Investigation of the availability of sigma-1 receptors in orthotopic human glioblastoma-bearing mice with positron emission tomography (PET) using R20 (S)-(-)-[18F]fluspidine

Magali Toussaint ${ }^{1}$, Mathias Kranz ${ }^{1}$, Winnie Deuther-Conrad ${ }^{1}$, Marianne Patt ${ }^{2}$, Osama Sabri², Peter Brust ${ }^{1}$
${ }^{1}$ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, Germany

HELMHOLTZ
| ZENTRUM DRESDEN
ROSSENDORF

INTRODUCTION

The sigma-1 receptor (S1R) is a chaperone protein of the mitochondrion-associated endoplasmic reticulum membrane (MAM). Its expression is dysregulated in various cancers including glioblastoma, and ligand binding may decrease the proliferation of human glioblastoma cell lines. Thus, S1R characterization in glioblastoma could help to better understand the pathophysiology of this cancer and to improve diagnosis or treatment follow-up.

OBJECTIVES

We aim to evaluate the potential of $(S)-(-)-\left[{ }^{18} \mathrm{~F}\right] f l u s p i d i n e$, a highly specific S1R radioligand already applied in clinical studies, to characterize S1R expression in an orthotopic glioblastoma model in mouse with small-animal PET/MRI.

Animal model

Stereotactic injection of U87 cells * human glioblastoma, 50000 cells $/ 1 \mu \mathrm{l}$

* in the striatum (L: $-2.0, \mathrm{AP}:-0.5, \mathrm{DV}:-3.0 \mathrm{~mm}$) of nude mice

Tumor monitoring with MR Imaging

T2 weighted images of a nude mouse brain showing the growth of a U87 tumor A) 7 days post-injection and B) 16

PET imaging of $(S)-(-)-\left[{ }^{18} \mathrm{~F}\right] f l u s p i d i n e$

in healthy mice and S1R K.O. mouse

In vivo validation of the specific binding for S1R shown by the higher SUV values obtained in striatum of healthy mice ($\mathrm{n}=3$) compared to the S1R K.O. mouse ($\mathrm{n}=1$)
in mice bearing U87 orthotopic tumor

Time-activity curves of the striatum of healthy mice ($n=3$), of the tumor region ($n=17$, average volume: $12 \mathrm{~mm}^{3}$) and the contralateral side $(\mathrm{n}=17)$ of tumor mice. The PET image shows spatial uptake inhomogeneities in the tumor

SUMMARY

* The in vitro autoradiography revealed a higher S1R density in the tumor compared to the contralateral side.
* The PET investigation revealed a significant difference in the pharmacokinetics of (S)-(-)-[$\left.{ }^{18} \mathrm{~F}\right] f l u s p i d i n e ~ b e t w e e n ~ t u m o r ~$ and contralateral region, probably related to different S1R availabilities.
* These first results show the suitability of (S)-(-)-[18F]fluspidine for characterization of U87 S1R status.

