscous behavior it should be 0 degrees, and for
purely inertial behavior it should equal +90 degrees. In each of these cases, the
amplitude of the shear rate would be proportional to the amplitude of the ap-
plied stress. Indeed, Figure 7a shows a linear relation between shear force and
shear rate amplitude. Surprisingly, the relation seems to be fairly independent
of the confinement. Figure 7b provides the phase shift. For medium confine-
ment, the phase shift is about 40 degrees, marking viscous-inertial behavior.
For stronger confinement, the behavior tends toward a solid-like characteris-
tic, even reaching negative phase shifts. For very weak confinement the phase
shift is high, pointing towards inertia-dominated behavior. Figure 7c and 7d
demonstrate the influence of the frequency on the shear rate for a medium
shear stress of τ0/(σ/R) = 0.0016. With increasing frequency, the shear rate
decreases, because less momentum is transferred into the foam. The phase
shift grows with frequency, because elastic forces are independent of the fre-
quency, viscous forces depend linearly and inertial forces depend quadratically
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Fig. 7: Deformation rate γ̇ and corresponding phase shift α for clusters exposed to oscillatory
shear stress. (a) and (b) dependency on amplitude of shear stress for three different levels of
confinement with a fixed frequency of ω0/2π = 2Hz. (c) and (d) dependency on frequency
of shear stress for three different levels of confinement with a fixed shear stress amplitude
τ0/(σ/Rmean) = 0.0016.

on the frequency. Consequently, inertial forces have a larger influence at higher
frequencies.

In order to investigate the distribution of the deformation rate throughout
the cluster, the velocity of the bubbles was computed in 256 horizontal slices,
averaging the velocities of the adjacent bubbles using the volume fraction of
the bubbles inside the slice as a weight. Note, that this shear rate is based
on the bubbles alone, not the interstitial fluid, so that it is zero outside the
cluster. Figure 8 shows the shear rate over height at different instances in time
for seven selected cases. It is interesting to note, that in the topmost row the
macroscopic shear is independent of the confinement, which is also plotted
in Figure 7a. However, Figure 8 shows that the corresponding distribution of
shear inside the cluster and, therefore, the rheological behavior is completely
different. For strong confinement shearing is linearly distributed, as would be
the case for purely elastic or viscous behavior.

At medium confinement a wave is visible corresponding to the interaction
of elastic and inertial behavior. The elastic behavior results from the elastic
contribution in the collision model while the inertial behavior is caused by the
inertia of the interstitial fluid.

For weak confinement, and also for high frequencies and high shear stresses,
a jump in the horizontal velocity is visible at y/R0 ≈ 5 and 17, corresponding
to the formation of a shear band between the softwall and the free bubble
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cluster. Similar shear bands have been detected in several other simulations
(not presented here) showing the same tendency.

3.4 Complex shear modulus

The most convincing way to derive a constitutive law from the dynamic shear-
ing would possibly be to fit the shear rate over height and time with a wave
equation, as done by Costa et al. [3] for rheometric measurements of rela-
tively dry foam. However, in wet foam (under weak confinement) shear bands
can occur which is not described by the wave equation. To demonstrate the
difficulties, three cases with moderate amplitude and frequency are discussed
here, the ones presented in the topmost row of Figure 8. The time-dependent
horizontal velocity u(y, t) for each horizontal layer is derived by averaging the
horizontal velocity ui(t) of the intersected bubbles using the intersectional area
Ai(y) as a weight

u(y, t) =

∑266
i=1 ui(t)Ai(y)∑266

i=1Ai(y)
. (13)

The time-dependent elongation x(y, t) is derived by integrating the averaged
horizontal velocity u(y, t) in time with a central differences scheme. Based
on this quantity, the complex amplitude of elongation X∗

0 (y) is derived by
integrating over one period

X∗
0 (y) =

1

T

∫ T

0

eiω0tx(y, t)dt (14)

The complex solution X̃∗
0 (y) of the wave equation

ρf (1− Φg)
∂2X̃∗

0 (y)eiω0t

∂t2
= G∗ ∂

2X̃∗
0 (y)eiω0t

∂y2
(15)

should describe the measured values of X∗
0 (y). All factors in (15), except G∗,

can be determined from the measurements. The gas fraction Φg is assumed
to be constant over y and to equal the measured average gas fraction. Now,
G∗ is optimized such that the solution of (15), X̃∗

0 (y), fits the measured data
X∗

0 (y) at best. This is done by minimizing the sum of the squares of the
differences between X̃∗

0 (y) and X∗
0 (y). All horizontal layers y that contain

less than 50% of this gas fraction are not taken into account for the fit. In
that way, the liquid-filled regions above and below the cluster are neglected.
Figure 9 shows the real and imaginary part of X̃∗

0 (y) and X∗
0 (y) and the

values of G∗ resulting from the optimization. In the interior of the cluster, the
wave equation represents the shearing quite well, however, close to the softwall
region the elongation differs from the wave equation, especially in the case of
stronger confinement where also the shear band occurs. The reason is that
equation 15 assumes constant properties, i.e. constant density and constant
G∗ throughout the cluster. However, in a shear band higher liquid fraction is
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accumulated, resulting in a localized variation of G∗ and Φg. Consequently,
a wave equation with constant values of G∗ and density can not capture the
behavior.

4 Conclusions

In this study a suitable numerical setup, termed softwall, was developed to
introduce osmotic pressure and shear in a periodic representative volume filled
with gas bubbles. It minimizes artefacts and turned out to be very well suited
for the studies undertaken. Similar studies, on colloids for example, might
employ this as well with benefit.

In the coupling between bubbles and fluid the bubbles are assumed spher-
ical. On the other hand, bubble deformation is accounted for by the nonlinear
elastic collision force between the bubbles. The spherical shape of the bubbles,
imposed by the position of the Lagrangian marker points, enters the com-
putation of the interstitial flow field. This approach is justified for moderate
osmotic pressures and gas fractions as investigated here. It loses validity for
substantially higher gas fractions because it does not account for the reduced
cross-sectional area of plateau borders in compressed foam and, thus, overes-
timates the liquid flow.

While the numerical method is well suited for simulating large amounts of
spheres [24], the employed number of bubbles in this study is limited by the
high resolution, the required times for reaching steady states and the number
of parameters varied. In fact, a single data point in figure 5, for example,
required several weeks on 128 CPUs of a high-performance computer.

The periodic boundary conditions in the horizontal directions and the soft-
wall are employed to represent an infinite bubble cluster. With this approach
non-periodic structures larger than the domain size cannot be represented.
The videos taken suggest that in the bulk of the cluster the motion is fairly
irregular. Furthermore, these very large structures are deemed not decisive for
the physics investigated here, the inertial effect of the interstitial fluid. An
exception are the shear bands, represented as infinitely large with the present
domain if their size is larger than 6 bubbles in one direction. In experiments
these shear bands can become extremely long, of the order of several hundred
bubble diameters [25], so that the present setup with infinite length is a very
good approximation.

The present investigations were concerned with stationary compression,
steady shear and oscillatory shear. Figure 4 showed an overshoot of the gas
fraction when compressing a bubble cluster. This presumably cannot be repro-
duced with a numerical method neglecting the flow of the interstitial fluid. At
the same time, this is a feature, where colloids substantially differ from foam,
because the additional inertia of the droplets would increase the overshoot.
Also the inertial-influenced behavior in the dynamic shearing experiment is
a feature that cannot be reproduced exactly in simulations that do not take
into account the interstitial fluid flow. When modelling, one could artificially
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add the mass of the unresolved interstitial fluid to the mass of the spherical
objects, but that would neglect the acceleration of the fluid relative to the
spherical objects.

Shear bands occurred in our simulations in case of low confinement, high
frequencies, or high shear stress (see figure 8). The case of high shear stress
is well documented in the literature [25,1]. The case of high frequency could
correlate to the observation of shear bands during start-up of steady shear [26],
because high frequency means a continuous accelerating and decelerating, such
that the cluster cannot overcome its static yield stress. The case of low con-
finement has been observed in the opposite way for two-dimensional foam in
a Couette-type flow [27]. With continuous shear in dry foam shear banding
was found to occur more frequently than in wet foam. The discrepancy might
result from the higher frequency in our case. Due to the high liquid fraction
sliding layers might form and so that the inner cluster looses contact to the
softwall. If, however, steady shear was applied the viscous friction would ho-
mogenize the shear rate after some time. Hence, due to the high frequency
only the start-up is observed here. Fitting the complex shear modulus to the
distribution of the complex shear elongation has demonstrated a significant
deviation of the observed behaviour from the wave equation in cases of high
frequencies or shear stress. This is due to the formation of shear bands that
cannot be described by the wave equation. Consequently, one has to be very
careful when applying the wave equation to the values for wet foam or granular
material measured in a rheometer.
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Fig. 8: Horizontally averaged horizontal bubble velocity component over height at ten time
instances equally distributed over half a period. Blue crosses mark the velocity versus height
of each bubble center at the last time instance. The center column shows three times the
identical reference case, each row shows the variation of one parameter. Top: variation of
hc, middle: variation of ω0, bottom: variation of τ0.
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Fig. 9: Real and imaginary part of the complex elongation across the cluster X∗0 and the
corresponding result of equation (15) after fitting G∗0 for ω0/2π = 2Hz and τ0/(σ/Rmean) =
0.0016. (a) hc=0.64, (b) hc=0.60, (c) hc=0.54.


