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Update the MUSIG model in ANSYS CFX for reliable modelling of bubble 

coalescence and breakup  

Yixiang Liao 

 Helmholtz-Zentrum Dresden - Rossendorf, Institute of Fluid Dynamics, Dresden, Germany 

 

Abstract  

The MUSIG (Multiple Size Group) model in the commercial CFD code ANSYS CFX is a 

population balance approach for describing binary bubble coalescence and breakup events. It 

is widely used in the simulation of poly-dispersed bubble flows. The purpose of this work is to 

identify some inconsistencies in the discrete method that applied for the solution of the 

population balance equation in MUSIG, and propose an improved one for discretising the 

source and sink terms that result from bubble coalescence and breakup. The new formulation 

is superior to the existing ones in preserving both mass and number density of bubbles, allowing 

arbitrary discretisation schemes and free of costly numerical integrations. The numerical results 

on the evolution of bubble size distributions in bubble flows reveal that the inconsistency in the 

original MUSIG regarding bubble breakup is non-negligible in both academic and practical 

cases. The updates presented in this work are necessary and important for calibration of bubble 

coalescence and breakup models using the MUSIG approach.      

1 Introduction 

Bubble flow normally occurs at low flow rate or holdup of the gas phase. It is widely 

encountered in various industrial systems like chemical, pharmaceutical and metallurgical ones 

because of their capability of providing large interfacial area for heat and mass transfer. In most 

applications, the size of bubbles takes a distribution instead of single value, and the distribution 

changes continuously because of various dynamic processes such as coalescence and breakup. 

Therefore, predicting the bubble size reliably (or interfacial area density) is a key step in the 

CFD modelling of bubble flows. It has been a subject of many research studies, e.g. Sun et al. 

(2004), Chen et al. (2004), Cheung et al. (2007), Liao et al. (2015) and Metzger and Kind (2017) 

among others. In most of the work, the two-fluid framework is combined with a population 

balance model (PBM). The population balance is a well-established method for studying 

coalescence (breakup) or other effects that influence the mean bubble size. By considering 

bubble source or sink terms caused by coalescence and breakup, the population balance 

equation (PBE) based on the conservation of bubble number density (Ramkrishna, 1985; 2000; 

Jakobsen, 2008) is formulated as:    

 
           x m C C B B

, ,n x m t
x n m n B m D m B m D m

t


      


,   (1) 

where n denotes the number density of bubbles, m  the property space (or internal coordinate); 

x  the physical space and t the time. The symbol x represents the time change rate of bubble 

physical position. m  is the time change rate of bubble property state and plays a role in case of 

mass transfer. It is omitted in the following text, since it is irrelevant to the coalescence and 



breakup phenomena investigated in this work. Furthermore, the present paper focuses on the 

univariate PBE, which has only one internal coordinate, hereafter the bubble mass m used (can 

also be volume or diameter), i.e. m = m. On the right hand side of Eq. (1), the terms BC, DC, 

BB, and DB respectively represent the birth rate of bubbles with mass m due to coalescence of 

smaller bubbles, their death rate due to coalescence with other bubbles, birth rate due to breakup 

of larger bubbles, and death rate due to breakup into smaller bubbles. Like n all these terms are 

a function of bubble mass, time and location. For brevity, only the dependence on bubble mass 

m is shown in the following expressions. The source and sink terms resulting from coalescence 

and breakup are nonlinear and integral, which is a key feature of the PBE. In case of binary 

interactions, i.e. two bubbles coalescing into a new one and one bubble (parent) breaking up 

into two new ones (daughters), they are expressed classically as follows for a continuous m 

coordinate (Ramkrishna, 1985):  
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Wherein Q, Ω and β are often referred to as kernel functions. Q(m’; m) denotes the coalescence 

frequency of a bubble of mass m with a bubble of mass m‘ per unit control volume. Ω(m’) 

represents the overall breakup frequency of a parent bubble of mass m’, while β(m’; m) is the 

daughter size distribution function expressing the probability of a daughter bubble having mass 

m generated at the breakage of the parent bubble m’. Since no mass is created or dissipated 

during the breakup of a bubble, β(m’; m) should satisfy 

0

( ; ) '

m

m m m dm m


  . (6)  

For binary breakage, it fulfils the following constraints additionally: 

0

( ; ) 2

m

m m dm


  , (7)  

( ; ) ( ; )m m m m m     . (8) 

 

In the past great efforts have been invested in developing phenomenological kernel functions 

for the description of bubble coalescence and breakup in bubbly flows (Liao & Lucas, 2009; 



2010). Since input parameters for these models are usually related to hydrodynamics in the flow 

field, e.g. turbulence eddy dissipation, numerical solution of the PBE incorporated with three-

dimensional CFD calculations is often necessary for the validation of the kernel functions. On 

the other hand, the predictive ability of CFD simulations is largely improved by combining with 

a population balance model, since the spatial and temporal variation of bubble size as well as 

its impact on local flow fields is accounted for. In the CFD-PBM coupled simulation of bubble 

flows efficient solution of the PBE is of great interest. In comparison to huge efforts invested 

in the development and validation of coalescence and breakup models and CFD methodology, 

little attention has been paid to the numerical solution of the PBE. A discussion on various 

numerical approaches that have been used in solving the PBE was given by Bayraktar (2014). 

In comparison to Monte-Carlo methods and methods of moments, the method of classes with 

fixed pivots is the most widely-used approach, which is presented in Kumar and Ramkrishna 

(1996) in detail. As the name suggests, in the method of classes the bubble number density 

function n is discretized to a number of classes or bins along the mass coordinate m, see Fig. 1, 

and a PBE is solved for each class. The MUSIG (Multiple Size Group) model that investigated 

in this work is one variant of this method, which will be introduced in more detail below. As 

already discussed in some works such as Kumar and Ramkrishna (1996), Hagesaether (2002), 

Bove (2005) and Liao et al. (2018), discretizing Eq. (1) in the internal coordinate space (here 

m) with preservation of both mass and number of bubbles is not a trivial matter. Bubbles 

generated in a coalescence or breakup event often possess a mass different from the pivots if an 

arbitrarily irregular grid is applied. In this case, the resultant bubbles have to be allocated to the 

nearest classes appropriately so that both the mass and number is preserved. The purpose of this 

work is to show that the current MUSIG model in the commercial CFD code of ANSYS CFX 

preserves only the mass not the number of bubbles by handling the bubble coalescence and 

breakup terms, and thereby leads to some inconsistencies in the prediction of bubble size 

distribution. A formulation preserving not only the mass but also the number for binary events 

is proposed. The work is of importance for the calibration and development of bubble 

coalescence and breakup models, and contributes to reliable CFD-PBM coupled simulation of 

bubble flows.         

    

 

 
Fig. 1 Discretization of the number density function  
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The paper is outlined as follows: The original MUSIG model in ANSYS CFX as well as its 

deficiencies is presented in Section 2. Updating of the MUSIG model based on the previous 

work of Liao et al. (2018) is given in Section 3. In Section 4 the updated model is validated 

against analytical solutions for a pure coalescence and a pure breakup case, respectively. 

Section 5 presents the simulation results for vertical pipe flows under practical conditions using 

the original and the updated model. Finally, the conclusion of the work is summarized in 

Section 6.     

2 The original MUSIG model and inconsistencies 

As mentioned above the MUSIG model in ANSYS CFX is a population balance framework 

handling poly-dispersed multiphase flows, which is firstly proposed by Lo (2000), and then 

extended by Krepper et al. (2008) to consider the poly-dispersity in bubble velocities and by 

Lucas et al. (2011) to include mass transfer due to condensation and evaporation. The solution 

of the PBE is based on the method of classes introduced above. The model has been widely 

used for poly-dispersed bubble and droplet flows, for example  

 by Cheung et al. (2007; 2013), Dorao et al. (2008), Guillen et al. (2009), Deju (2014), 

Liao et al. (2015) for isothermal vertical pipe flows; 

 by Yeoh and Tu (2004), Krepper and Rzehak (2014) for sub-cooled wall boiling; 

 by Lifante et al. (2010), Liao et al. (2014), Liao and Lucas (2016) for condensing steam-

water flow;   

 by Darwish and Moukalled (2008) for droplets evaporating in supersonic steam, and  

 by Min et al. (2008) for aerated stirred reactors, etc.  

In the previous work, deviation between simulated and measured bubble sizes routinely is 

attributed to the coalescence and breakup kernels or uncertainties in their input parameters. 

Little attention was paid to the discrete formulation of the population balance equation applied 

in the MUSIG model, which will be explored in detail in this work. To keep the consistency, 

the derivation of the size fraction equation of the MUSIG model as well as the default discrete 

formulation of the source and sink terms in ANSYS CFX is introduced briefly below. By 

discretizing the Eq. (1) into size classes, a transport equation for the bubble number 

concentration in each size class Ni is obtained:    
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where mi is the representative mass of the bubbles in size bin i and mi-1/2, mi+1/2 are the boundary 

values (see Fig.1). The number concentration, Ni, is defined as 

 
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i

i

i

m

m

N n m dm




  . (10)  

By multiplying Eq. (9) with mi and after a few manipulations (e.g. by substituting mi Ni = ρd ri) 

one can obtain the size fraction equation solved by the MUSIG model 
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where ρd denotes the density of the dispersed phase, and ri, rd the volume fraction of the size 

bin i and the whole dispersed phase (all bubbles), respectively. The size fraction of the class i 

is defined as fi = ri/rd. According to the user guide (Ansys, 2018), the birth rate of bubbles in 

the size group i due to coalescence of two smaller bubbles, i.e. bubble j and k, is calculated by 
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where the mass matrix Xjki represents the fraction of mass that goes to the group i due to the 

coalescence between a bubble from group j and a bubble from group k,  
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By the mass allocation between the groups i and i-1 (or i+1), Xjki satisfies the conservation of 

both mass and number of bubbles. The death rate due to coalescence is  
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Similarly, the contribution of birth rate due to the breakup of larger bubbles is given by 
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and the death rate due to breakup is 

 Bi d d i i j;
j i

D r f g m m

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The function g in Eq. (15) and Eq. (16) is termed as partial breakup frequency by Liao et al. 

(2018) in order to distinguish it from the overall breakup frequency Ω in Eqs. (4) and (5). 

According to their definitions, the relation between the functions g, Ω and β is given as follows, 

     j i j j i i; ;g m m m m m m  , (17) 

 

and  

   i i j

1
;

2 j i

m g m m


   , (18) 

 

where the term ∆mi represents the width of the class i, i.e. ∆mi = mi+1/2-mi-1/2. 

 

As mentioned above, the Eq. (12) to Eq. (16) are copied from the ANSYS CFX user guide (Eqs. 

(5-147), (5-148), (5-150), (5-151), (5-152)). Some inconsistencies in the derivation can be 

easily discovered if one has a close look at the equations. For example, from the second equal 

sign to the third one in Eq. (12) the quantity mi is replaced by mj + mk, and similarly, in Eq. (15) 

mj takes the place of mi. Because the sum of the mass birth over all size classes is equal to the 

mass death, namely mj + mk in coalescence and mj in breakup, the substitution doesn’t violate 

the global mass conversation, i.e. 

 Ci Ci 0
i

B D  ,     and (19) 

 Bi Bi 0
i

B D  , (20) 

 

is still satisfied, but the terms in individual classes are not correct. It leads to violation of the 

global number conservation in the binary events, namely 
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Wherein NBCi, NDCi, NBBi, NDBi denotes birth and death rate of total bubble number in class i due 

to coalescence and breakup, respectively. Furthermore, in the derivation of Eq. (17) the mean 

value theorem is applied to the daughter size distribution function. In other words, it assumes 

that 

   
i+1/2
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j i i j i-1/2 i i+1/2; ( ; ) ,        

m

m
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This is only applicable in case of uniform distribution, i.e. β is a constant, or the mass of the 

daughter bubble m coincide with the representative value mi. Otherwise, it may lead to violation 

of the number constraint given by Eq. (7), in other words, usually 
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0

; ( ; ) 2  

m
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The last inconsistency is that the breakup birth rate of bubbles in class i is counted twice 

according to Eq. (15). Because in binary breakup events the daughter bubbles and their 

complementary parts are symmetrical at the half parent bubble, i.e. mi=0.5mj, the birth rate 

should be summarized either over the range mi < mj ≤ 2mi or mj >2mi but not the whole range 

of mj > mi. Correspondingly, the ½ is missing in the computation of the death rate by Eq. (16).  

 

In contrast to the kernel functions little discussion on the uncertainties of the discretization 

introduced by above substitution and inconsistency in the MUSIG model is available in the 

literature. Recently, Liao et al. (2018) showed that the error in the breakup birth rate is 

significant by studying an academic case of pure breakage in a zero-dimensional model, where 

analytical solution is possible. The authors were therefore motivated to develop a novel discrete 

population balance equation for binary breakage, which preserves both the total mass and 

number of bubbles. The framework was successfully published in the OpenFOAM 6 released 

by the foundation. In this work, the MUSIG model in ANSYS CFX code is updated based on 

this discrete formulation of the PBE, and additional corrections are performed for the 

coalescence birth rate. The implementation is validated against both analytical results and 

laboratory experiment by means of CFD-PBE coupled simulations. 

3 The updated MUSIG model and advantages 

 

The size fraction equation remains the same as in Eq. (11), and updates are carried out merely 

in the computation of the birth and death rates of bubbles due to coalescence and breakup. The 



correction for BCi is straightforward. As already discussed above, the term mj + mk in the last 

line of Eq. (12) should be mi, i.e.     

 

 

   

i+1/2

i-1/2

'

Ci i C

i j k jki j k

2 j k
d d j k jki i

j k

1
    ;

2

1
    ;

2

m

m

j i k i

j i k i

B m B m dm

m Q m m X N N

f f
r Q m m X m

m m


 

 



 
  

 

 
   

 







, (12’) 

 

In contrast, the reformulation of the breakup birth rate BBi in Eq. (15) needs some manipulations. 

To avoid the inconsistency given in Eq. (24), either a special discretisation scheme is adopted 

or numerical integration of β is needed. The former example is the 2n ratio between successive 

bin sizes in the Hagesather method (Hagesather et al., 2002). The latter one is the formulation 

proposed by Kumar and Ramkrishna (1996), where the fraction of breakage sources going to 

representative size bins is computed from numerical integration of β over each size bin. Both 

formulations are available in the commercial code ANSYS FLUENT. For more details the 

reader are referred to the user guide. In this work, a new formulation free of above restrictions 

is proposed for binary breakage. As illustrated in Fig. 2, we firstly envision that the parent 

bubble j and the smaller daughter bubble k have the mass coinciding with the pivots or the 

representative values of the classes j and k, i.e. having the mass mj and mk, respectively. The 

mass of the other daughter bubble is then fixed to mj - mk, which is larger than the half mass of 

the parent bubble and lies near the size class i.     

 

 
 

Fig. 2 schematic illustration of the discretization of bubble mass coordinate and the breakup 

of a bubble from class j to a bubble in class k and its counterpart (Liao et al., 2018) 

 

The birth rate of the daughter bubble k follows directly the Eq. (15) but with the correction on 

the mass replacement discussed above, i.e. 
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The generation of the other daughter has to be represented by the birth rates of neighbouring 

classes, here for example class i-1, i and i+1, and an appropriate allocation scheme is needed. 

By mimicking the mass matrix Xjki for coalescence given by Eq. (13), we propose a mass matrix 

Yjki for the description of the mass fraction going to the class i due to the breakup of a bubble j 

to a bubble k (Liao et al., 2018). It is expressed as 
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Furthermore, as explained by Eq. (8) the number generation rate of the two daughter bubbles is 

identical. The birth rate of the daughter bubble with the mass mj - mk can be represented by that 

of the daughter k. In this way, the constraint of number conservation given by Eq. (7) is ensured, 

and the error introduced by applying the mean value theorem on β as shown in Eq. (24) is 

avoided, since the mass of the daughter k coincides with the representative value. Finally, the 

birth rate of the bubbles in class i due to the generation of bubbles with mj - mk is computed 

according to 
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If we consider above two situations for the size class i, the general expression for the birth rate 

due to breakup of large bubbles is given by 
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It should be noticed that in Eq. (27) g(mj; mi) and g(mj; mk) represents the partial breakup 

frequency of a bubble j to a daughter bubble i and k, respectively. Both of them are smaller than 

the half parent bubble mass, i.e. mi < 0.5 mj and mk < 0.5 mj, since we fix the mass of the small 

daughter to the representative values. In the application of the formulation for binary breakage, 

the condition of preserving mass and number density is justified by preparing the function g 

using the Eq. (17) properly. Since the breakup model of Luo & Svendsen (1996) is the default 

one in the ANSYS CFX code, let us take it as an example to explain how to prepare g(mj;mi) 

appropriately. Luo & Svendsen (1996) proposed a model for the breakup of drops and bubbles 

in turbulent dispersions, and it is formulated as 
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where  
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In Eqs. (28) and (29) the symbols ξ denotes the size ratio between an eddy and the parent particle, 

and fbv is the volume ratio between a daughter and the parent particle, and FB is an adjustable 

constant, β = 2, ρc and εc is the density and eddy dissipation rate of the continuous phase, and σ 

is the surface tension coefficient. 

 

One should pay attention that the function g(mj; fbvmj) in Eq. (28) is not directly the function 

g(mj; mi) or g(mj; mk) that is required for the MUSIG model. The difference seems to be 

overlooked in most previous work, since no related discussion is available. As described in the 

paper of Luo & Svendsen (1996), g(mj; fbvmj) is related to the total breakup frequency Ω(mj) in 

the following way 

   
bv

0.5

j j bv j bv

0

;
f

m g m f m f


   . (30) 

 

By comparing Eq. (30) with Eq. (18) one can get 

       i
j i j bv j bv j bv j

j

; ; ;
m

g m m g m f m f g m f m
m


   . (31) 

 

If instead of g(mj; fbvmj), Ω(mj) and β(mj; mi) are provided, g(mj; mi) should be derived according 

to Eq. (17). It is worth noting that in the new formulation the term Δmi (or Δmk) is not always 



equal to the bin width. It should satisfy the following condition in order to ensure that g(mj; mi) 

(or g(mj; mk)) refers to the breakage source of a bubble up to the half parent bubble mass, i.e. 

mi (or mk) ≤ 0.5mj. 

i+1/2 i-1/2 i+1/2 j

i j i-1/2 i-1/2 j i+1/2

j i-1/2

,              if  0.5

0.5 ,             if  0.5

0,                               if  0.5

m m m m

m m m m m m

m m

  


    




. (32) 

 

Finally, the Eq. (16) can be used directly to calculate the death rate of bubbles in the class i. 

Multiplication with the factor ½ is not necessary, since the breakup rate g(mi; mj) is calculated 

only for mj ≤ 0.5mi. 

 

The major advantages of the updated formulation can be summarized as follows.  

1) it preserves both the mass and number of bubbles;  

2) it allows an arbitrary discretisation of the mass coordinate such as uniform and geometric;  

3) it avoids costly numerical integrations. As indicated in the user guide of ANSYS FLUENT, 

if the Kumar & Ramkrishna formulation (Kumar & Ramkrishna, 1996) is chosen for the Luo 

& Svendsen (1996) model, the space-dependent input parameters such as turbulence dissipation 

rate have to be averaged over the whole domain to keep the computational time reasonable 

(Liao et al., 2018).  

4 Validation with analytical solutions 

 

The updated MUSIG model is implemented in ANSYS CFX through the CFX Expression 

Language (CEL). In the two-fluid framework it is validated firstly for two academic cases, one 

pure coalescence and one pure breakage, where simple kernel functions are adopted and 

constant flow fields are assumed. The results are compared with the analytical ones as well as 

those obtained using the original MUSIG model. Subsequently, they are applied in quasi two-

dimensional CFD-PBE coupled simulation of vertical bubbly flows, where phenomenological 

models for coalescence and breakup presented by Liao et al. (2015) are used. In all the cases, 

the continuous phase is water and the dispersed one is air. As listed in Table 1, constant material 

properties are assumed. 

  

Table 1 Material properties  

ρc [kg/m3] ρd [kg/m3] σ [N/m] μc [Pa·s] μd [Pa·s] 

997 1.18 0.072 8.899×10-4 1.831×10-5 

    

4.1 Pure coalescence 

Scott (1968) has presented analytical solutions for the pure coalescence case with a constant 

coalescence kernel, i.e. Q = 1 m3/s, and an exponential initial condition for the number density 

is assumed 



    0

0 0 0

, 0 exp
N m m

n m t
m m m

   
     

   
, (33) 

 

where v denotes the bubble volume, and N0 = 2.5, m0 = 0.0118 kg. The case has been also studied 

by Kumar & Ramkrishna (1996) and Liao et al. (2018) using the method of classes. For the test, 

a constant volume fraction of the dispersed phase is assumed, i.e. rd = 0.05. The mass coordinate 

is discretized into 54 classes using a geometric grid (mi+1 = smi). The ratio s and the minimum 

bubble mass is set to 1.5 and 1.04×10-5 kg, respectively. According to Eqs. (33) and (10) the 

initial size fraction fi can be calculated from the relation fi = Ni mi / rd ρd. The computational 

domain is a cubic box with the top exposed to the atmosphere as described in Liao and Lucas 

(2018). The flow field is stagnant, and no buoyancy model is activated. It is a quasi zero-

dimensional simulation. Details about the mathematical and numerical setup are provided in 

Table 2. 

Table 2 Numerical setup for the pure coalescence case  

analysis type transient 

time step 0.01s 

multiphase model homogeneous  

turbulence model laminar 

heat transfer model isothermal 

convergence criteria maximum residual ≤ 10-4 

advection scheme high resolution 

transient scheme second order backward Euler 

equations solved 

- mixture momentum equation 

- pressure equation 

- liquid mass equation 

- size fraction equations 

 

Firstly the conservation of bubble mass and number in the computation of binary coalescence 

process is checked. As described in Eq. (19) and Eq. (21), the mass and number is conserved if 

∑BCi/∑DCi=1 and ∑NBCi/∑NDCi=0.5 is satisfied. The results shown in Fig. 3 reveal that both 

the original and the updated formulations preserve the mass, but the former violates the number 

conservation. The ratio of ∑NBCi/∑NDCi is slightly larger than 0.5 according to the original 

MUSIG model, which means that two bubbles disappear and more than one bubble is generated. 

It is inconsistent with binary coalescence scenario. The updated formulation presented in this 

work remedies this problem, see Fig. 3(b). 

  



                      

(a) mass conservation                                    (b) number conservation  

 

Fig. 3 Check the conservation of mass and number during binary coalescence (pure 

coalescence, Q = 1.0 m3/s, mass conservation: ∑BCi/∑DCi=1, number conservation: 

∑NBCi/∑NDCi=0.5) 

The bubble number and size fraction density functions at t = 10 s predicted by the original and 

the updated MUSIG model are illustrated in Fig. 4(a) and 4(b), respectively. The dash line 

symbolizes the initial condition given by Eq. (33). The solid lines denotes analytical solutions, 

while the symbols are numerical ones. Although the difference is not dramatic, the original 

MUSIG model, where the mass mi is replaced by mj + mk during the derivation of the birth rate 

term BCi (see Eq. 12), leads to a clear under-prediction for small and moderate bubbles, while 

over-prediction at large sizes, where the number concentration is low. It implies that the 

coalescence rate is over-estimated. On the other hand, the numerical results obtained using the 

updated MUSIG model coincide with the analytical ones in the range from small to moderate 

bubble size. Over-predictions are observed at large bubble sizes, although they are more close 

to the analytical solutions than the original results. The deviation is suspected due to 

discretization errors. As shown by Kumar & Ramkrishna (1996), a very good agreement can be 

achieved in this range if a finer grid with s = 1.25 is used.  

              

(a)  number density                                     (b) size fraction density 
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Fig. 4 Comparison between the numerical and analytical solutions for bubble number and size 

fraction density (pure coalescence, Q = 1.0 m3/s, t = 10 s) 

4.2 Pure breakage  

To illustrate the necessity of the updates regarding the birth rate term BBi presented in this work, 

a pure breakage case with power breakup rate and uniform daughter size distribution is 

considered, i.e. Ω(m) = (m/ρd) 
2 m-6 s-1, β(m; m’) = 2.0 / m. The computational domain, numerical 

and mathematical setups are identical to the above case, but with less size classes. The bubble 

mass coordinate begins with 1.38×10-5 kg and ends with 1.18 kg, and is divided into 29 bins 

with s = 1.5. A mono-disperse initial condition at the largest class is assumed (illustrated by the 

dash line in Fig. 5). Like in the coalescence case, the quantities of interest are set to be the 

number density and size fraction density here. The comparison between the numerical results 

and the analytical solution is shown in Fig. 5(a) and 5(b), respectively. One can see that in this 

case the original MUSIG model fails to reproduce the analytical results and gives severe over-

prediction of small and moderate bubbles. In contrast, both the number and size fraction density 

obtained using the updated MUSIG model are in excellent agreement with the analytical 

solutions. It suggests that the updates regarding the breakup birth and death rate term are 

indispensable.  

 

             

(a)  number density                                     (b) size fraction density 

Fig. 5 Comparison between the numerical and analytical solutions for bubble number and size 

fraction density (pure breakage, Ω(m) = (m/ρd) 2 m-6 s-1, β(m;m’) = 2.0/ m, t = 10 s) 

Like in the pure coalescence case, the discrepancy observed in the original MUSIG is related 

to the violation of the conservation of bubble numbers. According to Eq. (22) the bubble 

number is preserved in binary breakage events if the ratio ∑NBCi/∑NDCi is equal to 2, which 

means that two bubbles are generated if one bubble breaks. As shown in Fig. 6(b) the original 

MUSIG formation obtains a too large value for ∑NBCi/∑NDCi, while the updated one coincides 

with the analytic solution of 2. 
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     (a) mass conservation                                    (b) number conservation  

Fig. 6 Check the conservation of mass and number during binary breakup (pure 

breakage, Ω(m) = (m/ρd) 2 m-6 s-1, β(m;m’) = 2.0/ m, mass conservation: ∑BCi/∑DCi=1, 

number conservation: ∑NBCi/∑NDCi=2) 

 

5 Application for vertical pipe flows 

 

In addition to the academic cases, four vertical pipe flow cases are simulated. In these cases 

simultaneous coalescence and breakup takes place, and experimental data on the change of 

bubble size distribution along the pipe are available.  

  

5.1 Test cases 

The validated CFD-PBM coupled model is used to predict the bubble size change in vertical 

pipe bubble flows. The data for comparison are taken from two stationary adiabatic air-water 

experiments conducted on the MTLoop and TOPFLOW facility at Helmholtz–Zentrum 

Dresden – Rossendorf (HZDR). The construction of the vertical pipe test section, air injection 

devices as well as wire-mesh sensors are illustrated in Fig. 7. In the MTLoop experiment, air 

was injected from 19 nozzles at the bottom, which have a diameter of 1 mm and are distributed 

axis symmetrically over the cross section (see Fig. 7(a)). The vertical test section has an inner 

diameter of 51.2 mm and a length of 3.5 m. It consists of several segments, which are connected 

with flanges. Sensors can be mounted in each of the flanges (Lucas et al., 2005). By combining 

different long segments, the distance between the gas injection and the sensor position can be 

varied. Table 3 shows the distance of each measurement plane to the gas injection.  

 

Table 3 Distance between measurement plane and gas injection in MTLoop experiment  

Plane A B C D E F H J K L 

Distance [m] 0.03 0.08 0.13 0.23 0.43 0.83 1.53 2.03 2.53 3.03 
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(a) MTLoop facility 

 
 

 
(b) TOPFLOW facility 

Fig. 7 Test facilities for upward pipe flow experiments 

 

The test section in the TOPFLOW experiment consists of a DN 200 pipe having a length around 

8 m. The air was injected symmetrically from the pipe wall (see Fig. 7(b)) through orifices. A 

variable gas injection system consisting of several injection modules was designed to vary the 

distance between the injection position and the sensors while the sensors is fixed at the top of 

the pipe. The six injection modules are distributed almost logarithmically over the total height. 

Each of them consists of three injection chambers. The uppermost and the lowest one are 

provided with 72 x 1 mm orifices and the middle chambers have 32 x 4 mm orifices. The 

distance between measurement planes and gas injection for 1 mm and 4 mm orifices is 

summarized in Table 4. 

Table 4 Distance between measurement plane and gas injection in TOPFLOW experiment  

Dorifice= 

1mm 
Plane A C D F G I J L M O P R 

Distance [m] 0.221 0.335 0.494 0.608 1.438 1.552 2.481 2.595 4.417 4.531 7.688 7.802 

Plane B E H K N Q  



Dorifice= 

4mm 
Distance [m] 

0.278 0.551 1.495 2.538 4.474 7.745  

 

In each experiment, tests were conducted for a large matrix with different combination of 

superficial gas and liquid velocities, and radial gas volume fraction, bubble size distribution as 

well as vertical gas velocity were measured with aid of two wire-mesh sensors. The data have 

been used frequently for model validation, e.g. Dorao et al. (2008), Krepper et al. (2008), Liao 

et al. (2011; 2015), Cheung et al. (2013). In this work two test cases from each experiment are 

simulated to show the effect of the updates in the MUSIG model on the prediction of bubble 

size distribution. Table 5 summarizes the experimental conditions, where JL, JG represents the 

superficial liquid and gas velocity, respectively, and Dorifice is the orifice diameter used for gas 

injection.  

 

 Table 5 Experimental conditions of the investigated test cases  

Experiment Test cases JL [m/s] JG [m/s] Dorifice [mm] 

MTLoop 063  

 

1.017 

 

0.0235 1.0 

074 0.0368 

TOPFLOW 063 0.0235 4.0 

074 0.0368 

 

Because of different gas injection methods, the initial bubble size and evolution of the 

distributions is obviously different in the two experiments even at identical superficial gas and 

liquid velocities. As shown in Fig. 8 the total evolution trend (from Level A to Level L in the 

MTLoop cases and from Level B to Level Q in the TOPFLOW cases) in the MTLoop cases is 

dominated by bubble coalescence while in the TOPFLOW ones by breakup. This is because in 

the TOPFLOW experiment big bubbles (5 ~ 20 mm) are present near the injection position due 

to the large orifices. 

 

 
(a) MTLoop_063 

 
(b) MTLoop_074 
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(c) TOPFLOW_063 

 
(d) TOPFLOW_074 

Fig. 8 Experimental observation of bubble size evolution along the pipe (from Level A to L, 

from Level B to Q) 

 

5.2 Simulation setup 

The computational domain and model is the same as that introduced in the previous work of 

Liao et al. (2019). Instead of the whole pipe a wedge covering 4º of the circumferences is 

simulated, and a quasi 2D mesh with one layer of cells in the circumferential direction is applied. 

The boundaries consist of inlet, outlet, symmetrical planes and wall. Measurements at the lower 

plane (A in MTLoop cases or B in TOPFLOW cases, see Table 4) are used as inlet conditions 

for the numerical analysis. The pressure boundary condition at the outlet is given as atmospheric 

pressure. The near-wall mesh resolution is checked by controlling the y+ value around 65 in all 

test cases, which is sufficiently fine for the k-ω SST model with automatic wall treatment. 

Closure laws for the interfacial transfer terms in the two-fluid model are specified under the 

guidance of the HZDR baseline strategy to avoid uncertainty related to model combination and 

tuning (Lucas et al., 2016). It contains specification for bubble forces, bubble coalescence and 

breakup and turbulence modelling, see Table 6.  

Table 6 Baseline model for specifying two-fluid model closures  

 Term Model and Reference 

 

Interfacial 

forces 

drag Ishii and Zuber (1979) model 

shear lift Tomiyama et al. (2002) 

virtual mass virtual mass coefficient set to 0.5 

wall force Hosokawa et al. (2002) 

 

Turbulence 

liquid k-ω SST model, Menter (1994) 

gas  dispersed phase zero equation model, υtd = υtc 

BIT Ma et al. (2017) 

 

Bubble size 

PBM MUSIG model, Krepper et al. (2008), Liao et al. (2018) 

coalescence Liao et al. (2015) 

breakup Liao et al. (2015) 

 

The forces responsible for interfacial momentum transfer consist of drag, shear lift, virtual mass 

and wall lubrication force. With regard to turbulence modelling the k-ω SST model with 

automatic wall treatment (Menter, 1994) is applied for the liquid phase, while the eddy 

kinematic viscosity of the gas is assumed to be equal to the liquid one. The coalescence and 
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breakup model presented in Liao et al. (2015) is adopted to close the birth and death terms in 

the MUSIG size fraction equation, i.e. Eq. (11).  In turbulent bubble flow, bubble coalescence 

and breakup may result from various mechanisms such as turbulent fluctuation and interfacial 

slip. The model is generalized by accounting for all the mechanisms, whose advancement 

against the combination of the Prince & Blanch (1990) coalescence model and the Luo & 

Svendsen (1996) breakup model has been presented in Liao et al. (2015). The focus of the 

current work is validating the updated discrete formulation of the PBE. Coalescence and 

breakup due to turbulent fluctuation is considered. Like in the Luo & Svendsen (1996) model, 

the partial breakup frequency g(mj; fbvmj) is provided by Liao et al. (2015). For more details on 

the baseline model, the reader are referred to the previous work of Liao et al. (2018; 2019) as 

well as the references listed in Table 6. 

    

5.3 Numerical results 

The simulated and measured bubble size distribution at the top of the pipe as well as inlet is 

depicted in Fig. 9 for the four cases in Table 5. In accordance with the experimental data the 

bubble size distribution is defined as the percentage of void fraction in each class divided by 

the class width, i.e. ∆α/∆d. As observed in the experiment, bubble size in the cases MTLoop 

063 and MTLoop 074 increases from Level A to Level L and the distribution shifts to the right. 

It implies that in these simultaneous coalescence and breakup cases coalescence is dominant. 

The coalescence and breakup model is capable of capturing this trend, but difference is present 

between the predictions obtained using the default and improved MUSIG frameworks. The 

default one in ANSYS CFX is prone to under-predict the bubble size because of over-prediction 

of the breakup rate as discussed in the pure breakup case. The updated formulation presented 

in this work improves the results considerably, and the predicted bubble size distribution 

conforms to the measured one. The improvement is even significant in the two TOPFLOW 

cases, where the evolution is dominated by bubble breakage.  As shown in Fig. 9(c) the bubble 

size at Level B ranges from 5 to 20 mm and has a Sauter mean diameter around 10 mm. Due to 

the effect of breakage bubble size decreases, and the mean diameter reduces to 7 mm at Level 

Q. Again, the breakup-dominant trend is captured well by the coalescence and breakup model 

of Liao et al. (2015). The difference between the numerical results comes exclusively from the 

discrete formulation of the death and birth terms in the population balance equation. The default 

formulation provided by the ANSYS CFX code obviously delivers a too large breakup rate. 

One should be aware of this inconsistency if we are calibrating the coalescence and breakup 

models on basis of this formulation. The initial bubble size is slightly larger in case TOPFLOW 

074 because of a higher superficial gas velocity. Otherwise, the evolution of bubble size 

distribution is similar to that in TOPFLOW 063, and dominated by breakup. In both cases, the 

bubble size distribution predicted by the coalescence and breakup model of Liao et al. (2015) 

using the updated MUSIG framework proposed in this work agrees quantitatively with the 

measurement. The necessity of the updating is evidenced in both academic and real bubble flow 

cases, especially in pure breakup and breakup-dominant cases.  

 



 
(a) MTLoop_063 

 
(b) MTLoop_074 

 
(c) TOPFLOW_063 

 
(d) TOPFLOW_074 

Fig. 9 Comparison between the simulated and measured bubble size distribution at the top 

of the pipe (Level L or Level Q) 

6 Conclusion 

 

Modelling of poly-disperse bubble flow by means of the CFD-PBM coupled method has 

received great attention. There have been numerous efforts to improve bubble coalescence and 

breakup kernels while discussion on numerical discretisation of the PBE itself is scarce. The 

method of classes discussed in this work is an attractive and widely used approach, which 

however may lead to inconsistency regarding the conservation of bubble number when breakup 

events are considered. Although it is aware for some researchers, a robust and efficient discrete 

formulation of the PBE for breakup is not available. The existing formulations in the 

commercial CFD codes such as ANSYS CFX and FLUENT either preserve only the mass or 

have restriction on discretisation schemes or rely on costly numerical integrations. Recently, 

Liao et al. (2018) proposed a discrete formation for accounting for binary breakage. It 

overcomes the limitations in existing formulations in the commercial codes, and may facilitate 

efficient combination with the CFD methodology. The formulation was validated in a 

standalone way in OpenFOAM, and the flow parameters were assumed constant. In the present 

work, the inconsistencies in the original MUSIG model in ANSYS CFX are discussed basing 

on the user’s guide, and corresponding updates are carried out. The updated formulation is 
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validated against analytical results for two academic cases and experimental data for four 

laboratory pipe flow cases. In the academic cases the flow parameters are assumed constant, 

while in the pipe flow ones CFD-PBM coupled simulations are performed. The results evidence 

the success and necessity of the updates in both cases. The work is meaningful in warning the 

users of the inconsistencies in the commercial code, and assisting the development of bubble 

coalescence and breakup kernels. 
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