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We show that the presence of a localized curvilinear defect drastically changes magnetic properties
of a thin perpendicularly magnetized ferromagnetic film. For a large enough defect amplitude a
discrete set of equilibrium magnetization states appears forming a ladder of energy levels. Each
equilibrium state has either zero or unit topological charge, i.e. topologically trivial and skyrmion
multiplets generally appear. Transitions between the levels with the same topological charge are
allowed and can be utilized to encode and switch a bit of information. There is a wide range of
geometrical and material parameters, where the skyrmion level has the lowest energy. As a result a
periodically arranged curvilinear defects generate a skyrmion lattice as the ground state.

PACS numbers: 75.10.Hk, 75.10.Pq, 75.40.Mg, 75.60.Ch, 75.78.Cd, 75.78.Fg

Introduction.—An isolated magnetic chiral skyrmion is
a localized topologically nontrivial excitation, which may
appear in a perpendicularly magnetized ferromagnetic
film, when the Dzyaloshinskii-Moriya interaction (DMI)
is present [1–3]. During the last years isolated skyrmions
have been widely considered as data carriers in spintronic
data storage and logic devices of a racetrack configuration
[3–8]. Besides nanotracks [3–5, 9] individual skyrmions
were obtained in nanodisks [5, 10, 11]. Due to nonlocal
magnetostatic effects in confined magnetic objects, the
skyrmion state can have lower energy as compared to
the topologically trivial homogeneous state [5, 10].

In contrast to individual skyrmions, their periodic 2D
arrays, i.e. skyrmion lattices [12–16] are relevant for elec-
tronics relying on topological properties of materials. In
this regard, dense lattices of small-sized skyrmions fa-
cilitate the signal readout in prospective spintronic de-
vices by enhancing the topological Hall effect [17–20].
Typically, skyrmion lattices are in-field low temperature
pocket phases [12–15] which hinder their application po-
tential.

Here we demonstrate that magnetic skyrmion can be
pinned on a localized curvilinear defect and can have two
or more equilibrium states with very different skyrmion
radius, i.e. one deals with a multiplet of skyrmion states.
In this context, a doublet of skyrmion states can be used
to represent a single bit of information, see Fig. 1(b).
This unique feature of a skyrmion on a curvilinear defect
paves the way towards a new memory concept which is
based on immobile skyrmions.

It is remarkable that when the radii of the skyrmion
and the curvilinear defect are comparable, the energy
of the skyrmion state can be the lowest one within the
class of radially symmetrical solutions. In this way we

demonstrate the possibility to realize the lowest energy
skyrmion states on a curvilinear defect relying on local
interactions only without the need of any magnetic field
or magnetostatic effects. As a consequence, a periodically
arranged lattice of the defects can generate a skyrmion
lattice as a ground state, see Fig. 1(c). It is important
that such a skyrmion lattice exists in zero magnetic field
and for a temperature regime, which allows individual
skyrmions, e.g. for room temperatures [9, 21]. In con-
trast to the planar case [22, 23] the proposed zero-field
lattice does not require four-spin interactions, it can have
an arbitrary symmetry and its length scale can be much
larger than atomic one. The proposed static reconfig-
urable lattice of skyrmions opens new exciting perspec-
tive for the manipulation and control of spintronic de-
vices relying on the topological Hall effect [17–20].

Model.—Similarly to the well studied planar case
[2, 25–29] the form of a chiral skyrmion is mainly de-
termined by competition of three local interactions: ex-
change, easy-normal anisotropy and DMI. Thus the en-
ergy functional of our model reads

E = L

∫ [
AEex +K(1−m2

n) +DEd

]
dS, (1)

here L is the film thickness and the integration is per-
formed over the film area. The first term of the in-
tegrand is the exchange energy density with Eex =∑
i=x,y,z(∂im)2, and A being the exchange constant.

Here m = M/Ms is the unit magnetization vector
with Ms being the saturation magnetization. The sec-
ond term is the easy-normal anisotropy where K > 0
and mn = m · n is the normal magnetization compo-
nent with n being the unit normal to the surface. The
exchange-anisotropy competition results in the magnetic
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FIG. 1. Individual skyrmion profiles and skyrmion lattices. (a): Equilibrium magnetization states of a Gaußian concave
bump (A = −3, r0 = 1 and d = 1) are shown by means of vertical cross-sections. Arrows show the magnetization distribution
and color corresponds to the normal component mn = cos Θ. The corresponding solutions Θ(s) of Eq. (3) are shown in the
insets I, II, I′ and II′. Vertical axis E = E/Ebp shows distribution of the corresponding energy levels obtained from (S8) with
Ebp = 8πAL being energy of the Belavin-Polyakov soliton [24]. (b): Two skyrmion states with big (I) and small (II) radii are
shown on the same bumps arranged in a square lattice. These skyrmion solutions can be considered as logical states “1” and
“0” of an information bit. (c) Skyrmion lattice as a ground state.

length ` =
√
A/K, which determines a length scale of

the system. The last term in (1) represents DMI with
Ed = mn∇ ·m −m ·∇mn. Such a kind of DMI origi-
nates from the inversion symmetry breaking on the film
interface; it is typical for ultrathin films [28, 30, 31] or
bilayers [32], and it results in so called Néel (hedgehog)
skyrmions [5, 33]. For a surface of rotation with a ra-
dially symmetrical magnetization distribution the same
type of DMI effectively appears in the exchange term
due to curvature effects [34–36], thus a direct competi-
tion takes place. This results in a skyrmion solution of
Néel type. Another types of DMI may lead to a spiral-
like skyrmion, which are intermediate ones between Néel
and Bloch types. This case would require a more bulk
analysis.

In our model we disregard nonlocal magnetostatic ef-
fects. Still, in stark contrast to the planar case, this is not
required for the realization of a skyrmion lowest energy
state [37]. We also assume magnetization homogeneity
along the normal direction, which is valid for L . `.

We now consider a curvilinear defect of the film, which
is formed by a complete revolution of the curve γ = rex+
z(r)ez around z-axis – a bump. The parameter r ≥ 0
denotes the distance to the axis of rotation. Curvilinear
properties of the surface at each point are completely

determined by two principal curvatures k1 and k2, see
the explicit forms in Sec. S.I in [38].

The constrain |m| = 1 is utilized by introducing the
spherical angular parameterization m = sin θ cosφes +
sin θ sinφeχ + cos θn in the local orthonormal basis
{es, eχ, n}, where es is unit vector tangential to the
curve γ, and eχ = n× es is the unit vector in azimuthal
direction, see Fig. S1. Expressions for Eex and Ed for a
general case of a local curvilinear basis were previously
obtained in Ref. 34 and Ref. 36, respectively. Without
edge effects (e.g. for a closed surface or for an infinitely
large film) the DMI energy density can be reduced to the
form

Ed = sin2 θ [2(∇θ · ε) + H] , (2)

where ε = cosφes + sinφeχ is normalized projection of
the vector m on the tangential plane and H = k1 + k2 is
the mean curvature. Expression (2) clearly shows the ap-
pearance of an effective DMI-driven uniaxial anisotropy
proportional to the mean curvature. It has the same
curvilinear origin as the recently obtained exchange-
driven anisotropy and DMI [34, 35]. Depending on sign
of the product DH this anisotropy can be of easy-normal
(DH > 0) or easy-surface (DH < 0) type [39].

One can show (see Sec. S.II) that the total energy (1)
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is minimized by a stationary solution m = sin Θes +
cos Θn, where function Θ(s) ∈ R is determined by equa-
tion

∆sΘ− sin Θ cos Θ Ξ + r′r−1(d− 2k2) sin2 Θ = H′. (3)

Here and below all distances are considered dimensionless
and they are measured in units of the magnetic length
`, the prime denotes the derivative with respect to the
natural parameter s – the arc length along γ. The ra-
dial part of the Laplace operator reads ∆sf = r−1(rf ′)′.
The function r(s) unambiguously determines the surface
and its curvilinear properties, see Sec. S.I. The dimen-
sionless DMI constant d = D/

√
AK is the only ma-

terial parameter, which controls the system, and Ξ =
1 + r−2r′2 − k22 + dH.

It is important to note that any solution of Eq. (3)
and its energy (S8) are invariant with respect to the
transformation Θ → Θ + π, i.e. any solution is doubly
degenerate with respect to the replacement m → −m
[40]. Consequently, one can fix the boundary condition
Θ(0) = π at the bump center without loss of general-
ity and consider different boundary conditions at the in-
finity: Θ(∞) = nπ with n ∈ Z. The same invariance
takes place for the transformation k1 → −k1, k2 → −k2,
d → −d, Θ → 2π − Θ. This property is reflected in the
symmetry of the diagram of skyrmion states, see Fig. 3.

Following Ref. 36 one can show that topological charge
(mapping degree to S2) of such a radially symmetrical
solution on a localized bump reads (see Sec. S.III) Q =
1
2 [cos Θ(∞)− cos Θ(0)]. It means that only values Q = 0
(for odd n) or Q = 1 (for even n) are possible. A state
with Q = −1 appears under the transformation m →
−m applied to the state with Q = 1.

Due to the presence of the right-hand-part driving term
in Eq. (3) the trivial solutions Θ ≡ 0, π (i.e. m = ±n)
are generally not possible. It means that even for large
anisotropy the magnetization vector deviates from the
normal direction, except surfaces with H = const, e.g.
planar films, spherical and minimal surfaces. Such a pre-
diction was previously made in Ref. 34. An analogous
driving appears in 1D curvilinear wires and results in cur-
vature induced domain wall motion along the curvature
gradient [41]. Thus, Eq. (3) makes one expect a lead-
ing role of the mean curvature gradient in the analogous
curvature induced skyrmion motion.

In the planar film limit k1 = k2 ≡ 0, H ≡ 0 and
r(s) = s. In this case Eq. (3) is transformed into the
well-known [2, 26, 29, 33] chiral skyrmion equation. Such
a planar system is controlled by the only parameter d.
There is the critical value d0 = 4/π, which separates
two ground states, namely the uniform state m = n
for the case |d| < d0, and helical periodical state for
|d| > d0 [2, 26, 29, 33]. For the case |d| < d0 the planar
form of Eq. (3) has a stable topological (Q = 1) solution
– a skyrmion, which has the following features: (i) for
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FIG. 2. Energies of different solutions. Solid lines I-
IV and dashed lines I′, II′ show energies (S8) of topological
non-trivial (skyrmion) and trivial states, respectively for the
bump with A = 2 and r0 = 1. Energy of the planar skyrmion
is shown by the thin line P. States I, II, I′, II′ are similar to the
same name states in Fig. 1. States III and IV correspond to
skyrmions whose radius much exceeds the lateral bump size,
see Figs. S3, S6. The background filling corresponds to the
number of stable skyrmion states, see also Fig. 3.

a given value of d the skyrmion solution is unique; (ii)
the skyrmion energy is always higher than energy of the
uniform perpendicular state, i.e. the planar skyrmion is
an excitation of the ground state. As we show below,
these well-known properties are violated in the general
case of the curvilinear defect.

Gaußian bump.—As an example, we consider a class of
localized curvilinear defects in form z(r) = Ae−r

2/(2r20).
Here amplitudes A > 0 and A < 0 correspond to bumps
that are convex or concave, respectively, and r0 deter-
mines the bump width. In Figs. 1(a) we demonstrate
stable equilibrium solutions of Eq. (3) for certain values
of parameters. There is a number of principal differences
as compared to the planar case:
(i) Topological (Q = 1) as well as trivial (Q = 0) so-
lutions are generally not unique: for given values of ge-
ometrical and material parameters a set of equilibrium
magnetization states can appear with a ladder of energy
levels. This makes the curvilinear defect conceptually
similar to a quantum well with a finite number of dis-
crete energy levels. However, in contrast to the quantum
systems the transitions between levels with the same Q
are only allowed. Such a transitions are expected to be
accompanied by emission or absorption of magnons.
(ii) The lowest energy level can be topological non-trivial
(Q = 1). It is remarkable that this effect appears due to
the local interactions only. As a consequence, curvilinear
defects arranged in a periodical lattice generate a zero-
field skyrmion lattice as a ground state of the system, see
Fig. 1(c).

Let us consider skyrmions of small and big radii, which
are shown in the Fig. 1 as states I(“1”) and II(“0”), re-
spectively. Their radii [42] are close to extrema points of
the Gauß curvature K = k1k2, which plays an important
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FIG. 3. Diagram of skyrmion states for Gaußian bump
with r0 = 1. In the white area the skyrmion solutions does
not exist. Number of any other area (see legend) coincides
with the number of stable skyrmion solutions. At least one
skyrmion solution exists within the gray area ‘0’, however
the bump center is a position of unstable equilibrium for it.
Within the other areas the corresponding number of skyrmion
are pinned at the bump center. The horizontal dashing shows
areas where the lowest energy level is skyrmion one. Star
marker shows parameters of Fig. 1. The solutions spectra for
points a-f are presented in Sec. S.V. Dotted horizontal line
A = 2 corresponds to Fig. 2.

role in a coupling between topological defects and curva-
ture [43, 44]. On the other hand, the radius of skyrmion
II is of one order of magnitude smaller than radius of the
skyrmion, which is stabilized by the intrinsic DMI in a
planar film for the same value of d. Thus, the small ra-
dius skyrmion is stabilized mostly by the curvature effects
[36, 45–47], while the big radius skyrmion is stabilized
due to the simultanious action of the intrinsic DMI and
curvature. Structures similar to the big radius skyrmions
were previously observed experimentally in Co/Pd and
Co/Pt multilayer films containing an array of curvilin-
ear defects in form of spherical concavities [48, 49] as
well as convexes [50]. The topologically trivial state I′

can be treated as a joint state of small and big radii
skyrmions, which compensate topological charges of each
other. And the state II′ is an intermediate one between
uniform m = −ez and normal m = −n states, what re-
flects the competition between exchange and anisotropy
interactions. Note that states I and I′ as well as states II
and II′ differ in presence or absence of the small-radius
skyrmion at the bump center. In Fig. 1(a) we show only
stable solutions with ∆Θ = |Θ(∞)−Θ(0)| ≤ π. Solutions
with the larger phase incursion, so called skyrmioniums
[29, 51] or target skyrmions [10, 27, 33, 52, 53], are in
principle also possible.

The appearance of skyrmions of type I (big radius)
and type II (small radius) is a common feature of the
considered curvilinear defects, and takes place for con-
cave as well as for convex geometries. In order to illus-
trate the last statement we show the energies E(d) for all
equilibrium states, which appear for a convex bump, see

Fig. 2. For the given geometrical parameters we found
numerically all solutions of Eq. (3) with ∆Θ ≤ π for
each value d. Then a stability analysis (see Sec. S.IV)
was applied for each of the solutions. Finally, four stable
topological (skyrmion) solutions (lines I-IV) and two sta-
ble non-topological solutions (lines I′ and II′) are found.
The magnetization distributions, that correspond to all
of these solutions, are shown in Sec. S.V. Lines I and II
correspond to the considered above big (“1”) and small
(“0”) radius skyrmions, respectively. Remarkably these
states can have equal energies – point b in Fig. 2. This
makes the proposed application for the storing of a bit of
information more practically relevant: switching between
states “0” and “1” can be easily controlled by application
of pulse of magnetic field directed along or against the
vertical axis.

As well as for the concave geometry (Fig. 1) the big ra-
dius skyrmion on a convex bump can have the lowest en-
ergy in the system (the range d < d2). It is important to
note that there is a range of parameters −4/π < d < d1
where a skyrmion on a bump has lower energy than a
planar skyrmion for the same d. This implies that flex-
ible enough planar films can spontaneously undergo a
skyrmion induced deformation. Such a soliton-induced
magnetic film deformation was earlier predicted for cylin-
drical geometries [54–58].

In order to systematize possible skyrmion solutions,
that can appear on Gaußian bumps, we build a diagram
of skyrmion states, see Fig. 3. We apply the same method
as for the case of Fig. 2, but restricting ourselves with
skyrmion solutions. The following general features can be
established: (i) The range of skyrmions existence widens
with increasing of the bump amplitude. (ii) For a wide
range of parameters (gray area ‘0’) the skyrmion centered
on the bump experiences a displacement instability be-
cause the bump center is a position of unstable equilib-
rium. (iii) In the vicinity of the critical value d = ±4/π
there is a wide area of parameters (the dashed area),
where the skyrmion state has the lowest energy in the
class of radially symmetrical solutions.

Conclusions.— We have generalized the skyrmion
equation for the case of an arbitrary surface of rotation.
Considering specifically a Gaußian bump we have shown
that its skyrmion solution is generally not unique — a dis-
crete ladder of equilibrium skyrmion states appears. We
propose to use a suitably shaped curvilinear defect with
a doubly degenerate skyrmion state as carrier of a bit of
information. We also predict the effect of spontaneous
deformation of an elastic magnetic film under skyrmion
influence. Finally, we found a wide range of parameters,
where a skyrmion pinned on the bump has lower energy
then other possible states. This feature can be used for
generating of a ground state zero-field skyrmion lattice.
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[32] Hongxin Yang, André Thiaville, Stanislas Rohart, Albert
Fert, and Mairbek Chshiev, “Anatomy of Dzyaloshinskii-
Moriya interaction at Co/Pt interfaces,” Phys. Rev. Lett.
115, 267210 (2015).

[33] S. Rohart and A. Thiaville, “Skyrmion confinement
in ultrathin film nanostructures in the presence of
dzyaloshinskii-moriya interaction,” Physical Review B
88, 184422 (2013).

[34] Yuri Gaididei, Volodymyr P. Kravchuk, and Denis D.
Sheka, “Curvature effects in thin magnetic shells,” Phys.
Rev. Lett. 112, 257203 (2014).

[35] Denis D. Sheka, Volodymyr P. Kravchuk, and Yuri Gai-
didei, “Curvature effects in statics and dynamics of low
dimensional magnets,” Journal of Physics A: Mathemat-
ical and Theoretical 48, 125202 (2015).

[36] Volodymyr P. Kravchuk, Ulrich K. Rößler, Oleksii M.
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