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On the synchronizability of Tayler-Spruit and
Babcock-Leighton type dynamos

F. Stefani · A. Giesecke · N. Weber · T. Weier

Abstract The solar cycle appears to be remarkably synchronized with the 
gravitational torques exerted by the tidally dominant planets Venus, Earth and 
Jupiter. Recently, a possible synchronization mechanism was proposed that relies 
on the intrinsic helicity oscillation of the current-driven Tayler instability which 
can be stoked by tidal-like perturbations with a period of 11.07 years. Inserted 
into a simple α − Ω dynamo model these resonantly excited helicity oscillations 
led to a 22.14 years dynamo cycle. Here, we assess various alternative mechanisms 
of synchronization. Specifically we study a simple time-delay model of Babcock-
Leighton type dynamos and ask whether periodic changes of either the minimal 
amplitude for rising toroidal flux tubes or the Ω effect could eventually lead to 
synchronization. In contrast to the easy and robust synchronizability of Tayler-
Spruit dynamo models, our answer for those Babcock-Leighton type models is less 
propitious.

Keywords: Solar cycle, Models Helicity, Theory

1. Introduction

Despite its long history, which traces back to Wolf (1859), the idea of planetary 
influence on the solar dynamo is widely considered as marginal, if not ”astro-
logical”. There are indeed good reasons for skepticism: the gravitational forces 
exerted by the planets are tiny when compared to the intrinsic buoyancy and 
Coriolis forces that are believed to govern the solar dynamo (Callebaut, de Jager,
and Duhau, 2012). The tidal accelerations of a few 10−10m/s2, which produce a
tidal height of the order of 1mm at the tachocline (Condon and Schmidt, 1975),
seem - at first glance - ridiculous when asking for possible influences on the solar
dynamo.
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Yet, there are remarkable correlations of the solar cycle with planetary orbits.
This applies, in particular, to the apparent synchronization (Bollinger, 1952;
Takahashi, 1968; Wood, 1972; Öpik, 1972; Condon and Schmidt, 1975; Grand-
pierre, 1996; Hung, 2007; Wilson, 2013; Okhlopkov, 2014, 2016) of the solar cycle
with the 11.07 years conjunction cycle of Venus, Earth and Jupiter, which are
the three dominant tide producing planets 1. The average solar cycle duration
of (2008.9− 1610.8)/36 = 11.06 years, derived from the data of the last 36 cy-
cles (Richards, 2009; Li, 2017), indicates an astonishing coincidence. Even more
remarkable is the recent finding of Okhlopkov (2016) that the synchronization
may have lasted for the last 50 cycles. Further to this, fossil records suggest
that the solar cycle has been amazingly stable for at least the last 290 million
years: the cycle length during the early Permian, e.g., was recently estimated
as 10.62 years (Luthardt, 2017). Hence, one might reconsider the tidal height
htidal ≈ 1mm and ask whether this is indeed as irrelevant as it looks like. Given
the huge gravitational acceleration at the tachocline of g ≈ 500m/s2 (Wood,
2010), we find an equivalent velocity of v ∼ (2ghtidal)

1/2 ≈ 1m/s which is not
at all negligible, as already noted by Öpik (1972).

While such a “hard” synchronization of the basic Hale cycle with planetary
tidal forces was advocated by only a few researchers, much more interest was
dedicated to various kinds of “soft” planetary modulation of that cycle (whose
length is usually believed to be determined by intrinsic solar parameters (Char-
bonneau, 2010; Cameron and Schüssler, 2017)). Intriguing connections have been
found between various periodicities of the solar magnetic field (Suess-de Vries,
Hallstadt, Eddy etc.) and corresponding planetary constellations (Jose, 1965;
Charvatova, 1997; Abreu et al., 2012; Wolf and Patrone, 2010; Scafetta, 2010,
2014; McCracken, Beer and Steinhilber, 2014; Cionco and Soon, 2015; Scafetta
et al., 2016). As an example, Abreu et al. (2012) had revealed synchronized
cycles in proxies of the solar activity and the planetary torques, with periodicities
that remain phase-locked over 9400 years. While still under scrutiny (Cameron
and Schüssler, 2013; Poluianov and Usoskin, 2014; Abreu et al., 2014), any
such relationship - if confirmed - would have important consequences for the
predictability not only of the solar dynamo but, very likely, of the terrestrial
climate, too (Hoyt and Schatten, 1997; Gray et al., 2010; Solanki, Krivova and
Haigh, 2013; Scafetta, 2013; Ruzmaikin and Feynman , 2015; Soon et al., 2016).

Returning to the problem of “hard” synchronization, we have recently tested a
physical mechanism that seems promising for explaining it (Stefani et al., 2016).
We set out from a rarely discussed type of stellar dynamo models, in which the
poloidal-to-toroidal field transformation is traditionally ensured by the Ω effect,
while the toroidal-to-poloidal transformation starts only when the toroidal field
itself becomes unstable to a non-axisymmetric current-driven instability. Early
versions of such a dynamo mechanism were discussed by Ferriz Mas, Schmitt,

1The ”generous omission” of Mercury, whose tidal effect is nearly the same as that of Earth,
but whose 88 days revolution period is often considered as “so short that its influence appears
only as an average, non-fluctuating factor...” Öpik (1972), might be another argument for
skeptics. However, it could also be worthwhile to re-analyze the 50-80 years sub-band of the
Gleissberg cycle as identified by Ogurtsov et al. (2002) in the light of the 66.4 years period of
the four-fold co-alignment of Mercury, Venus, Earth and Jupiter (Verma, 1986).



and Schüssler (1994) and Zhang et al. (2003), and auspiciously applied to ex-
plain grand minima in terms of on-off intermittency (Schmitt, Schüssler, and
Ferriz Mas, 1996). The underlying kink-type Tayler instability (TI) had been
theoretically treated by many authors (Tayler, 1973; Pitts and Tayler, 1985;
Gellert, Rüdiger, and Hollerbach, 2011; Rüdiger, Kitchatinov, and Hollerbach,
2013; Rüdiger et al., 2015; Stefani and Kirillov, 2015), and was recently also
observed in a liquid metal experiment (Seilmayer et al., 2012). Based on this
TI, a version of a non-linear dynamo mechanism had been proposed (Spruit,
2002) which is now known as the “Tayler–Spruit dynamo”. This first version
was soon criticized by Zahn, Brun, and Mathis (2007) who argued that the non-
axisymmetric (m = 1) TI mode would produce the “wrong” poloidal field, being
unsuitable for regenerating the dominant axisymmetric (m = 0) toroidal field.
Fortunately, the same authors offered a possible rescue for the Tayler-Spruit
dynamo concept provided that the m = 1 TI would produce an α effect with
some m = 0 component.

The emergence of such a TI-related α effect is far from trivial, though. For
comparable large values of the magnetic Prandtl number [Pm], Chatterjee et al.
(2011); Gellert, Rüdiger, and Hollerbach (2011); Bonanno et al. (2012, 2017)
found evidence for spontaneous symmetry breaking between left- and right-
handed TI modes, leading indeed to a finite value of α. Things are different,
however, for low Pm (as typical for the solar tachocline) for which we observed
a tendency of the TI to produce oscillations of the helicity and the α-effect
related to it (Weber et al., 2013, 2015). The first result of Stefani et al. (2016)
was that those oscillations between left- and right-handed m = 1 TI modes
are very susceptible to m = 2 perturbations, which could explain their easy
synchronizability with tidal forces as exerted by planets.

Appropriately parametrized, this resonant behaviour of α was then imple-
mented into a simple zero-dimensional α − Ω dynamo model which turned out
to undergo oscillations with period doubling. In summary, we found that an
11.07 year tidal-like oscillation may lead to a resonant excitation of a 11.07-year
oscillation of the TI-related α-effect, and thereby to a 22.14 year Hale cycle of
the entire dynamo.

We note in passing that the notion “Tayler-Spruit dynamo”, as used above,
is not exactly correct for our modified model which comprises, besides of the
resonantly excited oscillatory part of α, also some small, but non-zero constant
part (subjected only to some standard type of α-quenching). Interestingly, the
product of this constant part of α with Ω had to be positive to make the dynamo
working, while a negative product led to decaying solutions. In a slightly ex-
tended model (Stefani et al., 2017) we further showed that this positive product
can even provide the correct equator-ward direction of the butterfly diagram
of sun-spots, in pleasant contrast to what one would naively expect from the
Parker-Yoshimura sign rule (Parker, 1955; Yoshimura, 1975; Pipin et al., 2013).

In the light of such promising features of a tidally synchronized solar dynamo
model of Tayler-Spruit type (with the semantic caveat noticed above), in this
paper we ask for alternative synchronization mechanisms which are closer to the
more widely accepted concept of flux-transport dynamos (Charbonneau, 2010).
In those models, the Babcock-Leighton mechanism (Babcock, 1961; Leighton,
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1964) interprets the generation of poloidal field by the stronger diffusive cancel-
lation of the (closer to the equator) leading sunspots compared with that of the
trailing (farther from the equator) spots. This leads to a spatially separated, or
flux-transport type of dynamo, which is also known to exhibit correct butterflies
if combined with an appropriate meridional circulation (Choudhuri, Schüssler,
and Dikpati, 1995).

Specifically, we will investigate two models of putative planetary influences on
flux-transport dynamos. The first model relies on periodic tidal perturbations of
the adiabaticity in the tachocline region, which is crucial for the storage capacity
of magnetic flux tubes before they are set free to erupt (Abreu et al., 2012). This
perturbation will be emulated as a periodic change of the minimum magnetic
field beyond which magnetic flux tubes are allowed to rise.

The second model traces back to an idea of Zaqarashvili (1997) who had
explained the 22 years cycle as an Alfvén wave excited via parametric resonance
from a 11 years period change of differential rotation, which - in his view - could
rely on the motion of the sun around the Sun-Jupiter common mass center.
For this model to work it had to pre-suppose a significant poloidal field of
fossil origin. An 11 years oscillation of the differential rotation is indeed known
from measurements (Brown et al., 1989; Howe, 2009), although it is usually
explained in terms of back-reaction of the dynamo field on the flow, either by the
Malkus-Proctor effect (Malkus and Proctor, 1975) or by so-called Λ-quenching
(Kitchatinov, Rüdiger and Küker, 1994).

As in Stefani et al. (2016), we will refrain from any expensive higher dimen-
sional simulations and restrict ourselves to simple, zero-dimensional dynamo
models. As a basis we will utilize the time-delay concept introduced by Wilmot-
Smith et al. (2006) which appears to be particularly suited for our purposes. It
implements two time delays into the dynamo cycle, one representing the rise time
of flux-tubes which transports toroidal field from the tachocline to the working
site of the α-effect, the other one representing the time needed for the meridional
circulation to transport poloidal field back to the working site of the Ω-effect.

Actually, both synchronization mechanisms will be studied for three paradig-
matic regimes distinguished by the ordering of the involved time scales, namely a
diffusion-dominated, a flux-transport dominated, and an intermediate regime. In
either case, we will further distinguish between negative and positive products of
α and Ω which typically lead to oscillatory or pulsating behaviour, respectively.
In higher-dimensional models this sign is known to determine the direction of
the butterfly diagram (Parker, 1955; Yoshimura, 1975; Pipin et al., 2013): this
issue will not be discussed here.

However, before entering these new topics, we will recall the synchronization
mechanism based on the Tayler-Spruit-type dynamo model and discuss, as a left-
over question from Stefani et al. (2016), its behaviour with respect to variations
of the diffusion time.

2. Synchronization of Tayler-Spruit type dynamos

In this section we will analyze a further aspect of the reduced zero-dimensional
α–Ω dynamo model of Stefani et al. (2016), consisting of two coupled ordinary



differential equations for the toroidal and the poloidal field components,

db(t)

dt
= Ωa(t)−

b(t)

τ
(1)

da(t)

dt
= α(t)b(t) −

a(t)

τ
, (2)

wherein a represents the poloidal field (specifically, its vector potential), and b

the toroidal field. While in Stefani et al. (2016) the diffusion time had been fixed

to τ = 1 year, it will now be considered as variable (for the sake of shortness,

we will skip the time unit “year” in all following numerical analyses).
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Figure 1. Time dependence of a (a,b), b (c,d) and α (e,f) for the two parameter sets Ω = 50,
c = 0.4, p = 8, and h = 10 (a,c,e) and Ω = 200, c = 0.16, p = 8, and h = 10 (b,d,f), and varying
values of τ . For the case (a,c,e), pulsations with an 11.07 period occur for a low τ = 0.25 and
a large τ = 4, while for intermediate τ we find oscillations with a period of 22.14. For the case
(b,d,f), pulsations are found only for the large τ = 4, while for other τ oscillations occur.
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In contrast to the constant value of Ω, which represents the induction effect of
the differential rotation, α is supposed to depend on the instantaneous toroidal
magnetic field:

α(t) =
c

1 + gb2(t)
+

pb2(t)

1 + hb4(t)
sin (2πt/Ttidal) . (3)

Equation (3) is motivated as follows: the first term, scaled by c, reflects some
constant part that is only quenched, in the usual way, by the magnetic-field
energy (b2) in the denominator. The second contribution, scaled by a parameter
p, is periodic in time and emulates the resonant excitation of the α-oscillation by
fixing its period to Ttidal, but maximizing its amplitude at some particular value
of |b| where the tidal excitation happens to be in resonance with the intrinsic
helicity oscillation of the TI.

As shown previously (Stefani et al., 2016), this dynamo fails to work when
either c is set to zero, or the product of c and Ω is negative. Working dynamos
come in two guises: their field might either pulsate (keeping one single sign)
with a period equal to Ttidal, or oscillate with a period of 2Ttidal, which is the
“desired” behaviour that was indeed found for a wide range of parameters.

What was left over from Stefani et al. (2016) was an assessment of the role of
the diffusion time τ which had been set to 1 for the assumed tidal forcing period
of 11.07. Figure 1 illustrates now the results for varying τ . For the parameter
choice Ω = 50, c = 0.4, p = 8, and h = 10 (a,c,e), pulsations with a 11.07
period occur for a low value τ = 0.25 as well as for a large value τ = 4, while
for intermediate τ we find oscillations with a period of 22.14. For the case Ω =
200, c = 0.16, p = 8, and h = 10 (b,d,f), pulsations are found for the largest
considered value τ = 4, while for other τ oscillations are observed.
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Figure 2. Transitions between oscillations and pulsations for varying the diffusion time τ for
Ω = 50, c = 0.4, p = 8 (a), and Ω = 200, c = 0.16, p = 8 (b).

A more detailed analysis reveals, however, a more complicated behaviour, as
documented in Figure 2. We observe a sequence of transitions between oscillatory
and pulsatory behaviour, partly with quite narrow bands, in particular for the
higher value Ω = 200 (b).

While the oscillatory behaviour is what we are usually searching for, one
might ask whether the pulsations are indeed as unphysical as they look like.



It is tempting here to think about Maunder type grand minima, for which
measurements of 10Be had indicated a rather unperturbed 11 years cycle (Beer,
1998), possibly connected, however, with a changed field parity (Sokoloff and
Nesme-Ribes, 1994; Weiss and Tobias, 2016; Moss and Sokoloff, 2017). While our
zero-dimensional model cannot decide about the parity of 3D-dynamo fields, it
might be interesting to learn into what kind of behaviour our pulsations would
translate once higher dimensional models were applied. Let us bravely assume
for the moment that our pulsation regime would indeed correspond to the regime
of grand minima. We might then ask for the details of transitions into, and from,
such a minimum.

For Ω = 50, c = 0.4, p = 8, and h = 10, Figure 3 illustrates such a process,
by forcing the diffusion time τ to change between 1 and 0.7, and back. As
can be expected from Figure 2a, the initial oscillations is replaced, at t ≈ 80,
by a pulsation, but recovers again at t ≈ 170. It is most remarkable that the
periodicity remains ”on beat” during these two transitions.
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of τ . Note the phase coherence throughout the “grand minimum”.



3. Synchronization of Babcock-Leighton type dynamos

We turn now to the question whether a similar synchronization effect, as dis-
cussed in the previous section for Tayler-Spruit type dynamos, could also result
from appropriate periodic changes in a flux-transport (or Babcock-Leighton)
dynamo model. After describing the mathematical model, we will present simu-
lations for three regimes which differ in the ordering of the relevant time-scales.

3.1. The model

We modify the model of equation system (1,2,3) according to Wilmot-Smith
et al. (2006), who had introduced two specific time delays in their dynamo model.
Consider the system

db(t)

dt
= Ω(t)a(t− τ0)−

b(t)

τ
(4)

da(t)

dt
= α(t− τ1)b(t− τ1)−

a(t)

τ
(5)

with

α(t) = α0

1

4
[1 + erf(b2(t)− b2min(t))][1 − erf(b2(t)− b2max)] . (6)

Apparently similar to system (1,2,3), this equation system has a number of
peculiarities: First, as suggested by Wilmot-Smith et al. (2006), there are two
time delays in the system. The first one, τ0, represents the time needed for
meridional circulation to transport the poloidal field, assumed to be produced
by some Babcock-Leighton effect close to the solar surface, to the tachocline
region, which is supposed to be the site of the Ω-effect. The second delay, τ1,
represents the rise time of flux-tubes which, in turn, transport toroidal field from
the tachocline region to the surface. The effective α-effect is supposed to work
only between a minimum |bmin| and a maximum value |bmax|, where flux-tubes
start to rise when they have grown to a minimum strength |bmin|, and |bmax| is
the field amplitude at which the quenching of α becomes significant. Recently,
this model has been extended by Hazra, Passos and Nandy (2014) who added
a stochastic fluctuation of α and argued that the Babcock-Leighton mechanism
alone cannot recover the solar cycle from a grand minimum.

What is new in our model, compared to that of Wilmot-Smith et al. (2006),
is the consideration of either bmin or Ω as periodically time-dependent. Again,
we have in mind a gravitational perturbation with a period of 11.07 years (and
some relative amplitude A) as produced by the Venus-Earth-Jupiter system, i.e.

bmin(t) = bmin,0(1 +A sin (2πt/Ttidal)) (7)

or

Ω(t) = Ω0(1 +A sin (2πt/Ttidal)) . (8)



Why consider bmin as time-dependent? The idea traces back to Abreu et al.

(2012) who had argued that the overshoot layer, which coincides spatially with

the tachocline, is crucial for the storage and amplification of the magnetic flux
tubes before they eventually erupt to the solar photosphere. The key factor

here is the superadiabaticity, a dimensionless measure of the stratification of the
specific entropy. The maximum field strength of a flux tube that can be stored

prior to eruption is very sensitive to this superadiabaticity; hence small changes
of it (as provoked, e.g., by tidal forces) could decide about the ultimate strength

of the rising flux tube. In our model this will be emulated by a periodic time
dependence of bmin.

While such a periodic variation of the adiabaticity, and therefore of bmin, is still
speculative, a corresponding 11 years oscillation of Ω has indeed been observed

in form of “torsional oscillations” (Brown et al., 1989; Howe, 2009). Although
these are commonly discussed in terms of a large-scale feedback of Lorentz forces

(Malkus-Proctor effect (Malkus and Proctor, 1975)) or Λ-quenching (Kitchati-
nov, Rüdiger and Küker, 1994), they might also result directly from planetary

influences (Zaqarashvili, 1997).
In the following we will assess if, and under which conditions, the two time

periodic variations of bmin or Ω might lead to a synchronization of the dynamo.
In all considered regimes we will find dynamos with a positive product of α

and Ω to undergo pulsations, while dynamos with negative product of α and Ω
usually oscillate.

3.2. Flux-transport dominated regime

We start with a regime in which the flux-transport is fast compared to dissipation
effects, i.e. τ > τ0 + τ1. Both positive and negative products of α and Ω will be

considered.

3.2.1. Positive dynamo number

Figure 4 illustrates the results for two specific sets of dynamo parameters. With

the constant parameters τ = 15, τ0 = 2, τ1 = 0.5, bmin = 1, bmax = 7, we evaluate
the two combinations α0 = 0.17, Ω = 0.34 (a,c,e) and α0 = 0.75, Ω = 1.5 (b,d,f).

Panels (a) and (b) show a(t), b(t) and α(t) for the unperturbed system which
turns out very similar to the pulsation behaviour shown in Figure 7 of Wilmot-

Smith et al. (2006)). Panels (c) and (d) show (only) a(t) for various amplitudes
A of the perturbation of bmin with a period of 11.07. In either case, the effect of

periodic variation of bmin can be neglected. Correspondingly, panels (e) and (f)
show (only) b(t) for various amplitudes A of the perturbation of Ω. Although

some shifting effects are visible, there is no sign of any synchronization. One
might guess, however, that this has simply to do with the large gap between the

period of the forcing (11.07) and the periods of the unperturbed dynamo, i.e.,
for A = 0, which are very large (43 for (a,c,e) and 88 for (b,d,f)).
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Figure 4. Time series in the flux-transport dominated regime with positive product of α

and Ω. The constant parameters are: τ = 15, τ0 = 2, τ1 = 0.5, bmin = 1, bmax = 7. The
variable parameters are: α0 = 0.17, Ω = 0.34 (a,c,e), α0 = 0.75, Ω = 1.5 (b,d,f). Panels (a)
and (b) show a(t), b(t) and α(t) for the unperturbed system (the behaviour is very similar to
that shown in Fig. 7 of Wilmot-Smith et al. (2006)). Panels (c) and (d) show only a(t) for
various amplitudes A of the perturbation of bmin with perturbation period 11.07. Evidently,
the periodic variation of bmin has a negligible effect. Panels (e) and (f) show only b(t) for
various amplitudes A of the perturbation of Ω. The variation of the amplitude of Ω leads to
some shifting effect, but no synchronization is observed.

3.2.2. Negative dynamo number

Keeping all parameters as before, and changing only the sign of Ω, we obtain the
time series of Figure 5. Rather than a pulsations we observe now the “desired”
oscillation of the dynamo.

Again, periodic variations of bmin have no noticeable effect (c,d). The periodic
perturbation of Ω leads to some shifting, but not to any synchronization. This
time, synchronization might have been expected for (c,e) since the unperturbed



dynamo (a) has a period of 29 which is not far from the double of the excitation
period. Interestingly, the dynamo switches off completely for the largest pertur-
bation A = 0.6 (e), where in its weak phase Ω is reduced in such a way that the
dynamo cannot work anymore.
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Figure 5. Similar as Figure (4) but with negative product of α and Ω. The constant pa-
rameters are: τ = 15, τ0 = 2, τ1 = 0.5, bmin = 1, bmax = 7. The variable parameters are:
α0 = 0.17, Ω = −0.34 (a,c,e), α0 = 0.75, Ω = −1.5 (b,d,f). Panel (a) corresponds to Figure 3,
(b) to Figure 4 of Wilmot-Smith et al. (2006). Again, the periodic variation of bmin (c,d) has
a negligible effect. The variation of the amplitude of Ω (e,f) has some shifting effect, but there
is no synchronization. Note the switching off of the dynamo for A = 0.6 in (e).

3.3. Diffusion dominated regime

Now we consider the opposite case that the diffusion is faster than the flux
transport, i.e τ < τ0 + τ1.



3.3.1. Positive dynamo number

We start again with positive product of α and Ω. Figure 6 shows the results for
two specific sets of dynamo parameters. With the constant parameters τ = 1,
τ0 = 10, τ1 = 4, bmin = 1, bmax = 7, we consider the two combinations α0 = 0.75,
Ω = 1.5 (a,c,e) and α0 = 2.5, Ω = 5 (b,d,f). Panels (a) and (b) show a(t), b(t)
and α(t) for the unperturbed system. The erratic behaviour at the beginning of
(a) is actually similar to that of Figure 12 of Wilmot-Smith et al. (2006) (which
has slightly different α0 = −1, Ω = −3, though).

For both dynamo strengths, neither the variation of bmin (c,d) nor that of
Ω = 5 (e,f) lead to synchronization, despite some shiftings and deformations of
the signals.

3.3.2. Negative dynamo number

We continue with the case of a negative product of α and Ω in the diffusive
regime. Again, Figure 7 shows the typical oscillations instead of the pulsations
which had dominated for positive product. With the constant parameters left
unchanged, the variable parameters are now: α0 = 0.75, Ω = −1.5 (a,c,e), α0 =
2.5, Ω = −5.0 (b,d,f). The behaviour in (b) corresponds to that of Figure 8 of
Wilmot-Smith et al. (2006). The periodic variations of bmin (c,d) and Ω (e,f)
have some effect, but provide no real synchronization.

3.4. Intermediate regime

While the previous two regimes were already studied (without the periodic
perturbations) in Wilmot-Smith et al. (2006), we further consider here an inter-
mediate regime characterized by the time ordering τ1 < τ < τ0, i.e. the diffusion
is slower than the rise of flux-tubes, but faster than the meridional circulation.

3.4.1. Positive dynamo number

Let us start again with positive product of α and Ω. With the constant param-
eters τ = 3, τ0 = 5, τ1 = 1, bmin = 1 bmax = 7, we check the two combinations
α0 = 0.5, Ω = 1 (a,c,e) and α0 = 2, Ω = 4 (b,d,f). Again panels (a) and (b)
of Figure 8 show a(t), b(t) and α(t) for the unperturbed system which exhibit
pulsations, as is usual for positive product of α and Ω. Panels (c) and (d) show
a(t) for the perturbed system, with various amplitudes A of the perturbation of
bmin. In either case (c) and (d), the effect of periodic variation of bmin leads only
to a weak shift of the time series. Correspondingly, panels (e) and (f) show b(t)
for various amplitudes A of the perturbation of Ω. In (e) we observe for the first
time a synchronization (compare the systematic shift of the maxima for A = 0.6
compared to those for A = 0).

This synchronization effect is further quantified in Figure 9. For the param-
eters α0 = 0.5, Ω = 1, and the close-by parameters α0 = 0.6, Ω = 1.2, we
demonstrate how the period of the dynamo oscillation approaches the double
period 22.14 of the 11.07 period variation of Ω, when the amplitude of the
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Figure 6. Time series in the diffusion dominated regime with positive product of α and Ω. The
constant parameters are: τ = 1, τ0 = 10, τ1 = 4, bmin = 1, bmax = 7. The variable parameters
are: α0 = 0.75, Ω = 1.5 (a,c,e), α0 = 2.5, Ω = 5.0 (b,d,f). Panels (a) and (b) show a(t), b(t)
and α(t) for the unperturbed system (the erratic behaviour at the beginning of (a) is similar
to that of Figure 12 of Wilmot-Smith et al. (2006) which works at α0 = −1, Ω = −3). Panels
(c) and (d) show a(t) for various amplitudes A of the perturbation of bmin with perturbation
period 11.07. Panels (e) and (f) show b(t) for various amplitudes A of the perturbation of Ω.
The periodic variations of bmin and Ω provide some effects, but no synchronization.

perturbation is increased. What is observed here is, therefore, a synchronization

of order 1:2 (Pikovsky, Rosenblum, and Kurths, 2001). The typical parabolic

shape of the curves is representative of the occurrence of parametric resonance

(Giesecke, Stefani, and Burguete, 2012; Giesecke, Stefani, and Herault, 2017).

Still, the amplitude of the perturbation must be large (around 0.4) in order to

provide synchronization. It is not very likely, that the typical 1 per cent changes

of Ω, as observed in the sun Howe (2009), could provide such an entrainment

effect.
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Figure 7. Similar as Fig. (6) but with negative product of α and Ω. The constant parameters
are: τ = 1, τ0 = 10, τ1 = 4, bmin = 1, bmax = 7. The variable parameters are: α0 = 0.75,
Ω = 1.5 (a,c,e), α0 = 2.5, Ω = 5.0 (b,d,f). The behaviour in (b) corresponds to that of Figure
8 of Wilmot-Smith et al. (2006). The perturbation of bmin (c,d) and Ω (e,f) have some effect
but do not lead to synchronization.

3.4.2. Negative dynamo number

We switch over now to the case of negative product of α and Ω und use, with

all other parameters unchanged, α0 = 0.5, Ω = −1 (Figure 8(a,c,e)), and α0 =

2, Ω = −4 (b,d,f). We see that the stronger dynamo (b) undergoes a clear

oscillation, whereas the weaker one (a) shows a behavior somewhere between

oscillation and pulsation. While the perturbations of the stronger dynamo (d,f)

lead only to minor changes without synchronization, the perturbation of the

weaker dynamo is more interesting. From panel (e) we can try to infer the length

of the dominant period in more detail when varying A (Figure 11). Although not
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Figure 8. Time series in the intermediate regime with positive product of α and Ω. The
constant parameters are: τ = 3, τ0 = 5, τ1 = 1, bmin = 1, bmax = 7. The variable parameters
are: α0 = 0.5, Ω = 1 (a,c,e), α0 = 2, Ω = 4.0 (b,d,f). Panels (a) and (b) show a(t), b(t) and
α(t) for the unperturbed system. Panels (c) and (d) show (only) a(t) for various amplitudes
A of the perturbation of bmin with perturbation period 11.07. Panels (e) and (f) show b(t) for
various amplitudes A of the perturbation of Ω. The variation of the amplitude of Ω leads to
synchronization.

as clear as in the previous Figure 11, we still obtain a sort of synchronization,
this time already for smaller values of A ∼ 0.1.

4. Discussion and summary

In his statistical analysis, titled ”Is there a chronometer hidden deep in the
sun?”, Dicke (1978) had provided remarkable evidence for a positive answer to
this fundamental question.
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Figure 9. Dominant period of pulsation in dependence on the amplitude A of the Ω variation
for α0 = 0.5, Ω = 1.0 and α0 = 0.6, Ω = 1.2 in the intermediate regime. Synchronization with
twice the 11.07 driving period appears at A = 0.35 and A = 0.425, respectively.

Taking this finding seriously, we have assessed and compared the synchro-
nizability of simplified dynamo models of the Tayler-Spruit and the Babcock-
Leighton type. The synchronization of the Tayler-Spruit type dynamo is based
on the resonant excitation of the m = 0 component of the α-effect (which results
from the m = 1 Tayler instability) by an m = 2 tidal-like perturbation. We ar-
gued that a typical 11.07 years tidal perturbation, as exerted by the conjunction
cycle of Venus, Earth and Jupiter, would end up in a 22.14 years oscillation of the
dynamo field, at least for certain bands of the diffusion time τ . For intervening
bands, and for larger values of τ , synchronization still occurs, but the 22.14 years
oscillation is then replaced by a 11.07 years pulsation. Whether these pulsations
are irrelevant for the sun, or whether they could be linked to the behaviour during
grand minima (Weiss and Tobias, 2016; Moss and Sokoloff, 2017), remains to
be clarified in higher-dimensional models. Remarkably, at any rate, is the phase
coherence when passing from oscillations to pulsations, and back, as evidenced
in Figure 3.

In contrast to this, a corresponding Babcock-Leighton type model proved

rather stubborn to synchronization. Specifically, we have pursued two ideas on
how such a synchronization could work. The first one bears on the concept of
a sensitive adiabaticity, i.e. flux storage capacity of the tachocline, which might
be easily influenced by minor perturbations as provoked by tidal forces. This
idea was implemented by periodically changing the value bmin which represents
the critical threshold of the toroidal field above which flux ropes would become
magnetically buoyant.

The second idea took into account the - indeed observable - periodic change of
the differential rotation, which is generally believed to be a result of the dynamo-
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Figure 10. Similar as Fig. (8) but with negative product of α and Ω. The constant parameters
are: τ = 3, τ0 = 5, τ1 = 1, bmin = 1, bmax = 7. The variable parameters are: α0 = 0.5,
Ω = −1 (a,c,e), α0 = 2, Ω = −4.0 (b,d,f). This time, the variation of the amplitude of Ω
leads to synchronization for the weak dynamo (e), while the strong dynamo (f) is by and large
unaffected.

generated magnetic field (Malkus-Proctor effect or Λ-quenching), but for which
a direct planetary influence can not be excluded completely.

Neither in the flux-transport dominated nor in the diffusion-dominated regime
we have observed any sign of synchronization. Only in the intermediate regime,
and here for comparably strong perturbations of Ω, synchronization was ob-
tained. For a positive product of α and Ω it was possible to synchronize the
pulsations, for a negative product the oscillation was synchronized. We stress,
however, that we have not covered the relevant parameter space exhaustively.

Therefore, our results should in no way be considered as an argument against
Babcock-Leighton dynamo models. They only underline the peculiarity of syn-
chronizing such types of dynamos by means of small periodic changes of their
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Figure 11. Dominant period of oscillation in dependence on the amplitude of the Ω variation
for the intermediate regime with α0 = 0.5, Ω = −1. Synchronization with twice the 11.07 years
period appears at A = 0.1. Since the oscillation is slightly irregular, the resonance is not as
clearly expressed as in Figure 9.

governing physical parameters. This is in stark contrast to the amazingly simple
and robust synchronizability of Tayler-Spruit type dynamos which need only a
weak m = 2 forcing to stoke the TI-related oscillations of α. We recall here
our previous finding (Stefani et al., 2016) that the vacillations between left- and
right-handed TI modes do barely change the kinetic energy of the flow, so that
not much energy is needed to excite them. The estimated tidal velocities of the
order of 1m/s might serve this purpose well.

At any rate, it goes without saying that much more stringent modeling is
required to corroborate - or reject - our TI-based synchronization model of the
solar dynamo.
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