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Abstract 

The Bushveld Complex, the largest layered mafic-ultramafic intrusion worldwide, is host of 

numerous, laterally continuous and chemically similar chromitite seams. Based on their stratigraphic 

position the seams are subdivided into a lower, middle and upper group (LG, MG and UG). Within 

these groups the seams are numbered successively – from the base to the top of each group. 

Attempts of discriminating between single seams based on their composition have failed – mainly 

due to the significant overlap of compositional fields, e.g. of chromitite mineral assemblages and 

chromite mineral chemistry between (neighboured) seams. In this contribution a tailored and easy to 

use multivariate classification scheme for the chromitite seams is proposed, based on a 

comprehensive classification routine for the LG and MG chromitites. This routine allows a clear 

attribution with known uncertainty of eight distinct chromitite seams. The study was carried out at 

the Thaba Mine, a chromite mine located on the western limb of the Bushveld Complex. The 

classification is based on a large geochemical database (N = 1205) from Thaba Mine. It comprises of a 

hierarchical discrimination approach relying on linear discriminant analysis and involves five distinct 

steps. Using default homogeneous prior probabilities, classification results are excellent for the first 

discrimination steps (LGs vs. MGs, 97 %; LG-6 vs. LG-6A, 94 %) and very good for the following steps 

(MG-1/2 vs. MG-3/4, 86 %; MG-1 vs. MG-2, 92 %; MG-3 vs. MG-4, 93 %; MG-4 vs. MG-4Z, 97 %; MG-4 

vs. MG-4A, 88 %). The classification scheme was tested using the same sample set as a training set 

with unknown composition. Overall classification results for unknown samples belonging to one of 

the seams are 81 %. Hence, the classification scheme is at least valid for the Thaba mine. The 

approach may, however, be extended across the entire Bushveld, provided that an appropriate 

geochemical data set is available. 
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Introduction 

The Bushveld Complex, the world’s largest layered mafic-ultramafic intrusion, accounts currently 

for 45 % of global annual chromite ore production and contains 40 % of global chromite reserves 

(USGS 2018). Besides vast resources of chromite, the Bushveld Complex also contains the largest 

global resource of platinum-group elements (PGE) as well as significant resources of Ni and Cu (e.g., 

von Gruenewaldt 1977; Maier et al. 2013). The chromite resource of the Bushveld Complex is hosted 

by a series of laterally continuous and chemically similar chromitite seams (e.g., Fourie 1959; 

Naldrett et al. 2012) in the Critical Zone of the ultramafic and mafic rocks of the Rustenburg Layered 

Suite (RLS) (Maier et al. 2013 and references therein, Cawthorn 2015 and references therein). The 

chromitite seams are numbered according to their stratigraphic position within the Critical Zone (CZ) 

from the base upwards and are generally subdivided into lower, middle and upper group (LG, MG 

and UG) chromitites. In this way, the Lower Group ranges from the LG-1 to LG-7; the Middle Group 

comprises of MG-1, MG2a,b,c, MG-3, MG-3a, MG-4, MG-4a and the Upper Group consists of the UG-

1, UG-2 and, in some areas, the UG-3 and UG-3a seams (Schürmann et al. 1998). In addition, the CZ 

can be further subdivided into the Lower Critical Zone (LCZ) and the Upper Critical Zone (UCZ), which 

are separated by the first appearance of cumulus plagioclase between the middle group chromitites 

MG-2 and MG-3 (Veksler et al. 2015 and references therein). 

The present contribution provides a novel multivariate geochemical classification scheme to 

correctly identify chromitite seams of the Bushveld Complex. This approach is introduced and tested 

on a test case that includes eight distinct chromitite seams at the Thaba Chromite Mine. It uses a 

hierarchical approach relying on linear discriminant analysis and weighting prior probabilities. 

This approach augments the current practice in exploration or exploitation of chromite layers (the 

terms chromitite “layer” and “seam” are used interchangeably in this study) identifcation by their 

stratigraphic position, the nature of interlayer silicates and partly on the thickness of the chromitite 

(Kinnaird et al. 2002).  



Despite its apparent simplicity, the subdivision of the seams into different groups obscures a 

somewhat greater complexity. For example, the MG-1 may locally comprise of multiple layers of 

chromitite, as at Tweefontein mine (Kinnaird et al., 2002), and in the eastern Bushveld, the MG-1 

may be underlain by a chromitite layer referred to as MG-0 (Kinnaird et al., 2002). Furthermore, 

possible bifurcations of individual chromitite layers, such as the UG-1 in the Dwars River area (e.g., 

Voordouw et al. 2009), leads to variability in the number of chromitite seams observed at any given 

locality. Tracing seams over large distances within the Bushveld can also be challenging. Although 

single seams can be followed for tens of km in the both eastern and western lobes of the Bushveld 

Complex (Cawthorn and Webb (2001) implied continuity of individual layers over more than 300 km), 

in some areas, chromitite horizons are missing or correlation between two chromitite seams may be 

tenuous or even impossible, depending largely on the outcrop situation (Kinnaird et al. 2002). 

Furthermore, it is well-known that not all chromitite seams occur across the entire Bushveld 

Complex; indeed many are restricted to certain “compartments” (Naldrett et al. 2012). 

Still, there are some gradual trends in (i) chemistry, (ii) mineral assemblage and (iii) mineral 

chemistry that have been identified in previous studies of the chromitite layers of the CZ. These 

include: (i) Chromite seams show a systematic chemical variation from the bottom to the top 

chromitite layer in terms of the Cr:Fe ratio and the abundance and proportion of PGE. Amongst 

others, Hatton and Von Gruenewaldt (1987) as well as Schürmann et al. (1998) showed a general 

decrease in chromium concentrations, reflected in a decreasing Cr/Fe ratio stratigraphically upwards 

from 1.6 in the LG-6 down to <1.3 in the UG-2. PPGE (Pt, Pd, Rh) contents display a progressive and 

substantial increase upwards in the CZ. The IPGE (Os, Ir, Ru) values, in contrast, remain broadly 

constant or rise only slightly (e.g., Naldrett and von Gruenewaldt 1989; Scoon and Teigler 1994). 

Naldrett et al. 2009 noted that the Pt/Ru (and Pd/Ru) ratio is highly variable in all major chromitite 

seams, but that Ru/Ir and Ru/Rh ratios are relatively consistent, suggesting that Pt and Pd are 

controlled by different concentration mechanisms than the IPGE and Rh.  

(ii) The mineralogy of the chromitite seams and their associated accessory minerals provide 

further information for the differentiation and recognition of different seams. The gradual systematic 



variation of chromitite composition with stratigraphic elevation is reflected in mineral assemblages 

and chromite mineral chemistry. In general, chromite exceeds 50 wt% (up to 95 wt%) in all 

chromitite seams; associated minerals, however, change from predominant orthopyroxene in the 

lowest LG chromitites to orthopyroxene and plagioclase in the MG chromitites and finally to 

plagioclase with minor orthopyroxene in the uppermost UG chromitites (Bachmann et al. 2018, 

Kinnaird et al. 2002). Orthopyroxene oikocrysts and poikilitic texture of pyroxene enclosing euhedral 

to subhedral chromite chadacrysts are common features in the seams (Kaufmann et al. 2018). 

Accessory minerals include amphibole, clinopyroxene, biotite/phlogopite, chlorite, talc, serpentine, 

quartz, and carbonates, base metal sulphides (BMS) and platinum-group minerals (PGM) (e.g., 

Bachmann et al. 2018).  

(iii) Naldrett et al. (2009) document systematic variation mineral chemistry of chromite across the 

RLS stratigraphy. They observed two trends: 1) increasing Cr/(Cr + Al) and decreasing Mg/(Mg + Fe2+) 

from LG-1 to LG-4 (trend A), and 2) decreasing Cr/(Cr + Al) still associated with decreasing Mg/(Mg + 

Fe2+) from LG-5 to MG-2 (trend B). 

Despite these well recognized trends, all attempts of robust discrimination between different 

chromitite seams suffer from (i) considering less variables than available (e.g., Cr/Fe ratio, various 

PGE ratios), (ii) subjective correlation of seams largely based on interlayer silicates and thickness of 

chromitites, (iii) significant overlap of compositional fields, e.g. of chromitite mineral assemblages 

and chromite mineral chemistry between (neighbouring) seams, (iv) added complexity due to post 

magmatic processes, such as hydrothermal alteration or oxidation (Junge et al. 2015, Oppermann et 

al. 2017).  

To overcome the complications listed above, an enhanced chromitite discrimination scheme 

should be built on a comprehensive database and appropriate multivariate statistics (Tolosana-

Delgado et al. 2017). The resulting classification should be applicable either in restricted 

‘compartments’ of the Bushveld or at least locally within a deposit. In this study we propose such a 

classification scheme based on linear discriminant analysis using (i) a large database covering a 

significant number of chromitite seams, and (ii) considering the compositional nature of whole rock 



chemical analyses of main element oxides and PGE. Output data is in the form of classification 

probabilities, hence automatically assessing the uncertainty on the classification and the seam 

correlation. The model also effectively identifies the main separation variables between distinct 

seams within the dataset. Furthermore, the results are used to test the viability of the scheme and 

simplify it, whenever possible. Finally, possible implications for the Bushveld Complex in terms of 

genesis and/or post-magmatic modification are briefly considered. The developed classification tool 

might be useful for several purposes, such as exploration for PGE and/or chromite deposits, but also 

mine-scale mapping and metallogenetic studies (e.g. Kaufmann et al. 2018).  

 

Analytical methods: sampling and QAQC 

As a case study, we used a comprehensive data set comprising chromitite samples from the Thaba 

Mine, located on the western limb of the Bushveld Complex. The operation is run by Cronimet, S.A. 

(Pty) Ltd., predominantly exploiting the LG-6/-6A and the MG chromitite layers. The LG-6 and LG-6A 

occur in close vicinity to each other and generally comprise a single seam with minor pyroxenite 

partings. The LG-7 is not developed as a single seam but as chromite stringers and less persistent 

chromite-bearing intervals, which cannot be traced for longer distances along strike or down dip. The 

Middle Group succession present at the Thaba Mine includes five main seams, named from the base 

upwards MG-1, MG-2, MG-3, MG-4 and MG-4A. While the MG-1 comprises an individual seam, the 

MG-2 is split by a pyroxenite parting up to 1 m in thickness in roughly 30 % of the cases. The MG3 is 

usually a single seam that locally contains multiple thin pyroxenite partings. The MG-4 has a similar 

appearance, often with numerous pyroxenite partings, it is overlain by approximately 2 m of barren 

pyroxenite; the MG-4, in turn, is closely associated with the minor seams MG-4Z (at the base of the 

MG-4) and MG-4A (just above the MG-4). A couple of minor seams also appear in the MG at Thaba 

mine e.g. the MG-3A. Further detailed information about the microstructure and the mineral 

assemblage of the studied chromitites, especially LG-6, LG-6A, MG-1 and MG-2 are described in 

Bachmann et al. (2018, 2019).  

 



Sampling and structure of the data set 

The data set used in this study was provided by Cronimet SA (Pty) Ltd., comprising more than 

1200 chromitite samples and covers 14 distinct chromitite seams (LG-1 – LG-7, MG-1 – MG-4, LG-6A, 

MG-4A, MG-4Z) from Thaba mine. The data shown are restricted to massive chromitite, excluding 

footwall or hanging wall seams, but analyses may contain fine (up to a couple of cm-thick) silicate 

intercalations, pyroxenite partings, pyroxene oikocrysts, etc. These remain in the data set in order to 

represent the whole range of possible chromitite compositions within the mine. Furthermore, the 

depths of the assayed samples range from ca. 3 m to ca. 620 m below present day land surface, i.e. 

the data set includes samples affected by modern weathering – marked by alteration of silicates and 

oxidation of trace sulphide minerals. In accordance to literature (Junge et al. 2015), the weathered 

zone – or zone affected by supergene alteration – at Thaba Mine is restricted to intersections <50 m 

below present day land surface. Using 50m depth as a threshold suggests that a large part of the 

sample set (N = 370) considered here may have been affected by weathering.  

During exploration and exploitation at Thaba Mine the composition of the chromitite seams is 

routinely constrained by only six major element oxides (Cr2O3, FeO, Al2O3, MgO, SiO2, CaO) and P. In 

addition, the company data base contained values for Au and PGE concentrations, including Pt, Pd, 

Rh, Ru and Ir. The database was filtered beforehand for any missing values (such as “not analysed” or 

“below the detection limit”) among the major element oxides and the PGE. Because of 

incompleteness of data 83 samples were discarded. Due to limited available information all seams 

represented by less than 30 samples with complete records were not further considered. This 

included the seams LG-1 – LG-5 and LG-7 (totalling N=12 cases). The remaining 1110 chemical 

analyses contain data for eight different chromitite seams, namely (stratigraphically upwards) the LG-

6, LG-6A, MG-1, MG-2, MG-3, MG-4Zero (MG-4Z), MG-4 and MG-4A.  

Because only massive chromitite was analysed, multiple analyses of the same chromitite seam 

occur within the dataset. For example, wherever lower and upper MG-2 seams were observed, a 

chemical assay was carried out for each of these chromitites. This routine was also applied to the 

MG-3 and MG-4 with respect to cm- to dm-thick pyroxenite parting intersections. This approach 



results in up to eight chemical assays for some of the MG-3 chromitites with analysed intervals 

ranging from 5 cm up to 200 cm. Similar results are available for MG-4, with up to 11 analyses per 

seam, with sample intervals ranging from 4 to 150 cm. Detailed information about the analyses per 

seam is provided in Table 1. For improvement of classification results we combined all assays 

belonging to a single seam intersection for the MG-3 and MG-4/4A/4Zero weighted by the length of 

the analysed section (Dataset A). For comparison the full number of assays was used for the 

classification scheme (Dataset B; appendix A). Even though results for Dataset B might be more 

robust, as the effect of aggregating data for Dataset A is known to reduce the variability (support 

effect), which could falsely reduce the uncertainty on the classification (Chilès and Delfiner, 1999), 

Dataset A consists of comparable analyses of full chromitite analyses over a succession of eight 

seams. Therefore, it reduces bias caused by the sampling procedure and represents a realistic 

scenario, e.g. of a drilling program within an exploration campaign. Nevertheless, the implications on 

the discrimination scheme using Dataset B will be evaluated as well. Working with Dataset B is 

expected to permit the application of the classification scheme with only limited amount of 

chromitite seams, for example in field mapping and sampling campaigns. 

 

Analytical Methodology 

Chemical data including major element oxides analyses of four of the chromitite seams from Thaba 

were recently published in Bachmann et al. (2019). Therein, possible sources of errors and the quality 

of the dataset were discussed for the LG-6, LG-6A, MG-1 and MG-2 seams. Identical reasoning and 

discussion was extended to the comprehensive data set used in this study. It was shown that 

Cronimet SA (Pty) has conducted a comprehensive program of quality control and quality assurance 

(QAQC) for all core samples, well comparable to best practice approaches (e.g., Abzalov 2008 and 

references therein). The assay data was sourced by Cronimet from two commercial laboratories, 

Setpoint Laboratories (Johannesburg) and METCHEM Laboratories (Johannesburg), within a time 

frame of almost four years during the duration of exploration campaigns. In both laboratories, major 

element analysis was carried out by X-ray fluorescence spectrometry (XRF) on fused glass beads. 



Randomly inserted un-mineralized leuconorite samples were used as blanks and display Cr2O3 and 

FeO concentrations below the set threshold limit (<1% Cr2O3; <10% FeO). Quarter core field duplicate 

samples were used as blind duplicates and show relative deviations of less than 10 %. Internationally 

certified standards of South African chromite ores (SARM8 and SARM9) were randomly inserted to 

monitor Cr2O3 and FeO accuracy at Setpoint Laboratories, using an acceptance criterion of ±3σ. 

Overall, all analyses were reported within the acceptance criterion but FeO tended to be assayed at a 

lower concentration than its certified mean, with one analyses close to the 3σ acceptance criterion. 

Inconsistencies in the data were related to sample batches that were sent to different commercial 

laboratories during an extended period of time. While these minor inconsistencies may cause 

inappropriate results in “intra-seam” observations, “inter-seam” investigations are not significantly 

affected. 

All PGE analyses were carried out by SetPoint Laboratories. Table 2 displays a statistical summary for 

the data. The PGE measurements contain several outliers but the data set is consistent without 

conspicuous statistical anomalies. The detection limit for all PGE concentrations was reported as 

0.01 ppm. The quality of the PGE measurements can be assessed by duplicated measurements of the 

same sample. At first, the differences 𝑋𝐷 between the two results, 𝑋1 and 𝑋2, of a duplicated 

measurement are calculated by𝑋𝐷 = 𝑋1 − 𝑋2. The uncertainty 𝑋𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 is calculated by: 

𝑋𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑉𝑎𝑟[𝑋𝐷] + 𝐸[𝑋𝐷]
2,  (I) 

where 𝐸[𝑋𝐷] and 𝑉𝑎𝑟[𝑋𝐷], respectively, denote the average and variance of these differences. The 

PGE data set used in this study contains two types of duplicated measurements. Firstly, a random 

sample is duplicated and measured a second time (called umpires). The complete data set contains 

17 of these duplicated measurements. Secondly, certified standards provided by African Mineral 

Standards as well as and un-mineralized leuconorite, acting as blanks, were randomly inserted into 

the sample batch as unknown to the analytical laboratory. Ninety chemical analyses were carried out 

on four different certified standards (AMIS0074, AMIS0075, AMIS0132 and AMIS0207). The 

measured results are compared to the reference values for the standard samples given in Table 3. 



Table 4 displays the obtained uncertainties for the PGE. Since the uncertainties are based on 

measurements of the same sample, in the ideal case these multiple measurements should obtain the 

same result and, thus, the uncertainties should be zero. Values larger than zero reflect the analytical 

uncertainties of the measurements. To be able to make statements about the quality of the PGE 

measurements used in this study, the calculated uncertainty values were compared to the data 

variances. A high data quality can be assumed if the uncertainty values are significantly lower than 

the variances in the data. For all elements, the uncertainty values are at least one order of magnitude 

lower than the variances in the data (table 2, column “Var.”). The uncertainties based on the 

duplicate measurements are slightly lower (except for Rh) than the uncertainties based on the 

standard sample measurements. The quality of the PGE measurements is appropriate for the aim of 

this study, since both types of uncertainties show similar results in spite of being based on different 

types of duplicate measurements. The uncertainty based on the duplicate samples may be an 

indicator for a nugget effect if it is significantly larger than the uncertainty based on standards. This is 

not the case for the used data, offering higher certainty that the results of this study are based on 

representative samples of the chromitite volumes sampled. 

 

Classification strategy 

In order to define an appropriate classification strategy, a first evaluation of the dataset is carried 

out, based on a series of box- and whisker plots, spider plots and ternary diagrams. Figure 1 shows 

the variability of the major element concentrations for the eight chromitite seams considered. Most 

major element oxide concentrations follow general stratigraphic trends that are well-documented for 

the chromitite seams of the CZ, including a decrease of Cr2O3 that is matched by an increase of SiO2, 

CaO and (moderately) Al2O3 in stratigraphically upward direction (e.g. Scoon and Teigler 1994). 

Whilst these gradual trends distinguish well between the lowermost and uppermost chromitite 

seams of the CZ they are not useful to neighbouring chromitite seams.  

It should be further noted that, when compared with a normal distribution, the spread of each 

variable shows a significant number of outliers, displayed as circles in the boxplots. These outliers 



might challenge a discrimination scheme but seem to be rather common in the Bushveld Complex 

and are commonly attributed to local heterogeneities in the chromitites, e.g. the presence of large 

pyroxene oikocrysts. Figure 2A displays the whole range of variability in the PGE distribution in a 

chondrite-normalized format and separated into LG and MG chromitites. Using solely the PGE 

concentration, differentiation between the two groups is not possible, although the LG data shows 

significantly lower variability than the MG data. In order to evaluate the PGE profiles in detail box- 

and whisker plots without outliers are shown (Figure 2B-F). This provides a systematic overview over 

the actual PGE distribution in the different seams, without getting side-tracked by extreme and 

uncommon concentrations. We propose this type of PGE-spider diagrams for further use, when 

plotting bigger data sets, to get a more realistic impression on the actual PGE distribution. 

Accordingly, the total PGE content progressively rises from LG-6 to MG-3 but decreases in MG-4A, 

which is in good agreement with previous studies (e.g. Scoon and Teigler 1994, Naldrett et al. 2012). 

The Pt/Ru ratio (Table 5) reflects rather flat PGE profiles for the lower chromitites and MG-4A, 

compared to chromitites further up in the stratigraphy. In contrast, there is no consistent trend 

recognizable for the Pt/Pd ratio throughout the succession. Nevertheless, this ratio differs between 

the different MG-4 seams, where MG-4Zero represents a significantly higher Pt/Pd ratio than MG-

4(A). In addition, Au contents are similar in all chromitite seams, with concentrations close to the 

detection limit and very small variability. Hence, Au was excluded from further consideration. 

According to Figure 1 and Figure 2, two subsets of elements might be useful to distinguish the 

chromitite seams. Using a ternary plot of Cr2O3-SiO2-CaO (Figure 3A), LGs can be discriminated from 

MG-3 and MG-4(A, Z), while MG-1 and MG-2 overlap with both groups. In contrast, the Ru-Pt-Pd 

ternary diagram discriminates LGs from MG-1 and MG-2, while MG-4(A) is overlaps with MG1 and 2. 

MG-3 is shifted towards low Pt/Pd ratios and MG-4Z towards higher Pt values. 

These descriptive evaluations highlight that whole rock compositions - including PGE concentrations -

have to be used in an attempt to attain a proper classification. The absolute concentration of PGE 

appears to be of relevance, not only their relative proportions. Also, the separation of chromitite 



seams should be performed in consecutive steps, as a global one-step classification did produce very 

unsatisfactory results (not shown here to save space).  

In the following, LGs will be discriminated from MGs first; then LG-6 and LG-6A will be distinguished 

(Figure 4). Afterwards, focus will be on the differentiation of the MGs; MG-1/-2 will be split from MG-

3/-4(A, Z), and MG-1 from MG-2. Finally, MG-3 and MG-4(A, Z) will be classified and in a last step the 

MG-4s distinguished. Given the overlap of several of these groups – especially LG-6/LG-6A, MG-

1/MG-2, and the MG-4s – the output of the classification scheme will be a set of probabilities that a 

given analysis will stem from an individual chromitite seam, instead of a specific group without 

considering any uncertainty. This will be achieved in the next section with a multivariate statistical 

approach. 

 

Multivariate statistical discrimination 

We use a linear discriminant analysis (LDA, Fahrmeir and Hammerle 1984) as a multivariate statistical 

method for building each discrimination step. The set of components [Cr2O3, FeO, SiO2, MgO, Al2O3, 

CaO, Ir, Ru, Rh, Pt, Pd] were previously transformed with an isometric logratio transformation (ilr), to 

account for their compositional nature (Aitchison 1986, Aitchison et al. 2002, Egozcue et al 2003). A 

set of variables forms a composition if its size (or total sum) is irrelevant for the problem under 

consideration, or if it is an artefact of the sampling procedure (van den Boogaart and Tolosana-

Delgado 2008). The R software environment v3.2.4 (R Core Team 2016) with the additional packages 

“MASS” (function lda; Venables and Ripley, 2002) and “compositions” (function ilr; van den Boogaart 

et al. 2014) were used for building a compositional discriminant analysis. Discriminant analysis 

constructs a discriminant function as a linear combination of the available variables that maximize 

the differences between groups while minimizing their internal variability (Tolosana-Delgado et al. 

2017). Therefore, not only the average values of each component but also their variabilities and 

correlations are important. Following the classification strategy displayed in Figure 4, we have built 

five steps of discrimination, including seven linear discrimination analyses. Because the amount of 



data within each seam differs significantly (e.g. LG-6 = 226 vs. LG-6A = 35), it is crucial to weight the 

groups beforehand to not artificially favour the ones with more observations in this data set.  

 

Stepwise classification scheme 

The first discrimination step is the classification of chromitites into the two main groups – LGs and 

MGs. This is achieved by using all ilr-transformed, weighted components. Figure 5 displays the 

probability density estimates and boxplots of the scores of linear discriminant function 1 (LD1) by 

group, showing excellent separation of the LG from the MG chromitites. A so-called cross-validation 

was applied to this LDA. Therefore, each sample is removed from the dataset and its probability of 

belonging to each seam is predicted by means of a linear discriminant function built without it. The 

highest probability obtained gives the prediction from which chromitite seam the particular sample 

should have derived. In this way, a true and a predicted chromitite seam origin is available for each 

sample. The results of the cross-validation are in an excellent agreement between true and predicted 

seams with an overall misclassification rate of only 2.3 %, i.e., the rate of correct classification is far 

above 90%. Very similar misclassification rates (2.7%) were achieved using a naive reclassification, 

i.e. without the cross-validation computational burden (Figure 5). This can be expected due to the 

large data set used in this study and led us to use this naive reclassification strategy instead of cross-

validation results for the following classification steps.  

The second classification step needs to discriminate either LGs or MGs from one another. On the one 

hand, LG-6 is discriminated from LG-6A and, on the other hand, MG-1/MG-2 is distinguished from 

MGs-3/4/4A/4Zero. Figure 6A displays the probability density estimates and boxplots of the scores of 

LD1 by group, showing good separation of LG-6 from LG-6A. Classification results are displayed in 

Table 6A, confirming the very good agreement between true and predicted chromitite origin with a 

correct classification rate significantly higher than 90 %. The LDA for the MGs does not deliver such a 

clear result (Figure 6B); this is also reflected in the classification results, with a rate of 

misclassification of about 14 % (Table 6B). The third classification step is again twofold, 

discriminating MG-1 from MG-2 and MG-3 from MG-4/4A/4Zero. MG-1 and MG-2 display well-



separated probability density plots and boxplots (Figure 6C) with misclassification rates below 10 % 

(Table 6C). Discrimination of MG-3 from MG-4/4A/4Zero is also successful - with more than 90 % 

correct classification (Figure 6D, Table 6D). The final two classification steps are used to discriminate 

between the different MG-4 seams, namely MG-4/4A from MG-4Zero and MG-4 from MG-4A. While 

separating MG-4Zero works very well (3 % misclassification; Figure 6 E, Table 6E), an overlap in 

probability density plots (Figure 6F) and significant misclassification is recorded between the MG-4 

and MG-4A, i.e., 12 % (Table 6F). The discrimination of the MG-3 and MG-4 chromitites will be 

further evaluated and discussed in the following section. This section will also present a global 

reclassification exercise, as a validation strategy reasonably analogous to cross-validation, i.e. less 

prone to overfitting than the naive reclassification. 

 

Discussion 

In the first part of this section, we integrate the results into a comprehensive classification process, 

complemented by a discussion on the influence of supergene alteration on the data. In the second 

part, we evaluate the scaling of the single components used in the discrimination scheme to establish 

possible simplifications. 

 

Implementing a comprehensive classification process 

The results of the discrimination of neighbouring seams as reported in the previous sections showed 

excellent results for the majority of attempts. However, for chromitite samples of unknown 

stratigraphic position, the challenge differs from just separating two seams: rather, the goal is to 

obtain probabilities that a sample belongs to a certain seam. Thus, we have to predict the probability 

of an overall successful attribution of an unknown sample, combining all LDA outcomes. This has 

been done for all major subgroups of chromitites, e.g., if there is the prior knowledge that a sample is 

from the LGs or the MGs, or if it is from the LCZ or UCZ, respectively. We thus use our data set as a 

training set of samples with unknown composition, only making sure to deal with massive 

chromitites and that the samples belong to any of our target chromitite seams. 



To estimate the overall success of the procedure we go through all the steps outlined in Figure 4, 

without using further prior knowledge, i.e., the actual seam denotation. After classification the result 

is compared with the actual geological position of the sample and the overall performance is given as 

a percentage of correctly classified samples. In general, the use of chromitite whole rock assays 

yields good result, with more than 80 % correctly classified samples. This result is owed to a small 

number of seams with higher off-diagonal values in the misclassification table (Table 6), e.g. the 

classification of MG-1 and MG-4 chromitites (Table 7A). On the contrary, classifications performed 

with samples belonging only to the LCZ yield excellent results (90.4 %), with the aforementioned MG-

1 showing the lowest correct classification (70 %, not shown). In addition, correct classification of 

chromitites from the UCZ reaches more than 85 %, with highest misclassification rates in the 

aforementioned MG-4, which shows a considerable overlap with MG-3 and MG-4A (Table 7C). In 

contrast, results are getting worse when considering all MG chromitites (77.2 % correct classified 

samples). 

 

Accounting for support effects 

It has been mentioned that aggregating data reduces the variability, which in turn underestimates 

the uncertainty on the classification (the support effect as known in the geostatistical literature, see 

e.g. Chilès and Delfiner, 1999). To evaluate these effects, the analysis was repeated for Dataset B, 

which shows higher heterogeneity is expected to cause more challenges in the classification of the 

chromitites (see appendix A). Indeed, the percentage of correct classification decreased for all MG 

samples. While for LDALGs vs. MGs and LDAMG12 vs. MG34 only slight decreases (1-2 %) occur, 

misclassifications significantly raise from 7 to 11 % and 3 to 12 % for LDAMG3 vs. MG4 and LDAMG4 vs. MG4Z, , 

respectively. Most challenging is the discrimination of LDAMG4 vs. MG4A, with a drop in correct 

classifications from to 88 to 70 %. The overall performance decreased considerably by using Dataset 

B, with misclassification increasing from around 19 % to 34 % for the entire sample set (Table 7B). As 

expected, in particular the UCZ causes problems, showing only 65 % correct classifications (Table 7D). 

A more detailed evaluation of Dataset B can be found in the electronic supplementary material A.  



As stated earlier, the significant drop in correct classifications is caused by the higher variability of 

Dataset B. The higher variability can be caused by nugget effects; however, the presence of relevant 

nugget effects was previously discarded for this dataset by testing original, duplicate and umpire 

samples– as described above. In addition, using averaged values, as done in Dataset A, is known to 

lower the variability by a factor that can be derived from theoretical considerations, i.e. the central 

limit theorem of Statistics under the assumption that the samples being mixed are mutually 

uncorrelated. Indeed, one could compare this theoretical reduction with the actual one, 

discrepancies eventually reflecting lack of independence, or a systematic chemical variation within 

the seams. The results may then be linked to possible implications for the genesis of the chromitite 

seams. However, this is beyond the scope of this paper and is left for further research.  

Nevertheless, it can be concluded that both data sets (Datasets A and B) will keep their practical use. 

Dataset A is well applicable to drill core samples, e.g. during exploration campaigns or in mining 

operations – especially around faults, where a proper seam correlation can be difficult but one has 

access to material along the whole width of the seam. In these cases, assuring an appropriate 

sampling of the whole chromitite seam is crucial. In contrast, for hand specimens collected during 

field mapping or samples from mining dumps, Dataset A might overestimate the correct classification 

of chromitites because only parts of the chromitites are sampled. In these cases Dataset B should be 

used. 

 

The influence of alteration 

It is important to note that the data set contains a significant number of samples exposed to 

supergene weathering. In addition, some samples may be affected by structurally-related 

hydrothermal alteration processes. These processes affect not only the mineral assemblage but also 

the geochemistry of chromitite samples (e.g., Hey 1999, Becker et al. 2014, Bachmann et al. 2019). 

Becker et al. (2014) documented an enrichment of alteration silicates, and Fe-oxides/hydroxides as 

well as remobilization of Pd in weathered PGM ores. Remobilization of Pd might occur during 

hydrothermal alteration and or supergene alteration (Junge et al. 2015, Oppermann et al. 2017). 



Indeed, the large variation of Pd concentrations in the data set is attributed to weathering processes 

(cf. Figure 2). In addition, Bachmann et al. (2019) showed generally lower Cr2O3 and increasing FeO, 

SiO2 and CaO concentrations for supergene-altered chromitite samples. This is similar to comparable 

altered and oxidized PGE ores elsewhere (Oberthür et al. 2003). Because the degree of supergene 

alteration is difficult to judge without detailed petrographic studies (Bachmann et al. 2019), the 

success of a geochemical classification scheme should not be significantly affected by the degree of 

weathering. In order to test if the classification procedure is robust against alteration we classified 

the Dataset A samples through the stepwise classification rules previously presented particularly 

tracking those coming from the weathering zone. The overall classification success gave 

misclassification rates of 17 % for the pristine samples. In contrast, the sample population from a 

depth of less than 50 m below present day land surface – and thus possibly affected by weathering - 

display only marginally higher misclassification rates, around 22 %, and confirm that the classification 

scheme can be used for pristine and weathered chromitite samples. 

 

Influence of each component and simplification of classification 

In order to better understand the actual discrimination function and the separation into groups of 

data, it is crucial to evaluate the influence of each component on the linear discriminant functions, 

i.e. the coefficients of linear combinations of log-transformed components that give rise to the 

discriminant functions. The coefficients used throughout the study are displayed in Figure 7. The bar 

plot can be expressed in an equation as follows: 

𝐿𝐷𝐿𝐺𝑠𝑣𝑠.𝑀𝐺𝑠 = 𝑙𝑜𝑔 [
(𝐶𝐹𝑒𝑂

𝛼𝐹𝑒𝑂×𝐶
𝑆𝑖𝑂2

𝛼𝑆𝑖𝑂2×𝐶
𝐴𝑙2𝑂3

𝛼𝐴𝑙2𝑂3×𝐶𝐶𝑎𝑂
𝛼𝐶𝑎𝑂×(𝛽𝐶𝑃𝑡)

𝛼𝑃𝑡
×(𝛽𝐶𝑃𝑑)

𝛼𝑃𝑑
×(𝛽𝐶𝑅ℎ)

𝛼𝑅ℎ
×(𝛽𝐶𝑅ℎ)

𝛼𝑅ℎ
)

(𝐶𝐶𝑟2𝑂3

𝛼𝐶𝑟2𝑂3×𝐶𝑀𝑔𝑂

𝛼𝑀𝑔𝑂
×(𝛽𝐶𝑃 )

𝛼𝑃
×(𝛽𝐶𝑅𝑢)

𝛼𝑅𝑢
)

], 

where 𝐿𝐷 is the linear discriminant, 𝐶𝑖 is the concentration of element 𝑖, 𝛼𝑖 are the coefficients (the 

values reported in Figure 7 are normalized by its log-standard deviation, to make them comparable), 

and 𝛽 is a factor to bring all concentrations into the same scale, i.e., from ppm to wt%. Thus, bigger 

values will have larger influences on the probability of the analysis to be sorted into one or the other 

class: variables in the numerator favour MGs, variables in the denominator LGs. Additionally, small 



variability (higher homogeneity) of components of the dataset within a seam might lead to a leverage 

effect, making that variable more influential. For example, due to the little variation of MgO in the 

LG-6, it is used as an important discriminator against the LG-6A, even though the median of MgO is 

slightly higher for the latter (cf. Figure 1).  

It is also important to note that bigger values increase the discrimination efficiency in either ways. 

For example, the discrimination between the LGs and MGs or MG-4 and MG-4A is less robust than 

the separation of MG-1 and MG-2, even though the misclassification might be similar or higher in the 

latter. This relationship is also valid for single components, thus only MgO, Al2O3 and Pt are 

important contributors to LD in LG-6 vs. LG-6A. Hence an approximation to 𝐿𝐷𝐿𝐺6𝑣𝑠.𝐿𝐺6𝐴 might be 

computed as: 

𝐿𝐷𝐿𝐺6𝑣𝑠.𝐿𝐺6𝐴 = 𝑙𝑜𝑔 [
(𝛽𝐶𝑃𝑡)

2

𝐶𝑀𝑔𝑂×𝐶𝐴𝑙2𝑂3
]. 

In general, these reduced equations can be simplified again using: 

𝐿𝐷𝐿𝐺6𝑣𝑠.𝐿𝐺6𝐴 = 2𝑙𝑜𝑔𝛽 + 𝑙𝑜𝑔 [
𝐶𝑃𝑡

2

𝐶𝑀𝑔𝑂×𝐶𝐴𝑙2𝑂3
]. 

whereas the term 2𝑙𝑜𝑔𝛽 will can be expressed as a constant 𝑘 summarizing all used factors 𝛽. 

Additionally, 𝑘 is not needed to discriminate between seams, because it just acts as a translation 

constant. Hence, for a discrimination procedure to separate LG-6 from LG-6A analyses, 

concentrations of just three elements are needed to justify an appropriate classification. Detailed 

results for all LDAs shown in Figure 7 are displayed as boxplots in Figure 8. Especially the separation 

of LG-6 vs. LG-6A can be approximated by using not more than three elemental concentrations, while 

the classification of MG-1/2 vs. MG-3/4 and MG-1 vs. MG-2 need a rather extensive data set. 

 

Conclusion and outlook 

In this study a reliable multivariate discrimination scheme for chromitite seams of the LG and MG 

layers collected at the Thaba Mine of the western Bushveld Complex – including a clear attribution 

with known uncertainty – is proposed. The classification scheme is built on a large database that has 



been considered as original (Dataset B) and as aggregated (Dataset A) datasets. While Dataset A is 

well applicable to drill core samples, e.g. during exploration campaigns or in mining operations, 

Dataset B might be used for hand specimens collected during field mapping or samples from mining 

dumps. This general approach may well be applicable to chromitite seams across the entire Bushveld 

as long as a comparable set of data is available. Such a tool should not only be able to agnostically 

discriminate the chromitites but would also reveal geochemical differences between the different 

“compartments” and trends within them. In order to extend the presented approach further 

research is necessary to optimise the proposed chromitite discrimination scheme, including further 

enlargement and improvement of the database by adding different data sets from other regions in 

the Bushveld Complex. 

Such sophisticated classification should also involve data from the eastern Bushveld, and also extend 

the database to the base of the LCZ, including LG-1 to LG-5, as well as the UCZ, including UG-1 to UG-

3. We invite the community and the mining companies to share with us their experience, data, and 

problems with the new discrimination scheme in order to further improve this tool. 

 
Acknowledgments 

This is a contribution of the German/South African R&D project AMREP—Applied Mineralogy for 

Resource Efficiency of Platinum-Group Metals—funded by the German Ministry of Education and 

Research (BMBF; grant number BMBF 033R119E). We thank the Cronimet Mining Group for 

providing access to their core shed and drill core intersections from the Thaba mine, for the 

contribution of additional analytical data and information on the local geology and beneficiation. The 

comments of Cynthia Sanchez-Garrido to this manuscript are gratefully acknowledged. 

 

 

 

 

 



 

 

 

 

 

 

References 

Abzalov, M (2008) Quality control of assay data: a review of procedures for measuring and 

monitoring precision and accuracy. Exploration and Mining Geology, 17(3-4):131–144. 

Aitchison J (1986) The statistical analysis of compositional data. Monographs on Statistics and 

Applied Probability. Chapman & Hall Ltd., London (UK). (Reprinted in 2003 with additional 

material by The Blackburn Press). 416p. 

Aitchison J, Barceló-Vidal C, Egozcue JJ, Pawlowsky-Glahn V (2002) A concise guide for the algebraic-

geometric structure of the simplex, the sample space for compositional data analysis. In 

Proceedings of IAMG Vol2:387–392. 

Bachmann K, Osbahr I, Tolosana-Delgado R, Chetty D, Gutzmer J (2018) Variation in platinum group 

mineral and base metal sulfide assemblages in the Lower Group chromitites of the western 

Bushveld Complex, South Africa. Can Min, https://doi.org/10.3749/canmin.1700094. 

Bachmann K, Menzel P, Tolosana-Delgado R, Schmidt C, Hill M, Gutzmer J (2019)The use of assay 

data as a foundation for a geometallurgical model – the case of the Thaba Chromite Mine, 

South Africa. J Geochem Explo, under review. 

Becker M, Wiese J, Ramonotsi M (2014) Investigation into the mineralogy and flotation performance 

of oxidised PGM ore. Minerals Engineering 65:24–32. 

Cawthorn RG, Webb SJ (2001) Connectivity between the western and eastern limbs of the Bushveld 

Complex. Tectonophys 330:195–209. 

Cawthorn RG (2015) The Bushveld Complex, South Africa. In Layered Intrusions, Springer, Dordrecht, 

517–587. 



Chilès JP, Delfiner P (1999) Geostatistics: Modeling spatial uncertainty. John Wiley & Sons, New York. 

Geostatistics: Modeling spatial uncertainty. John Wiley & Sons, New York. 

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio 

transformations for compositional data analysis. Mathematical Geology, 35(3), 279-300. 

Fahrmeir L, Hammerle A (1984) Multivariate Statistische Verfahren. Walter de Gruijter, Berlin:796p. 

Fourie GP (1959) The chromite deposits in the Rustenburg area. South Africa Geological Survey 

Bulletin 27:45. 

Hatton CJ, Von Gruenewaldt G (1987) The geological setting and petrogenesis of the Bushveld 

chromitite layers. In: Stowe, C.R. (Ed.), Evolution of Chromium Ore Fields. Van Nostrand 

Reinhold, New York, pp. 109–143. 

Hey PV (1999) The effects of weathering on the UG2 chromitite reef of the Bushveld Complex, with 

special reference to the platinum-group minerals. South Afr J Geol 102:251–260. 

Junge M, Oberthür T, Kraemer D, Melcher F (2015) Distribution of platinum-group elements in 

pristine and near-surface ores from the Platreef, northern Bushveld Complex, South Africa. In: 

André-Mayer AS, Cathelineau M, Muches P, Pirad E, Sindern S (Editors). Mineral Resources in a 

Sustainable World. 13th Biennial SGA Meeting, 955–958. 

Kaufmann FE, Vukmanovic Z, Holness MB, Hecht L (2018) Orthopyroxene oikocrysts in the MG1 

chromitite layer of the Bushveld Complex: implications for cumulate formation and 

recrystallisation. Contributions to Mineralogy and Petrology 173(2):17. 

Kinnaird JA, Kruger FJ, Nex PAM, Cawthorn RG (2002) Chromitite formation—a key to understanding 

processes of platinum enrichment. Applied Earth Science 111(1):23–35. 

Maier WD, Barnes S-J, Groves DI (2013) The Bushveld Complex, South Africa: formation of platinum–

palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized 

cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineral 

Deposita 48:1–56. 

Naldrett A, von Gruenewaldt G (1989) Association of platinum-group elements with chromitite in 

layered intrusions and Ophiolite Complexes. Economic Geology 84:180–187. 



Naldrett AJ, Kinnaird J, Wilson A, Yudovskaya M, McQuade S, Chunnett G, Stanley C (2009) Chromite 

composition and PGE content of Bushveld chromitites: part 1—the lower and middle groups. 

Trans Inst Min Metall B 118:131–161. 

Naldrett AJ, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G (2012) The origin of chromites and 

related PGE mineralization in the Bushveld Complex: new mineralogical and petrological 

constraints. Mineralium Deposita 47:209–232. 

Oberthür T, Weiser TW, Gast L, Kojonen K (2003) Geochemistry and mineralogy of platinum-group 

elements at Hartley platinum mine, Zimbabwe: Part 2: Supergene redistribution in the oxidized 

main sulfide zone of the Great Dyke, and alluvial platinum-group minerals. Miner Deposita 

38:344–355. 

Oppermann L, Junge M, Schuth S, Holtz F, Schwarz-Schampera U, Sauheitl L (2017) Mobility and 

distribution of palladium and platinum in soils above Lower and Middle Group chromitites of 

the western Bushveld Complex, South Africa. South Afr J Geol 120(4):511–524, 

DOI:10.25131/gssajg.120.4.511. 

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Schürmann LW, Grabe P-J, Steenkamp CJ (1998) Chromium. In: Wilson MGC, Anhaeusser CR (eds) 

The mineral resources of South Africa: Handbook 16. Council for Geosciences, CTP Book 

Printers, Cape Town, pp 90–105. 

Scoon RN, Teigler B (1994) Platinum-group element mineralization in the Critical Zone of the Western 

Bushveld Complex: I. Sulfide-poor chromitites below the UG-2. Economic Geology 89:1094–

1121. 

Tolosana-Delgado R, von Eynatten H, Krippner A, Meinhold G (2017) A multivariate discrimination 

scheme of detrital garnet chemistry for use in sedimentary provenance analysis. Sedimentary 

Geology, https://doi.org/10.1016/j.sedgeo.2017.11.003. 

USGS (2018) Minerals Commodity Summaries, 2018: Chromium. U.S. Geological Survey, U.S. 

Department of the Interior. 



Van den Boogaart KG, Tolosana-Delgado R (2008) “Compositions”: a unified R package to analyze 

compositional data. Computers & Geosciences 34(4):320–338. 

Van den Boogaart KG, Tolosana R, Bren M (2014) compositions: Compositional Data Analysis. R 

package version 1.40-1. https://CRAN.R-project.org/package=compositions. 

Veksler IV, Reid DL, Dulski P, Keiding JK, Schannor M, Hecht L, Trumbull RB (2015) Electrochemical 

Processes in a Crystal Mush: Cyclic Units in the Upper Critical Zone of the Bushveld Complex, 

South Africa. J of Petrology 56 (6): 1229–1250, https://doi.org/10.1093/petrology/egv036. 

Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. 

ISBN 0-387-95457-0. 

Von Eynatten H, Pawlowsky-Glahn V, Egozcue, JJ (2002) Understanding perturbation on the simplex: 

a simple method to better visualise and interpret compositional data in ternary diagrams. 

Mathematical Geology 34 (3): 249–257. 

Von Gruenewaldt G (1977) The mineral resources of the Bushveld Complex. Miner Sci Eng 9(2):83–

95. 

Voordouw R, Gutzmer J, Beukes NJ (2009) Intrusive origin for upper group (UG1, UG2) stratiform 

chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineralogy and 

Petrology, 97(1-2), 75. https://doi.org/10.1007/s00710-009-0072-3. 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/s00710-009-0072-3


Figures 

 
Figure 1 Major element concentrations in oxide wt% (except P – in ppm) for the LG-6 to MG-4A 
chromitites. The variability of individual seams is illustrated in box- and whisker-plots: (A) Cr2O3, (B) 
FeO, (C) SiO2, (D) MgO, (E) Al2O3, (F) CaO, (G) P. 
 
 



 
Figure 2 Chondrite-normalized PGE profiles for chromitite seams from LG-6 to MG-4A. (A) Whole 
dataset is expressed by an area that covers all the profiles for both LGs and MGs, respectively. (B-F) 
All PGE profiles are expressed as Box-and Whisker-Plots. For detailed explanation, please see 
Figure 1. MG-4 in (E) contains all PGE profiles of MG-4Zero, MG-4 and MG-4A. For details see (F). The 
chondritic concentrations used for the normalization are those of Naldrett and Duke (1980) (Ir=540; 
Ru=690; Rh=200; Pt=1,015; Pd=540; Au=150, all in parts per billion). 
 
 

 
Figure 3 Ternary diagrams for (A) Cr2O3 – SiO2 – CaO and (B) Ru – Pt – Pd centred according to von 
Eynatten et al. (2002) by division with their geometrical mean and split by chromitite seams. 
 



 
Figure 4 Hierarchical strategy of chromitite seam classification, with indication of sample size for 
each seam. MG-4: includes MG-4, MG-4Zero, MG-4A; MG-4(A): includes MG-4, MG-4A; MG-4: 
includes MG-4. 
 

 
Figure 5 Probability densities and boxplots of the scores of the linear discriminant function for lower 
group chromitites (LGs, blue) against middle group chromitites (MGs, red). Classification results for 
the two-way discrimination are shown in the lower part. 



 
Figure 6 Probability densities and boxplots of the scores of the linear discriminant functions for lower 
and middle group chromitites following the classification scheme outlined in Figure 4. (A) LG-6 
(yellow) vs. LG-6A (orange). (B) MG-1/2 (red) vs. MG-3/4 (turquoise). (C) MG-1 (pale red) vs. MG-2 
(pink). (D) MG-3 (purple) vs. MG-4 (light blue). MG-4 contains data of MG-4/4A/4Zero. (E) MG-4 (light 
blue) vs. MG-4Zero (dark blue). MG-4 contains data of MG-4/4A. (F) MG-4 (light blue) vs. MG-4A 
(blue). MG-4Z and MG-4Zero are used synonymously. 
 



 
Figure 7 Normalized coefficients of the components on each linear discriminant function as a 
classification rule. For details see text. 
 
 

 
Figure 8 Box-and whisker plots showing simplified ratios to discriminate between chromitite seams 
along the classification path presented in Figure 4. For details see text. MG-4Z is MG-4Zero. 
 



Tables 

Table 1 Number of whole rock chemical analyses per seam. 

Dataset LG-6 LG-6A MG-1 MG-2 MG-3 MG-4Zero MG-4 MG-4A 

A 226 35 56 142 115 66 102 56 

B 226 35 56 142 202 77 289 83 

 
 
Table 2 Statistical summary for available PGE data. All values (except variance) are given in [ppm], 
variance is given in [ppm]². 

Element Min. 
1st 

Quantile 
Median 

3rd 
Quantile 

Max. Mean 
Geom. 
Mean 

Variance 

Pt 0.04 0.41 0.93 1.45 13.7 1.057 0.820 0.783 

Pd 0.01 0.12 0.19 0.32 6.17 0.274 0.190 0.107 

Rh 0.01 0.14 0.21 0.30 1.38 0.236 0.208 0.017 

Ir 0.01 0.08 0.12 0.16 0.46 0.124 0.114 0.003 

Ru 0.01 0.41 0.49 0.61 1.98 0.517 0.488 0.030 

 
 
Table 3 Reference PGE values for African Mineral Standards in [ppm].  

Sample 
name 

Pt Pd Rh Ir Ru 

AMIS0074 1.1 0.7 0.2 - 0.4 

AMIS0075 1.2 1.5 0.3 0.09 0.4 

AMIS0132 0.5 0.2 0.1 0.05 0.2 

AMIS0207 2.2 1.2 0.5 0.19 0.8 

 
Table 4 Uncertainties for PGE measurements based on duplicated measurements (Duplicate) and 
measurements of standard samples (Standard). All values are given in [ppm]². 

Element 
Uncertainty 
(Duplicate) 

Uncertainty 
(Standard) 

Pt 0.066 0.091 

Pd 0.006 0.020 

Rh 0.005 0.004 

Ir 0.001 0.001 

Ru 0.008 0.016 

 
 
 
 
 
 
 
 
 
 
 



Table 5 Relevant PGE weight ratios for all investigated seams. 

Seam Pt/Ru Pt/Pd PPGE/IPGE 

  Mean Median Mean Median Mean Median 

LG-6 0.5 0.5 2.9 2.9 1.3 1.3 

LG-6A 0.6 0.6 1.7 1.7 1.5 1.4 

MG-1 1.6 1.0 1.9 1.7 2.7 2.2 

MG-2 2.0 1.2 3.2 2.5 3.0 2.3 

MG-3 1.8 1.7 1.6 1.3 4.2 4.0 

MG-4 1.5 1.4 2.8 2.6 2.9 2.8 

MG-4A 1.0 0.9 2.1 1.7 2.5 2.4 

MG-4Zero 2.7 2.6 5.7 5.2 3.3 3.2 

MG-4_all 1.7   3.5   2.9   

 
 
Table 6 Classification results for the discrimination of chromitite seams. 

(A) LG-6 vs. LG-6A     (D) MG-3 vs. MG-4/4A/4Zero  

Misclassification True type Misclassification True type 

6.13%   LG-6 LG-6A 6.85%   MG-3 MG-4 

Predicted type LG-6 212 2 Predicted type MG-3 98 12 

  LG-6A 14 33   MG-4 10 201 

Correct Classification 93.8% 94.3% Correct Classification 90.7% 94.4% 

(B) MG-1/2 vs. MG-3/4/4A/4Zero  (E) MG-4/4A vs. MG-4Z  

Misclassification True type Misclassification True type 

14.26%   MG-1/2 MG-3/4 3.29%   MG-4 MG-4Z 

Predicted type MG-1/2 163 39 Predicted type MG-4 146 3 

  MG-3/4 35 282   MG-4Z 4 60 

Correct Classification 82.3% 87.9% Correct Classification 97.3% 95.2% 

(C) MG-1 vs. MG-2 
 

  (F) MG-4 vs. MG-4A 
 

  

Misclassification True type Misclassification True type 

7.58%   MG-1 MG-2 12.00%   MG-4 MG-4Z 

Predicted type MG-1 48 7 Predicted type MG-4 201 22 

  MG-2 8 135   MG-4Z 88 61 

Correct Classification 85.7% 95.1% Correct Classification 89.7% 84.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7 Classification results for the overall and UCZ discrimination of chromitite seams. Please note 
in (A) and (C) Dataset A, while in (B) and (D) Dataset B was used. For details see text. 

(A) Overall success Dataset A             

Misclassification True Type 
     

  

19.4%   LG6 LG6A MG1 MG2 MG3 MG4 MG4A MG4Z   

Predicted  LG6 211 2 1 0 0 0 0 0   

Type LG6A 13 29 10 1 0 1 2 0   

  MG1 1 4 37 5 1 3 2 2   

  MG2 0 0 7 103 9 14 3 4   

  MG3 1 0 1 12 92 6 1 2   

  MG4 0 0 0 10 5 65 6 2   

  MG4A 0 0 0 7 0 6 39 0   

  MG4Z 0 0 0 4 1 2 0 53   

Correct Classification 93.4 82.9 66.1 72.5 85.2 67.0 73.6 84.1   

(B) Overall success Dataset B           

Misclassification True Type   

34.2%   LG6 LG6A MG1 MG2 MG3 MG4 MG4A MG4Z   

Predicted  LG6 210 2 1 0 1 1 5 0   

Type LG6A 13 25 11 3 0 5 1 0   

  MG1 2 8 35 5 3 15 9 2   

  MG2 0 0 7 105 25 30 6 8   

  MG3 0 0 1 9 157 30 1 5   

  MG4 0 0 1 12 10 96 16 4   

  MG4A 0 0 0 4 4 73 44 0   

  MG4Z 1 0 0 4 2 39 1 58   

Correct Classification 92.9 71.4 62.5 73.9 77.7 33.2 53.0 75.3   

(C) UCZ success Dataset A   (D) UCZ success Dataset B   

Misclassification True Type     Misclassification True Type 

13.4%   MG3 MG4 MG4A MG4Z 34.6% MG3 MG4 MG4A MG4Z 

Predicted  MG3 98 8 1 3 MG3 177 36 3 7 

Type MG4 9 78 7 2 MG4 15 124 19 5 

  MG4A 0 8 44 0 MG4A 7 83 60 0 

  MG4Z 1 3 1 58 MG4Z 3 46 1 65 

Correct Classification 90.7 80.4 83.0 92.1   87.6 42.9 72.3 84.4 

  



Appendix A 

Classification results of Dataset B 

The results of the cross-validation are in an excellent agreement between true and predicted seams 

with an overall misclassification rate of 3.1 %, i.e., the rate of correct classification is far above 90%. 

Very similar misclassification rates (3.5%) were achieved using a naive reclassification, i.e. without 

the cross-validation computational burden (Figure A1).  

 
Figure A1 Probability densities and boxplots of the scores of the linear discriminant function for 
lower group chromitites (LGs, green) against middle group chromitites (MGs, red). Classification 
results for the two-way discrimination are shown in the lower part. 

The second classification step now needs to discriminate either LGs or MGs from one another. 

Figure A2A displays the probability density estimates and boxplots of the scores of LD1 by group, 

showing very well separation of the LG-6 from the LG-6A chromitite. Classification results are 

displayed in Table A1A, confirming the very good agreement between true and predicted chromitite 

seams with a correct classification rate significantly higher than 90 %. Within this second step MG-1 

and MG-2 were successfully discriminated from MGs-3/4/4A/4Zero (Figure A2B). However, the LDA 

does not deliver such a clear result as the previous steps, which is also reflected in the classification 

results, i.e., the rate of misclassification is about 16 % (Table A1B). The third classification step is 

again twofold, discriminating MG-1 from MG-2 and MG-3 from MG-4/4A/4Zero. MG-1 and MG-2 

display well-separated probability density plots and boxplots (Figure A2C) with misclassification rates 

below 10 % (Table A1C). Discrimination of MG-3 from MG-4/4A/4Zero shows less clear results with 

below 90 % correct classification (Figure A2D, Table A1D). The final two classification steps are used 

to discriminate between MG-4 sub-seams, firstly MG-4/4A from MG-4Zero and secondly MG-4 from 

MG-4A. While separating MG-4Zero works quite well (12 % misclassification; Figure A2E, Table A1E), 



a significant overlap in probability density plots (Figure A2F) and some significant misclassification 

was recorded between the MG-4 and MG-4A, i.e., almost 30 % (Table A1F). 

 
Figure A2 Probability densities and boxplots of the scores of the linear discriminant functions for 
lower and middle group chromitites following the classification scheme outlined in Figure 4. (A) LG-6 
(yellow) vs. LG-6A (orange). (B) MG-1/2 (red) vs. MG-3/4 (turquoise). (C) MG-1 (pale red) vs. MG-2 
(pink). (D) MG-3 (purple) vs. MG-4 (light blue). MG-4 contains data of MG-4/4A/4Zero. (E) MG-4 (light 
blue) vs. MG-4Zero (dark blue). MG-4 contains data of MG-4/4A. (F) MG-4 (light blue) vs. MG-4A 
(blue). MG-4Z and MG-4Zero are used synonymously. 
 
 
 
 



Table A1 Classification results of Dataset B for the discrimination of chromitite seams. Please note in 
(D) MG-4 contains data of MG-4/4A/4Zero and in (E) MG-4 contains data of MG-4/4A. 

(A) LG-6 vs. LG-6A     (D) MG-3 vs. MG-4     

Miss Classification True type Miss Classification True type 

6.13%   LG-6 LG-6A 10.91%   MG-3 MG-4 

Predicted type LG-6 212 2 Predicted type MG-3 177 46 

  LG-6A 14 33   MG-4 25 403 

Correct Classification 93.81% 94.29% Correct Classification 87.62% 89.76% 

(B) MG-1/2 vs. MG-3/4 
 

  (E) MG-4 vs. MG-4Z 
 

  

Miss Classification True type Miss Classification True type 

16.02%   MG-1/2 MG-3/4 12.03%   MG-4 MG-4Z 

Predicted type MG-1/2 166 104 Predicted type MG-4 324 6 

  MG-3/4 32 547   
MG-
4Z 

48 71 

Correct Classification 83.84% 84.02% Correct Classification 87.10% 92.21% 

(C) MG-1 vs. MG-2 
 

  (F) MG-4 vs. MG-4A 
 

  

Miss Classification True type Miss Classification True type 

7.58%   MG-1 MG-2 29.57%   MG-4 MG-4Z 

Predicted type MG-1 48 7 Predicted type MG-4 201 22 

  MG-2 8 135   
MG-
4Z 

88 61 

Correct Classification 85.71% 95.07% Correct Classification 69.55% 73.49% 

 
 


