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Abstract

The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset
of a curve of first-order phase transitions (FOPTSs) located at non-zero chemical potentials and temperatures
below a certain cross-over temperature. The model qualifies well for an illustrative example to study the
impact of the emerging FOP€,g.on photon emissivities. Such a case study unravels the tight interlocking

of the phase structure with the emission rates, here calculated according to lowest-order tree level processes
by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved
degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly.
At the same time, thermodynamic properties of the medium are linked decisively to these effective masses,
i.e.a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission
rates is maintained within such an approach.

Keywords: linear sigma model, quark meson model, chiral transition, real photon emission
PACS:12.39.Fe, 13.60.-r, 13.60.Fz, 11.30.Qc

1. Introduction

After several decades of dedicated research, the phase diagram of QCD has revealed a number of fairly
intricate properties. At zero baryo-chemical potentiglthe Columbia plot ¢f.[1, 2] for recent versions)
points to a firstins < m®) or second s > mli®) order phase transition in the chiral limit for the light quark
flavors, with the position of the tricritical pointi® not yet settled, and to a crossover for physical quark
masses when considering three quark flavors with the two light flavors being degenerate. In this way of
thinking the case with all quark flavors set to infinity corresponds to pure gauge theory with a first-order phase
transition (FOPT) al. = ¢'(270MeV). Leaving the flavor number and quark mass dependentg(efther
the cross over temperature scale or the critical temperature) to future investigations, much progress has been
achieved for the relevant case with physical quark maskes: 154+ 8 MeV is now the settled continuum
extrapolated cross over temperature [3, 4], where the description in terms of hadronic (quasi-particle) degrees
of freedom has to be changed in favor of quark-gluon type degrees of freedom. Much less is known when
allowing for non-zero baryo- (and maybe other) chemical potentials. Several techniques have been developed
to access the regigms/T < 1 [5-8]. A non-zero baryo-chemical potentjal is particularly intriguing as the
Cross over is expected to turn into a FOPT when moving to larger values [&f. The onset can be related
to a critical end point (CEP) with presently rather uncertain coordind@gs, icep). Such an option of a
CEP in the QCD phase diagram has triggered a lot of dedicated activities, both experimentally [10-13] and
theoretically, applying lattice techniquegy.reweighting [5], Taylor expansion ing [8], analytic continuation
from imaginaryug [6] or density of state methods [7] as well as Dyson-Schwinger [14], chiral model [15—-20]
or quasiparticle aproaches [21] giving widespread results [9]. One signature that is looked for is an unsteady
behavior of event-by-event fluctuations of conserved quangtigbaryon number or strangeness [22, 23]
and deviations from a Gaussian distribution of these parametrized by higher moments such as skewness and
kurtosis [24]. An overview over possible approaches can be found in [25].

From the experimental side, there exist restrictions originating from astrophysical observations [26], nu-
clear physics and heavy-ion collisions (HICs). In the latter experiments, nuclei and protons in various com-
binations are brought to collision at relativistic energies and create a system of strongly interacting particles
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which expands rapidly and eventually fragments into haslréxt RHIC and LHC energies, the hot medium
produced initially is dense enough to be described in terhmearly ideal relativistic hydrodynamics [27]
leading to the notion that the quark-gluon medium is strprmglupled. By tuning the collision parameters
(e.g.beam energy, centrality, system size etc.) the strongéyédicting medium evolves through different parts
of the phase diagram and thus peculiarities, such as phaselaies and critical points, may leave imprints
in the data. Transport [28] as well as hydrodynamical [28dations show indeed that the medium evolves
through the region where chiral and confinement transifiwasumably take place.

One tool for investigating the transiently hot and denseiormads provided by hadronic probes. Due to
their strong interaction with the ambient medium they glyidkose the information of the conditions under
which they where produced, but they can be used on the othdrtbgrobe collective phenomereag.elliptic
and higher order flow components, jet quenching) and trahspefficients [30] as well as issues concerning
strangeness production and quarkonia spectra. To obtfminmation from the hot and dense interior of the
“fireball” created in HICs and proton-nucleus as well as mglhitiplicity proton-proton collisions, weakly in-
teracting probes like photons or dileptons provide intimggools (see [31-35] for recent reviews and further
references). Due to their penetrating nature they monlt@tages in the course of such collisions render-
ing them very promising but rather difficult to analyze. V¢hihodern transport codes,g.UrQMD [36] or
PHSD [37], try to calculate the photon (real and virtual)ggfrom several or even all states (pre-equilibrium
photons, thermal photons from the hydrodynamical stagepaintbns from final state decays) [38, 39], other
approaches focus on the thermalized stage applying kitnetozy [40, 41] or relate photon emission to the vec-
tor meson current via the assumption of vector meson doro@gi?]. A detailed survey on the experimental
status can be found in [43].

Recent analyses [44, 45] reveal a tension between the plgtoeasurements (pointing to late emission,
when the medium anisotropy has built up) and thesystematics (pointing to earlier emission, when the
medium is hotter). As a solution to this puzzle the authofd4n 46] suggest a “critical enhancement” and the
“semi-quark-gluon plasma”; another option is exploreddin][

For macroscopic systems an otherwise transparent medioomes opaque near or at a critical point.
This critical opalescence is a consequence of fluctuatioralldength scales which is typically phrased as
the correlation length becoming divergent at criticalih8] 49]. Guided by such a phenomenon, one can
ask whether an equivalent effect may emerge also in a syrangdracting medium. In fact, in [50] such
a possibility has been discussed in the context of pion aosetteon in compressed nuclear matter. Having
in mind, however, HICs with rapid expansion dynamics, siiedeatures of the photon emissivity, when
passing nearby or through a critical point, are expecte@ tmasked by pre- and post-critical contributions to
the time integrated emission rate. We, therefore, focus barthe question whether the CEP-related FOPT
causes peculiarities of the photon emission; in the bes sash peculiarities could be strong enough that
they show up even in integrated rates. Since our understgrafiQCD in the region of interest is in its
infancies, as mentioned above, we have to resort to a modehwiimics at least a few of the desired effects,
especially the onset of a FOPT. In the present study we selspecial quark-meson model and account for
linearized meson fluctuations. That is quarks and mesorsiloote both to the pressure (contrary to the
mean field approximation which, in the context of this modédcards the mesonic fluctuation contributions)
thus allowing for a treatment within effective kinetic thigdo calculate photon production by the respective
quasi-particle modes.

Our paper is organized as follows. In Section 2 we define thed@mad quark-meson model including the
electromagnetic sector. In Section 3 we derive an appraigmaf the generating functional for correlation
functions, which is used in Section 4 to derive an expres&iothe leading order contributions of the photon
production rate. The photon spectra are evaluated andssisdun Section 5. In the spirit of a crosscheck we
give in Appendix B expressions for the grand canonical pid&rwhich is tightly related to the generating
functional and compare the thermodynamic potential wihditure. Finally, we summarize in Section 7 after a
brief discussion Section 6. Formal manipulations needeithéopropagators as well as the derivative expansion
of the fermion determinant are explained in Appendix A.1 apgendix A.2. Some further details of the
thermodynamics of the employed model are relegated to AgipeB. The squared matrix elements employed
in the calculation of the photon rates are listed in Appendix

2. Model definition

To answer the question to which extent the photon signal efi@ct the peculiarities of a phase diagram
with a FOPT we resort to a specific model containing fermigfgoark”) and bosonic (“meson”) degrees of



freedom. Its Lagrangian reads ére the Pauli matrices)

L= Ly+ Lm—VU(0,7), (1)
Ly =NeW(id — 9o+ TP = N (G)) (2)
L= %au agdto+ %au o+ T, (3)

U:’\z(aerﬁsz)sza, (4)

where we define the operat(;frs?l,);l7T = (id —g(o +iy°TT)) at given meson fields. The fielfl is a doublet
of fermion fields with degeneractyc’ (which is interpreted in the context of strong interactiasshe number
of colors), whileg and 7t are iso-scalar and iso-vector spin-0 fields. The paramgtarsd A characterize
the strength of the fermion-meson coupling and the sigma-poupling, respectively, while the two other
parameters are measures for the expliditédnd spontaneoug) breaking of chiral symmetry. In the literature,
the model is often called the quark meson model (QMM) or thedr sigma model, although the latter notion
sometimes only refers to the purely mesonic model with thgréagian%m — U, which we call theO(4)
model.

With the field content just described, the low temperatumpprties do not agree well with observations
at nuclear density or from neutron starg.the pressure at low temperature is too small [51]. A systemat
improvement can be achieved by including axial and vectaang [52], enlarging the flavor space to three
[53] or even four [54, 55] dimensions and including varioysmetry breaking terms for fitting vacuum
properties of the model to QCD results or meson properti2g [Bhe interaction with the gluon field can be
partially included by coupling the QMM to a Polyakov loop fehich several choices for the potential are
possible [17, 18]¢f.also [56]. Sometimes even glueballs are introduced [57¢ QMM as well as its various
extensions are used as tools for mimicking (de-)confinepuital symmetry breaking and restoration [18]
as well as their interplag.g.the closeness of the respective pseudocritical regionpgpties of their critical
points (such as critical exponents) [58], the influence aéral control parameters such as magnetic fields
[59-61], or its interplay with hydrodynamical models [63]6

For addressing the aforementioned question of phasewstelotprints on the photon rate, the model has to
be supplemented with an electromagnetic sector. Follojy@ig61], we do so by replacing the partial deriva-
tive 9 by theU (1)-covariant derivativ®* = g# — ieQA! (e being the electromagnetic coupling strength and
Q the charge operator) and by adding the conventional kitetia for the gauge field (the photon fieldy

with the field strength tensd¥ = (i;[D“, D"}. This procedure corresponds to adding the tegfagand.Z
to the Lagrangian (1):

ZLeoum =2 + Ly + Le, (5)

1
gky:*ZF“VFuw (6)
Lo =NcPeQAY +ieA T gyt —ieA T oM T — AN T T (7

Having defined the model by.omm we go on by calculating the Euclidean generating functi@afor
correlation functions. We base our calculation on the patbgral representation &,, but go beyond the
standard mean field approximation (MFA) and include lowesdeofluctuations of the meson fields. This
seems necessary for the purpose of photon emission, sie@tetttromagnetic field is expected to couple via
derivatives to the charged pions, which are absent in the Bf@xoach.

3. The generating functional

As mentioned above we go beyond MFA following the approxiorascheme introduced in [64]. For this
purpose we have to calculate the photon emission in a censisay. We achieve this goal by calculating the
generating functional for Euclidean correlation functdaa which we can adopt - due to the formal similarity
of the generating functional and the partition functione #pproximations for the partition function made in
[64]. By functional differentiation we then derive the pbotpropagator consistent with this approximation
and apply the McLerran-Toimela formula (see (47) below)atzalate the photon emission rate.



The path integral representation of the Euclidean gemey&tinctional for finite temperature and densities
reads [65, 66]

S = SNo. i, nwﬁq’n}l}]
- / THIYISTHIA] (8)

B
X exp{ - /dr/dsxfeQMM(q,G, 0, 10) + HTY°WY +TNg + g0+ No0 + nJme + nKA“} ,

0 R3

where S is the inverse temperatuie ! and ng, fj, nq,ﬁq,n,‘,‘ denote the sources of the respective fields.
(The measurez[A] refers to an path integral over gauge independent field amafipns, see [67].) The
source term for the piong,,7t= nim + --- + nms, can be rewritten in terms of the charged pions according

0 Tinft = N T+ N1 + N0 with x* = v2 " (x* Fix2), x° = x3 andy € {11,n7}.

3.1. Integrating out the photons

The path integral over the photon field configurations beingdyatic in the fields (for the gauge fixing,
the standard covariant choicgiy = & *1(0A)2 is made) can be evaluated exactly leading to

s, = / TPIYT0T T, [det(GF) ,,
coxp{ [ (L - WP+ T+ Tg 100+ ) | ©
<exp{ [ adaz' (0@ +nf@)(G),,, 2D+ 1)
with the electromagnetic current
3 (2) = ~P(2eQv (2 — T (2ied 1T (2) + 1T (2)iedH Tt (2) (10)
and the perturbative photon propaga(t@[;})w formally defined by
(G?,);j = [ng— (1-&1You0 —mmou|. (11)

3.2. Integrating out the fermions

The next step is to integrate out the quarks resulting in mifer determinant, which is written as the
exponential of a functional tracé.€.a momentum-integral of traces over internag¢.QOirac- and flavor-)
indices) and an exponential with source terms:

S = [ 7097, [det(&),,
X exp{ /d)(‘(fkm -U-— (Trln (G?ﬂ)a,n) (X,X) +No 0 + ﬁnﬁ)} (12)
« exp{ [ataz' o @) < nf@)(S)),,, 22 @)+ (@) —i—ﬁq(z)(G?l,)G,n(z,z’)nq(z’)},

with the quark propagator defined in (2). Up to now the evadumas exact. But, since the remaining mesonic
part is not at all a Gaussian integral, we are forced to emggogral approximations in order to proceed.



3.3. Derivative expansion of the fermion trace
The term TrIn(G0 )U in (12) is expanded w.r.t. derivatives of the meson fieldslaimo [68, 69] yielding
(see Appendix A.1 for deta|ls)

Trin (G5, =Trin [id—mq(a, m)| + 690,07 (13)
27.[ / 1+nF (Eq) +ne(Eq)) + 0 (d0,01) (14)

Eq =+ P* (15)

mé =g?(0? + 7). (16)

Assuming slowly varying meson fields the terms containingenederivatives can be regarded small and are
thus excluded from further calculations.

3.4. Quadratic approximation of the meson potential
The generating functional in (12) can be regarded as thergtng functional of a purely mesonic theory
with the potentiaV:

V(9 Uer(0(@.m(2) - [ 2'%(@)(G),,, 22)3(@). an
Uet U o, sz(a 7). (18)
waZNFNC/d (1+ne(Eq) +ne(Eg)). (19)

The effective potentidley is approximated by a quadratic potentiabefined by the conditions

(U) =(Uef), (20)
ou B , - OUett((0) +0,7) \ _
30,71 oo (o) =0, with (o) determined by < P =0 (21)
=0

and with(f (o, 7)) being the ensemble average w.atand 7t configurations according to the self consistently
chosen probability density given below in (26) €f. (29) below for the averaging). The condition (20) fixes the
zero-order coefficients i and (21) the first order coefficients. The non-vanishing sdarder coefficients
(which we namemZ andm?) have to be chosen according to

0U 92U 0U 02U
C—=mk= of —— =mi= ef 22
do? 9 o2 /’ omn? n omn? (22)
for being consistent to the respective propagator pole ifz@es(36) below), calculated for the approximated
theory with Lagrangian

Z = %4m—U(o,n). (23)

The 2nd order mixed term idess Vanishes, sincHes is an even function ot as the inspection of (4), (16) and
(18) reveals. The thus defined approximate potential

U =(Uet) + (7 — (7)) + 316 (0%~ (0) (24)

induces via the accordingly approximated partition fume# a probability distributiorp for the meson fields
(for further convenience we chose to shift the sigma fieldtdyhiermal expectation value,= A+ (o))

p(o, ) zflexp{/d%‘.fkm—U} (25)

- zim eXp{z_<§>} %(%)3“9{%} (26)




where we already exploited the fact that all relevant funrddiare even functions @, leading to the following
form of the variances (vdr= (f2) — (f)2) for the meson fields

(0% =varg = (2—71_[)3 /d3p (Zég + Elg (Eg)) : (27)
(1) = 3vam = o2 | d3p<zén+ L (En>), (28)

with the dispersion relationsZ , = mg .+ p?. With (26) the ensemble averagéy of a meson dependent
function can be calculated according to

(1(0,70) = [ db [ diftip(d+ (0. [7)F(B+ (0.7, 29)

where we letf only depend oni, since that is the only case relevant for our calculationudiigns (27)
and (28) represent consistency conditions for the choidkedecond order coefficieni®.the meson mass
parameters, as they can be calculated via the induced plibpdistribution (26) as well as by differentia-
tion of the thermodynamical potential (which is relatedtie generating functional, as discussed below in
Appendix B). The equations (21), (22), (27) and (28) repmeaeset of five equations fang, my, (a), (A?)

and (72) which have to be solved simultaneousty. [64], egs. (51), (52), (17), (37) and (38) with (42) and
(47) inserted into (17)). The quark source term in (12) iateed by expandingG?,,)U L Wt the meson fields
(cf.Appendix A.2) and replacing the meson fields afterwards byriation w.r.t. the corresponding sources.

3.5. Isolating the electromagnetic contribution

We now want to treat the electromagnetic contribution in) @5 a small perturbation t8,. Therefore,
we first expand ¢f. Appendix A.2) the photon propagatqéG?,)w w.rt. powers ofe? and afterwards the

exponential of the current term into a Taylor series:

eXp{ . / dZdZ* (3} @)+ nf ) (G)),, @22)F @) +n)(Z ))} (30)
— 1+ [d2dZ* 3@ +nf @) (Glu(22)
+e2/dz’éf, (z.2")gP " () (2')Gy(Z',2) + 6 ( 4))(Jy(z)+n;(z))+ﬁ(a;‘). (31)

SinceJ) = ¢ (e) the terms up ta7 (€?) are

exp| a4z (3 (@)}l 2)(S5),,, 22D+ () (32
—14 /dz“dz’4 (3@ +nl(2)8(22)UD) +ny(@) + 0 (3F)
+/d24dz'4/dz’4 (2628, (2. 2')P T (Z) T (2N} (DB (7. 2) + 0 (¢F).  (33)
Finally, 77 (2) 7 (2) is replaced bys/3n; (2)5/8n;+ (2) andJ by J, as defined by

w8 a8 5 5 o, 0
YO @Y @ e e @ @ o

With this replacements, (33) can be pulled out of the pattgiral.




3.6. Integrating out the meson fields
The remaining integrand of the path integrals in (12) is Geumsyielding

SHES /det(G?,)W\/deths\/detGg exp{/d4x<Ueﬁ> + %mﬁ(?ﬂ + %%<A2>}
x exp{ / dZd2* (3@ +nf @) () (@) (3" @) +my@)) } (35)
x exp{ﬁq<z>@<z,z>nq<z> 1 16(2)Go (2.2)00(Z) + i (Gn(z )N (2) + n2<z>6n<z,z>n2<z>},

with 6(6,, and ((/3?,) " obtained from(Gﬂ,)G,n and (G?,)W by replacingo — &/8ny and 1 — 6/6n,; a.
The momentum space meson propagators can be found by aaitadiluation of the Gaussian meson path
integrals yielding

&(p) - Gol(p) =5 (36)
s e

with a,b € {0,+,—} denoting the charge of the respective pidns; —b and the mass parameters according
to (22).

4. The imaginary part of the photon propagator

Having derived the formal basics we turn now to the derivatibphoton emission rates. The wanted key
quantity is the imaginary part of the retarded photon prapagwhich allows to cast the rates into a kinetic
theory formula.

4.1. The photon propagator

The full photon propagator (within the above approximasio?, can be calculated by varyirfg, w.r.t.
the photon sources:

L) I ——— (37)

wn
o4
=
<
—~
X
~—
o4
=
<
<

Executing the variations yields

~ 1/, = 4 5 ~
f =G}, e?-—/dey —————— G}, (zy)S,

+g [ d2] dZ8l.x23° @3 )Gk, Zys| (39
| -,

=|gwD~ (1= 0] = (G)),, "+ g, (39)

(Glw) ™
First we execute the variations w.r.t. the fermionic sosircehe result can be represented diagrammatically
as exhibited in Fig. 1 (upper panel). Looking at the uppemrpahFig. 1 we want to stress that it represents
an intermediate step of the calculation and the (conveakjgrescription that only connected diagrams con-
tribute cannot be applied yet. Comparing the upper panelgfIFwith (38) one can identify the first two
diagrams with the first two terms in (38). The rest of the daags corresponds to th@ (ez) contributions

of the second line of (38) with the derivatives w.r.t. thenfiérnic sources carried out. Since the fermionic

sources appear only as eijf fdz4dz4ﬁq(z)68,(z,i)nq(1)} in S, every pair of (functional) derivatives
w.r.t. fermionic sources corresponds to a quark propagaﬁpconnecting the space-time arguments of the
source derivatives, exactly as it is conventionally dang,in Feynman diagram calculus of QED correlation

functions or self energy contributions. (However, sh@% explicitly depends on meson source derivatives,
disconnected fermionic loops can be connected in the negtls meson propagators leading to the lower
panel of Fig. 1.) The fermion propagators represented bplédines are expanded according to (A.23). This
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Figure 1: Upper panel: Diagrammatic representation of lbetlmmagnetic current term in (38) after applying the fermsource
derivatives and setting the fermion sources zero. Loweelpdbiagrammatic representation of the electromagneticeat term after
additionally executing all meson source derivatives, hethten down explicitly as dots next to a vertex and implicicontained in

the summed fermion propagator. Solid double lines reptabensummed fermion propagaté'g,, the double wavy line stands for the
full photon propagator up té&@ (ez) and o (gz), the single solid lines represeré@ﬂ,)< 0 single wavy lines the perturbative photon
a),

propagatoﬁ%v, dashed lines represent a sum over all meson field propadaandG, connected to the fitting vertices (dots). Arrows
on dashed lines denote the direction of charge flow. (Thegappnly at lines connected to a photon vertex, so that ordygeld pions
contribute to the diagram, for which the direction of chafiges is well defined.)

expansion follows from the decomposition ((ﬁﬂ,)o_ . into a part independent of the dynamical fieldand
1 (but dependent on the averagdield) and an interaction part that dependsioand T according to

((G&)an)*:((@)( o) | —a(l+iyT, (40)

((6%) ) ) —id —g(o). (41)

After doing all meson variations, symbolically denoted lmyshext to the vertices in the upper panel of Fig. 1,
every pair of derivatives w.r.t. meson sources reduces topagator of the respective meson (provided both
variations are w.r.t. the same fields source). The resuikpgyession can be represented diagrammatically

according to the lower panel of Fig. 1. There, each solid|11'3r[11fesent£G?,,)<G> o each dashed line stands for

Go + Gp, each wiggly line refers t(_sﬁv and each dot means the corresponding vertex factor.

4.2. Determining the imaginary part of the photon propagato
The propagator&,, G (see (36)) <';m(ﬂG?p)<G> 0 (see (41)) have the form discussed in [70]. For the imag-

inary part of the diagrams in Fig. 1, one therefore has tomaigh each diagram in any possible way that
separates the two vertices connected to external photes. IBuch a procedure leads to sets of (simpler) dia-
grams corresponding to processes of the gpe.., @ — Pq,...,Pp+ ywitha incoming and+ 1 outgoing

field quanta, one of Wh|ch is a photon. Denoting the diagrantsg. 1 by. ///yﬁy and the diagrams obtained
from cutting these by/// + O+t @y +y ONE Arrives for InféﬁWet Yi Im///yﬁy at

Im¥, ret—2 g /anb| qol+ oyt +<Db+y|2 (i,l),..n(i,a)(li n(ovl))---(1in(°!b))(e‘*’/T_1)7 (42)

: &py Ppa P d’ap :
/anb:/zE<l> e 2m k- 5 8 +§q (43)
. o (2m3 2B (2m)3 267 (2m)3 2By (2m)3

with n(i/°!) being Fermi or Bose distribution functions (depending anghin of the particlé in the in () or
out (0) state). The summands in (42) can be sorted w.r.t. the numlaer b+ 1 of participating fields. The
inspection of the phase space regions over which one hasegrate on the rhs. of (42) yields zero for all
summands witla+ b < 2 since the phase space vanishes in these cases, at lebfi¢ifl @uanta - except the
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Figure 2: Tree-level diagrams of the reactions (44)-(46p bw: diagrams for Compton scattering off quarks; bottom: rannihilations.
The matrix elements for Compton scattering off antiquaiks loe obtained by inverting the direction of the fermionasoNote that in
the third column there is no meson, since it is uncharged.

photons - are massive (as it is the case in our model). Thenfirszero terms have+ b = 3 and correspond
to the 2— 2 processes

g+o,m—qj+y (Compton scatterings off quarks) (44)
G+o,m—qgj+y (Compton scatterings off antiquarks) (45)
q+0; > o, m+y (annihilations). (46)

The corresponding diagrams are depicted in Fig. 2, and theipation, spin and flavor summed/averaged
squared matrix elements are listed in Appendix C.

4.3. Photon emission rate

From the imaginary part of the photon propagator, the pho#t® can be determined according to the
McLerran-Toimela formula [71]

o d'N g

dkdx  (2m)3

Im Gyret(k =0,w)ns(w). (47)

With (42) we get as the leading terms in the above mentionedresion w.r.t. the number of participating
particles

d’N g d3p; d3p, d
© Pt 2 27’2”122/ Toee 2E3<2">“5<k = P 0)- L, o P I (1503 (48)

which resembles the formula for the production of photorisin 2 processes within a kinetic theory approach.

One might ask the question of what we have achieved with tlogeaderivation that goes beyond the
mere use of formula (48) which could naively be used rightftbe beginning. The very necessity to derive
(48) is to identify precisely the mass parameteys my, my to be used for the calculation of the photon
rates. The meson masses have to be chosen to be the secancbeftieients of the approximative potential
U according to (22). However, the correct fermion mass is tésgous. Reference [64] suggests to use
My = ((my(o, )™)Y/" for conveniently chosen valugswithout convincing justification for this choice. As
the resulting quark mass does not strongly depend @re usech = 2 in a previous work [72] on the subject.
With the derivation above this issue can be settled by cingosi

mg = g(0) (49)



[MeV] mee Mg mE° (d)vac Te(u=0) U(T=0) Tcep Hcep

A 936.0 700.0 138.0 924 148.3 328 725 279.5
B 1170.0 1284.4 138.0 90.0 194.6 430 97.0 3775
C 1080.0 700.0 138.0 90.0 140.3 324 98.0 216.0

Table 1: Parameter sets used for the analysis. The paramgfer m/2, m/2°, (o)yac can be mapped to the parametgra, ¢, H of the
Lagrangian (1) by (51). These parameters yield the crosstergperaturd(u = 0) at vanishing chemical potential, the critical chemical
potential at zero temperaturg(T = 0) and the coordinates for the CER-£p, Licep) given in the last columns. All quantities are in units
of MeV as indicated in the upper left corner of the table.

in order to arrive at a representation of the photon propagatterms of Feynman diagrams which can sim-
ply be cut to obtain the imaginary part of each diagram lequdinthe kinetic-theory-like formula (48). In
other words, one may say that thl can be regarded as “thermodynamical mass” parameterstbiggare
reasonable choices to be used in thermodynamic integraisaibto be used in perturbative calculations as
mass parameters for the quark propagators. Although thieeldn does affectM, only sightly, there is a
large difference betweeM,, andmg in the chirally restored phase. (In the chirally broken ghiee meson
field fluctuations are smaller which brinty%, andmg closer together.). Thus the validity of (48) relies on the
consistent choice (49) for the mass parameter to be used fieitimion propagators.

5. Evaluation of photon rates

5.1. Parameter fixing

To be explicit one has to fix the parameters of the Lagrangidimeld by (1)-(4). The simplest way to do
so is to set the vacuum masses of the fields as well as the vaexpautation value of the field to specific
values. In mean field approximation and the linearized flamtun approximation without vacuum fluctuations
the relations between the parameters and the vacuum figb@ pires can be given by the set of equations

(MP%)2 — (MP29)? =24 (O)vac, (M)? — 3(my29)? =24 ¢, (50)
(m\ﬁac)2<0>vac =H, Mhae =39(0)vac; (51)

with the nucleon mass at= p = 0 taken asnyig = 3my*°. Typically, one chooses fang*, mi2¢ andmyg the
PDG values [73] ando)vac = fr. However, this is not strictly required for making contazQCD, since at
low temperatures many other degrees of freedom are relavaitth could easily shift these values one way
or the other thus giving some flexibility to the parametertoag as typical mass scales are kept at the order
of Agcp- Throughout this paper we use the values¥ff®, my2¢, miat and(o)vac to identify the parameter sets,
which are collected in Tab. 1.

5.2. Differential Spectra

In Fig. 3, the differential photon spectead’N/d%d’x are depicted for the individual channels (44)-(46)
as well as for their sum. A first inspection shows several éspé) For large photon energias,> 600 MeV,
all partial rates decrease exponentidllexp{—w/T}. (ii) In the chirally restored phase (see right panel of
Fig. 3), the partial rates for processes involving différaresons are either approximately degenerate (for
the annihilations) or differ only by a factor of about threghis is a manifestation of the chiral symmetry
restoration which leads to approximately degenerate mesmses, which in turn lead to similar kinematics
for the processes involving chiral partners. The diffeesipetween pion-involving and sigma-involving partial
rates can be atributed to the different multiplicities ahd tharge carried by two of the pions. Conversely,
in the chirally broken phase no such striking similarity ¢enobserved (see left panel of Fig. 3). (iii) In the
chirally restored phase, at > 200MeV there is a clear hierarchy of the rates from diffepgotesses: The
partial rate from Compton processes with quarks is muctefattan the partial rate from annihilations which
is also much larger than the rate from Compton processesanttkquarks. As pointed out in [72] the reason
for this hierarchy is the exponential suppression of ingapanti-particles at finite chemical potential, leading
to a suppressiol exp{—u/T} of the annihilation processes and a suppressiexp{—2u/T} for the anti-
Compton processes w.r.t. the partial rates from Comptoogases with quarks. (iv) In the chirally restored
phase the annihilation rates divergeat- 0, see right panel of Fig. 3. This is caused by infrared digrcies
of the matrix elements which are exponentially suppre&sesp{ —1/w} if the sum of the incoming masses
is larger than the mass of the outgoing particle that is ndtcign. Such an inequality holds necessarily for all
Compton and anti-Compton processes but may be violatetiéamrinihilation processesf, [72] for a further
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Figure 3: Differential photon spectf= wd’N/d%d" as functions of photon energy for parameter set A. Left panel: chirally broken

phase aflf = 65MeV andu = 255MeV; right panel: restored phaseTat= 65MeV andu = 295MeV. The curves correspond to the

partial rates for the processgs- o — q+ y (dash-double-dotted yellow curv&)+ m— g+ y (dash-dotted violet curveyy+q— o +y

(dotted light blue curve)q+ g — m+ y (short dashed red curvel+ o — q+ y (long dashed green curve;+ m— q—+ y (solid dark

blue curve) and to their sum (dash-triple dotted black curve), respectively. The gray double-dash-double-dotted curve in the left panel is
calculated with the parametrization given in [74] and in the right panel it is the AMY rate [75] for which the strong caypliag set to

the value of the quark-meson coupliggf parameter set A. Since the massgsyq play an essential role for the photon emissivity we

guote their values and supply the number densities in the heat bath rest frame:

mg/MeV mp/MeV mg/MeV | ng/fm™3 Ng/fm=2  ng/fm—3

left panel 504 151 282 265x10°° 473x10°% 0.205
right panel 283 333 55 393x10* 661x10°* 0.971

discussion of that issue. For a comparison with rate caloulgin the literature we exhibit in the left panel of

Fig. 3 the rate calculated with the parametrization given in [74] for the emission from the hadronic phase and
in the right panel the AMY rate [75] for the deconfined phase, however, for keeping the comparison as simple
as possible both gt = 0.(For the strong couplings in the AMY rate we use the value of the quark-meson
couplingg, corresponding tats = 0.91 for parameter set A.)

5.3. Photon rate over the phase diagram

Our central question is to which extent the features of the phase diagram are reflected in the photon emis-
sion rates. Therefore, we inspect the partial rates and their dependehe@andp, cf. Figs. 4-6. As mentioned
in Section 5.2 one sees a clear hierarchy of the emission rates for the different types of processes in the chirally
restored phase. In the chirally broken phase the partial rate for the annihilatiom émdy is of similar size
compared to the Compton processes, although it is suppressed by a factof-efg¥g. The reason for
that is the comparatively small mass of the pions as the pseudo-Goldstone modes, which compensates for this
suppression. The jump of the rates at the FOPT increases with decreasing temperature and reaches a factor
of about 50 at the lowest displayed temperatures in the plots (see Fig. 4, right panels) for the dominating
processed,e.the Compton processes, as well as for the total rate (see Fig. 7, right panel).

Only the annihilation process wiitit mesons shows a non-monotonic behavior when scanning the partial
rate along curves with constamtand varyingu. This can be traced back to the effectivemass, which
is relatively small in a valley surrounding the phase contour (FOPT and crossover region) and minimal at the
CEP. Since the procegst-gq— o + yis the only one of the considered channels that is primarily be influenced
by theo mass it is especially interesting for the search for CEP related features in the photon rates. However,
the corresponding partial rate is strongly reduced by the above mentioned suppression fgctqr/@xp
relative to the Compton channels which makes is practically invisible in the total rate. This masking of the
annihilation channels is expected to weaken drastically for parameter sets showing a CEP closErixighe

6. Discussion

We have described an approximation scheme for calculating the thermodynamics and the effective masses
of the fields contained in the QMM Lagrangian beyond the standard mean field approximation. The presented
approximation scheme has been shown to be a consistent approximation for the determination of equilibrium
thermodynamical properties and scattering or production rates. This makes the calculated meson masses
applicable forS matrix calculations of the production rate for photons for which we present the lowest order
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(in the electromagnetic as well as the quark-meson couplesylts. Furthermore, we discuss in Appendix B
the influence of the model parameters on expansion prop@miided by isentropes as well as on landmarks
(such as position of the CEP, pseudocritical temperatwarashing net density, general shape of the transition
(first order as well as crossover) curve) of the phase diadirading that all of these can be understood and
adjusted to desired values with the help of two particulanisimations of the parameters: the fermion vacuum
massm+2¢/3 and the product of/2® and the vacuum expectation value of the sigma fietflsc as well as
their interplay, at least for explicit symmetry breakingne that are neither too smailg. n¥2° > 50 MeV) to
avoid being influenced by the wrong chiral limit, nor too big ((m?2°/m/3%)2 < 1) in order for the QMM to
invoke an only weakly broken chiral symmetry.

It turns out that in the intermediate photon energy rang® ef 1 GeV there are still sizable effects in the
photon production rates due to a FOPT. Of course, for a firmltie:iany more emission channels have to
be included €.g.in [40], the channett™ m~ — o/p — "y is identified to be important in the soft photon
regime and in [76] 2» 3 processes, such as meson-meson and meson-baryon bashssty are found to be
of great importance) and the effect of inclusion of highetesrterms in the quark-meson coupling has to be
checked as well as the effect of including further fluctuadi¢as doneg.g.in [77] within the FRG framework).

In a previous work [72] we showed that the dominant effect@thoton rates stems from the mass variations
and the explicitu dependencies of the distribution function; in other wotds of kinematical origin. This
leads us to the conjecture that the position and size of $mdtinuities in the photon rate is a robust feature
and could probably provide a tool suitable for the detectiba chiral FOPT in HIC experiments.

7. Summary

In summary, we employ here a quark-meson model with linedriuctuations of the meson fields, which
displays the onset of a curve of FOPTSs at a (albeit imperfeéeéff. The thermodynamics has been elaborated
in previous works [64, 72, 78-80]. We couple the pertinemjrdes of freedom to the electromagnetic field
to evaluate the photon emission rates over the phase diagrgarticular the impact of the FOPT. The chain
of approximations is pointed out to arrive at emission ratethe form of kinetic theory expressions being
consistent with the thermodynamics. To this end it is neargs® go beyond the mean field approximation,
because in such an approach the mesons are no dynamic figldsighonceptually inconsistent with their
usage inS matrix calculations. The first step in a path integral apphdaeyond mean fields is the inclusion
of the lowest order fluctuations, which we achieve by the gatElapproximation of the effective mesonic
potential. Our calculation differ from that in [64, 78, 79} the inclusion of photons and the source terms
for all fields (see Appendix B). The source terms make it gidsdio derive thermodynamics ar®Imatrix
elements on the same footing thus achieving consistenayeleet both. Especially we can pin down the
correct quark mass parameter for the calculation in thetikitleeory framework, which was not possible in
previous works.

Due to the tight coupling of emissivities in lowest-orderalevel diagrams and thermodynamics, it hap-
pens that individual channels of photon producing processap out the phase diagram. The emission rates
are determined essentially by the effective masses of tlodvied field modes. While soft photons are either
suppressed by finite temperature effects or enhanced arédfidivergencies of the matrix elements, the hard
photons display the usually expected exponential shapgsalCestoration as degeneracy of pion and sigma
effective masses causes also a degeneracy of the pamigimahe restored phase. The hard photon rates obey
in the chirally restored phase for/T 2> 1 the following hierarchy: The rates from Compton-procesae
larger than those from annihilations, which in turn are éautthan those from anti-Compton processes.

We supplement our study by a discussion of the parametemdepee of the CEP coordinates and the
location of the FOPT curve as well as the pattern of isentropives relevant for adiabatic expansion paths in
the phase diagram (see Appendix B).

Finally, we mention that our investigation should be coasid as a case study, not mimicking QCD
features sufficiently adequate. Beyond the impact of vacfluatuations, the involved degrees of freedom
mistreat (i) at low temperatures the nucleons and theimressibility, as well as the other known hadronic
states needed to saturate the equation of state known froBy @& (ii) at high temperatures the explicit
gluon degrees of freedom. Nevertheless, we stress agdia $eemingly universal emissivity must not be
combined with an ad hoc assumed thermodynamics/phaséustubowever both issues must be dealt with
in a consistent manner.
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Appendix A. A few formal details

Appendix A.1. Derivative expansion

In the case of @” theory the method is explained in [68, 69]. For conveniene®utline it here and apply
it to the theory at hand. The quantity we want to approximate i

Qy = ~Trin | (G} (0, 7)) '] (A1)

with (G?p(a, ﬁ))71 defined according to (2). Formally we can expand

Qq=—Trln [id-g(oﬂ;ﬁfﬁ)} (A.2)
= —Trin [ia (1— %g(d—i—iysfﬁ))] (A.3)
=-Trinp—Trin(1+ p M) (A.4)
~-Trinp—Tr[p *M] + %Tr pMp M| — ..., (A.5)

were we used the shortcht = g(o +iy°T7i). Applying (p)*l =p/ p? and the fact that the trace of an odd
number of Dirac matrices vanishes we see that only poweyFHf/Ip*lM remain in the sum (besides the
In p-term). Using

pMp M :§9(0+ if?ﬁ)%g(aﬂysfﬁ) (A.6)
:éy‘“g(a* iy'ifﬁ)%g(m iy5T) (A7)

and
@(X) Py = PuP(X) +[@(X), Pu] = Pu@(X) =19 (x), (A.8)

for any field @(x) we arrive at
pMp M :épg(af iffﬁ)ég(m iySTTT) — i%(ag(a— iy5fﬁ)) ég(anL iySTT). (A.9)
Employing the operator identity (fék invertible)
[A1,B] = —A2[A,B| —A3A [AB]] - A4A [A [AB]] — ... (A.10)

with A = p? andB = g, mthe 1/p? term in (A.9) can be commuted to the left. The nested comrartgan
(A.10) are computed by utilizing recursively the identity

[p?, @] =0+ 2ipHd, . (A.11)

Inspecting (A.11) one sees that each commutator pftbontributes at least one derivative@feading to the
observation that terms in (A.10) withcommutators imply at leastderivatives of the meson fields. Thus, we
find

[p2,00rm =0+ 6 (d0,d7) (A.12)
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leading to
piMp- 1przg —iy’Ti)g(0 +iy°TT) + 0 (00,07) (A.13)
:Emg+ 0(d0,0m) (A.14)

with m% = g?(0? + 71?). Taking only zero derivative terms, the higher powerpo’fM p*lM in the expansion
(A.5) resultin

n
(pMptMm)" = (é) (m)"1p + 6 (d0,07) (A.15)
with 1p denoting the unity matrix in Dirac space. Then the complggaasion (A.5) gives
2
Qq=~—Trin p— %Tr lgﬂD] — %Tr [(%) ﬂD] —t ﬁ(aaana), (A.16)
It can easily be checked that this is exactly the expansi@aninteracting Fermi gas with masg
n
~Trin [p—my| = ~Trinp— Yo Tr[(r;f) 111 , (A.17)
thus verifying (13).
Appendix A.2. Inverting perturbed matrices
We apply
=Myt ;(—AM Mg )", M =Mo + Ay (A.18)
n=

valid for invertible matriced! andMy. A heuristic derivation of (A.18) can be obtained by noting
M~ = (Mo+Am) ™ =My (1 — (~MoAm)) ™+ (A.19)
which is then written as a geometric series, leading to (A.M8ith M = M(xq,%p) this relations can be
reformulated for the continuum limit in the language of ftional derivatives with the only changes being
d/0@ — 6/3¢(x) and the matrix multiplication replaced by an integh8BS — [ dbA(Xa,b)B(b, Xc).
Appendix A.2.1. Application to the photon propagator
SettingM(z,Z) = ((G?,)W (z z’))’l =G, (z2) 1+ [~ Em" (9T (2)9uv] 5(z—Z) one gets

(G?,) (z7) =G, (zZ) + /d"’xGy zX) [ ()1 (X)g°*|CL, (x,2) + O (&Y, (A.20)

which is applied in (31).

Appendix A.2.2. Application to the quark propagator
. -1 _ .
SettingM(z,Z) = ((G?l,)o_’n(z,z’)) = (Gﬂ,)ww(z,z’) 1+ [ 9A(2) — giy°1ar®(2)| 6(z— Z) one obtains

(G3), n(22) =(8Y) ) o(27) - / A*X(GY) 4 o ZXNAX) (GY) 4 (% 7)

- / ‘d“xd“y(G?p)<g>,o<z,x>A<x>(G?v)(U%o(x,y)A(y)(G?p)<g>,o<y,z> (A.21)
- / d*xdy(GY ) < o ZYAN)(GY) 5, XA (GY) 4 o(X.2) + 6 (8%, 7F),
A(2) = — gA(2) — giy° o (A.22)
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Replacing on both sides of the equatidfz) by 6/0n+(z) andm®(z) by 6/0n,-a(z) one arrives at

ég,(z,z’) :(Gﬂ,)<a>,o(z,z’) —/d“x(Gﬂ,)ww(z,x)A(x) (G?y)ww(x,z’)

- / d%AY(G)) 4, o2 XAX) (GY) ) o} VAN (GY) 4 4(%:7) (A.23)
~ R 3 3
—/ d"’xd"’y(G?l,)< (z,y)A(y)(Gﬂ,)<0_>’0(y,x)A(x)(GO)< o(% z’)+ﬁ(§7 ;; )
Az )——géna ~ 0V Tag Ta@ (A.24)

which is used in Section 4.1.

Appendix B. Thermodynamics and phase structure

Appendix B.1. Thermodynamics

Setting all sources to zero in (8) transfor@sformally into the grand canonical partition functidn As
our goal is to study systems much smaller than the mean fth@pphotons (which is a reasonable assumption
in the context of HICs) the photons do not contribute to thespure. Thus we remove all terms containing
the photon fieldA from (8), which corresponds to setting zero the electroreigicouplinge (explicitly and
implicitly in J(,‘) as well as removing d&y, from (35). Then we get

Z\/dethsx/detGgexp{ / d**(Uett) + = mz<n2>+ 2mg<A2>} (B.1)

As (Ueg),(T),(A%) and mg 7 do not depend on the space-time coordinates, the integratithe expo-
nent yields a factor of the Euclidean voludg. For the grand canonical potent@(T,u) = —p(T,u) =
(BV)~tInZ one gets

IndethJr IndetGg <ueﬁ>f%nﬁ<ﬁ2>f%%<az>. (B.2)

Applying IndetG, s = TrinGr ¢ and using standard techniques [81] for solving these fanatitraces one
arrives at

1

Q:Qn+cza+<u>+<czw>_%nﬁ<ﬁ2>—§ma<A2>, (B.3)
Q= 27'[ / £ (L ne(En).) (B.4)
Qp — 2n /d 1+ na(Es)), (B.5)
EI%[,O' :m%r,cr+ ﬁ (B-G)

andQy according to (19) in agreement with [64, 78, 79]. From thertwdynamic potential the thermody-
namic quantities (energy density, net quark density, @ytdensity, susceptibilities, etc.) follow by differen-
tiation. The explicit formulas have been worked out in [64, 79].

Appendix B.2. Impact of model parameters on the phase diagra

For the sake of an easy comparison with literatwfg&2] for parameter fixings when including vacuum
fluctuations) we choose the parameters as in [64, 72, 78¢c@8Fsponding to parameter set Ain Tab. 1. (The
effect of other parameter choices is discussed in [72] fiferdinto vacuum mass fixings, in [78] for different
1 vacuum masses and in [83] for the three flavor model w.r.t.li@kgymmetry breaking parameters and
the 0 mass.) The structure of the phase diagram is conform wite@=afions spelled out in [84]: Isentropic
curves as indicators of the paths of fluid elements duringlatic expansion "go through” the phase border
curve. The type IA FOPT (in the nomenclature of [84]) is readi by our model with parameter set A. Such
a choice leads to the phase diagram depicted in Fig. B.8 Wi&ICEP coordinates beifigep = 74 MeV and
Ucep= 278MeV. Typically (and in fact in all of the above cited refaces) one or more parameters of the
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Figure B.8: Contour plot of entropy per quark over the phaagrdm for parameter set A in Tab. 1. Also plotted are isqratsq(gray and
black curves) with their respectiwn values indicated. The black isentropes are those markéeiright panels of Figs. 4-7. The solid
white curves depicts the coexistence curve for the FOPTiledhite blob depicts the CEP.

Lagrangian or the vacuum masses are tuned keeping the ditterigo study the impact on various model
properties €.g.the CEP). We take a different point of view and work out belowick particular combinations
of parameters determine certain features of the phaseadiagr

Appendix B.3. Phase border curve

The phase transition features (proper FOPT curve and oressegion) are to a large extent determined
by the meson potential at zero meson fields. This follows frealizing that the fermionic contribution to
the pressure in the chirally restored phase is much largerttie fermionic and bosonic contributions in the
chirally broken phase. The difference is compensated gitlihee transition curve by a change in the average
meson potential switching fronfJ (o ~ (T)vac)) in the chirally broken phase tJ (0 < (O)vac)) in the
chirally restored phase. Thus

; rm_, 1 272
— Fermi + ms: — N 7
U ((0)vac)+Fermi + Bose terms U(0)+2Nch< + u + zu) (B.7)

<0>vac ((mvaC) (m\rlrac)z)

U(0) = 8 (mvac) _ (mvac)z
:(m\C/IaC)28<O'>vac (1 5m::Z . (%::)) ’ (B.8)
vacy2 2 vac vach
U ((O)vac) = (ms™) 8<0>vac <_8E$\Zac;2 +0 (2\2&104)) (®.9)

give as an estimate for the critical temperature w.r.t. thentical potentialc(u)

Tc2=7—]7:[2 (2\/@\/427'[2(U ((;)I\I:Ii(<0'>vac» +H4—15M2> ) (B.10)

Since we keegm?2°)2/(m¥°)2 small in order to maintain realistic scenarios one may agpéychiral limit
value ofU (0) — U ({(0)vac) = (M'29)2(0)vac?/8 as a good estimate. Although this estimate looks quiteecrud
and in the crossover region not even justified it is a sunpgigiaccurate result for the phase transition curve
(cf.Fig. B.9). Inspecting Fig. B.9 one notes that although the@hparameter®.g.(0)vac, individually vary

by a factor of two the form and position of the phase contoanges only slightly as long ag8/2%(0)yac is
kept fixed. Changingn2¢ has only small effect, too, at least if the difference betwd® critical chemical
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M2 )vac/ GeV? = 0.1156 (red), 0.09 (dark blue), 0.0676 (light blue) and 0.048 (violet). The arrows denoting the pseudocritical
temperature at vanishing densifyf,, and the critical chemical potential at vanishing temperatufeare calculated according to (B.12)

for the respective (same color) group of phase contours with fix8% o) yac.

potentialul at T = 0 and the vacuum quark masi$/3 is sufficiently small. (In Fig. B.9 its absolute value

is kept smaller than 100MeV.) Analyzing further parameter sets we find thatferm/2¢/3 > 100 MeV

the CEP disappearsf.left panel of Fig. B.11 for the dependence of the CEP temperature on this particular
parameter combination. We are able to trace the disappearance of the CEP back to the Fermi pressure, which
- for u0 — m¥a¢/3 being large enough - can compensate the difference of the meson potentials in both phases
and thus reduces the strength of the FOPT. [Ebr m‘2¢/3 < —100MeV there is the tendency to reduce the
curvature of the phase contour, because for a higher quark mass scale, the Fermi pressure gets less important
and the pressure in the chirally broken phase is more influenced by the pressure of the pions, which changes
the u-dependence of the phase border curve. To achieve more quantitative agreement for the pseudocritical
temperature at vanishing densify, and the critical chemical potential at zero temperatufeit is convenient

to scale the prediction according to (B.10) witt® = 0 with the result for some reference parameter set. In

Fig. B.9 we chose

T = 150MeV, oref — 330 MeV form@%(g)yac = 260 MeV?2. (B.11)

Inspecting (B.10) yield32, u0 0 /m¥ac(g)yac, thus such a scaling gives the estimates

0 vV ME(0)vac 0. MF(0)vac
Toc = 150MeV- 260MeV U ~ 330MeV- 260MeV (B.12)

In Fig. B.9 these estimates are depicted as small arrows and show good agreement with the actual positions of
the FOPT and the crossover curve.

Appendix B.4. Isentropes

The pattern of isentropes depends, as the CEP and the FOPT details, on the model parameters. Figure B.8
(for set A) exhibits an example where the CEP acts as an attractor for some isentropes. Such a pattern,
sometimes called “focusing effect” is discussed in [21, 85, 86] with the outcome of not being a necessarily
accompanying feature of a CEP. We emphasize that isentropes provide an interesting supplementing analytical
information beyond the plain FOPT curve and the CEP position in the phase diagram. On the FOPT curve
isentropes with differerg/n ratios can run partially on top of each other. This reflects the fact that the state
the model resides in is not uniquely defined on a FOPT but may differ in the phase decomposition. Physical
properties of the medium on the FOPT curve are therefore determined as the average (leagtteorolume
fraction) of the respective quantity over the coexisting phases. Such a procedure is applied also in Figs. 4-7
for the photon rates.

The behavior of the isentropes can be calculated analytically in the limits-ef0 as well asng — 0. In
the high temperature phase, the pressure of the model is well approximated by the pressure of an ideal massless
Fermi gas minus the meson potential at zero fielde = 0, 7= 0). For this, the entropy per baryon can be
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Figure B.10: Phase diagrams for parameter choices acgotaiparameter sets B (left panel) and C (right paredl)fab. 1.T is scaled by
the pseudocritical temperatufg at 4 = 0 andu by the critical chemical potential? at T = 0. (T2 and 0 are given in Tab. 1). For the
left panelm{2S/3u2 = 0.907 and for the right paneh/2S/3uf = 1.111. The black curves are the isentropes labeled by theesponding
ratio s/n. Shifting m?° relative tom@°f, changes the dynamics of the model qualitatively. Definitéthe FOPT curve (solid white
curve) and CEP (white dot) as for Fig. 4.

easily calculated leading to

s _,7rtar’(@) + 15tan(o)
n_ ™ 15m2tart (@) +15 (B13

with tan(@) = T/u. The meson contributions are suppressed because theyeatangie masses in the hot
and dense phase [15]. According to (B.13) for every choicg/otthe isentropes of an ideal massless Fermi
gas, and thus for the QMM in the high temperature phase viailarves with tafg)=const,i.e.straight lines
pointingtou =T = 0.

The isentropes & — 0 can be obtained by considering the various contributior{8i3) to the thermo-
dynamic potential. It turns out that the only non-vanishieign atT = 0 in (B.3) is the (averaged) fermion
pressure aft > mg° = miie/3. Approximating the Fermi distribution function for smalland(p — m) one
can show that all isentropes approach the pfint= 0, 1 = mg?°) in the phase diagram, at least if vacuum
fluctuations are not included (as in this work). In Appendix3 Be discuss the dependency of the phase tran-
sition curve w.r.t. the model parameters finding that to gdagxtent, the critical chemical potentialTat= 0
is determined by the the combinatioff?“(g)yac. Thus by tuning the model parameters (or equivalently the
vacuum values for the pion and quark masses as wét agc, cf.(51)) the endpoints of the isentropes and the
FOPT curve can be shifted relative to each other making thaefrftexible enough for the study of different
dynamical situationg,e.the adiabatic expansion paths are either “going trough"sticking to” the FOPT
curve, corresponding to types IA and Il in the nomenclatdif84). It turns out that within this model it is not
possible by parameter tuning to shift these endpoints mditgh-density phase. In Fig. B.10 this behavior is
visualized. In the left panel the isentropes approach thiet @o/ T, 1/ uf = (0,0.907) which is precisely the
point (0, my*°) as claimed for the case that?® < uO. In the right panetm© > uf and thus the isentropes all
merge with the FOPT at low enough temperatures.

Appendix B.5. Critical end point

To get a feeling for what determines the position of the CEfRiwithis model one may resort to the mean
field approximatioh. In this approximation the meson dependence of the pressardy via the expectation

IThere is a large difference between the CEP position wherpadng approximations with and without vacuum fluctuatif@).
However, when comparing approximations with and withouseoméc fluctuations the shift is much smaller and the qualéalependence
on the model parameters is similar.
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valuev of the sigma field:

PvFa (V) = — %(vz— 0)?>+Hv— 2(N£7T)CST /d3p {In (1+e(“’E)/T) +{u— —u}} , (B.14)
_ Ipvra
0= ov
2 . 2
:—/\(VZ—Z)V—i—H+2Nf2$//dp%(np(E)+nf(E)) (B.15)

with ngg = (1+exp{(E ¥ u)/T}) ! denoting the distribution functions for fermions (-) andifermions
(+). The occurrence of a FOPT and the position of the CEP aderstandable in view of (B.15). A FOPT
requires (at least) triple solutions of (B.15). One of thakuions has a smalt leading to a dominant fermion
term and corresponding to the chirally restored phase. ©Olwien is thermodynamically unstable, and the
third is relatively close to the vacuum value correspondintie chirally broken phase. For this solution, the
derivative of the meson potential gives important contidns.

At zero temperature, two cases can be distinguished: (i)f@imion massny = gv close to the critical
curve (or its estimate according to (B.10)) is so small thatfermionic integral in (B.15) is dominant already.
Then no FOPT occurs. In the opposite case, the mass canessithbller than the critical chemical potential
(case (iia) ) or greater (or equal) to it (case (iib) ). In bo#ses there is a FOPT. According to (B.10)
the critical curve bends toward the temperature axis arehdir at relatively small' the critical chemical
potential is smaller than the vacuum fermion mass. Thus ae&uds only case (iib) and regard it as an upper
limit for (iia). For (iib), substantial contributions to ¢hfermion integral origin from the edge of the Fermi
distributions or their proximityi.e.the range u — xT, 4 +XT) andx = 2...4. Since the minimal argument for
the Fermi distributions igy the contributing interval idmg, 4 + XT). If the vacuum quark mass is larger than
U +XT the fermion integral is too small to be of significance. Itiseru(T) according to (B.10) and =4
evidences fom3t > 1680 MeV (for the parameter se2°= 700 MeV,m/2¢ = 138 MeV, (T )yac = 924 MeV)
that the fermion integral is small for all temperatures @& ¢hitical curve yielding a FOPT surrounding the
chirally broken phase completely. This provides an impuarabservation: If the quark mass is sufficiently
large compared to the critical chemical potentiglT) whose values are in turn determined by the parameter
combinationm@%(g’)vac, the FOPT curve can be made to extend fromhaxis even to thd axis. On the
other hand, a large fermion mass means that the isentroplesrete critical curve (see discussion above),
which is typically not a desired feature and, if one needstispes to exit the critical curve at some non-zero
temperature, one cannot use a parameter set with arbitrayg fermion mass, but is limited to a mass less
than the critical chemical potential at zero temperatueggianined from (B.10)). Then, there is an upper limit
for the critical temperature corresponding to a CEPgp = ¢ (100 MeV) and correspondingcep.

With these considerations the behavior of the temperaligge of the CEP (.e.increasing the vacuum
fermion massn2s/3 increasedcep, cf.left panel of Fig. B.11) is understandable. The chemicatptidls of
the various critical points collapse to one line if one asssithat the quark mass at the phase contour is about
1/2 of its vacuum value (which works reasonable w&llright panel of Fig. B.11). As discussed in [79] the
QMM with linearized fluctuations exhibits a fuzzy structaethe CEP. It is therefore more appropriate to
speak of a “CEP-region” which is hidden under the white bliobsigs. 4-B.8 and B.10. Hence, we focus on
the FOPT and leave the CEP related issues untouched.

Appendix C. Matrix elements

We quote here the matrix elements implemented in the cdlonkpresented in Section 5. They have been
checked with the CompHEP package [87] and fulfill the coroesling Ward identities. With the incoming
momenta labeled bgq (quarks),pm (mesons) and the outgoing momenqga(quarks) and (photon) and the
Mandelstam variables definedgs (pq+ pm)?, t = (pg— 0q)? andu = (pq — k)? the fully (spin, polarization,
flavor) summed and averaged matrix elements for the Comptmepses are given below.
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Appendix C.1. Compton scattering-gqt— q+ Yy

1 10 [ s— u— 20 1 1
éZIx/quqvV:ezgz(—?(u?%*s:é)*?ﬁ”é((unﬁ>2+(sn%>2>
4 4 mi(s+u—mg) met 1 1 2
+§_§(un‘é)(sn‘%)+8tn€r<un‘%+sn‘%+tm,%))’ (C.1)

with ¥ |.#Z4r—.qy| denoting the spin, flavor and polarization summed matrix elements. The fa@ds due to
averaging over incoming flavors. For the case of massless pieris the broken phase in the chiral limit)

one finds
1 10 [ s— u— 4
éZ'J/fqnﬁqu _ e292<_§ (ur;ﬁ%+ S:g) +§>. (C.2)

Appendix C.2. Compton scattering<qg — q+ y

u—mZ  s—mp2  u-m)(s-md)
S+7mP—2m  _u+7mP—2mg

If the fermion masses are set to zero (corresponding to the restored phase in the chiral limit), this reduces to:

%ZL///ququZ = —g 2e2<(4mz—m§)< 4m? an? 4(2m? — mg) )

+2

(C.3)

1 5 m:  _s—2m2 _u—2mg
Ez|///q(qu|2 = —§g2e2<4u—g+2 ' 942 S "+4>. (C.4)

Appendix C.3. Annihilation¢ o, m— q+y

The annihilation matrix elements are related to the Compton matrix elements (C.1) and (C.3) by crossing
symmetries and can be obtained §y» t. The matrix elements for the anti-Compton processes (45) are
identical to those for the Compton processes (44).
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