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Photon emissivity in the vicinity of a critical point - A case study within the
quark meson model

F. Wunderlicha,b,∗, B. Kämpfera,b

aHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, D-01328 Dresden, Germany
bInstitut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

Abstract

The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset
of a curve of first-order phase transitions (FOPTs) located at non-zero chemical potentials and temperatures
below a certain cross-over temperature. The model qualifies well for an illustrative example to study the
impact of the emerging FOPT,e.g.on photon emissivities. Such a case study unravels the tight interlocking
of the phase structure with the emission rates, here calculated according to lowest-order tree level processes
by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved
degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly.
At the same time, thermodynamic properties of the medium are linked decisively to these effective masses,
i.e.a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission
rates is maintained within such an approach.

Keywords: linear sigma model, quark meson model, chiral transition, real photon emission
PACS:12.39.Fe, 13.60.-r, 13.60.Fz, 11.30.Qc

1. Introduction

After several decades of dedicated research, the phase diagram of QCD has revealed a number of fairly
intricate properties. At zero baryo-chemical potentialµB the Columbia plot (cf.[1, 2] for recent versions)
points to a first (ms < mtric

s ) or second (ms ≥ mtric
s ) order phase transition in the chiral limit for the light quark

flavors, with the position of the tricritical pointmtric
s not yet settled, and to a crossover for physical quark

masses when considering three quark flavors with the two light flavors being degenerate. In this way of
thinking the case with all quark flavors set to infinity corresponds to pure gauge theory with a first-order phase
transition (FOPT) atTc = O (270MeV). Leaving the flavor number and quark mass dependence ofTc (either
the cross over temperature scale or the critical temperature) to future investigations, much progress has been
achieved for the relevant case with physical quark masses:Tc = 154± 8MeV is now the settled continuum
extrapolated cross over temperature [3, 4], where the description in terms of hadronic (quasi-particle) degrees
of freedom has to be changed in favor of quark-gluon type degrees of freedom. Much less is known when
allowing for non-zero baryo- (and maybe other) chemical potentials. Several techniques have been developed
to access the regionµB/T . 1 [5–8]. A non-zero baryo-chemical potentialµB is particularly intriguing as the
cross over is expected to turn into a FOPT when moving to larger values ofµB [9]. The onset can be related
to a critical end point (CEP) with presently rather uncertain coordinates(TCEP,µCEP). Such an option of a
CEP in the QCD phase diagram has triggered a lot of dedicated activities, both experimentally [10–13] and
theoretically, applying lattice techniquese.g.reweighting [5], Taylor expansion inµB [8], analytic continuation
from imaginaryµB [6] or density of state methods [7] as well as Dyson-Schwinger [14], chiral model [15–20]
or quasiparticle aproaches [21] giving widespread results [9]. One signature that is looked for is an unsteady
behavior of event-by-event fluctuations of conserved quantitiese.g.baryon number or strangeness [22, 23]
and deviations from a Gaussian distribution of these parametrized by higher moments such as skewness and
kurtosis [24]. An overview over possible approaches can be found in [25].

From the experimental side, there exist restrictions originating from astrophysical observations [26], nu-
clear physics and heavy-ion collisions (HICs). In the latter experiments, nuclei and protons in various com-
binations are brought to collision at relativistic energies and create a system of strongly interacting particles
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which expands rapidly and eventually fragments into hadrons. At RHIC and LHC energies, the hot medium
produced initially is dense enough to be described in terms of nearly ideal relativistic hydrodynamics [27]
leading to the notion that the quark-gluon medium is strongly coupled. By tuning the collision parameters
(e.g.beam energy, centrality, system size etc.) the strongly interacting medium evolves through different parts
of the phase diagram and thus peculiarities, such as phase boundaries and critical points, may leave imprints
in the data. Transport [28] as well as hydrodynamical [29] calculations show indeed that the medium evolves
through the region where chiral and confinement transitionspresumably take place.

One tool for investigating the transiently hot and dense medium is provided by hadronic probes. Due to
their strong interaction with the ambient medium they quickly loose the information of the conditions under
which they where produced, but they can be used on the other hand to probe collective phenomena (e.g.elliptic
and higher order flow components, jet quenching) and transport coefficients [30] as well as issues concerning
strangeness production and quarkonia spectra. To obtain information from the hot and dense interior of the
“fireball” created in HICs and proton-nucleus as well as highmultiplicity proton-proton collisions, weakly in-
teracting probes like photons or dileptons provide interesting tools (see [31–35] for recent reviews and further
references). Due to their penetrating nature they monitor all stages in the course of such collisions render-
ing them very promising but rather difficult to analyze. While modern transport codes,e.g.UrQMD [36] or
PHSD [37], try to calculate the photon (real and virtual) yields from several or even all states (pre-equilibrium
photons, thermal photons from the hydrodynamical stage andphotons from final state decays) [38, 39], other
approaches focus on the thermalized stage applying kinetictheory [40, 41] or relate photon emission to the vec-
tor meson current via the assumption of vector meson dominance [42]. A detailed survey on the experimental
status can be found in [43].

Recent analyses [44, 45] reveal a tension between the photon-v2 measurements (pointing to late emission,
when the medium anisotropy has built up) and thepT systematics (pointing to earlier emission, when the
medium is hotter). As a solution to this puzzle the authors in[44, 46] suggest a “critical enhancement” and the
“semi-quark-gluon plasma”; another option is explored in [47].

For macroscopic systems an otherwise transparent medium becomes opaque near or at a critical point.
This critical opalescence is a consequence of fluctuations on all length scales which is typically phrased as
the correlation length becoming divergent at criticality [48, 49]. Guided by such a phenomenon, one can
ask whether an equivalent effect may emerge also in a strongly interacting medium. In fact, in [50] such
a possibility has been discussed in the context of pion condensation in compressed nuclear matter. Having
in mind, however, HICs with rapid expansion dynamics, specific features of the photon emissivity, when
passing nearby or through a critical point, are expected to be masked by pre- and post-critical contributions to
the time integrated emission rate. We, therefore, focus here on the question whether the CEP-related FOPT
causes peculiarities of the photon emission; in the best case such peculiarities could be strong enough that
they show up even in integrated rates. Since our understanding of QCD in the region of interest is in its
infancies, as mentioned above, we have to resort to a model which mimics at least a few of the desired effects,
especially the onset of a FOPT. In the present study we selecta special quark-meson model and account for
linearized meson fluctuations. That is quarks and mesons contribute both to the pressure (contrary to the
mean field approximation which, in the context of this model,discards the mesonic fluctuation contributions)
thus allowing for a treatment within effective kinetic theory to calculate photon production by the respective
quasi-particle modes.

Our paper is organized as follows. In Section 2 we define the employed quark-meson model including the
electromagnetic sector. In Section 3 we derive an approximation of the generating functional for correlation
functions, which is used in Section 4 to derive an expressionfor the leading order contributions of the photon
production rate. The photon spectra are evaluated and discussed in Section 5. In the spirit of a crosscheck we
give in Appendix B expressions for the grand canonical potential, which is tightly related to the generating
functional and compare the thermodynamic potential with literature. Finally, we summarize in Section 7 after a
brief discussion Section 6. Formal manipulations needed for the propagators as well as the derivative expansion
of the fermion determinant are explained in Appendix A.1 andAppendix A.2. Some further details of the
thermodynamics of the employed model are relegated to Appendix B. The squared matrix elements employed
in the calculation of the photon rates are listed in AppendixC.

2. Model definition

To answer the question to which extent the photon signal can reflect the peculiarities of a phase diagram
with a FOPT we resort to a specific model containing fermionic(“quark”) and bosonic (“meson”) degrees of
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freedom. Its Lagrangian reads (τi are the Pauli matrices)

L = Lψ +Lkm−U(σ ,~π), (1)

Lψ = Ncψ(i /∂ −g(σ + iγ5~τ~π))ψ ≡ Ncψ
(
G0

ψ
)−1

σ ,πψ , (2)

Lkm =
1
2

∂µ σ∂ µσ +
1
2

∂µ~π∂ µ~π, (3)

U =
λ
4
(σ2+~π2− ζ )2−Hσ , (4)

where we define the operator
(
G0

ψ
)−1

σ ,π = (i /∂ −g(σ + iγ5~τ~π)) at given meson fields. The fieldψ is a doublet
of fermion fields with degeneracyNc (which is interpreted in the context of strong interactionsas the number
of colors), whileσ and~π are iso-scalar and iso-vector spin-0 fields. The parametersg andλ characterize
the strength of the fermion-meson coupling and the sigma-pion coupling, respectively, while the two other
parameters are measures for the explicit (H) and spontaneous (ζ ) breaking of chiral symmetry. In the literature,
the model is often called the quark meson model (QMM) or the linear sigma model, although the latter notion
sometimes only refers to the purely mesonic model with the LagrangianLkm−U , which we call theO(4)
model.

With the field content just described, the low temperature properties do not agree well with observations
at nuclear density or from neutron starse.g.the pressure at low temperature is too small [51]. A systematic
improvement can be achieved by including axial and vector mesons [52], enlarging the flavor space to three
[53] or even four [54, 55] dimensions and including various symmetry breaking terms for fitting vacuum
properties of the model to QCD results or meson properties [52]. The interaction with the gluon field can be
partially included by coupling the QMM to a Polyakov loop forwhich several choices for the potential are
possible [17, 18],cf.also [56]. Sometimes even glueballs are introduced [57]. The QMM as well as its various
extensions are used as tools for mimicking (de-)confinement, chiral symmetry breaking and restoration [18]
as well as their interplay,e.g.the closeness of the respective pseudocritical regions, properties of their critical
points (such as critical exponents) [58], the influence of external control parameters such as magnetic fields
[59–61], or its interplay with hydrodynamical models [62, 63].

For addressing the aforementioned question of phase structure imprints on the photon rate, the model has to
be supplemented with an electromagnetic sector. Following[60, 61], we do so by replacing the partial deriva-
tive ∂ µ by theU(1)-covariant derivativeDµ = ∂ µ − ieQAµ (ebeing the electromagnetic coupling strength and
Q the charge operator) and by adding the conventional kineticterm for the gauge field (the photon field)Aµ

with the field strength tensorFµν = i
e

[
Dµ ,Dν

]
. This procedure corresponds to adding the termsLkγ andLe

to the Lagrangian (1):

LeQMM =L +Lkγ +Le, (5)

Lkγ =− 1
4

FµνFµν , (6)

Le =NcψeQ/Aψ + ieAµπ−∂µπ+− ieAµπ+∂ µπ−−e2AµAµπ+π−. (7)

Having defined the model byLeQMM we go on by calculating the Euclidean generating functionalSη for
correlation functions. We base our calculation on the path integral representation ofSη , but go beyond the
standard mean field approximation (MFA) and include lowest order fluctuations of the meson fields. This
seems necessary for the purpose of photon emission, since the electromagnetic field is expected to couple via
derivatives to the charged pions, which are absent in the MFAapproach.

3. The generating functional

As mentioned above we go beyond MFA following the approximation scheme introduced in [64]. For this
purpose we have to calculate the photon emission in a consistent way. We achieve this goal by calculating the
generating functional for Euclidean correlation functions to which we can adopt - due to the formal similarity
of the generating functional and the partition function - the approximations for the partition function made in
[64]. By functional differentiation we then derive the photon propagator consistent with this approximation
and apply the McLerran-Toimela formula (see (47) below) to calculate the photon emission rate.
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The path integral representation of the Euclidean generating functional for finite temperature and densities
reads [65, 66]

Sη ≡ S[ησ ,~ηπ ,ηq,ηq,η
µ
γ ]

=

∫
DψDψDσD~πD [A] (8)

×exp



−

β∫

0

dτ
∫

R3

d3xLeQMM(q,q,σ ,π)+ µψγ0ψ +qηq+ηqq+ησσ +ηπ
a πa+ηγ

µAµ



 ,

whereβ is the inverse temperatureT−1 and ησ ,~ηπ ,ηq,ηq,η
µ
γ denote the sources of the respective fields.

(The measureD [A] refers to an path integral over gauge independent field configurations, see [67].) The
source term for the pions,~ηπ~π = η1

ππ1+ · · ·+η3
ππ3, can be rewritten in terms of the charged pions according

to~ηπ~π = η−
π π++η+

π π−+η0
ππ0 with χ± =

√
2

−1
(χ1∓ iχ2), χ0 = χ3 andχ ∈ {π ,ηπ}.

3.1. Integrating out the photons

The path integral over the photon field configurations being quadratic in the fields (for the gauge fixing,
the standard covariant choiceLfix = ξ−1(∂A)2 is made) can be evaluated exactly leading to

Sη =

∫
DψDψDσD~π

√
det
(
G0

γ
)

µν

×exp

{∫
dx4(

L − µψγ0ψ +ηqψ +ψηq+ησ σ +~ηπ~π
)}

(9)

×exp

{∫
dz4dz′4(Jµ

γ (z)+ηµ
γ (z))

(
G0

γ
)

µν (z,z
′)(Jν

γ (z
′)+ην

γ (z
′))

}

with the electromagnetic current

Jµ
γ (z) =−ψ(z)eQ̂γµψ(z)−π+(z)ie∂ µ π−(z)+π−(z)ie∂ µ π+(z) (10)

and the perturbative photon propagator
(
G0

γ
)

µν formally defined by

(
G0

γ
)−1

µν =
[
gµν�−

(
1− ξ−1)∂µ∂ν −e2π+π−gµν

]
. (11)

3.2. Integrating out the fermions

The next step is to integrate out the quarks resulting in a fermion determinant, which is written as the
exponential of a functional trace (i.e.a momentum-integral of traces over internal (i.e.Dirac- and flavor-)
indices) and an exponential with source terms:

Sη =

∫
DσD~π

√
det
(
G0

γ
)

µν

×exp

{∫
dx4(

Lkm−U −
(

Tr ln
(
G0

ψ
)

σ ,π

)
(x,x)+ησ σ +~ηπ~π

)}
(12)

×exp

{∫
dz4dz′4(Jµ

γ (z)+ηµ
γ (z))

(
G0

γ
)

µν (z,z
′)(Jν

γ (z
′)+ην

γ (z
′))+ηq(z)

(
G0

ψ
)

σ ,π(z,z
′)ηq(z

′)

}
,

with the quark propagator defined in (2). Up to now the evaluation is exact. But, since the remaining mesonic
part is not at all a Gaussian integral, we are forced to employseveral approximations in order to proceed.
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3.3. Derivative expansion of the fermion trace
The term Tr ln

(
G0

ψ
)

σ ,π in (12) is expanded w.r.t. derivatives of the meson fields similar to [68, 69] yielding
(see Appendix A.1 for details)

Tr ln
(
G0

ψ
)

σ ,π =Tr ln
[
i /∂ −mq(σ ,~π)

]
+O (∂σ ,∂~π) (13)

=
1

3(2π)3

∫
dp3 p2

Eq
(1+nF(Eq)+nF(Eq))+O (∂σ ,∂~π) , (14)

E2
q =m2

q+ p2, (15)

m2
q =g2(σ2+~π2). (16)

Assuming slowly varying meson fields the terms containing meson derivatives can be regarded small and are
thus excluded from further calculations.

3.4. Quadratic approximation of the meson potential
The generating functional in (12) can be regarded as the generating functional of a purely mesonic theory

with the potentialV:

V(z) =Ueff(σ(z),π(z))−
∫

dz′4Jµ
γ (z)

(
G0

γ
)

µν (z,z
′)Jν

γ (z
′), (17)

Ueff =U(σ ,~π)−Ωψ(σ ,~π), (18)

Ωψ =
2NFNc

3(2π)3

∫
dp3 p2

Eq

(
1+nF(Eq)+nF(Eq)

)
. (19)

The effective potentialUeff is approximated by a quadratic potentialU defined by the conditions

〈U〉=〈Ueff〉, (20)

∂U
∂σ ,π

∣∣∣∣∣σ=〈σ〉
~π=0

=0, with 〈σ〉 determined by

〈
∂Ueff(〈σ〉+∆,~π)

∂∆,π

〉
=0 (21)

and with〈 f (σ ,~π)〉 being the ensemble average w.r.t.σ and~π configurations according to the self consistently
chosen probability densityρ given below in (26) (cf.(29) below for the averaging). The condition (20) fixes the
zero-order coefficients inU and (21) the first order coefficients. The non-vanishing second order coefficients
(which we namem2

σ andm2
π ) have to be chosen according to

∂ 2U
∂σ2 ≡ m2

σ =

〈
∂ 2Ueff

∂σ2

〉
,

∂ 2U
∂π2 ≡ m2

π =

〈
∂ 2Ueff

∂π2

〉
(22)

for being consistent to the respective propagator pole mass(see (36) below), calculated for the approximated
theory with Lagrangian

L = Lkm−U(σ ,π). (23)

The 2nd order mixed term inUeff vanishes, sinceUeff is an even function of~π as the inspection of (4), (16) and
(18) reveals. The thus defined approximate potential

U =〈Ueff〉+
1
2

m2
π(~π2−〈~π2〉)+ 1

2
m2

σ (σ2−〈σ2〉) (24)

induces via the accordingly approximated partition functionZ a probability distributionρ for the meson fields
(for further convenience we chose to shift the sigma field by its thermal expectation value,σ = ∆+ 〈σ〉)

ρ(σ ,~π) =Z
−1

exp

{∫
dx4

Lkm−U

}
(25)

=
1√

2π〈∆2〉
exp

{ −∆2

2〈∆2〉

}√
2
π

(
3

〈~π2〉

)3

exp

{−3~π2

2〈~π2〉

}
, (26)
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where we already exploited the fact that all relevant functions are even functions of~π , leading to the following
form of the variances (varf = 〈 f 2〉− 〈 f 〉2) for the meson fields

〈∆2〉= varσ =
1

(2π)3

∫
d3p

(
1

2Eσ
+

1
Eσ

nB(Eσ )

)
, (27)

〈~π2〉= 3varπi =
3

(2π)3

∫
d3p

(
1

2Eπ
+

1
Eπ

nB(Eπ)

)
, (28)

with the dispersion relationsE2
σ ,π = m2

σ ,π +~p2. With (26) the ensemble averages〈 f 〉 of a meson dependent
function can be calculated according to

〈 f (σ ,~π)〉=
∫

d∆
∫

d|~π|ρ(∆+ 〈σ〉, |~π|) f (∆+ 〈σ〉, |~π|), (29)

where we letf only depend on|~π|, since that is the only case relevant for our calculation. Equations (27)
and (28) represent consistency conditions for the choice ofthe second order coefficients,i.e.the meson mass
parameters, as they can be calculated via the induced probability distribution (26) as well as by differentia-
tion of the thermodynamical potential (which is related to the generating functional, as discussed below in
Appendix B). The equations (21), (22), (27) and (28) represent a set of five equations formπ , mσ , 〈σ〉, 〈∆2〉
and〈~π2〉 which have to be solved simultaneously (cf.[64], eqs. (51), (52), (17), (37) and (38) with (42) and
(47) inserted into (17)). The quark source term in (12) is treated by expanding

(
G0

ψ
)

σ ,π w.r.t. the meson fields
(cf.Appendix A.2) and replacing the meson fields afterwards by the variation w.r.t. the corresponding sources.

3.5. Isolating the electromagnetic contribution

We now want to treat the electromagnetic contribution in (17) as a small perturbation toSη . Therefore,
we first expand (cf.Appendix A.2) the photon propagator

(
G0

γ
)

µν w.r.t. powers ofe2 and afterwards the

exponential of the current term into a Taylor series:

exp

{∫
dz4dz′4(Jµ

γ (z)+ηµ
γ (z))

(
G0

γ
)

µν (z,z
′)(Jν

γ (z
′)+ην

γ (z
′))

}
(30)

= 1+
∫

dz4dz′4(Jµ
γ (z)+ηµ

γ (z))
(

G
γ
µν(z,z

′)

+e2
∫

dz′′G
γ
µρ(z,z

′′)gρκπ+(z′′)π−(z′′)G
γ
κν(z

′′,z′)+O
(
e4))(Jν

γ (z
′)+ην

γ (z
′))+O

(
J4

γ
)
. (31)

SinceJµ
γ = O (e) the terms up toO

(
e2
)

are

exp

{∫
dz4dz′4(Jµ

γ (z)+ηµ
γ (z))

(
G0

γ
)

µν (z,z
′)(Jν

γ (z
′)+ην

γ (z
′))

}
(32)

= 1+
∫

dz4dz′4(Jµ
γ (z)+ηµ

γ (z))G
γ
µν(z,z

′)(Jν
γ (z

′)+ην
γ (z

′))+O
(
J4

γ
)

+

∫
dz4dz′4

∫
dz′′4ηµ

γ (z)e
2G

γ
µρ(z,z

′′)gρκπ+(z′′)π−(z′′)ην
γ (z)G

γ
κν(z

′′,z′)+O
(
e3) . (33)

Finally, π+(z)π−(z) is replaced byδ/δη−
π (z)δ/δη+

π (z) andJ by Ĵγ as defined by

Ĵγ
µ
(z) =− δ

δηq(z)
eQ̂γµ δ

δηq(z)
− δ

δη−
π (z)

ie∂ µ δ
δη+

π (z)
+

δ
δη+

π (z)
ie∂ µ δ

δη−
π (z)

. (34)

With this replacements, (33) can be pulled out of the path integral.
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3.6. Integrating out the meson fields

The remaining integrand of the path integrals in (12) is Gaussian yielding

Sη =
√

det
(
G0

γ
)

µν

√
detGπ

3√
detGσ exp

{
−
∫

d4x〈Ueff〉+
1
2

m2
π〈~π2〉+ 1

2
mσ 〈∆2〉

}

×exp

{∫
dz4dz′4

(
Ĵγ

µ
(z)+ηµ

γ (z)
)(

Ĝ0
γ

)
µν

(z,z′)
(

Ĵγ
ν
(z′)+ην

γ (z
′)
)}

(35)

×exp

{
ηq(z)Ĝ

0
ψ (z,z

′)ηq(z
′)+ησ (z)Gσ (z,z

′)ησ (z
′)+η+

π (z)Gπ(z,z
′)η−

π (z′)+η0
π(z)Gπ (z,z

′)η0
π(z

′)

}
,

with Ĝ0
ψ and

(
Ĝ0

γ

)
µν

obtained from
(
G0

ψ
)

σ ,π and
(
G0

γ
)

µν by replacingσ → δ/δησ andπa → δ/δηπ−a.

The momentum space meson propagators can be found by an explicit evaluation of the Gaussian meson path
integrals yielding

Gab
π (p) =

δ ab

p2−m2
π
, Gσ (p) =

1
p2−m2

σ
(36)

with a,b∈ {0,+,−} denoting the charge of the respective pions,b≡ −b and the mass parameters according
to (22).

4. The imaginary part of the photon propagator

Having derived the formal basics we turn now to the derivation of photon emission rates. The wanted key
quantity is the imaginary part of the retarded photon propagator which allows to cast the rates into a kinetic
theory formula.

4.1. The photon propagator

The full photon propagator (within the above approximations),G , can be calculated by varyingSη w.r.t.
the photon sources:

G
γ
µν(x,y) =

1
S

δ 2

δηµ
γ (x)δην

γ (y)
Sη . (37)

Executing the variations yields

G
γ
µν(x,y) =G

γ
µν(x,y)+e2 1

S

∫
dzG

γ
µα(x,z)

δ
δη−

π (z)

δ
δη+

π (z)
gαβ G

γ
β ν(z,y)Sη

∣∣∣∣∣
η=0

+
1
S

∫
dz
∫

dz′G
γ
µα(x,z)Ĵγ

α
(z)Ĵγ

β
(z′)G

γ
β ν(z

′,y)Sη

∣∣∣∣∣
η=0

, (38)

(
G

γ
µν
)−1

=
[
gµν�−

(
1− ξ−1)∂µ∂ν

]
=
(
G0

γ
)

µν
−1

+e2π+π−gµν . (39)

First we execute the variations w.r.t. the fermionic sources. The result can be represented diagrammatically
as exhibited in Fig. 1 (upper panel). Looking at the upper panel of Fig. 1 we want to stress that it represents
an intermediate step of the calculation and the (conventional) prescription that only connected diagrams con-
tribute cannot be applied yet. Comparing the upper panel of Fig. 1 with (38) one can identify the first two
diagrams with the first two terms in (38). The rest of the diagrams corresponds to theO

(
e2
)

contributions
of the second line of (38) with the derivatives w.r.t. the fermionic sources carried out. Since the fermionic

sources appear only as exp
{∫ ∫

dz4dz′4ηq(z)Ĝ
0
ψ (z,z′)ηq(z′)

}
in Sη , every pair of (functional) derivatives

w.r.t. fermionic sources corresponds to a quark propagatorĜ0
ψ connecting the space-time arguments of the

source derivatives, exactly as it is conventionally done,e.g.in Feynman diagram calculus of QED correlation

functions or self energy contributions. (However, sincêG0
ψ explicitly depends on meson source derivatives,

disconnected fermionic loops can be connected in the next step by meson propagators leading to the lower
panel of Fig. 1.) The fermion propagators represented by double lines are expanded according to (A.23). This
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Figure 1: Upper panel: Diagrammatic representation of the electromagnetic current term in (38) after applying the fermion source
derivatives and setting the fermion sources zero. Lower panel: Diagrammatic representation of the electromagnetic current term after
additionally executing all meson source derivatives, bothwritten down explicitly as dots next to a vertex and implicitly contained in

the summed fermion propagator. Solid double lines represent the summed fermion propagator̂G0
ψ , the double wavy line stands for the

full photon propagator up toO
(
e2
)

andO
(
g2
)
, the single solid lines represents

(
G0

ψ

)
〈σ〉,0

, single wavy lines the perturbative photon

propagatorG
γ
µν , dashed lines represent a sum over all meson field propagators Gπ andGσ connected to the fitting vertices (dots). Arrows

on dashed lines denote the direction of charge flow. (They appear only at lines connected to a photon vertex, so that only charged pions
contribute to the diagram, for which the direction of chargeflow is well defined.)

expansion follows from the decomposition of
(
G0

ψ
)

σ ,π into a part independent of the dynamical fields∆ and
π (but dependent on the averageσ field) and an interaction part that depends on∆ andπ according to

((
G0

ψ
)

σ ,π

)−1
=
((

G0
ψ
)
〈σ〉,0

)−1
−g(∆+ iγ5~τ~π), (40)

((
G0

ψ
)
〈σ〉,0

)−1
=i /∂ −g〈σ〉. (41)

After doing all meson variations, symbolically denoted by dots next to the vertices in the upper panel of Fig. 1,
every pair of derivatives w.r.t. meson sources reduces to a propagator of the respective meson (provided both
variations are w.r.t. the same fields source). The resultingexpression can be represented diagrammatically
according to the lower panel of Fig. 1. There, each solid linerepresents

(
G0

ψ
)
〈σ〉,0, each dashed line stands for

Gσ +Gπ , each wiggly line refers toG
γ
µν and each dot means the corresponding vertex factor.

4.2. Determining the imaginary part of the photon propagator

The propagatorsGσ , Gπ (see (36)) and
(
G0

ψ
)
〈σ〉,0 (see (41)) have the form discussed in [70]. For the imag-

inary part of the diagrams in Fig. 1, one therefore has to cut through each diagram in any possible way that
separates the two vertices connected to external photon lines. Such a procedure leads to sets of (simpler) dia-
grams corresponding to processes of the typeφ1, . . . ,φa → Φ1, . . . ,Φb+ γ with a incoming andb+1 outgoing

field quanta, one of which is a photon. Denoting the diagrams in Fig. 1 byM
( j)
γ→γ and the diagrams obtained

from cutting these byM ( j ,l)
φ1+···+φa→Φ1+···+Φb+γ one arrives for ImG µν

γ,ret ∼ ∑ j ImM
( j)
γ→γ at

ImG
µν

γ,ret =2 ∑
a,b, j ,l

∫
dΩab|M ( j ,l)

φ1+···+φa→Φ1+···+Φb+γ |2n(i,1) · · ·n(i,a)(1±n(o,1)) · · · (1±n(o,b))(eω/T −1), (42)

∫
dΩab =

∫
d3p1

2E(1)
p (2π)3

· · · d3pa

2E(a)
p (2π)3

d3q1

2E(1)
q (2π)3

· · · d3qb

2E(b)
q (2π)3

(2π)4δ

(
k−∑

c
pc+∑

d

qd

)
, (43)

with n(i/o,l) being Fermi or Bose distribution functions (depending on the spin of the particlel in the in (i) or
out (o) state). The summands in (42) can be sorted w.r.t. the number= a+b+1 of participating fields. The
inspection of the phase space regions over which one has to integrate on the rhs. of (42) yields zero for all
summands witha+b≤ 2 since the phase space vanishes in these cases, at least if all field quanta - except the
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Figure 2: Tree-level diagrams of the reactions (44)-(46). Top row: diagrams for Compton scattering off quarks; bottom row: annihilations.
The matrix elements for Compton scattering off antiquarks can be obtained by inverting the direction of the fermion arrows. Note that in
the third column there is noσ meson, since it is uncharged.

photons - are massive (as it is the case in our model). The firstnon zero terms havea+b= 3 and correspond
to the 2→ 2 processes

qi +σ ,π → q j + γ (Compton scatterings off quarks), (44)

qi +σ ,π → qj + γ (Compton scatterings off antiquarks), (45)

qi +qj → σ ,π + γ (annihilations). (46)

The corresponding diagrams are depicted in Fig. 2, and the polarization, spin and flavor summed/averaged
squared matrix elements are listed in Appendix C.

4.3. Photon emission rate

From the imaginary part of the photon propagator, the photonrate can be determined according to the
McLerran-Toimela formula [71]

ω
d7N

d3kd4x
=

gµν

(2π)3 ImGµν
γ,ret(k

2 = 0,ω)nB(ω). (47)

With (42) we get as the leading terms in the above mentioned expansion w.r.t. the number of participating
particles

ω
d7N

d3kd4x
=2

gµν

(2π)12 ∑
i, j

∫
d3p1

2E(1)
p

d3p2

2E(2)
p

d3q
2Eq

(2π)4δ (k− p1− p2+q)|M (i, j)
φ1+φ2→Φ3+γ |2n(1)n(2)(1±n(3)) (48)

which resembles the formula for the production of photons in2→ 2 processes within a kinetic theory approach.
One might ask the question of what we have achieved with the above derivation that goes beyond the

mere use of formula (48) which could naively be used right from the beginning. The very necessity to derive
(48) is to identify precisely the mass parametersmσ ,mπ ,mq to be used for the calculation of the photon
rates. The meson masses have to be chosen to be the second order coefficients of the approximative potential
U according to (22). However, the correct fermion mass is lessobvious. Reference [64] suggests to use
Mn = (〈mq(σ ,~π)n〉)1/n for conveniently chosen valuesn without convincing justification for this choice. As
the resulting quark mass does not strongly depend onn, we usedn= 2 in a previous work [72] on the subject.
With the derivation above this issue can be settled by choosing

mq = g〈σ〉 (49)
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[MeV] mvac
nuc mvac

σ mvac
π 〈σ〉vac Tc(µ = 0) µc(T = 0) TCEP µCEP

A 936.0 700.0 138.0 92.4 148.3 328 72.5 279.5
B 1170.0 1284.4 138.0 90.0 194.6 430 97.0 377.5
C 1080.0 700.0 138.0 90.0 140.3 324 98.0 216.0

Table 1: Parameter sets used for the analysis. The parameters mvac
nuc, mvac

σ , mvac
π , 〈σ〉vac can be mapped to the parametersg, λ , ζ , H of the

Lagrangian (1) by (51). These parameters yield the cross over temperatureTc(µ = 0) at vanishing chemical potential, the critical chemical
potential at zero temperatureµc(T = 0) and the coordinates for the CEP (TCEP,µCEP) given in the last columns. All quantities are in units
of MeV as indicated in the upper left corner of the table.

in order to arrive at a representation of the photon propagator in terms of Feynman diagrams which can sim-
ply be cut to obtain the imaginary part of each diagram leading to the kinetic-theory-like formula (48). In
other words, one may say that theMn can be regarded as “thermodynamical mass” parameters sincethey are
reasonable choices to be used in thermodynamic integrals, but fail to be used in perturbative calculations as
mass parameters for the quark propagators. Although the choice of n does affectMn only sightly, there is a
large difference betweenMn andmq in the chirally restored phase. (In the chirally broken phase the meson
field fluctuations are smaller which bringsMn andmq closer together.). Thus the validity of (48) relies on the
consistent choice (49) for the mass parameter to be used in the fermion propagators.

5. Evaluation of photon rates

5.1. Parameter fixing

To be explicit one has to fix the parameters of the Lagrangian defined by (1)-(4). The simplest way to do
so is to set the vacuum masses of the fields as well as the vacuumexpectation value of theσ field to specific
values. In mean field approximation and the linearized fluctuation approximation without vacuum fluctuations
the relations between the parameters and the vacuum field properties can be given by the set of equations

(mvac
σ )2− (mvac

π )2 =2λ 〈σ〉vac
2, (mvac

σ )2−3(mvac
π )2 =2λ ζ , (50)

(mvac
π )2〈σ〉vac=H, mvac

nuc=3g〈σ〉vac, (51)

with the nucleon mass atT = µ = 0 taken asmvac
nuc= 3mvac

q . Typically, one chooses formvac
σ , mvac

π andmvac
nuc the

PDG values [73] and〈σ〉vac= fπ . However, this is not strictly required for making contact to QCD, since at
low temperatures many other degrees of freedom are relevant, which could easily shift these values one way
or the other thus giving some flexibility to the parameters aslong as typical mass scales are kept at the order
of ΛQCD. Throughout this paper we use the values ofmvac

σ ,mvac
π ,mvac

nuc and〈σ〉vac to identify the parameter sets,
which are collected in Tab. 1.

5.2. Differential Spectra

In Fig. 3, the differential photon spectraωd7N/d3kd4x are depicted for the individual channels (44)-(46)
as well as for their sum. A first inspection shows several aspects: (i) For large photon energies,ω & 600MeV,
all partial rates decrease exponentially∝ exp{−ω/T}. (ii) In the chirally restored phase (see right panel of
Fig. 3), the partial rates for processes involving different mesons are either approximately degenerate (for
the annihilations) or differ only by a factor of about three.This is a manifestation of the chiral symmetry
restoration which leads to approximately degenerate mesonmasses, which in turn lead to similar kinematics
for the processes involving chiral partners. The difference between pion-involving and sigma-involving partial
rates can be atributed to the different multiplicities and the charge carried by two of the pions. Conversely,
in the chirally broken phase no such striking similarity canbe observed (see left panel of Fig. 3). (iii) In the
chirally restored phase, atω & 200MeV there is a clear hierarchy of the rates from differentprocesses: The
partial rate from Compton processes with quarks is much larger than the partial rate from annihilations which
is also much larger than the rate from Compton processes withanti-quarks. As pointed out in [72] the reason
for this hierarchy is the exponential suppression of incoming anti-particles at finite chemical potential, leading
to a suppression∝ exp{−µ/T} of the annihilation processes and a suppression∝ exp{−2µ/T} for the anti-
Compton processes w.r.t. the partial rates from Compton processes with quarks. (iv) In the chirally restored
phase the annihilation rates diverge atω → 0, see right panel of Fig. 3. This is caused by infrared divergencies
of the matrix elements which are exponentially suppressed∝ exp{−1/ω} if the sum of the incoming masses
is larger than the mass of the outgoing particle that is not a photon. Such an inequality holds necessarily for all
Compton and anti-Compton processes but may be violated for the annihilation processes;cf. [72] for a further
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Figure 3: Differential photon spectraR= ωd7N/d3kd4x as functions of photon energyω for parameter set A. Left panel: chirally broken
phase atT = 65MeV andµ = 255MeV; right panel: restored phase atT = 65MeV andµ = 295MeV. The curves correspond to the
partial rates for the processesq+σ → q+ γ (dash-double-dotted yellow curve),q+π → q+ γ (dash-dotted violet curve),q+q→ σ + γ
(dotted light blue curve),q+ q→ π + γ (short dashed red curve),q+σ → q+ γ (long dashed green curve),q+ π → q+ γ (solid dark
blue curve) and to their sum (dash-triple dotted black curve), respectively. The gray double-dash-double-dotted curve in the left panel is
calculated with the parametrization given in [74] and in the right panel it is the AMY rate [75] for which the strong couplinggs was set to
the value of the quark-meson couplingg of parameter set A. Since the massesmσ ,π,q play an essential role for the photon emissivity we
quote their values and supply the number densities in the heat bath rest frame:

mσ/MeV mπ/MeV mq/MeV nσ / fm−3 nπ/ fm−3 nq/ fm−3

left panel 504 151 282 2.65×10−5 4.73×10−3 0.205
right panel 283 333 55 3.93×10−4 6.61×10−4 0.971

discussion of that issue. For a comparison with rate calculations in the literature we exhibit in the left panel of
Fig. 3 the rate calculated with the parametrization given in [74] for the emission from the hadronic phase and
in the right panel the AMY rate [75] for the deconfined phase, however, for keeping the comparison as simple
as possible both atµ = 0.(For the strong couplinggs in the AMY rate we use the value of the quark-meson
couplingg, corresponding toαs = 0.91 for parameter set A.)

5.3. Photon rate over the phase diagram

Our central question is to which extent the features of the phase diagram are reflected in the photon emis-
sion rates. Therefore, we inspect the partial rates and their dependence onT andµ , cf.Figs. 4-6. As mentioned
in Section 5.2 one sees a clear hierarchy of the emission rates for the different types of processes in the chirally
restored phase. In the chirally broken phase the partial rate for the annihilation intoπ andγ is of similar size
compared to the Compton processes, although it is suppressed by a factor of exp{−µ/T}. The reason for
that is the comparatively small mass of the pions as the pseudo-Goldstone modes, which compensates for this
suppression. The jump of the rates at the FOPT increases with decreasing temperature and reaches a factor
of about 50 at the lowest displayed temperatures in the plots (see Fig. 4, right panels) for the dominating
processes,i.e.the Compton processes, as well as for the total rate (see Fig. 7, right panel).

Only the annihilation process withσ mesons shows a non-monotonic behavior when scanning the partial
rate along curves with constantT and varyingµ . This can be traced back to the effectiveσ mass, which
is relatively small in a valley surrounding the phase contour (FOPT and crossover region) and minimal at the
CEP. Since the processq+q→ σ +γ is the only one of the considered channels that is primarily be influenced
by theσ mass it is especially interesting for the search for CEP related features in the photon rates. However,
the corresponding partial rate is strongly reduced by the above mentioned suppression factor exp{−µ/T}
relative to the Compton channels which makes is practically invisible in the total rate. This masking of the
annihilation channels is expected to weaken drastically for parameter sets showing a CEP closer to theT axis.

6. Discussion

We have described an approximation scheme for calculating the thermodynamics and the effective masses
of the fields contained in the QMM Lagrangian beyond the standard mean field approximation. The presented
approximation scheme has been shown to be a consistent approximation for the determination of equilibrium
thermodynamical properties and scattering or production rates. This makes the calculated meson masses
applicable forSmatrix calculations of the production rate for photons for which we present the lowest order
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Figure 4: Photon emission ratesR=ωd7N/d3kd4x atω = 1GeV in the CEP region for the Compton processesq+π → q+γ (upper row),
q+σ → q+ γ (lower row). Left panels: contour plots of the rates in MeV2; right panels: rates at constant temperatureT/MeV =55, 65,
75 and 85 (bottom to top). The symbols denote the rates at isentropes withs/n= 1.7 (dots), 2.1 (squares), 2.5 (triangles), 2.9 (diamonds),
3.3 (stars) and the thin gray dashed curves are for guiding the eyes. Below, in Fig. B.8, these isentropes are displayed as black curves in
theT-µ diagram. The solid white curves in the left plots depict the FOPT curves, and the white dashed line is an estimate of the crossover
region based on the heat capacity. The dot depicts the position of the CEP, numerically determined by the coordinates of the minimum of
theσ mass.
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Figure 5: As Fig. 4, but for the annihilation processesq+q→ π + γ (upper row) andq+q→ σ + γ (lower row).
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Figure 6: As Fig. 4, but for the anti-Compton processesq+π → q+ γ (upper row) andq+σ → q+ γ (lower row).
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Figure 7: As Fig. 4, but for the sum of the processes of (44)-(46).
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(in the electromagnetic as well as the quark-meson coupling) results. Furthermore, we discuss in Appendix B
the influence of the model parameters on expansion properties provided by isentropes as well as on landmarks
(such as position of the CEP, pseudocritical temperature atvanishing net density, general shape of the transition
(first order as well as crossover) curve) of the phase diagramfinding that all of these can be understood and
adjusted to desired values with the help of two particular combinations of the parameters: the fermion vacuum
massmvac

nuc/3 and the product ofmvac
σ and the vacuum expectation value of the sigma field〈σ〉vac as well as

their interplay, at least for explicit symmetry breaking terms that are neither too small (i.e. mvac
π & 50MeV) to

avoid being influenced by the wrong chiral limit, nor too big (i.e.(mvac
π /mvac

σ )2 ≪ 1) in order for the QMM to
invoke an only weakly broken chiral symmetry.

It turns out that in the intermediate photon energy range ofω ∼ 1GeV there are still sizable effects in the
photon production rates due to a FOPT. Of course, for a firm result, many more emission channels have to
be included (e.g.in [40], the channelπ+π− → σ/ρ → π+π−γ is identified to be important in the soft photon
regime and in [76] 2→ 3 processes, such as meson-meson and meson-baryon bremsstrahlung, are found to be
of great importance) and the effect of inclusion of higher order terms in the quark-meson coupling has to be
checked as well as the effect of including further fluctuations (as done,e.g.in [77] within the FRG framework).
In a previous work [72] we showed that the dominant effect on the photon rates stems from the mass variations
and the explicitµ dependencies of the distribution function; in other words it is of kinematical origin. This
leads us to the conjecture that the position and size of the discontinuities in the photon rate is a robust feature
and could probably provide a tool suitable for the detectionof a chiral FOPT in HIC experiments.

7. Summary

In summary, we employ here a quark-meson model with linearized fluctuations of the meson fields, which
displays the onset of a curve of FOPTs at a (albeit imperfect)CEP. The thermodynamics has been elaborated
in previous works [64, 72, 78–80]. We couple the pertinent degrees of freedom to the electromagnetic field
to evaluate the photon emission rates over the phase diagram, in particular the impact of the FOPT. The chain
of approximations is pointed out to arrive at emission ratesin the form of kinetic theory expressions being
consistent with the thermodynamics. To this end it is necessary to go beyond the mean field approximation,
because in such an approach the mesons are no dynamic fields which is conceptually inconsistent with their
usage inSmatrix calculations. The first step in a path integral approach beyond mean fields is the inclusion
of the lowest order fluctuations, which we achieve by the quadratic approximation of the effective mesonic
potential. Our calculation differ from that in [64, 78, 79] by the inclusion of photons and the source terms
for all fields (see Appendix B). The source terms make it possible to derive thermodynamics andS matrix
elements on the same footing thus achieving consistency between both. Especially we can pin down the
correct quark mass parameter for the calculation in the kinetic theory framework, which was not possible in
previous works.

Due to the tight coupling of emissivities in lowest-order tree-level diagrams and thermodynamics, it hap-
pens that individual channels of photon producing processes map out the phase diagram. The emission rates
are determined essentially by the effective masses of the involved field modes. While soft photons are either
suppressed by finite temperature effects or enhanced by infrared divergencies of the matrix elements, the hard
photons display the usually expected exponential shapes. Chiral restoration as degeneracy of pion and sigma
effective masses causes also a degeneracy of the partial rates in the restored phase. The hard photon rates obey
in the chirally restored phase forµ/T & 1 the following hierarchy: The rates from Compton-processes are
larger than those from annihilations, which in turn are larger than those from anti-Compton processes.

We supplement our study by a discussion of the parameter dependence of the CEP coordinates and the
location of the FOPT curve as well as the pattern of isentropic curves relevant for adiabatic expansion paths in
the phase diagram (see Appendix B).

Finally, we mention that our investigation should be considered as a case study, not mimicking QCD
features sufficiently adequate. Beyond the impact of vacuumfluctuations, the involved degrees of freedom
mistreat (i) at low temperatures the nucleons and their incompressibility, as well as the other known hadronic
states needed to saturate the equation of state known from QCD, and (ii) at high temperatures the explicit
gluon degrees of freedom. Nevertheless, we stress again that a seemingly universal emissivity must not be
combined with an ad hoc assumed thermodynamics/phase structure, however both issues must be dealt with
in a consistent manner.

14



Acknowledgments

We thank J. Randrup, V. Koch, F. Karsch, K. Redlich, M.I. Gorenstein, S. Schramm, H. Stöcker, B.J.
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Appendix A. A few formal details

Appendix A.1. Derivative expansion

In the case of aφ4 theory the method is explained in [68, 69]. For convenience we outline it here and apply
it to the theory at hand. The quantity we want to approximate is

Ωψ =−Trln
[(

G0
ψ(σ ,~π)

)−1
]

(A.1)

with
(
G0

ψ(σ ,~π)
)−1

defined according to (2). Formally we can expand

Ωq =−Trln
[
i /∂ −g(σ + iγ5~τ~π)

]
(A.2)

=−Trln

[
i /∂
(

1− 1

i /∂
g(σ + iγ5~τ~π)

)]
(A.3)

=−Trln /p−Trln(1+ /p−1M) (A.4)

≈−Trln /p−Tr
[
/p−1M

]
+

1
2

Tr
[
/p−1M/p−1M

]
− . . . , (A.5)

were we used the shortcutM = g(σ + iγ5~τ~π). Applying (/p)−1 = /p/p2 and the fact that the trace of an odd
number of Dirac matrices vanishes we see that only powers of/p−1M/p−1M remain in the sum (besides the
ln /p-term). Using

/p−1M/p−1M =
/p

p2g(σ + iγ5~τ~π) /p

p2 g(σ + iγ5~τ~π) (A.6)

=
/p

p2 γµg(σ − iγ5~τ~π)
pµ

p2 g(σ + iγ5~τ~π) (A.7)

and

φ(x)pµ = pµφ(x)+ [φ(x), pµ ] = pµφ(x)− i∂µφ(x), (A.8)

for any fieldφ(x) we arrive at

/p−1M/p−1M =
/p

p2 /pg(σ − iγ5~τ~π)
1
p2 g(σ + iγ5~τ~π)− i

/p

p2

(
/∂ g(σ − iγ5~τ~π)

) 1
p2 g(σ + iγ5~τ~π). (A.9)

Employing the operator identity (forA invertible)

[A−1,B] =−A−2[A,B]−A−3[A, [A,B]]−A−4[A, [A, [A,B]]]− . . . (A.10)

with A = p2 andB = σ ,π the 1/p2 term in (A.9) can be commuted to the left. The nested commutators in
(A.10) are computed by utilizing recursively the identity

[p2,φ ] =�φ +2ipµ∂µφ . (A.11)

Inspecting (A.11) one sees that each commutator withp2 contributes at least one derivative ofφ leading to the
observation that terms in (A.10) withn commutators imply at leastn derivatives of the meson fields. Thus, we
find

[p−2,σ or π ] = 0+O (∂σ ,∂~π) (A.12)
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leading to

/p−1M/p−1M =
1
p2g(σ − iγ5~τ~π)g(σ + iγ5~τ~π)+O (∂σ ,∂~π) (A.13)

=
1
p2m2

q+O (∂σ ,∂~π) (A.14)

with m2
q = g2(σ2+~π2). Taking only zero derivative terms, the higher powers of/p−1M/p−1M in the expansion

(A.5) result in

(/p
−1M/p

−1M)n =

(
1
p2

)n(
m2

q

)n
1D +O (∂σ ,∂~π) (A.15)

with 1D denoting the unity matrix in Dirac space. Then the complete expansion (A.5) gives

Ωq =≈−Tr ln/p−
1
2

Tr

[
m2

q

p2 1D

]
− 1

4
Tr



(

m2
q

p2

)2

1D


−·· ·+O (∂σ ,∂πa) . (A.16)

It can easily be checked that this is exactly the expansion ofa noninteracting Fermi gas with massmq

−Trln
[
/p−mq

]
=−Trln /p−∑

n

1
2n

Tr

[(
m2

q

p2

)n

1

]
, (A.17)

thus verifying (13).

Appendix A.2. Inverting perturbed matrices

We apply

M−1 =M−1
0

∞

∑
n=0

(−∆MM−1
0 )n, M =M0+∆M (A.18)

valid for invertible matricesM andM0. A heuristic derivation of (A.18) can be obtained by noting

M−1 = (M0+∆M)
−1 = M−1

0 (1− (−M0∆M))−1 (A.19)

which is then written as a geometric series, leading to (A.18). With Ma
b ≡ M(xa,xb) this relations can be

reformulated for the continuum limit in the language of functional derivatives with the only changes being
∂/∂φi → δ/δφ(x) and the matrix multiplication replaced by an integralAa

bBb
c →

∫
dbA(xa,b)B(b,xc).

Appendix A.2.1. Application to the photon propagator

SettingM(z,z′)≡
((

G0
γ
)

µν (z,z
′)
)−1

= G
γ
µν(z,z

′)−1+
[
−e2π+(z)π−(z)gµν

]
δ (z− z′) one gets

(
G0

γ
)

µν (z,z
′) =G

γ
µν(z,z

′)+
∫

d4xG
γ
µρ(z,x)

[
e2π+(x)π−(x)gρκ]Gγ

κν(x,z
′)+O

(
e4) , (A.20)

which is applied in (31).

Appendix A.2.2. Application to the quark propagator

SettingM(z,z′)≡
((

G0
ψ
)

σ ,π(z,z
′)
)−1

=
(
G0

ψ
)
〈σ〉,0(z,z

′)−1+
[
−g∆(z)−giγ5τaπa(z)

]
δ (z−z′) one obtains

(
G0

ψ
)

σ ,π(z,z
′) =

(
G0

ψ
)
〈σ〉,0(z,z

′)−
∫

d4x
(
G0

ψ
)
〈σ〉,0(z,x)A(x)

(
G0

ψ
)
〈σ〉,0(x,z

′)

−
∫∫

d4xd4y
(
G0

ψ
)
〈σ〉,0(z,x)A(x)

(
G0

ψ
)
〈σ〉,0(x,y)A(y)

(
G0

ψ
)
〈σ〉,0(y,z

′) (A.21)

−
∫∫

d4xd4y
(
G0

ψ
)
〈σ〉,0(z,y)A(y)

(
G0

ψ
)
〈σ〉,0(y,x)A(x)

(
G0

ψ
)
〈σ〉,0(x,z

′)+O
(
∆3,~π3) ,

A(z) =−g∆(z)−giγ5τaπa(z). (A.22)
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Replacing on both sides of the equation∆(z) by δ/δησ (z) andπa(z) by δ/δηπ−a(z) one arrives at

Ĝ0
ψ(z,z

′) =
(
G0

ψ
)
〈σ〉,0(z,z

′)−
∫

d4x
(
G0

ψ
)
〈σ〉,0(z,x)Â(x)

(
G0

ψ
)
〈σ〉,0(x,z

′)

−
∫∫

d4xd4y
(
G0

ψ
)
〈σ〉,0(z,x)Â(x)

(
G0

ψ
)
〈σ〉,0(x,y)Â(y)

(
G0

ψ
)
〈σ〉,0(y,z

′) (A.23)

−
∫∫

d4xd4y
(
G0

ψ
)
〈σ〉,0(z,y)Â(y)

(
G0

ψ
)
〈σ〉,0(y,x)Â(x)

(
G0

ψ
)
〈σ〉,0(x,z

′)+O

(
δ 3

δη3
σ
,

δ 3

δη3
π

)
,

Â(z) =−g
δ

δησ (z)
−giγ5τa

δ
δηπ−a(z)

, (A.24)

which is used in Section 4.1.

Appendix B. Thermodynamics and phase structure

Appendix B.1. Thermodynamics

Setting all sources to zero in (8) transformsSη formally into the grand canonical partition functionZ. As
our goal is to study systems much smaller than the mean free path of photons (which is a reasonable assumption
in the context of HICs) the photons do not contribute to the pressure. Thus we remove all terms containing
the photon fieldA from (8), which corresponds to setting zero the electromagnetic couplinge (explicitly and
implicitly in Jµ

γ ) as well as removing detGγ from (35). Then we get

Z =
√

detGπ
3√

detGσ exp

{
−
∫

d4x〈Ueff〉+
1
2

m2
π〈~π2〉+ 1

2
mσ 〈∆2〉

}
. (B.1)

As 〈Ueff〉,〈~π2〉,〈∆2〉 and mσ ,π do not depend on the space-time coordinates, the integration in the expo-
nent yields a factor of the Euclidean volumeVβ . For the grand canonical potentialΩ(T,µ) = −p(T,µ) =
(βV)−1 lnZ one gets

Ω =
3
2

lndetGπ +
1
2

lndetGσ −〈Ueff〉−
1
2

m2
π〈~π2〉− 1

2
mσ 〈∆2〉. (B.2)

Applying lndetGπ ,σ = Tr lnGπ ,σ and using standard techniques [81] for solving these functional traces one
arrives at

Ω =Ωπ +Ωσ + 〈U〉+ 〈Ωψ〉−
1
2

m2
π〈~π2〉− 1

2
mσ 〈∆2〉, (B.3)

Ωπ =
3

3(2π)3

∫
dp3 p2

Eπ
(1+nB(Eπ),) (B.4)

Ωσ =
1

3(2π)3

∫
dp3 p2

Eσ
(1+nB(Eσ )), (B.5)

E2
π ,σ =m2

π ,σ +~p2 (B.6)

andΩψ according to (19) in agreement with [64, 78, 79]. From the thermodynamic potential the thermody-
namic quantities (energy density, net quark density, entropy density, susceptibilities, etc.) follow by differen-
tiation. The explicit formulas have been worked out in [64, 78, 79].

Appendix B.2. Impact of model parameters on the phase diagram

For the sake of an easy comparison with literature (cf.[82] for parameter fixings when including vacuum
fluctuations) we choose the parameters as in [64, 72, 78, 79],corresponding to parameter set A in Tab. 1. (The
effect of other parameter choices is discussed in [72] for differentσ vacuum mass fixings, in [78] for different
π vacuum masses and in [83] for the three flavor model w.r.t. explicit symmetry breaking parameters and
theσ mass.) The structure of the phase diagram is conform with expectations spelled out in [84]: Isentropic
curves as indicators of the paths of fluid elements during adiabatic expansion ”go through” the phase border
curve. The type IA FOPT (in the nomenclature of [84]) is realized by our model with parameter set A. Such
a choice leads to the phase diagram depicted in Fig. B.8 with the CEP coordinates beingTCEP= 74MeV and
µCEP= 278MeV. Typically (and in fact in all of the above cited references) one or more parameters of the
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Figure B.8: Contour plot of entropy per quark over the phase diagram for parameter set A in Tab. 1. Also plotted are isentropes (gray and
black curves) with their respectives/n values indicated. The black isentropes are those marked in the right panels of Figs. 4-7. The solid
white curves depicts the coexistence curve for the FOPT, andthe white blob depicts the CEP.

Lagrangian or the vacuum masses are tuned keeping the othersfixed to study the impact on various model
properties (e.g.the CEP). We take a different point of view and work out below which particular combinations
of parameters determine certain features of the phase diagram.

Appendix B.3. Phase border curve

The phase transition features (proper FOPT curve and crossover region) are to a large extent determined
by the meson potential at zero meson fields. This follows fromrealizing that the fermionic contribution to
the pressure in the chirally restored phase is much larger than the fermionic and bosonic contributions in the
chirally broken phase. The difference is compensated at thephase transition curve by a change in the average
meson potential switching from〈U(σ ≈ 〈σ〉vac)〉 in the chirally broken phase to〈U(σ ≪ 〈σ〉vac)〉 in the
chirally restored phase. Thus

−U(〈σ〉vac)+Fermi + Bose terms≈−U(0)+2Nf Nc

(
7
8

π2

90
T4+

1
24

µ2T2+
1

48π2 µ4
)
, (B.7)

U(0) =
〈σ〉vac

2

8

(
(mvac

σ )2−3(mvac
π )2

)2

(mvac
σ )2− (mvac

π )2

=
(mvac

σ )2〈σ〉vac
2

8

(
1−5

mvac
π

2

mvac
σ

2 +O

(
mvac

π
4

mvac
σ

4

))
, (B.8)

U(〈σ〉vac) =
(mvac

σ )2〈σ〉vac
2

8

(
−8

(mvac
π )2

(mvac
σ )2 +O

(
mvac

π
4

mvac
σ

4

))
(B.9)

give as an estimate for the critical temperature w.r.t. the chemical potentialTc(µ)

T2
c =

1
7π2

(
2
√

30

√
42π2(U(0)−U(〈σ〉vac))

2Nf Nc
+ µ4−15µ2

)
. (B.10)

Since we keep(mvac
π )2/(mvac

σ )2 small in order to maintain realistic scenarios one may applythe chiral limit
value ofU(0)−U(〈σ〉vac) = (mvac

σ )2〈σ〉vac
2/8 as a good estimate. Although this estimate looks quite crude

and in the crossover region not even justified it is a surprisingly accurate result for the phase transition curve
(cf.Fig. B.9). Inspecting Fig. B.9 one notes that although the model parameters,e.g.〈σ〉vac, individually vary
by a factor of two the form and position of the phase contour changes only slightly as long asmvac

σ 〈σ〉vac is
kept fixed. Changingmvac

nuc has only small effect, too, at least if the difference between the critical chemical
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c − mvac
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σ 〈σ〉vac is kept fixed at
mvac
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temperature at vanishing density,T0

pc, and the critical chemical potential at vanishing temperature,µ0
c , are calculated according to (B.12)

for the respective (same color) group of phase contours with fixedmvac
σ 〈σ〉vac.

potentialµ0
c at T = 0 and the vacuum quark massmvac

nuc/3 is sufficiently small. (In Fig. B.9 its absolute value
is kept smaller than 100MeV.) Analyzing further parameter sets we find that forµ0

c −mvac
nuc/3 & 100MeV

the CEP disappears,cf. left panel of Fig. B.11 for the dependence of the CEP temperature on this particular
parameter combination. We are able to trace the disappearance of the CEP back to the Fermi pressure, which
- for µ0

c −mvac
nuc/3 being large enough - can compensate the difference of the meson potentials in both phases

and thus reduces the strength of the FOPT. Forµ0
c −mvac

nuc/3< −100MeV there is the tendency to reduce the
curvature of the phase contour, because for a higher quark mass scale, the Fermi pressure gets less important
and the pressure in the chirally broken phase is more influenced by the pressure of the pions, which changes
the µ-dependence of the phase border curve. To achieve more quantitative agreement for the pseudocritical
temperature at vanishing density,T0

c , and the critical chemical potential at zero temperature,µ0
c , it is convenient

to scale the prediction according to (B.10) withmvac
π = 0 with the result for some reference parameter set. In

Fig. B.9 we chose

T0,ref
pc = 150MeV, µ0,ref

c = 330MeV formvac
σ 〈σ〉vac= 2602MeV2. (B.11)

Inspecting (B.10) yieldsT0
c ,µ0

c ∝
√

mvac
σ 〈σ〉vac, thus such a scaling gives the estimates

T0
pc ≈ 150MeV

√
mvac

σ 〈σ〉vac

260MeV
, µ0

c ≈ 330MeV

√
mvac

σ 〈σ〉vac

260MeV
. (B.12)

In Fig. B.9 these estimates are depicted as small arrows and show good agreement with the actual positions of
the FOPT and the crossover curve.

Appendix B.4. Isentropes

The pattern of isentropes depends, as the CEP and the FOPT details, on the model parameters. Figure B.8
(for set A) exhibits an example where the CEP acts as an attractor for some isentropes. Such a pattern,
sometimes called “focusing effect” is discussed in [21, 85, 86] with the outcome of not being a necessarily
accompanying feature of a CEP. We emphasize that isentropes provide an interesting supplementing analytical
information beyond the plain FOPT curve and the CEP position in the phase diagram. On the FOPT curve
isentropes with differents/n ratios can run partially on top of each other. This reflects the fact that the state
the model resides in is not uniquely defined on a FOPT but may differ in the phase decomposition. Physical
properties of the medium on the FOPT curve are therefore determined as the average (based one.g.the volume
fraction) of the respective quantity over the coexisting phases. Such a procedure is applied also in Figs. 4-7
for the photon rates.

The behavior of the isentropes can be calculated analytically in the limits ofT → 0 as well asmq → 0. In
the high temperature phase, the pressure of the model is well approximated by the pressure of an ideal massless
Fermi gas minus the meson potential at zero fieldsU(σ = 0,π = 0). For this, the entropy per baryon can be

19



0.75 0.80 0.85 0.90 0.95 1.00
µ/µ 0

c

0.2

0.3

0.4

0.5

0.6
T
/
T

0 c

0.7
0.8

0.9
1.0

1.1
1.2

1.3
1.41.5

1.6
1.7

1.8
1.9

2.0

2.1

2.2

2.3

2.
4

2.
5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1
4.2

4.3

4.4

4.5

4.6
4.7

5.05.5

s/n

0.6 0.7 0.8 0.9 1.0
µ/µ 0

c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
/
T

0 c

0.7

0.8

0.91.0
1.11.2
1.31.4
1.51.6

1.7
1.8

1.9
2.0

2.1

2.22.3

2.4

2.52.62.72.82.93.03.13.2
3.3

3.4

3.5

3.6
3.7

3.8

3.9

4.0

4.1

4.2
4.3

4.4
4.5

4.6

4.75.0

5.56.06.5

7.0

8.010.0
20.0

s/n

Figure B.10: Phase diagrams for parameter choices according to parameter sets B (left panel) and C (right panel),cf.Tab. 1.T is scaled by
the pseudocritical temperatureT0

c at µ = 0 andµ by the critical chemical potentialµ0
c at T = 0. (T0

c andµ0
c are given in Tab. 1). For the

left panelmvac
nuc/3µ0

c = 0.907 and for the right panelmvac
nuc/3µ0

c = 1.111. The black curves are the isentropes labeled by their corresponding
ratio s/n. Shifting mvac

q relative tomvac
σ fπ changes the dynamics of the model qualitatively. Definitionof the FOPT curve (solid white

curve) and CEP (white dot) as for Fig. 4.

easily calculated leading to

s
n
= π27π2 tan3(φ)+15tan(φ)

15π2 tan2(φ)+15
, (B.13)

with tan(φ) = T/µ . The meson contributions are suppressed because they acquire large masses in the hot
and dense phase [15]. According to (B.13) for every choice ofs/n the isentropes of an ideal massless Fermi
gas, and thus for the QMM in the high temperature phase, follow curves with tan(φ)=const,i.e.straight lines
pointing toµ = T = 0.

The isentropes atT → 0 can be obtained by considering the various contributions in (B.3) to the thermo-
dynamic potential. It turns out that the only non-vanishingterm atT = 0 in (B.3) is the (averaged) fermion
pressure atµ ≥ mvac

q ≡ mvac
nuc/3. Approximating the Fermi distribution function for smallT and(µ −mvac

q ) one
can show that all isentropes approach the point(T = 0,µ1 = mvac

q ) in the phase diagram, at least if vacuum
fluctuations are not included (as in this work). In Appendix B.3 we discuss the dependency of the phase tran-
sition curve w.r.t. the model parameters finding that to a large extent, the critical chemical potential atT = 0
is determined by the the combinationmvac

σ 〈σ〉vac. Thus by tuning the model parameters (or equivalently the
vacuum values for the pion and quark masses as well as〈σ〉vac, cf.(51)) the endpoints of the isentropes and the
FOPT curve can be shifted relative to each other making the model flexible enough for the study of different
dynamical situations,i.e.the adiabatic expansion paths are either “going trough”, or“sticking to” the FOPT
curve, corresponding to types IA and II in the nomenclature of [84]. It turns out that within this model it is not
possible by parameter tuning to shift these endpoints into the high-density phase. In Fig. B.10 this behavior is
visualized. In the left panel the isentropes approach the point T/T0

c ,µ/µ0
c = (0,0.907) which is precisely the

point (0,mvac
q ) as claimed for the case thatmvac

q < µ0
c . In the right panelmvac

q > µ0
c and thus the isentropes all

merge with the FOPT at low enough temperatures.

Appendix B.5. Critical end point

To get a feeling for what determines the position of the CEP within this model one may resort to the mean
field approximation1. In this approximation the meson dependence of the pressureis only via the expectation

1There is a large difference between the CEP position when comparing approximations with and without vacuum fluctuations[86].
However, when comparing approximations with and without mesonic fluctuations the shift is much smaller and the qualitative dependence
on the model parameters is similar.
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valuev of the sigma field:

pMFA(v) =− λ
4
(v2− ζ )2+Hv− 2Nf NcT

(2π)3

∫
d3p

[
ln
(

1+e(µ−E)/T
)
+ {µ →−µ}

]
, (B.14)

0=
∂ pMFA

∂v

=−λ (v2− ζ )v+H+
2Nf Ncg2v

2π2

∫
dp

p2

E
(nF(E)+nF(E)) (B.15)

with nF,F = (1+ exp{(E∓ µ)/T})−1 denoting the distribution functions for fermions (-) and antifermions
(+). The occurrence of a FOPT and the position of the CEP are understandable in view of (B.15). A FOPT
requires (at least) triple solutions of (B.15). One of this solutions has a smallv leading to a dominant fermion
term and corresponding to the chirally restored phase. One solution is thermodynamically unstable, and the
third is relatively close to the vacuum value correspondingto the chirally broken phase. For this solution, the
derivative of the meson potential gives important contributions.

At zero temperature, two cases can be distinguished: (i) Thefermion massmq = gv close to the critical
curve (or its estimate according to (B.10)) is so small that the fermionic integral in (B.15) is dominant already.
Then no FOPT occurs. In the opposite case, the mass can still be smaller than the critical chemical potential
(case (iia) ) or greater (or equal) to it (case (iib) ). In bothcases there is a FOPT. According to (B.10)
the critical curve bends toward the temperature axis and already at relatively smallT the critical chemical
potential is smaller than the vacuum fermion mass. Thus we discuss only case (iib) and regard it as an upper
limit for (iia). For (iib), substantial contributions to the fermion integral origin from the edge of the Fermi
distributions or their proximity,i.e.the range(µ −xT,µ +xT) andx= 2. . .4. Since the minimal argument for
the Fermi distributions ismq the contributing interval is[mq,µ + xT). If the vacuum quark mass is larger than
µ + xT the fermion integral is too small to be of significance. Inserting µc(T) according to (B.10) andx= 4
evidences formvac

nuc& 1680MeV (for the parameter setmvac
σ = 700MeV,mvac

π = 138MeV,〈σ〉vac= 92.4MeV)
that the fermion integral is small for all temperatures at the critical curve yielding a FOPT surrounding the
chirally broken phase completely. This provides an important observation: If the quark mass is sufficiently
large compared to the critical chemical potentialµc(T) whose values are in turn determined by the parameter
combinationmvac

σ 〈σ〉vac, the FOPT curve can be made to extend from theµ axis even to theT axis. On the
other hand, a large fermion mass means that the isentropes end on the critical curve (see discussion above),
which is typically not a desired feature and, if one needs isentropes to exit the critical curve at some non-zero
temperature, one cannot use a parameter set with arbitrary large fermion mass, but is limited to a mass less
than the critical chemical potential at zero temperature (determined from (B.10)). Then, there is an upper limit
for the critical temperature corresponding to a CEP atTCEP= O (100MeV) and correspondingµCEP.

With these considerations the behavior of the temperatureTCEP of the CEP (i.e.increasing the vacuum
fermion massmvac

nuc/3 increasesTCEP, cf. left panel of Fig. B.11) is understandable. The chemical potentials of
the various critical points collapse to one line if one assumes that the quark mass at the phase contour is about
1/2 of its vacuum value (which works reasonable well,cf.right panel of Fig. B.11). As discussed in [79] the
QMM with linearized fluctuations exhibits a fuzzy structureat the CEP. It is therefore more appropriate to
speak of a “CEP-region” which is hidden under the white blobsin Figs. 4-B.8 and B.10. Hence, we focus on
the FOPT and leave the CEP related issues untouched.

Appendix C. Matrix elements

We quote here the matrix elements implemented in the calculations presented in Section 5. They have been
checked with the CompHEP package [87] and fulfill the corresponding Ward identities. With the incoming
momenta labeled bypq (quarks),pm (mesons) and the outgoing momentaqq (quarks) andk (photon) and the
Mandelstam variables defined ass= (pq+ pm)

2, t = (pq−qq)
2 andu= (pq−k)2 the fully (spin, polarization,

flavor) summed and averaged matrix elements for the Compton processes are given below.
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Figure B.11: Dependence of the CEP coordinates (TCEP in the left panel andµCEP in the right) on model parameters. The color code is
the same as in Fig. B.9. The symbols denote〈σ〉vac/MeV = 60 (hexagons), 70 (triangles), 90 (stars), 100 (circles), 110 (squares), 120
(diamonds). The black dashed line depicts the functionf (x) =−50MeV+7x/8 with x= 2µ0

c −mvac
nuc/3 and the gray dotted lines are for

f± = f (x)±25MeV.

Appendix C.1. Compton scattering q+π → q+ γ

1
2 ∑ |Mqπ→qγ |2 =e2g2

(
− 10

3

(
s−m2

q

u−m2
q
+

u−m2
q

s−m2
q

)
+

20
3

m2
πm2

q

(
1

(u−m2
q)

2 +
1

(s−m2
q)

2

)

+
4
3
− 4

3
m2

π(s+u−m2
π)

(u−m2
q)(s−m2

q)
+8

m2
π t

t−m2
π

(
1

u−m2
q
+

1
s−m2

q
+

2
t −m2

π

))
, (C.1)

with ∑ |Mqπ→qγ | denoting the spin, flavor and polarization summed matrix elements. The factor 1/2 is due to
averaging over incoming flavors. For the case of massless pions (i.e.in the broken phase in the chiral limit)
one finds

1
2 ∑ |Mqπ→qγ |2 = e2g2

(
− 10

3

(
s−m2

q

u−m2
q
+

u−m2
q

s−m2
q

)
+

4
3

)
. (C.2)

Appendix C.2. Compton scattering q+σ → q+ γ

1
2 ∑ |Mqσ→qγ |2 = −5

9
g2e2

(
(4m2−m2

σ )

(
4m2

(u−m2
q)

2 +
4m2

(s−m2
q)

2 +
4(2m2−m2

σ)

(u−m2
q)(s−m2

q)

)

+2
s+7m2−2m2

σ
u−m2

q
+2

u+7m2−2m2
σ

s−m2
q

+4

)
. (C.3)

If the fermion masses are set to zero (corresponding to the restored phase in the chiral limit), this reduces to:

1
2 ∑ |Mqσ→qγ |2 = −5

9
g2e2

(
4

m4
σ

us
+2

s−2m2
σ

u
+2

u−2m2
σ

s
+4

)
. (C.4)

Appendix C.3. Annihilation q+σ ,π → q+ γ
The annihilation matrix elements are related to the Compton matrix elements (C.1) and (C.3) by crossing

symmetries and can be obtained bys↔ t. The matrix elements for the anti-Compton processes (45) are
identical to those for the Compton processes (44).
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