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Abstract
In this thesis, two novel diagnostic techniques for the identification of plasma dynamics and the

quantification of essential parameters of the dynamics by means of electromagnetic plasma-

radiation are presented. Based on particle-in-cell simulations, both the radiation signatures of

micrometer-sized laser plasma accelerators and light-year-sized plasma jets are simulated with

the same highly parallel radiation simulation framework, in-situ to the plasma simulation.

The basics and limits of classical radiation calculation, as well as the theoretical and technical

foundation of modern plasma simulation using the particle-in-cell method, are briefly introduced.

The combination of previously independent methods in an in-situ analysis code as well as its

validation and extension with newly developed algorithms for the simultaneous quantitative

prediction of both coherent and incoherent radiation and the prevention of numerical artifacts

is outlined in the initial chapters.

For laser wakefield acceleration, a hitherto unknown off-axis beam signature is observed,

which can be used to identify the so-called blowout regime during laser defocusing. Since

significant radiation is emitted only after the minimum spot size is reached, this signature is

ideally suited to determine the laser focus position itself in the plasma to below 100µm and thus

to quantify the influence of relativistic self-focusing. A simple semi-analytical scattering model

was developed to explain the blowout radiation signature. The spectral signature predicted by

the model is verified using both a large-scale explorative simulation and a simulation parameter

study, based on an experiment conducted at the HZDR. Identified by the simulations, a temporal

asymmetry in the scattered laser light, which cannot be described by state of the art quasi-static

models of the blowout regime, makes it possible to determine the focus position precisely by

using this radiation signature.

For the so-called Kelvin-Helmholtz instability, a polarization signature is identified that allows

both identifying the linear phase of the instability and quantifying its most important parameter,

the growth rate. This plasma instability is suspected to occur in the shear region between plasma

jets of active galactic nuclei or supernova remnants and the surrounding plasma and causes

strong magnetic fields to grow along the shear surface. The measurement of the growth rate of

these fields allows deducing the internal structure and dynamics of these jets and gaining an

insight into previously inaccessible regions. A microscopic model of the electron dynamics was

developed which describes the main radiation properties. With an unprecedentedly large and

accurate simulation of the relativistic Kelvin-Helmholtz instability, the microscopic model was

validated. The discovered polarization signature can be clearly identified even under arbitrary

Lorentz transformations for observers on Earth and poses thus an ideal method for astronomical

observations.

These very different physical scenarios clearly exemplify the possibilities of synthetic radiation

diagnostics and represent the first step towards future explorative studies of plasmas and their

radiation in other scenarios using simulations.



Kurzfassung
In dieser Arbeit werden zwei neuartige diagnostische Methoden vorgestellt, die auf emittierter,

elektromagnetischer Strahlung basieren, um die Plasmadynamik zu identifizieren und wesent-

liche Parameter der Plasmaentwicklung zu quantifizieren. Die Strahlungssignaturen von mikro-

metergroßen Laser-Plasmabeschleunigern und von Lichtjahre großen Plasma Jets werden mit

den gleichen hochparallelen Strahlungs-Simulations-Framework in-situ zur Plasmasimulation

bestimmt.

Die Grundlagen und Grenzen der klassischen Strahlungsberechnung sowie die theoretischen

und technischen Grundlagen der modernen Plasmasimulation mit der Particel-in-Cell-Methode

werden in einem kurzen Exkurs eingeführt. Die Kombination der beiden bisher unabhängi-

gen Methoden in einem in-situ Analysecode sowie deren Validierung und Erweiterung mit neu

entwickelten Algorithmen zur gleichzeitigen quantitativen Vorhersage von kohärenter und inko-

härenter Strahlung und zur Vermeidung numerischer Artefakte werden in den ersten Kapiteln

skizziert.

Für die Laser-Wakefield-Beschleunigung wird eine bisher unbekannte Off-Axis-Strahlsignatur

vorgestellt, mit der das sogenannte Blowout Regime bei der Laser-Defokussierung identifiziert

werden kann. Da signifikante Strahlung erst nach Erreichen der minimalen Spotgröße emittiert

wird, ist diese Signatur ideal geeignet, um die Laserfokusposition selbst im Plasma auf unter

100µm genau zu bestimmen und damit den quantitativen Einfluss der relativistischen Selbstfo-

kussierung zu bestimmen. Ein einfaches semi-analytisches Streumodell wurde entwickelt, um

die Blowout Strahlungssignatur zu erklären. Die vom Modell vorhergesagte spektrale Signatur

wurde sowohl durch eine groß angelegte explorative Simulation als auch durch eine Simula-

tionsparameterstudie, basierend auf einem am HZDR durchgeführten Experiment, verifiziert.

Nur eine durch die Simulationen ermittelte zeitliche Asymmetrie, welche durch die aktuellen

quasistatischen Modelle des Blowout Regimes nicht beschrieben werden kann, ermöglicht eine

genaue Bestimmung der Fokusposition mit Hilfe dieser Strahlungssignatur.

Für die sogenannte Kelvin-Helmholtz-Instabilität wurde eine Polarisationssignatur entdeckt,

die sowohl die Identifikation der lineare Phase der Instabilität als auch die Quantifizierung

des wichtigsten Parameters, der Wachstumsrate, ermöglicht. Diese Plasmainstabilität wird im

Scherbereich zwischen den Plasmastrahlen aktiver galaktischer Kerne oder Supernovaüberres-

te und dem umgebenden Plasma vermutet und verursacht starke Magnetfelder entlang der

Scheroberfläche. Die Messung der Wachstumsrate dieser Felder erlaubt es, die innere Struktur

und Dynamik dieser Jets abzuleiten und einen Einblick in bisher unzugängliche Regionen zu

gewinnen. Es wurde ein mikroskopisches Modell der Elektronendynamik entwickelt, das die

wichtigsten Strahlungseigenschaften abbildet. Mit Hilfe einer bislang unerreicht großen und

genauen Simulation der relativistischen Kelvin-Helmholtz-Instabilität wurde das mikroskopische

Modell validiert. Die dabei entdeckte Polarisationssignatur lässt sich auch bei beliebigen Lorentz-

Transformationen für Beobachter auf der Erde eindeutig identifizieren und stellt somit eine

ideale Methode für astronomische Beobachtungen dar.

Diese sehr unterschiedlichen physikalischen Szenarien veranschaulichen deutlich die Mög-

lichkeiten der synthetischen Strahlendiagnostik und stellen einen ersten Schritt in Richtung

zukünftiger explorativer Untersuchungen von Plasmen und ihrer Strahlung in anderen Szenarien

mittels Simulationen dar.
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1 Synthetic radiation simulations fordetermining plasma dynamics -bridging spatial and temporal scales
Plasmas occur in a wide range of parameters. Starting with micrometer-scale plasmas generated

in today’s laser plasma accelerators [1, 2], to millimeter- to meter-scale plasmas in inertially

confined fusion, fusion reactors, and material processing in the electronic industry [3, 4], to

kilometer-scale plasmas in planetary atmospheres and stars [5], to thousands of light years

large intergalactic plasma jets [6]. Many of these systems show a complex plasma dynamics that

cannot be probed directly.

This thesis focuses on new, indirect methods to gain insight into plasma systems using

spectrally resolved electromagnetic radiation. It focuses on theoretical models, supported by

simulations, that enable linking the observed spectra to the plasma dynamics and allow identify-

ing specific phases of the plasma dynamics via distinctive spectral signatures and quantifying

characteristic properties of the plasma dynamics by quantifying the emitted radiation.

Spectral methods are of great importance for the indirect detection of plasma dynamics since

they make the fast- and small-scale electron dynamics in plasmas determinable by measuring

radiation far away from the actual plasma dynamics. However, linking complex plasma dynamics

to spectral radiation signatures is not a simple task, since both the nonlinear plasma dynamics

and the complex calculation of radiation spectra are difficult to solve analytically. The modeling

of plasma dynamics via ab initio simulations and the prediction of radiation by means of syn-

thetic radiation diagnostics based on particle motion from the plasma simulation is, therefore,

a valuable tool that allows directly connecting plasma dynamics with emitted radiation. This

enables building simple models with predictive capabilities for the plasma dynamics and validat-

ing them using simulations. Based on these tested models, experimental measurements can

determine the plasma dynamics based on the observed radiation. Providing the computational

methods for these synthetic radiation simulations, developing usable models, and validating

these against simulations is the main objective if this work.

This thesis covers two extreme cases: the femtosecond-nanometer-scale dynamics of a

laser wakefield acceleration and the large-scale but spatially irresolvable plasma dynamics in

astrophysical jets. Both scenarios are hard to resolve in space and time. This work shows that

essential information on the plasma dynamics can be gained by means of measuring spectrally

resolved radiation.
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1.1 Understanding and optimizing micrometer-scale laserwakefield accelerators
The initial idea of using lasers to drive plasma waves in order to generate accelerating fields

inside a plasma was proposed in 1979 by Tajima and Dawson [7]. Their method overcomes an

intrinsic limitation of classical accelerators: since they rely on RF-cavities, they cannot provide

electric fields beyond the breakdown limit of the materials used. This limits the accelerating

fields to Eacc ∼ 100 MV/m [8, 9]. By using plasmas to provide the accelerating electric field, field

strengths of about the critical electric field of the plasma are reached [7]

Eacc ∼ Ecrit =
mecωpe
qe

, (1.1)

with c being the speed of light, me and qe denoting the electron’s mass and charge, and ωpe
being the plasma frequency:

ωpe =

√
neq2

e

ε0me
(1.2)

with ne denoting the electron density and ε0 the vacuum permittivity. In laser plasma experi-

ments, accelerating fields of Eacc ∼ 100 GV/m [10, 11] have been demonstrated. This allows

shrinking the size of accelerators in theory by three orders of magnitude and thus reducing cost

and space for constructing an electron accelerator.

Figure 1.1: Illustration of a laser wakefield accelerator: A high-power laser pulse drives a plasma wave and creates
a plasma cavity in which an electron bunch is accelerated. The electron density is depicted by a colored

volume rendering. Densities below the initial plasma density are completely transparent for reasons of

illustration. The contour plots in blue and red represent the electric field of both the laser pulse and the

electron bunch. The image is a 3D visualization of a simulation performed with the particle-in-cell code

PIConGPU. [R1].

In a simplified description, the laser wakefield acceleration (LWFA) is driven by a laser pulse

that propagates through an underdense1 plasma and pushes the plasma electrons aside due to
1
An underdense plasma is defined as a plasma in which the plasma frequency ωpe is smaller than the laser frequency
ω0. Such a laser can propagate through the plasma according to the dispersion relation. In contrast, an overdense
plasma (ωpe > ω0) reflects and absorbs such a laser.
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the laser’s repulsive ponderomotive potential. Meanwhile, the ions remain almost motionless

due to their high mass. This creates an electron-free space behind the laser pulse as depicted in

Fig. 1.1. The attractive ion background inside this electron-free space creates a plasma cavity

with contains a longitudinal electric field. By a variety of mechanisms, electrons can enter the

plasma cavity and then get accelerated by the present longitudinal electric field.

A breakthrough in the quality of electron bunches was achieved in 2004 by three groups

simultaneously. They generated quasi-monoenergetic electron packages with energies up to

∼ 170 MeV [10, 12, 13]. Today, monoenergetic bunches with energies of over 2 GeV and charges

of a few picocoulombs can be achieved by using pre-formed plasma channels [14–16]. Even

higher energies could be reached in the future by means of staging several plasma cavities

consecutively [17, 18]. Using a different experimental approach, an increase in total accelerated

charge was achieved, producing bunches of 0.5 nC with energies up to ∼ 0.5 GeV [R2].

These improvements were only possible due to enhanced parameter control and direct

feedback from diagnostics.

These high-quality electron bunches were a result of a higher degree of control of the
laser and plasma parameters, an improvement of diagnostic techniques , [. . . ]

Eric Esarey et al. (2009) in Reviews of Modern Physics [1]

However, the diagnostics of micrometer-femtosecond scale plasma dynamics in the laser

wakefield accelerator is challenging. There are various direct measurements of the plasma

cavity by probing the density fluctuations or magnetic fields with a second laser or electron

bunch [19–22]. These setups provide valuable insight into the plasma dynamics but come with

the drawback of requiring a reasonably good synchronization between pump and probe pulse.

Additionally, the performance of LWFA can fluctuate significantly from shot to shot. Without

intrinsic synchronization, those fluctuations render these diagnostic methods impossible for the

analysis of every individual laser shot.

On the other hand, spectral methods based on plasma self-emission avoid these synchro-

nization limitations and indirectly infer the phase space distribution of the electrons emitting

radiation. Experimentalists perform such diagnostics based on self-emission commonly by mea-

suring the so-called betatron radiation, emitted by the electrons accelerated in the plasma cavity,

to deduce the bunch parameters [23–27]. However, the spectral analysis of the self-emission of

the plasma electrons is seldomly applied to study the plasma wake or laser evolution. The broad-

band wave-breaking signature, that is emitted during electron self-injection into the plasma

cavity, is an exception to this rule [28].

The advantages of self-emission include the possibility to be measured for every laser shot

without being limited by varying levels of synchronization, and the absence of a probe source and

delivery system. It requires only a detector system for the radiation. Ideally, as many diagnostic

procedures as possible should be combined to obtain as much information as possible about

the laser plasma dynamics for reconstruction.

This thesis focuses on studying the self-emission from laser wakefield accelerators. With the

discovered correlations, we can show that besides wave breaking, the laser self-focusing can be

diagnosed with emissions from the plasma. This enables an experimental feedback regarding

the laser focusing which is especially useful for experimental setups that strongly rely on the

non-linear process of self-focusing the laser pulse.

A detailed discussion of laser wakefield acceleration, self-emission from the plasma, and an

exemplary use case with focus on experiments performed at HZDR are presented in chapter 6.
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1.2 Observing plasma dynamics over astronomical distances
Even though our every-day experience might fool us into believing that the solid, fluid, and

gaseous state of matter are the most common forms of matter, the plasma state - sometimes

called the fourth state of matter - is by far more common in the universe. In fact, by far most of

the visible matter of the universe is in the plasma state [3, 5]. Determining the plasma dynamics

governing extraterrestrial objects is essential in understanding the latter. Developing models

or performing simulations in order to study the plasma dynamics in extraterrestrial objects

is, however, just one side of gaining understanding - a verification of the suspected plasma

dynamics via observations is essential.

In astrophysical observations, not the short time scales of the dynamics are the issue that

makes an analysis challenging, but the vast distances between the observer on Earth to the

objects of interest. These large distances prevent resolving the plasma dynamics spatially.

Therefore, analyzing the spectra of the emitted radiation is an essential tool for obtaining more

information on the plasma dynamics.

Even if the plasma density in interstellar space is extremely low, the relevant plasma wave-

lengths are still not large enough to be resolved by telescopes. This characteristic length scale

can be computed according to [3]

λpe =
2πc

ωpe
= 2πc ·

√
ε0me
neq2

e

(1.3)

with qe , me being the electron charge and mass, and ε0 and c being the vacuum permittivity

and the speed of light. Plasma density in interstellar space can take values as low as ne =

10−5cm−3
[29] but the corresponding plasma wavelength is only in the order of λpe ∼ 104 km ∼

7 · 10−5 AU. For objects light years away, these spatial scales cannot be resolved, even with the

best telescopes available today.

One light year away, such a plasma oscillation would be visible at an angle of

tan(α) =
λpe
1 ly
→ α ≈ 0.2 milliarcseconds . (1.4)

In order to resolve these scales, an array of telescopes, also called an astronomical interfer-

ometer, would require a distance between individual telescopes, the so-called baseline B, of

α =
λrad

B
. (1.5)

For green light of wavelength λrad = 500 nm, the baseline would need to be B ≈ 0.5 km. The

best optical telescopes, the Very Large Telescope (VLT) operated by the European Southern

Observatory (EOS) in Chile, has a resolution of a few milliarcseconds [30–32]. For visible light,

resolving the plasma dynamics spatially would currently not be possible.

In the radio-wavelength regime, where the telescopes are distributed over the entire globe,

the reachable resolution by the Very Long Baseline Array (VLBA) is α ≈ 0.3 milliarcseconds for a

wavelength of λrad = 1 cm [33–35]. This only minimal increase in resolution comes from the fact,

that while the baseline of the VLBA is over B > 8000 km, the longer wavelength compensates

this. While the size of the Earth limits the resolution of radio telescopes, optical telescope arrays

are limited by the optical fiber length required for the interferometry. Therefore, there will be

no significant increase in resolution any time soon. The plasma phenomena are not spatially

resolvable.

However, the plasma dynamics involves the acceleration of charged particles. This causes

a constant emission of radiation that is characteristic of the plasma dynamics and that allows

determining the state of the plasma.
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For example, the plasma dynamics inside stars determines how energy generated in the

center of the star via fission is transported to the surface, where it is emitted as radiation.

The broadband thermal radiation allows determining the temperature of the star, while the

absorption lines enable determining the composition and age of the star [36, 37].

The plasma dynamics in Jupiter’s radiation belt is strongly influenced by the planet’s rotation,

the moon Io’s volcano eruptions, the solar wind, and many more factors. The radio emission

from this plasma trapped in the planet’s magnetic field, therefore, reflects these influences

[38–41].

The emitted radiation spectra thus reveal a lot about the plasma dynamics, even if the actual

spatial scales cannot be resolved.

An unsolved and much-discussed topic in astrophysics is the emission of high-energetic

particles from plasma jets ejected from accretion disks surrounding some massive objects like

black holes [42–44]. One of the more famous of these jets is in the center of the crab nebular

depicted in Fig. 1.2.

Figure 1.2: X-ray image of the crab nebula: This image, taken by the Chandra X-ray Observatory, of the crab
nebula (also known as NGC 1952), shows clearly the plasma jet emitted by the center of the supernova

remnant. The color code represents different X-ray energies: red means 0.5− 1.2 keV, green2represents

1.2− 2.0 keV, and blue means 2.0− 7.0 keV. This image was provided by NASA/CXC/SAO [45].

These jets are the origin of high-energetic particles that can be detected on Earth. Measure-

ments have shown, that these jets contain strong magnetic fields that possibly play an important

role in the jet’s structure [29, 46–50]. Even though the magnetic fields are not the sole cause

of the particle acceleration, they are vital in understanding the plasma dynamics of these jets

which determine the environment under which these extreme accelerations occur. In order to

understand the acceleration process, the jets themselves need to be understood.

There are a variety of possible plasma instabilities that can lead to the strong magnetic fields

observed in these jets. For example, magnetic fields could be generated by the Weibel instability

[3, 51, 52] or the Kelvin-Helmholtz instability (KHI) [53, 54]. Recent theoretical studies have

shown that the KHI poses the most likely candidate for causing the magnetic fields since its

2
This is an RGB color space, thus yellow in the picture is a combination of red and green while white is a combination

of all three colors.
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growth rate is higher than that of competing instabilities [29, 55].

Due to the high relevance of KHI in relation to astrophysical plasma jets, investigating the

KHI emissions both theoretically and with simulations is a worthwhile research objective. Our

research group performed a large-scale simulation of this plasma instability [R1, R3]. To this day,

this is the largest simulation with the highest resolution of a KHI in the relativistic regime. In

addition to the plasma dynamics, we also calculated the emitted radiation spectra for various

observation directions. In parallel, a model of the KHI Vortex emissions was developed [R4].

Compared with the simulation, we could show that the model’s predictions allow identifying the

KHI by changes in polarization and quantifying the characteristic growth rate by measuring the

change in radiation intensity over time.

Identifying the KHI in interstellar jets and determining its growth will hopefully bring more

clarity to the dynamics of these giant plasma jets and perhaps pave the way to understand the

acceleration mechanism behind them.

A detailed discussion of the theory behind the KHI in general, the developed emission model,

the results of the large-scale simulation, and applications to both astrophysical observation as

well as lab-astrophysics experiments can be found in chapter 7.

1.3 Challenges of an in-situ radiation simulation
Even if it seems easy to calculate the radiated radiation on the basis of a plasma simulation, this is

an enormous challenge from a computational point of view. The two examples presented above

describe a non-linear plasma dynamics in which the kinetic treatment of the particles is relevant.

For such conditions, it is necessary to use particle-in-cell simulations. These codes are considered

to be very computationally demanding and simulations with them are usually performed on

very large computer clusters. Especially when it comes to simulating large volumes with high

resolution in three dimensions, particle-in-cell simulations can only be performed on the world’s

largest computer clusters. By adding an in-situ radiation calculation, the computational effort is

approximately increased twentyfold [R1]. Therefore, the simulations presented in this thesis

took up to 10 months to be completed (the LWFA simulation from chapter 6) or days on the

entire TITAN cluster, the world’s largest cluster at that time (the KHI simulation from chapter 7).

Consequently, the mere execution of such large-scale simulations is an immense effort - not to

mention the following data analysis.

Throughout this thesis, it will be demonstrated that the unique opportunity to connect the

microscopic plasma dynamics directly with themacroscopic radiation is worth this computational

effort. The complex particle dynamics in the two previous examples prevent a self-contained an-

alytical description [56, 57]. Hence, these simulations represent on the one hand an explorative

approach to find connections between plasma dynamics and radiation spectra. Simple models

can then be derived from these links, which necessarily neglect much of the complex dynamics.

On the other hand, these models can be tested again against radiation simulations. This also

allows determining the limitations of the models intrinsically, for example, the signal’s contrast

against background radiation. Such estimates are only possible to a limited degree in analytical

models.

This makes radiation simulations a valuable tool for predicting possible spectral diagnostic

methods in experiments or astrophysical observations.
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2 Classical radiation emission
If a charge is accelerated due to external forces, it emits electromagnetic radiation. This can be

easily illustrated. Let a point-like charge be at rest. The strength of the electric field surrounding it

decreases with the inverse square of the distance in all directions. This is described by Coulomb’s

law

∣∣∣~E∣∣∣ = |qe |
4πε0
· 1
r2 and illustrated on the left side of Fig. 2.1. Now, let a charge move with constant

velocity. There exists a frame of reference, where the charge is at rest and where Coulomb’s

law holds true. The electric field in the original frame of reference is Lorentz-contracted in the

direction of flight [58] and increased in magnitude by the contraction factor. This is illustrated

in the center of Fig. 2.1. In either case, the field follows the motion of the particle - as if it were

attached to the charge.
However, a field of a charge undergoing acceleration, for example, an electron following a

circular path, cannot be described by such an attached field. At a distance of r > c/ω away

from the center of the circular motion with angular velocity ω, the electric field would need

to propagate faster than the speed of light (Fig. 2.1 right). This, of course, is unphysical. The

field starts to detach from the charge and to propagate away. It can be shown that part of

this detached field has a non-vanishing energy distribution infinitely far away from the charge
because its strength reduces only with the inverse of the distance ∼ 1/r [59]. This represents the

radiation emitted.

Figure 2.1: Illustration of radiation emitted from accelerated charges: The left picture illustrates a Coulomb
field of a stationary charge. In the center, the Lorentz-contracted Coulomb field of a charge with constant
velocity is shown. On the right, the cause for detached fields is illustrated. Starting from a charge on a
circular and thus accelerated trajectory, the picture depicts a contracted Coulomb field as in the center

case. The red colored patch at a radius r > c/ω marks the region where the field would need to travel

faster than light. This is physically impossible and causes the fields to detach and radiate away [59].
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2.1 The spectrally resolved Liénard-Wiechert potential
The electric and magnetic fields around a moving, point-like charge are described by the Liénard-

Wiechert potentials [59]. In contrast to the Coulomb and Biot-Savart laws, the Liénard-Wiechert

potential takes into account the relativistic retardation of the fields due to the finite speed of

light. In the 3-vector notation, the Liénard-Wiechert potentials are

Φ (~r, t) =
1

4πε0

[
q

(1− ~β · ~n) |~r − ~re |

]
ret

(2.1)

~A (~r, t) =
µ0

4π

[
q · ~β

(1− ~β · ~n) |~r − ~re |

]
ret

(2.2)

with ~r being the position in space where to evaluate the potentials, ~re , q and β being the particle’s

position, charge and velocity normalized to the speed of light, and

~n =
~re − ~r
|~re − ~r |

(2.3)

being the unit vector pointing from the charge towards ~r . The bracket notation [. . . ]ret denotes

that the included quantities are evaluated at a previous (retarded) time tret = t−|~r−~re(tret)|/c in
order to take into account the finite speed of light. From this potential, the electric and magnetic

fields can be derived by:

~E = −~∇Φ−
∂ ~A

∂t
(2.4)

~B = ~∇× ~A . (2.5)

A detailed but lengthy analytical derivation of the electric and magnetic field from the Liénard-

Wiechert potential can be found in [60]. Here, this detailed derivation is omitted and only

the most important results are briefly summarized. The derived electric and magnetic fields

comprise one part that vanishes with the inverse of the distance ~E ∼ [1/|~r−~re |]ret and a part

that vanishes faster. The part decreasing faster with the distance is called the velocity term
(Eq. 2.7). The contribution decreasing with∼ r−1

is proportional to the acceleration of the charge

~E ∼
[ .
~β
]

ret
and thus is often called the acceleration or radiation term [59]:

~E(~r, t) = ~Evel(~r, t) + ~Eacc(~r, t) (2.6)

~Evel =
q

4πε0
·

[
~n − ~β

|~r − ~re |2 γ2(1− ~β · ~n)3

]
ret

(2.7)

~Eacc =
q

4πε0c
·

 ~n ×
[

(~n − ~β)×
.
~β
]

|~r − ~re | (1− ~β · ~n)3


ret

. (2.8)

By using the Poynting vector ~S = 1
µ0
~E × ~B = 1

µ0c
E2~n, which describes the instantaneous energy

flux in the direction ~n, the radiation power P emitted per differential unit solid angle dΩ can be

described in terms of the emitted electric field [59]:

dP

d Ω
=

1

cµ0

∣∣∣R · ~E∣∣∣2 (2.9)

with R = |~r − ~re |. Since for the above-mentioned acceleration term (Eq. 2.8), dP/dΩ does not

depend on the distance of the observer R, its contribution to the emitted power does not vanish
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for an observer far away (R → ∞). By integrating the power per solid angle over time, one
obtains the total emitted energy. By additionally transferring the electric field into the Fourier

space, one gets the spectrally-resolved emitted radiation energy per unit solid angle
3
for a single

electron

d2W

d Ω dω
=

q2

16π3ε0c

∣∣∣∣∣∣∣
∫ +∞

−∞

~n ×
[(
~n − ~β

)
×
.
~β
]

(
1− ~β · ~n

)2 · eiω(t−~n·~r(t)/c) d t

∣∣∣∣∣∣∣
2

. (2.10)

A step-by-step derivation of this equation can be found in [59] or [61]. For a given electron

trajectory ~re(t), this equation allows computing the spectrally resolved energy for a given

frequency ω and observation direction ~n. This equation is valid for observers far away from

the electron trajectory: R→∞. For practical purposes, detectors meters away from the laser
plasma interaction can be considered infinitely far away from the micrometer scale electron

dynamics. The same approximation holds true for observations of astronomical objects light

years away.

The vector contribution inside the absolute square

~n ×
[(
~n − ~β

)
×
.
~β
]
‖ ~Eacc(t) (2.11)

is parallel to the emitted electric field. It is, therefore, proportional to the instantaneous polariza-

tion vector of the emitted radiation. If one is interested in radiation only polarized in a certain

direction, defined by the unit vector ~P , the scalar product with this unit vector should be taken

before calculating the absolute square.

2.2 Correlation between phase space and radiation
A frequently used form of equation 2.10, achieved by means of partial integration, is [59]

d2W

d Ω dω
=

q2ω2

16π3ε0c

∣∣∣∣∫ +∞

−∞
~n ×

(
~n × ~β

)
· eiω(t−~n·~r(t)/c) d t

∣∣∣∣2 . (2.12)

The details of this reformulation, especially with the regard to the integration limits and the

cancellation of regions with constant velocity, is given in [59]. Due to its simplicity, this equation is

commonly used in analytical derivations. For numerical integrations with floating point numbers,

however, this equation is more error-prone than equation 2.10 [61] since it requires a precise

addition of varying velocities which mostly cancel out. Small numerical errors during the addition

already lead to significant deviations. Thus equation 2.12 is not used in the implementations

presented here.

For particles that move slowly compared to the speed of light β � 1, the influence of the

position in the exponent can be neglected t − ~n ·~r(t)/c → t . Based on this assumption, Eq. 2.12

transforms into the absolute square of the Fourier transform of ~n × (~n × ~β) times the frequency

squared.

d2W

d Ω dω
=

q2ω2

16π3ε0c

∣∣∣∣∫ +∞

−∞
~n ×

(
~n × ~β

)
· eiωt d t

∣∣∣∣2 (2.13)

=
q2ω2

16π3ε0c

∣∣∣F (~n × (~n × ~β))∣∣∣2 . (2.14)

3
In order to avoid confusion, this text does not follow the standard notation for energy “I” used in [59] but instead

uses “W ” to avoid confusion with standard symbols for intensity or electric current.
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Due to the missing phase information in d2W/dΩdω, an unambiguous reconstruction of the

velocity ~β(t) is in general impossible, but in practical use cases physically relevant information

can still be obtained from the radiation spectra. In many diagnostic applications, the phase

information is lost during intensity recording as well and yet valuable information about the

emitter can be obtained. Furthermore, phase retrieval algorithms exist that are capable of

reconstructing the phase [R5, 62]. For the applications presented in this thesis, however, a phase

reconstruction was not needed to gain information on the plasma.

Another important question is whether the choice of observation direction will result in a

loss of information that would make a reconstruction of the velocity ~β impossible. This is

definitely the case for a single observation direction. For example, changes in velocity along the

observation direction could not be retrieved, as no radiation is emitted in the direction of flight.

But with enough observation points, a motion in any direction can be reconstructed, as will be

motivated below for sub-relativistic particle motion:

Let us assume an arbitrary particle motion ~β(t) observed in directions parallel to the base

vectors of the physical space ~ni = ~ei with i ∈ {x, y , z}. Using vector identities, the radiation
spectra for each observation direction can be derived:

d2W

d Ω dω
(~ni) =

q2ω2

16π3ε0c

∑
k∈{x,y ,z}

(1− δik) · |F(βk)|2 (2.15)

with δik being the Kronecker delta and βk being the k
th
component of the velocity vector ~β. The

spectra contain information on motion perpendicular to the observation direction. With the

three spectra, this allows determining the absolute square of the Fourier transform for any

component.

|F(βk)|2 =
8π3ε0c

q2ω2

∑
i∈{x,y ,z}

(1− 2δik) ·
d2W

d Ω dω
(~ni) (2.16)

The absolute square of a Fourier-transformed velocity component is proportional to the sum

of the spectra perpendicular minus the spectrum parallel to this component. Although an

exact velocity evolution ~β(t) cannot directly be reconstructed from the absolute squares of the

Fourier transformed velocities, these "spectra" contain information about periodic motions of the

particle and thus provide valuable information on the particle’s dynamics. Periodic movements,

in particular, are easy to identify.

In the relativistic case, the changing particle position must be taken into account within the

phase of the exponential function (Eq. 2.12). This makes analysis slightly more difficult. The

change in the phase leads to a shift in frequency. If the particle moves towards the observer,

the retarded time passes more slowly causing an effective blue shift of the emitted radiation.

Conversely, the radiation is redshifted when the particle moves away from the observer.

The frequency shift comes also with an advantage. The directional dependence of the fre-

quency shift can be used to determine the direction of the trajectory of the particle. And, the

velocity of the scattering particle can be determined based on the frequency shift of a known

excitation frequency. A more detailed explanation of how to determine the velocity and direction

of electrons based on scattered radiation from a known laser field can be found in section 6.3. As

in the non-relativistic case, a large amount of information about particle motion can be obtained

from a sufficient number of observation points. The more observation points are recorded,

the more precisely the direction and speed of the particle motion can be determined. This

reconstruction of electron properties is already applied today in the scattering of relativistic

electrons from laser pulses and represents a promising diagnostic method [R6].
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2.3 Simplifying the equation: Synchrotron radiation
Equation 2.10 is the most general form of determining the classical radiation spectra for a

charged particle observed in an arbitrary direction. As long as the trajectory used during

the integration describes a physically correct particle motion, the emitted radiation can be

determined. This includes the scattering of radiation from an electromagnetic wave which

interacts with the particle - the so-called Thomson scattering, the radiation caused by the

gyration of the particle in a magnetic field - the so-called Synchrotron radiation, and a variety of

other forms of emission without specific names.

However, the integration required for this general method is quite complex and laborious. A

possible simplification is to assume that only instantaneous radiation is relevant and that these

instantaneous spectra can be added for consecutive time steps.

For highly relativistic particles, it can be shown that the radiation under any acceleration

is identical to the radiation of the particle at a constant speed on a circular path [59]. In the

extreme relativistic case, instantaneous radiation is identical to synchrotron radiation. Most of

the radiation is emitted in a searchlight cone of opening angle θ / γ−1
. Emitted radiation will

therefore not interfere with previously emitted radiation if the pointing of the particle changes

strongly compared to this opening angle. In such a case, the assumption of independent

emissions becomes plausible.

Assuming that themovement of the particle is circular with a bending radius of ρ and only emis-

sions are considered at a small angle with respect to the current velocity, a general description

of synchrotron radiation can be derived [59]:

d2W

dωdΩ

sync

=
q2

12π3ε0c
·
(ωρ
c

)2
·
(
γ−2 + θ2

)2 ·
[
K2

2/3(ξ) +
θ2

γ−2 + θ2
K2

1/3(ξ)

]
(2.17)

with K1/3 and K2/3 being modified Bessel functions of the second kind, θ being the angle

between ~n and ~β, and

ξ =
ωρ

3c

(
γ−2 + θ2

)3/2
(2.18)

being a parameter to normalize the frequency. Since the spectrum depends only on the nor-

malized frequency ξ, the synchrotron spectrum has the same shape regardless of the particle’s

energy.

The shape of this spectrum depends only on the radius ρ. Assuming that there is only a

magnetic field ~B, the radius of curvature would be:

ρ =
m · γ · β2 · c

q
∣∣∣~β × ~B

∣∣∣ (2.19)

with γ being the particle’s Lorentz factor and m being its mass. The spectrum thus contains

information about the velocity of the emitting particle and its acceleration or surrounding

electromagnetic fields. Since the time integration in this model only covers an infinitely short

period of time, all information about the long-term dynamics of the particle in the spectrum is

lost.

The polarization of the synchrotron radiation additionally allows determining the orientation

of the path curvature. From the total radiated energy, 7/8 is emitted with a polarization parallel

to the plane of the trajectory (~P ‖ ~β × ~B) and only 1/8 perpendicular to it (~P ‖ ~B) [59].
To obtain the spectrum after a finite time, the synchrotron spectrum must be integrated over

time.

d2W

dωdΩ
=

1

tb − ta

tb∫
ta

dt
d2W

dωdΩ

sync

(t) (2.20)

11



As mentioned above, this approach of an averaged synchrotron spectrum cannot provide

information on long-term particle dynamics, e.g., periodic motion.

The use of synchrotron radiation as a model of radiation is only applicable in exceptional

cases since this approximation is only valid for high-energy particles and particle dynamics on

timescales shorter than t . βc/ρ [59]. Nevertheless, this approach significantly reduces the
computing effort. Therefore it is also used in some plasma simulations [63, 64]. However, the

synchrotron model’s validity is limited to synchrotron-like radiation such as betatron radiation

from the electron bunch in an LWFA. Scattered laser light, as produced by LWFAs and Thomson

light sources, cannot be quantitatively described.

The more general Liénard-Wiechert method is a superset which also can be applied to the

synchrotron case. Therefore, only this more general approach is used for the calculations

presented in this thesis.

2.4 Extension to include multiple particles
Often, predicting or measuring the radiation of a single particle is not sufficient to make pre-

dictions for a system of many particles. In this case, the radiation emitted by several charges

must be determined. In order to calculate the radiation of several charged particles, the phase

relationship of all emitters must be taken into account. The most general approach to do this is

to add all complex amplitudes for all particles before the absolute square is formed [59]:

d2W

d Ω dω
=

1

16π3ε0c

∣∣∣∣∣∣∣
Np∑
k=1

∫ +∞

−∞
qk ·

~n ×
[(
~n − ~βk

)
×
.
~βk

]
(

1− ~βk · ~n
)2 · eiω(t−~n·~rk(t)/c) d t

∣∣∣∣∣∣∣
2

(2.21)

with the index k denoting an attribute of the k th particle. The consideration of the phase allows

calculating both phase-matching coherent radiation and incoherent radiation with a random

phase relationship between the emitters.

A common case is that the radiation is incoherent. This can be calculated with equation 2.21,

but due to the more or less randomly distributed phase-relation, there are strong intensity

variations in the spectrum. These fluctuations can be avoided by not considering the phase

relation at all and by assuming incoherent radiation directly. For this purpose, it is no longer

necessary to take the phase into account when summing over all particles and the sum can be

determined after the absolute squares have been calculated.

d2W

d Ω dω
=

1

16π3ε0c

Np∑
k=1

q2
k ·

∣∣∣∣∣∣∣
∫ +∞

−∞

~n ×
[(
~n − ~βk

)
×
.
~βk

]
(

1− ~βk · ~n
)2 · eiω(t−~n·~rk(t)/c) d t

∣∣∣∣∣∣∣
2

(2.22)

An obvious difference between the two approaches is that for particles with equal phase,

equation 2.21 scales with the square of the number of all particles ∼ N2
p , while equation 2.22

scales only linearly with the number ∼ Np.
Another possibility to determine the radiation of many particles is the calculation of the

radiation from mean fields. As is common in fluid mechanics and magnetohydrodynamic

descriptions of plasmas, a system of particles can also be described by fields. The radiation can

be calculated from the current density ~J(~r) as follows:

d2W

d Ω dω
=

q2ω2

16π3ε0c3

∣∣∣∣∫ +∞

−∞
d t

∫∫∫
d3r ~n ×

(
~n × ~J (~r, t)

)
· eiω(t−~n·~r/c)

∣∣∣∣2 . (2.23)
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Here ~r denotes any position in space and not the position of a specific particle.

The obvious disadvantage of this method is that counter-propagating currents, whose total

current disappears, do not radiate according to the equation. Furthermore, this fluid approach

cannot predict a relativistic red or blue shift and is therefore useless in relativistic scenarios.

In all cases, the radiation from all particles is combined in the spectrum. This may mean that

certain radiation signatures may no longer be distinguished from the background radiation and

can therefore not be used for the reconstruction of plasma dynamics. On the other hand, only

the consideration of all particles makes it possible to estimate whether radiation signatures can

be clearly identified against the expected background and can be used for diagnostic purposes.

Therefore, it is absolutely necessary to calculate the radiation for all particles in order to make

predictions for experiments.

2.5 Differences to quantum radiation
The formalisms for radiation calculations described above are, of course, only valid in the classical

range and become incorrect for very high particle energies and field strengths. A generally valid

description can only be achieved by a quantum electrodynamics (QED).

The erroneous differences between QED and classical description results from the per se

decoupled field and particle dynamics in classical theory which leads to divergences in the

solutions for point-like particles such as electrons. Furthermore, the classical description does

not take into account the quantized character of electromagnetic fields in the form of photons,

nor does it reflect the statistical aspect of quantum theory.

The most obvious contradiction occurs with regard to the maximum frequency emitted.

Classically, it is possible to emit radiation at a frequency for which the photon energy

Ephot = ~ω (2.24)

is greater than the electron energy

Ephot > Eelec = γmec
2 . (2.25)

On the other hand, the QED correctly predicts that the emission spectrum above this forbidden

energy range is zero.

The classical and quantum field theoretical predictions agree for low particle energies and

field strengths. A measure of the QED effects can be determined with the quantum non-linearity

parameter which can be expressed in the rest frame of the electron as the ratio between electric

field strength and the Schwinger limit

χ =
E

ES
(2.26)

with ~ being the Planck constant and ES being the Schwinger limit [65]

ES =
m2
ec

3

qe~
' 1.32× 1018 V/m . (2.27)

For χ� 1, classic and QED description agree. In today’s experiments, it is not yet possible to

reach χ & 1 [66] .

For moving electrons, the Lorentz contraction of the electromagnetic fields has to be taken

into account. But even in head-on scattering between laser pulses with EL ≈ 1013 V/m and

electrons at GeV energies (γ ≈ 2000), the χ parameter is below

χ ≈
2γEL

ES
≈ 0.03� 1 (2.28)
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and thus well within the classical limit. Only with upcoming laser facilities in the multi-petawatt

range, quantum-field effects will be relevant. The only effect that is important in some present-

day experiments is the energy loss due to the emitted radiation, and this can also be taken into

account classically as described in chapter 5. Thus all laser-plasma experiments that are feasible

today can be described in classical terms.

Nevertheless, the question arises as to why not use the more general QED description to

quantitatively model radiation emission. For the prediction of radiation from systems with a

high number of emitters, only the coupling of the QED models to classical particle dynamics is

computationally feasible. However, this combination comes with a number of drawbacks. For

example, quantum-mechanical states must be translated into momentum eigenstates in order

to transfer them to the classical picture. According to the Copenhagen interpretation, this is

equivalent to a measurement that destroys the quantum nature of the state. Furthermore, due

to the uncertainty principle ∆E · ∆t ≥ ~/2 the temporal duration ∆t , after which one switches

between the classical and quantum picture, only allows predictions for photons with frequencies

well above

ω =
Ephot

~
�

∆E

~
≥

1

2∆t
. (2.29)

For typical particle-in-cell simulations, this would be only valid for x-ray radiation and would

exclude the highly important infrared, optical, and ultra-violet radiation. Due to these and

various other limitations, radiation is calculated classically in this thesis. An extensive discussion

of approximation errors of QED radiation in plasma simulations can be found in [65].

2.6 Summary
In this chapter, the classical calculation of directionally resolved radiation spectra on the basis

of partial trajectories was presented. The correlation between particle dynamics and radiation

spectrum was discussed in an exemplary manner. The possibility of reconstructing particle

dynamics from the emitted spectra was explained. It was shown that particle dynamics and

radiation spectrum are correlated. Especially for relativistic electrons, the directional dependence

of the radiation allows obtaining valuable insights into the movement of the particles.

Some simplifications of the modeling were presented and their disadvantages examined.

However, to cover all cases, using a synchrotron or fluid approximation is not enough, but the

superset of the more general Liénard-Wiechert method is needed. Possible extensions of the

radiation calculation to systems with several particles were demonstrated. Since radiation from

all parts of the plasmamight contribute to and overshadow a spectral signal, radiation calculation

should consider all simulated particles to make quantitative predictions and to determine the

signal-to-background ratio that is essential for detecting specific signals in real experiments.

Finally, the limits of the classical description of radiation and the transition to a quantum field

theoretical description were investigated and the reasonability of the classical calculation in the

context of the physical scenarios presented in this thesis was explained. For current and near

future experiments, the influence of quantum corrections is negligible.
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3 An introduction to simulatingplasmas
There are various numerical methods to model plasma dynamics using computer simulations.

A methodically straightforward approach would model each charged particle individually by

calculating the force, induced by the electric and magnetic fields of all other particles, acting on

it and then solving the equation of motion by numerically integrating the Lorentz force.

However, this leads to a tremendous calculation effort, which scales with the square of the

number of modeled particles N2
, since the calculation of the force acting on a single particle

requires considering the position of N − 1 other charged particles. In total, this leads to

N · (N− 1)/2 calculations of the Lorentz force. For relativistic particles, retardation also becomes

a challenge, as the previous position of the individual particles must be considered. This so-calledmolecular dynamics (MD) approach is thus limited to small, microscopic systems with only a
few billion particles [67].

Another common method for simulating the dynamics of plasmas is assuming the plasma

to be in a local thermal equilibrium and applying macroscopic fluid equations for solving the

dynamics [56]. However, the basic assumption of thermal equilibrium intrinsic to thesemagne-tohydrodynamic (MHD) simulations is limited to scenarios where the particle velocities follow
a Maxwell Boltzmann distribution. This prevents simulating states of plasma which do not follow

a Maxwellian velocity distribution locally [68, 69], as for example the interaction of short-pulse

lasers with matter [1, 2, 56] or the thermal diffusion during the Kelvin-Helmholtz instability [53,

70].

In order to describe arbitrary velocity distributions, a particle distribution function f (~r, ~v) can

be introduced, which correlates the position and the velocity distribution of all particles. For

plasma particles, such a distribution function follows the Vlasov equation [71]:

∂f

∂t
+ ~v · ~∇f +

q

m

(
~E + ~v × ~B

)
·
∂f

∂~v
= 0 . (3.1)

This equation describes the change of the particle distribution f by electromagnetic fields and

by the intrinsic particle motion itself. However, solving this equation is generally numerically

intractable. Simplification is therefore used. Instead of solving for the distribution function f ,

one samples the distribution by macroparticles and solves their equation of motion. The charge

and current densities
4
associated with these macroparticles are then used to update the electric

and magnetic field by numerically solving Maxwell’s equation. This process is repeated for each

4
Modern algorithms only require considering the current density. See section 3.2 for details.
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iteration time step. The aforementioned numeric approach is called the particle-in-cell (PIC)
method and is the technique of choice in today’s laser-plasma and astro-plasma simulations.

The following section gives a brief introduction to the particle-in-cell method. This thesis will

focus solely on plasma simulations based on particle-in-cell simulations using PIConGPU [R1,

72].

3.1 Fundamental aspects of the particle-in-cell algorithm
Today, particle-in-cell simulations [73–75] are the method of choice for modeling laser- or beam-

controlled plasma accelerators [72, 75–79]. They are also increasingly used in astrophysical

simulations of plasma instabilities [53, 80, 81]. The particle-in-cell algorithm solves the plasma

dynamics by discretizing the electric and magnetic field on a lattice and letting the particles

propagate freely through this grid. This allows calculating the plasma-particle motion self-

consistently within their intrinsic and external electromagnetic fields.

It is instructive to briefly look at the computational challenges of the particle-in-cell method

using an exemplary laser wakefield acceleration (LWFA) simulation. A common small simulation

volume covers (100µm)3
at typical plasma densities of ne = 1019 cm−3

. This would require

tracking trillions of electrons, which is an enormous computational challenge. Fortunately,

particles that are initially located close to each other in phase space follow a similar trajectory.

The motion of several particles can thus be described by that of a single macroparticle if the

plasma dynamics does not become chaotic. These macroparticles discretize the distribution

function of the Vlasov equation f . They describe an ensemble of real particles by treating

their discrete charges as a continuous charge distribution over a finite volume. In contrast to a

complete solution of the Vlasov or Fokker-Planck equation, which permits a temporal evolution of

the momentum distribution, the particle-in-cell algorithm describes each macroparticle only by

a single momentum value. This simplification prevents the spatial growth of the macroparticles

over time. Metaphorically speaking, this stops the particle cloud, which the macroparticle

represents, from flying apart. The number of real particles represented by a macroparticle is

generally referred to as weighting.

Starting conditions
Based on a charged particle- and a (physically correct) electromagnetic field distribution, the

particle-in-cell algorithm enables simulating the plasma evolution over time. Such an initial

configuration might be a neutral gas or a plasma without electromagnetic fields, where the

unlikely - but physically correct - situation occurs where every negatively charged particle is

located at the same position as another positively charged particle.

Step 1: force calculation
In a first step, the particle-in-cell algorithm interpolates for each macroparticle position the

electric and magnetic field, whose values were defined on a lattice, to determine the force acting

on each charged macroparticle. The spatial macroparticle distribution is taken into account

by a so-called assignment function, which describes how field values on the lattice affect a

macroparticle with a certain charge distribution [73]. The interpolated fields are then used to

calculate the forces acting on the macroparticles.

During the first iteration after initialization without electromagnetic fields, no forces act on the

macroparticles. But with further iterations of the PIC cycle, electromagnetic fields are generated

which then act on the plasma particles. These fields are generated either by charge separation
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Force Calculation Particle Push

Current DepositionField Evolution

F = q (E + v × B) pi + 1 = pi + t F

J = q v f(r, v)dV
E
t = c2( 0j + × B)

B
t = × E

Figure 3.1: Illustration of the particle-in-cell algorithm: This diagram depicts the 4 steps of a particle-in-cell
iteration. Starting from calculating the force acting on each macroparticle, the particles are moved

according to this force. The moving charges cause a current. This current and the existing electromagnetic

fields determine the evolution of the electric and magnetic field. These changed fields lead to altered

forces on the particles, and the cycle recommences.

caused by the thermal movement of the simulated particles, or by the introduction of external

fields such as a laser pulse.

Step 2: particle push
In a second step, the velocities and positions of the macroparticles are changed according to the

acceleration caused by the Lorentz force (Eq. 3.2). A first-order scheme of such a particle push is

described by the following equations.

..
~r =

1

m
~F =

q

m

(
~E +

.
~ri × ~B

)
(3.2)

.
~ri+1 =

.
~ri + ∆t ·

..
~r (3.3)

~ri+1 = ~ri + ∆t ·
.
~ri (3.4)

However, this simple Euler method is rarely implemented in particle-in-cell algorithms, since

its numerical error grows relatively fast with each time step. More sophisticated particle push

algorithms are used, which on the one hand have a better numerical stability and on the other

hand are not too expensive in their computational requirements, as they have to be performed

for each macroparticle and at each time step.

This particle motion and the resulting charge separation lead to electromagnetic fields. These

fields can be determined either by solving the Poisson equation or by calculating the electric

current field caused by the moving charged particles and by subsequently integrating the

Maxwell equation over time. Solving the Poisson equation is numerically costly. Hence it is more

common in PIC codes to evaluate the current instead.
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Step 3: current deposition
As with all other fields, the electric current is discretized and resolved on a grid. It is evaluated by

calculating the influence of the motion of the charged particles on adjacent lattice points. The

product of charge and velocity of the individual macroparticles is calculated and then aggregated

to the adjacent grid points using the same assignment function as for the field interpolation.

Performing this for all particles results in the discrete accumulated current density field ~J.

Step 4: field evolution
According to the Maxwell’s equation, this current density causes a change in the electric and

thus magnetic fields.

∂ ~E

∂t
= c2

(
−µ0

~J + ~∇× ~B
)

(3.5)

∂ ~B

∂t
= −~∇× ~E (3.6)

The numerical integration of these two equations determines the field values in the particle-in-

cell subsequent iteration:

~Ei+1 = ~Ei + ∆t · c2
(
−µ0

~J + ~∇× ~Bi

)
(3.7)

~Bi+1 = ~Bi − ∆t · ~∇× ~Ei (3.8)

In these equations, the curl on the right represents the numerical spatial differentiation of the

discrete field. Such a solution for the electromagnetic field is called a finite-difference-time-

domain method (FDTD) and was introduced by Yee [82].

These four steps constitute a complete particle-in-cell iteration. After such a particle-in-cell

cycle, the algorithm starts anew by interpolating the updated fields onto the macroparticles

and determining the force acting on them, shifting these particles, determining the current, and

finally calculating the field changes due to the current caused by the particle motion. A schematic

of this cycle is depicted in Fig. 3.1. By repeating these particle-in-cell cycles, the plasma dynamics

can be simulated over an extended time period.

Various constraints
One constraint of the particle-in-cell approach is that the finite grid resolution, inherent to the

discretization of the fields, limits the minimal wavelength resolvable by the simulation. From

the Nyquist-Shannon sampling theorem [83, 84], only wavelengths above λmin > 2 · ∆L, with
∆L being the one-dimensional grid resolution, will be handled by the field solver algorithm.

For laser-plasma interactions, there are two fundamental length scales that the grid needs to

resolve: the plasma skin depth and the laser wavelength.

The plasma skin depth is the length scale on which the plasma reacts collectively to field

changes. It is given by:

λpe =
c

ωpe
=

√
c2ε0me
nee2

(3.9)

with ωpe being the plasma frequency, ne being the electron density and c , ε0, e and me being the

speed of light, permittivity of free space, the electron charge, and mass.
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Similarly, the grid needs to resolve the laser wavelength. However, this requirement can

be eased if the laser propagates along one grid axis. In such a case, a resolution smaller

than the laser wavelength is only required in that specific grid direction. The grid points in

the perpendicular directions can have a wider spacing. Their distance is limited by either the

requirement of sampling the plasma skin depth or the laser transversal envelope. This of course

only holds true if the laser wavelength is smaller than the plasma skin depth, which is true for

so-called underdense plasmas. In such an underdense case, the cells are spaced at a fraction
of around 1/10 to 1/20 of the laser wavelength along the laser propagation axis and up to an

order of magnitude wider in the transversal directions. Such a non-cubic cell shape reduces

the memory footprint of the lattice dramatically and is a typical approach for simulating laser

wakefield acceleration, as discussed in detail in chapter 6. If the plasma skin depth is lower than

the laser wavelength (so-called over-critical plasma densities) or if there is no laser simulated, the
lattice usually consists of cubic cells. Such a plasma-only simulation is presented in chapter 7.

A limitation that relates the spatial with the temporal resolution of the field grid is the Courant-

Friedrichs-Lewy (CFL) condition. This convergence criterion defines a maximal time step duration

for the finite difference method as used by the FDTD field solver in the particle-in-cell algorithm

[85]. For a three dimensional simulation, the CFL condition limits the time step to

∆t <
1

c
·
(√

1

∆x2
+

1

∆y2
+

1

∆z2

)−1

, (3.10)

as derived by Lam [86]. The minimum number of particle-in-cell iterations required to simulate

plasma dynamics over a time duration of tsim is therefore Nsim = tsim
∆t . For laser wakefield setups,

this can easily reach 100, 000 iterations, which requires long computation times. Intuitively one

could assume that a reduction of the time step would improve the resolution of the plasma

dynamics and lead to a better numerical convergence. But often the opposite is the case. Each

iteration leads to a small numerical error in the solution due to the discrete spatial differentiation

O(∆x) and the forward difference in the explicit time integrationO(∆t). The error by the forward

difference scales with the time step O(∆t) ∼ ∆t2
and the error by spatial differentiation scales

depending on the order of the difference scheme with O(∆x) ∼ ∆xp with p > 2. The total

numerical error for Nsim iterations, therefore, scales as

∆total
1 = Nsim · (c · O(∆t) +O(∆x)) . (3.11)

If only the time step is decreased by a factor 0 < r < 1, the numerical error introduced

by the finite time step reduces by r2
. Meanwhile, the numerical error introduced by spatial

differentiation O(∆x) stays the same. Since the number of iterations required for the entire

simulation increases by the inverse of r , the total numerical error for a reduced time step

becomes:

∆total
r =

Nsim

r
·
(
r2 · c · O(∆t) +O(∆x)

)
= Nsim

(
r · c · O(∆t) +

O(∆x)

r

)
. (3.12)

This only leads to a reduction of the total error if O(∆x)/O(∆t) < r < 1, which is not necessarily

fulfilled. Thus, decreasing exclusively the time step leads usually to a larger numerical error in

the end. The best option is to operate close to the CFL condition. In order to reduce the total

numerical error for a fixed simulation duration tsim, it is necessary to reduce the error from the

spatial differentiation as well.

However, if both the spatial and temporal resolutions are reduced by a factor of r , the

numerical error is reduced but the computational effort increases as rn+1
for an n-dimensional

simulation making such improvements numerically costly. Thus various numerical schemes

were introduced to reduce the numerical error. A selection of these methods, relevant for the
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next chapters, is discussed briefly in the following section. This will not only cover improved

methods for the FDTD solver but for the particle pusher and current-deposition schemes as well.

At this point, it should be noted that the maximum frequency that can be calculated with the

synthetic radiation diagnostics in the particle-in-cell code PIConGPU [R1] is limited only by the

duration of the time step ∆t . The maximum determinable frequency of emitted radiation scales

inversely with the time resolution ωmax ∼ ∆t−1
. (A comprehensive discussion of the spectral

resolution of the radiation calculation is presented in the section 4.1.) Decreasing ∆t without

reducing the spatial resolution is thus a reasonable option to increase the spectral resolution of

the radiation simulations. However, the reduced accuracy of the FDTD method must be weighed

against the increased spectral resolution.

3.2 Enhancements to the particle-in-cell algorithm
There is a broad variety of algorithms and optimizations that are used in particle-in-cell codes.

These include fundamentally different algorithms, extensions to higher numerical orders, and

implementations geared to utilize a specific hardware in an optimal manner. The purpose of this

section is not to provide a thorough list of available methods but to briefly introduce algorithms

used in the simulations presented in the following chapters. The focus is on a brief description

of the advantages, disadvantages, and limitations of each method to provide the reader with

sufficient information to follow the discussions in the subsequent chapters.

3.2.1 Particle Pusher
Boris pusher
The Boris algorithm solves the Newton-Lorentz equation of motion (Eq. 3.2) for relativistic

charged particles by applying a leapfrog-like integration solver [87]. For a discretization time

step ∆t , position and momentum are defined ∆t/2 apart. The algorithm treats the change in

momentum due to the electric and magnetic field separately by applying first the electric field

for half a time step, then computing the motion caused by the magnetic field for an averaged

momentum, and finally applying the electric field again for another half time step. Compared to

higher order schemes, this leapfrog approach has a relatively low computational footprint. It

was recently proven that the Boris algorithm is not a symplectic integrator but shows a global

bound on the energy error and conserves the phase space volume of the simulated particles

at non-relativistic velocities [88–91]. This enables long-term plasma simulations with excellent

accuracy. Both its accuracy and efficiency makes the Boris pusher a de facto standard in today’s

particle-in-cell simulations. However, recent studies show that with relativistic velocities the

algorithm’s phase space volume preservation and thus its accuracy vanishes [92].

Vay pusher
The Vay pusher is algorithmically similar to the Boris algorithm. It prevents a known issue of

the Boris algorithm that causes a change of the particle velocity even for a vanishing Lorentz

force ~E + ~v × ~B = 0 when the influence of the electric fields cancels the contribution of the

magnetic field [93]. It does so by using an averaged velocity instead of an averaged momentum

in the magnetic field calculation of the Boris algorithm. This provides more accurate results for

relativistic particles and boosted-frame simulations.
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Reduced Landau Lifshitz pusher
Both the Boris and the Vay algorithm are based on the Lorentz force. They do not take into

account the radiation energy loss. Even though in most cases the energy loss due to radiation is

much smaller than the total energy of the charged particles, ∆E � γmec
2
, it is still important to

consider these losses especially if one deals with scenarios where radiation emission is strong

enough to be used as a diagnostic method. Part of this thesis was to implement the so-called

reduced Landau-Lifshitz pusher developed by Maria Vranic [94] that solves the particle motion

in electromagnetic fields and compensates for radiation losses. This algorithm is based on the

Runge-Kutta method of 4
th
order and shows less long-term accuracy than the Boris algorithm. A

detailed discussion of this pusher can be found in section 5.

3.2.2 Field Solver
Yee solver
The algorithm by Yee [82] is one of the most common methods to solve Maxwell’s equation

numerically not only for particle-in-cell codes but for a variety of problems in electrodynamics.

It discretizes the electric and magnetic field on a staggered grid in such a way that the spatial

derivatives introduced by the rotation (Eq. 3.5) can be calculated by the symmetric derivative

quotient which is of second order and thusmore precise than a simply asymmetric differentiation.

The electric field components are defined to be located at the center of the grid edges while

the magnetic field components are located in the center of the cell surfaces. No component is

located at the same position in the cell. Additionally, the method of the symmetric derivative

quotient is also applied to the time derivatives. Thus the electric and magnetic field values are

defined half a time step apart. This has to be taken into account when combining the Yee solver

with a particle pusher algorithm that requires the magnetic and electric field to be defined at the

same time step. A required stability criterion for the Yee algorithm is the Courant-Friedrichs-Lewy

(CFL) condition introduced earlier (Eq. 3.10), which limits the time step duration and thus requires

a minimum number of iterations for a specific time period. Due to the discretization, the Yee

algorithm results in a dispersion relation that flattens towards higher k values, causing the phase

velocity to take values below the speed of light vφ = ω
k < c . In combination with freely moving

macroparticles, fast particles in a particle-in-cell simulation become relativistic and can overtake

specific modes, and so-called numerical Cherenkov radiation is created [95]. In laser wakefield
acceleration simulations, this causes higher beam emittance values for accelerated electron

bunches [96]. This numerical dispersion relation also slightly reduces the simulated speed of

(laser) light in vacuum because the group velocity is below the speed of light vgroup = ∂ω
∂k < c .

Lehe solver
The issue of generating numerical Cherenkov radiation is solved by the algorithm of Lehe [96]. It

alters the dispersion relation by changing the numerical differentiation introduced by the curl

(Eq. 3.5) in such a way that the phase velocity is higher than the actual vacuum phase velocity

vφ = ω
k > c . Thus numerical Cherenkov is largely avoided in one direction. A side effect of

this approach is a slightly higher velocity of (laser) light because, in contrast to the algorithm

by Yee, the group velocity becomes larger than the speed of light vgroup = ∂ω
∂k > c . In order to

be numerically accurate, the Lehe solver has several requirements on the grid resolution which

include resolving the laser wavelength well enough while not choosing a time step much smaller

than ∆t ≤ ∆x/c if x is the laser propagation direction. Additionally, this solver causes numeric

noise near the Nyquist frequency that causes numerical artifacts, especially when simulating
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large amounts of charge at relativistic velocities. These artifacts can be avoided by filtering out

high-frequency contributions near the Nyquist frequency.

3.2.3 Current deposition schemes
Villasenor and Buneman current deposition scheme
Previous to the work of Morse and Nielson in 1971 [97], which was extended to non-square-like

cells and 3 dimensions by Villasenor and Buneman in 1992 [98], calculating the electric and

magnetic field required either a global operation on the entire simulation domain for each time

step in form of a Poisson solver [73] or updating the electromagnetic fields according to the

method of Yee [82] (Eq. 3.7) with a local but not charge-conserving current calculation. While the

global operation of solving Poisson’s equation fulfills Gauss’ law ~∇· ~E = ρ
ε0
, it requires taking into

account the entire charge density ρ. This global data access represents the computational bottle-

neck of a Poisson solver, limiting efficient parallel calculation of spatially extended simulation

volumes. In contrast, a local current computation requires just local charge motion and thus can

easily be distributed among numerous computers, but it does not necessarily fulfill Gauss’s law.

Villasenor and Buneman solved this by describing the macroparticles as box-like homogeneous

charge distributions and assuming a linear motion of these boxes between two time-steps. The

current is discretized onto a staggered grid as proposed by Yee [82] by computing the change of

this box-like charge distribution between all neighboring cells before and after the change of

the macroparticle position. This is equivalent to the charge crossing at each cell boundary and

rigorously ensures charge conservation.

Esirkepov current deposition scheme
A major drawback of the scheme proposed by Villasenor and Buneman is the requirement that

the macroparticle charge distribution needs to be equivalent to the cell shape. This simple box

shape causes numerical noise [99] that can only be reduced by using smoother, higher-order

particle shapes (see the following paragraph for more details). In 2001, Esirkepov [100] extended

the method of Villasenor and Buneman to arbitrary macroparticle charge distributions. This

enabled reducing the numeric noise by using higher-order form factors. Today, the method

developed by Esirkepov is the current deposition scheme of choice in various particle-in-cell

codes. Throughout this thesis, all simulations that took currents into account were performed

using this current deposition scheme.

3.2.4 Higher order particle shapes
As stated in the introduction, the particle-in-cell algorithm samples the particle distribution

function of the Vlasov equation (Eq. 3.1). While the sampling in velocity space has to be a

δ-distribution to avoid a diffusion of the sample particle, the macroparticle can have a spatial

extent. The macroparticle’s spatial extent is usually chosen such that the numeric integration in

the context of the grid on which the electric and magnetic field is defined becomes easier to

handle [73]. Thus typical particle shapes are point-like particles, particles with a homogeneous

charge density of the same extent as the cell, called cloud-in-cell (CIC) shape, and shapes that

extend to even more surrounding grid points (see [73] for a detailed derivation and discussion).

Higher-order particle shapes are in general numerically more stable and reduce a numerical

noise in the current deposition and consequently in the electromagnetic fields. However, they

are also computationally more costly. In the context of this thesis, it is important to keep in

mind that while the particle-in-cell code treats these shapes as continuous density distributions
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the discrete nature of the electrons actually described by these macroparticles needs to be

taken into account when calculating the radiation. Otherwise, quantitative predictions cannot be

derived (see section 4.3).

3.3 In-situ data analysis in PIConGPU
Simulating the plasma dynamics with a particle-in-cell code is not enough - at some point,

physically meaningful data need to be extracted from the simulation. This leads to the question

whether data can be stored during the simulation and analyzed afterward, the so-called post-

processing approach, or if the data analysis has to be part of the simulation itself, the so-called

in-situ approach.

In order to get a first idea on which kind of approach should be taken, let us have look at

an exemplary laser-wakefield simulation. Let us assume the setup is moderately sized and

requires 256 × 1024 × 256 cells and a single macroparticle per cell to represent the plasma

density. Such a setup uses 67 million cells and particles. Each cell provides a magnetic and

electric vector field sample. These are in the case of PIConGPU represented by a single precision

floating-point number per component. Each cell thus needs to store 6 float values of 4 bytes

each resulting in a total of 1.5 Gigabyte. A macroparticle needs minimally the attributes: position,

momentum, and weighting. These two vector and one scalar quantities define a minimal

memory footprint of a macroparticle of 28 bytes. The ensemble of all macroparticles of this

exemplary simulation requires 1.75 Gigabyte. For each iteration step, describing the simulation

state requires 3.25 Gigabyte. Resolving a laser of λ0 = 800 nm needs a spatial resolution of

approximately ∆x ≈ λ0/10 = 80 nm. The CFL condition limits the time step to be

∆t .
∆x

c
= 0.27 fs . (3.13)

This approximation of the CFL condition assumes an asymmetric cell with a much shorter edge

length ∆x in laser propagation direction. For a laser moving just L = 1 mm in a co-moving

simulation box through the plasma, ∆tcdotL/c ≈ 10, 000 time steps are required for simulating

the laser propagation. Storing every simulation time step on disk would not only require

32 Terabyte of disk space but would also massively increase the simulation duration due to

limited writing speed of the file system. Storing all available simulation data once a while is easily

possible, but storing the data for all time steps is not feasible.

PIConGPU provides so-called plug-in methods that perform data analysis while the simulation

is running. These plug-in methods read the simulation data in the random access memory (RAM)

directly and then store only derived results, which are much smaller than the original data, on

disk. This reduced memory footprint allows performing a specific data analysis at a much higher

frequency than feasible with complete data output and post-processing analysis. Such plug-ins

provide for example the total energy of all particles and fields, the energy distribution, or a phase

space histogram of the particles.

Furthermore, the in-situ data analysis not only provides direct access to the data in the RAM

of the compute units (usually CPUs or GPUs), it also allows utilizing the computing hardware

for computations directly. Thus even computationally expensive data analysis, which for a

post-processing analysis would require using many compute nodes, can be done directly within

the running simulation with the hardware available to the simulation itself.

One extreme case of such data analysis is computing the far field radiation since this requires

both accessing the entire particle data for every iteration step and performing complex compu-

tations. Performing far-field radiation calculation on the entire ensemble of macroparticles thus
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could so far only be accomplished with the in-situ approach
5
.

A brief description of this plug-in is given in the next chapter. More details on this plug-in and

its implementation can be found in [61].

3.4 Summary
In this chapter, various methods to simulate plasma dynamics were briefly introduced. With

regard to this work, the functionality of the particle-in-cell algorithm was described in more detail.

The four steps of the algorithms were depicted with regard to their physical representation

and without many details of the technical implementation of a software algorithm. Various

algorithms regarding particle motion, electromagnetic field evolution, and current computation

were briefly discussed. The focus of this review was on the physical conservation laws and

limitations, not on the computational performance. All plasma physics cases discussed in this

thesis require using high-performance computer clusters (HPC) in order to solve the plasma

dynamics. Hence using and developing efficient and parallelizable algorithms was essential for

performing all the plasma simulations presented in this work.

Furthermore, the necessity of performing complex data analysis with the simulation as a

so-called in-situ analysis while the simulation is running was demonstrated. The plug-in method

to build various synthetic diagnostic tools in the particle-in-cell code was introduced. For the

large-scale scenarios discussed in the following chapters, a post-processing data analysis is not

feasible. Thus developing and utilizing in-situ synthetic diagnostics was essential in order to

perform the data analysis and radiation calculations presented in this thesis.

Part of the thesis was a continuous work on the code base of the PIC-code PIConGPU. This

included both new code development - a few of the added algorithms will be discussed in the

following chapters - as well as validating newly added code and maintaining the code base

together with a team at HZDR. As part of this development work, various large-scale simulations

became possible, leading to the publications [R1–R4, R7] and theses [65, 101].

5
By the best knowledge of the author, the implementation in PIConGPU is so far the only working method of such a

large scale far-field computation. All other codes consider only a subset of the particles simulated.
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4 In situ spectral radiation calculationin PIConGPU
The aforementioned data analysis plug-ins provide a suitable framework for embedding an

in situ radiation calculation. There are various simulation codes that use spectrally resolved

Liénard-Wiechert potentials (Eq. 2.10) to predict the emitted radiation of charged particles [63, 80,

102–111], but only the implementation in PIConGPU as a in-situ data analysis [61, R8] is capable

of calculating the radiation of all millions to billions of macroparticles simulated in the particle-

in-cell simulations for hundreds of frequencies and observation directions. This becomes

possible as result of the plug-in’s direct implementation into the framework of PIConGPU,

the use of GPUs, and the algorithm’s direct non-equidistant discrete Fourier transform that

avoids many consecutive processing steps required by a Fast Fourier Transform approach. The

original framework for the in situ radiation calculation was already implemented during the

diploma thesis of Pausch [R8]. A brief summary of the technical implementation is presented in

section 4.1. As part of this thesis, extensive many-particle tests were performed and various

extensions to the original code were introduced. These are described in detail in sections 4.2

to 4.4.

4.1 Discrete implementation in particle-in-cell codes
When calculating the radiation of multiple particles numerically, Eq. 2.10 needs to be extended.

In order to take the effects of coherent and incoherent radiation into account, the complex

amplitudes have to be summed over all Np particles before taking the absolute square [59].

Since macroparticles can have different charges qp , their values need to be considered during

summation as well. The integral over time becomes a sum over all sampled time steps Nt with

step width ∆t . Due to the commutability of linear operations, the sum over time and the sum

over all particles can be interchanged. Thus the spectrally resolved Liénard-Wiechert potentials

become:

d2W

d Ω dω
=

∆t

16π3ε0c

∣∣∣∣∣∣∣
Nt∑
k=0

Np∑
p=1

qp
~n ×

[(
~n − ~βp,k

)
×
.
~βp,k

]
(

1− ~βp,k · ~n
)2 · eiω(∆t·k−~n·~rp,k/c)

∣∣∣∣∣∣∣
2

(4.1)

with ~rp,k , ~βp,k and
.
~βp,k being the position, normalized velocity and normalized acceleration of

particle p at the time t = ∆t · k .
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This approach not only allows treating both coherent and incoherent radiation simultaneously

[R9] but also reduces the memory footprint of the simulation dramatically, since the sum over

particles can be evaluated for each time step, thus avoiding the need to store entire particle

trajectories for billions of particles. Details on the design of the in-situ radiation calculation

in PIConGPU can be found in [61]. A computational analysis of the code’s performance on

the high-performance cluster TITAN at the Oak Ridge National Laboratory was published in

[R1]. In the following, only the most essential features of the in-situ radiation plug-in are briefly

discussed.

Equation 4.1 is a discrete Fourier transform over the retarded time Tret = t − ~n · ~rp(t)/c for

each particle. The retarded time is non-equidistant and differs for each particle. According to the

Nyquist-Shannon sampling theorem [83, 84], this has consequences on the highest resolvable

frequency ω < ΩNyquist = π
∆tret
. In order to demonstrate this resolution limit, let us assume a

simulation with an iteration time step ∆t and with two particles, one stationary β1 = 0, the other

one with a velocity of half the speed of light towards the observer β2 = 0.5. While the retarded

duration between two consecutive iteration steps of particle one is equal to the simulation time

step ∆tret 1 = ∆t , the retarded time step of the second particle is only half as long ∆tret 2 = ∆t/2

thus allowing the radiation plug-in to resolve frequencies twice as high
6
. Calculating the radiation

of the first particle at frequencies above ω > π
∆t would contain unphysical signals. Signals at

these frequencies are numerically equivalent to negative frequencies and have the appearance

of reflected signals from lower frequencies. Unfortunately, the radiation from the second particle
might contain spectral signatures of interest at frequencies between

π
∆t < ω < 2π

∆t . These would

overlap with the reflected signals from the first particle. In the non-equidistant sampling case,

the sampling rate needs to be above the Nyquist Shannon limit only locally [83, 112]. Thus, the

Nyquist-Shannon sampling limit needs to be checked locally by introducing a so-called Nyquist
limiter factor [61]

ν(ω, ~β, ~n) = Θ

 π

∆t ·
(

1− ~β · ~n
)ω
 (4.2)

with Θ(x) =
x∫
−∞

δ(y)dy being the Heaviside step function. By multiplying this factor ν with the

inner summand of equation 4.1, only particles that fulfill the Nyquist-Shannon limit contribute

to the computed spectrum.

As part of this thesis, a restart method was implemented for the radiation plug-in. It allows

storing the complex amplitudes ~Ak(ω, ~n) ∈ C3
for each frequency ω and each observation

direction ~n for various time steps k on disk before taking the absolute square and thus allows

restarting from time step k without losing phase and polarization information (see Eq. 4.3). The

restart files follow the OpenPMD file standard [113] and are self-describing. Only by allowing

restarts during simulation runs, large-scale simulations became feasible.

Furthermore, a correct treatment of coherent and incoherent radiation from a single macropar-

ticle itself was introduced by definingmacroparticle form factors F (qp, ω, ~n). These are discussed

in section 4.3 and in [R9].

Additionally, window functions W(~rp) were implemented to enable simulations with con-

tinuous boundary conditions as e.g., the simulation on the Kelvin-Helmholtz instability (see

chapter 7). Details on these window functions are given in section 4.4.

6
Please be aware that this is a retardation, not a dilatation effect.
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With all these additions, Eq. 4.1 becomes:

d2W

d Ω dω
=

∆t

16π3ε0c

∣∣∣∣∣∣∣∣∣∣∣∣∣
Nt∑
k=0

Np∑
p=1

χp,k(ω, ~n) ·
~n ×

[(
~n − ~βp,k

)
×
.
~βp,k

]
(

1− ~βp,k · ~n
)2 · eiω(∆t·k−~n·~rp,k/c)

︸ ︷︷ ︸
~Ak(ω,~n)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(4.3)

with χ = ν
(
ω, ~βp,k , ~n

)
· F (qp, ω, ~n) · W

(
~rp,k
)
· qp . (4.4)

This is the full equation currently implemented in PIConGPU to calculate the far-field radiation.

4.2 Validating the radiation plug-in against theory
Validating the results of the radiation plug-in in PIConGPU is essential for being able to make

quantitative predictions. Since the main focus of PIConGPU is laser plasma physics simulations,

test scenarios validating the relativistic particle energy regime, the relativistic laser intensity

regimes and a combination of both are essential. Furthermore, test cases with multiple particles

are necessary as well to validate scalings that are vital for quantitative predictions. In the

following sections, various test simulations are discussed. The basic simulation setup is always

the same: a plane wave or a Gaussian laser pulse interacts with a number of electrons. The

strength of the electromagnetic wave is defined by the normalized field strength

a0 =
qe · E
mecω0

(4.5)

with qe and me being the electron charge and mass, E being the electric field amplitude, c being

the speed of light, and ω0 being the electromagnetic wave’s frequency. The electrons all have

the same normalized velocity β and are either initially at rest or move in the opposite direction

to the propagation direction of the electromagnetic wave. In all cases, except the last one, the

field created by the electrons is neglected. Computationally this is achieved by deactivating the

current deposition algorithm. Only such a simplified setup allows a comparison with analytic

models. The first three tests are compared to analytical predictions for nonlinear Thomson

scattering in laser fields given in [114, 115].

4.2.1 Quasi-stationary electron in a relativistic field
This test scenario assumes a plane wave of normalized field strength a0 to interact with a single

electron that would be at rest without the electromagnetic wave. Due to the electromagnetic

wave, the electron oscillates. At relativistic intensities, a0 & 1, the oscillating motion of the

electron reaches relativistic velocities. At relativistic velocities, the magnetic field of the wave

influences the electron dynamics. The one-dimensional harmonic oscillation becomes a figure-

eight motion [56].

This change in electron motion also influences the emitted radiation. At non-relativistic

intensities a0 � 1, radiation is only emitted at the same wavelength as the driving wave; at

relativistic intensities a0 � 1 so-called higher harmonics are emitted as well. These are photons

with frequencies at integer multiples of the incident wave frequency ω0.

ωn = n · ω0 (n ∈ N) (4.6)
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In order to validate the radiation plug-in, a single macroparticle with weighting w = 1 was

used. The electromagnetic wave was fed in on one side of the simulation with a Gaussian

up-ramp. The electron was given an initial velocity to compensate the push in wave propagation

direction (~ey ) caused by the ponderomotive force. The velocity was set in such a way, that the

macroparticle was, averaged over one oscillation period, at rest when reaching the plateau of

the wave. With reaching the plateau, the radiation was computed for five oscillation periods for

a range of observation directions ~n = (sin θ, cos θ, 0) in the plane of oscillation. For a normalized
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Figure 4.1: Validation via Thomson scattering from a quasi-stationary electron: (a) Directionally resolved spec-
tra of a single, quasi-stationary electron in a plane wave a0 = 1.0 obtained via simulation and from a

theoretical model. (b) Relative error between theory and simulation.

intensity of a0 = 1.0, exemplary simulation results are confronted with theoretical predictions

based on [115] in Fig. 4.1(a). The higher harmonics are clearly reproduced in the simulations.

Both their frequency bandwidth and their directional structure agree with the simulation. In

order to quantify the deviation of the simulation from the theoretical prediction, the following

definition for a relative error was used:

ε =
|χsim − χtheo|

max(χtheo)
(4.7)

with χ = d2W
dωdΩ being the spectrally and directionally resolved radiation spectra from either the

theory or the simulation. The deviation between theory and simulation is plotted in Fig. 4.1(b).

The simulation agrees well with the theoretical predictions and the deviation is below ε < 5%.

4.2.2 A relativistic electron in an electromagnetic wave
In the following test scenario, the setup was extended to include a macroparticle moving at

a velocity β close to the speed of light towards the approaching electromagnetic wave. The

weighting of the single macroparticle was again set to w = 1. Again, the wave was initialized on

one side of the simulation box and propagated in+~ey direction. An initial Gaussian up-ramp was

used for reaching proper starting conditions. Due to the high velocity of the macroparticle, the

effect of the ponderomotive force on the electron dynamics could be neglected. The scattered

light from the electron is emitted mainly in the direction of electron propagation −~ey - also
called the forward direction. Due to the relativistic velocity of the electron, the wavelength of

the electromagnetic wave is much shorter in its rest frame. The emitted radiation in the rest

frame of the electron is thus at a higher frequency. In the lab frame, the emitted radiation in
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forward-direction is again blue shifted. The scattered radiation is observable at a frequency

ωn =
n · ω0 · (1 + β)2

(1 + β)2 − 1
2 (1 + cos θ) ·

(
1+

a2
0
2

γ2 + (1 + β)2

) (4.8)

under an observation direction ~n = (− cos θ, sin θ, 0), with β and γ being the electron normalized

speed and Lorentz factor [115] and n being the index of the higher harmonic. The scattered

radiation is maximally blue shifted in the direction of the electron velocity. The frequency up-shift

is reduced towards larger observation angles θ. The scattering frequency has a minimum in the

opposite direction of the electron velocity and the laser propagation direction.
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Figure 4.2: Validation via Thomson scattering from a single relativistic electron: (a) Directionally resolved spec-
tra of a head-on scattering between a single electron γ0 = 5 and a plane wave a0 = 0.5 both simulated and

following theoretical predictions. (b) The relative difference between the simulated and the theoretically
predicted spectra is below 5%.

An exemplary simulation result and the corresponding theoretical predictions are illustrated

in Fig. 4.2 (a). The electron had a Lorentz factor of γ = 5 and the electromagnetic wave had a

normalized amplitude of a0 = 0.5. The maximum deviation between simulation and theory for

this test case was far below 5% (Fig. 4.2 (b)). The small remaining difference between simulation

an theory results from the discretized particle trajectory in the particle-in-cell simulation. Itera-

tions are not taken at multiples of the laser period and therefore the particle trajectory is not

sampled symmetrically [R8]. The error could be reduced by decreasing the temporal step width

∆t but this would increase the computational time.

More results of these single particle simulations can be found in [61].

4.2.3 Nonlinear Thomson scattering of an electron bunch
As a third benchmark scenario, a similar setup was chosen. Instead of a single macroparticle

representing one electron, a macroparticle distribution representing an electron bunch of

Q = 1.9 nC charge was used. Again, the laser intensity and electron velocity were varied.

In order to allow a comparison with the analytical theory, all macroparticles were given the

same direction of flight and speed. The spatial distribution of the macroparticles followed a

Gaussian distribution in all three dimensions. This test allows validating the correct addition

of the phases between the individual emitters. Despite the coherent addition in equation 4.3,

the total radiation should only scale incoherently, i. e. linearly with the number of electrons

involved, since the spatial extent of the bunch is much larger than the wavelength of the emitted

radiation τ · c � λrad. Consequently, the theoretical spectrum for the bunch radiation is
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equal to the spectra for a single electron multiplied by the number of electrons in the bunch

Ne = Q/qe ≈ 1.2 · 1010
.
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Figure 4.3: Validation via Thomson scattering from a relativistic electron bunch: (a) Directionally resolved spec-
tra of a head-on scattering between an electron bunch and a plane wave both simulated and according

to theory. The electron bunch has a Lorentz factor of γ0 = 5 and a total charge of Q = 1.9 nC. The

electromagnetic wave reaches a normalized field strength of a0 = 1.0. (b) The relative difference between
the simulated and the theoretically predicted spectra is below 15%.

An exemplary comparison between analytical prediction and simulated spectra is depicted

in Fig. 4.3. The test case assumes electrons with a Lorentz-factor of γ = 5 to interact with a

plane wave of normalized field strength a0 = 0.5 to interact for 5 oscillation periods. The relative

difference between theoretical prediction and simulation is below ε < 15%.

In order to investigate this deviation further, this benchmark test was repeated for various

numbers of macroparticles and resolved frequencies and directions. All physical parameters

were kept constant. The discretization of the phase space via macroparticles was altered, but

the charge and thus the number of real electrons represented was held constant. Similarly,

the directional and frequency range was fixed and only their resolution was altered. The mean

error between simulation and theory is plotted in Fig. 4.4. The deviation between theory and

simulation is reduced if more macroparticles are used to represent the electron bunch in the

particle-in-cell simulations. Additionally, more spectral and directional sample points also reduce

the mean error. For the simple dynamics of an electron bunch in a plane wave, the difference

reduces best at around 2 · 105
macroparticles. The slight increase in the numerical error beyond

106
macroparticles is caused by summation errors when using single-precision floating point

numbers.

In this benchmark test, the macroparticles sample a very simple electron distribution function.

For more complex phase space distributions, as in laser plasma simulations, the distribution

function will be more complex. In most real cases, barely 105
macroparticles will show exactly

the same dynamics. In order to ensure therefore a minimal error, as many macroparticles as

possible should be taken into account for radiation calculations. For practical applications in

PIC simulations, this means that all macroparticles should be taken into account for radiation

calculations [R8]. Furthermore, correctly scaling coherent and incoherent radiation requires

taking into account all macroparticles too, as will be discussed in detail in section 4.3.

4.2.4 Nonlinear Thomson scattering from a plasma
A laser pulse that interacts with an underdense plasma exhibits a much more complex electron

dynamics than the benchmark cases described above. Due to the transversal and temporal

envelope of the laser pulse, the electrons oscillate at different field strengths. This not only

30



103 104 105 106 107

Nmp

0.70

0.75

0.80

[%
]

N = 2048 N = 256
N = 2048 N = 512
N = 4096 N = 512

Figure 4.4: The mean numerical error over the number of particles: This plot depicts the reduction of the mean
deviation 〈ε〉 between theory and simulation for the electron bunch Thomson scattering case over the
number of macroparticles Nmp used in the simulation. By increasing the number of macroparticles which

sample the bunch and with increasing the spectral (Nω) and directional (Nθ) resolution, the mean error is

reduced.

causes the higher harmonics to differ in intensity depending on the electron location but also

causes the electrons to drift towards weaker field strength due to the ponderomotive force.

The latter leads to density fluctuations in underdense plasma. All of this leads to a complex

plasma dynamics which is highly non-trivial. Despite this complexity, there is a known radiation

signature at twice the laser frequency ω = 2 · ω0 which is emitted under ±45◦ and ±135◦

to the laser propagation direction. This signature originates from the figure-8 motion of the

electrons in relativistic laser intensities a0 > 1. It has been observed in an experiment by Chen

in 1998 [116] and since then it is a common diagnostic signature in experiments to determine

if the laser intensity reached a non-linear regime. In spite of the complicated nature of the

laser plasma dynamics in experiments, this is the many-particle equivalent to the first single

particle benchmark. Therefore we simulated the historical experiment of Chen and used it as a

benchmark.
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Figure 4.5: Validation against common experimental signature at ω = 2 · ω0: The intensity of radiation d2W
dωdΩ

at

2ω0 under θ = 45◦, determined with the simulation, is plotted for various plasma densities ne (blue dots).

The relation between intensity and density is linear, as expected for this incoherent radiation signature

and validated via an experiment by Chen [116] (green dashed line). The simulation assumes a laser pulse

of a0 = 1.68, w0 = 7µm and τ = 50 fs with a wavelength of λ0 = 800 nm.

This radiation pattern at ω = 2 · ω0 was observed with PIConGPU by simulating a laser
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of peak field strength a0 = 1.68, wavelength λ0 = 800 nm, pulse duration τ = 50 fs (FWHM

intensity) and beam waist w0 = 7µm propagating through a plasma of densities between

ne = 1 · 1019 cm−3− 4 · 1019 cm−3
. With increasing plasma density, the intensity of the simulated

2ω0 radiation increased linearly as well. The linear scaling is depicted in Fig. 4.5. This validates

that the summation in Eq. 4.3 lead to an incoherent signature despite the consideration of

the phase of the various emitters. The linear scaling of the radiation intensity with the plasma

density was the first benchmark that provided validation against experimental results.

These four tests demonstrate that the radiation plug-in of PIConGPU is capable of quan-

titatively predicting the radiation emission of plasma simulations in both the relativistic and

nonlinear cases even at realistic plasma densities with billions of macroparticles involved. It is

further capable of quantitatively reproducing incoherent radiation signatures despite its coher-

ent computational approach. These tests provide the basis for more detailed studies of plasma

radiation as presented in this thesis.

4.3 Coherent and incoherent radiation with form factors
In the previous tests, the radiation simulation assumed either the macroparticle to represent

a single real electron, or the radiation had to be scaled linearly with the particle weighting to

enforce incoherent radiation. In a general scenario, however, the ensemble of electrons repre-

sented by a macroparticle can radiate both coherently and incoherently. In [61], it was already

shown that taking the complex phase between macroparticles into account before computing

the absolute square in Eq. 4.1 allows simulating both coherent and incoherent radiation at

the same time without adjusting the equation. However, in PIC simulations, macroparticles

represent an ensemble of real particles. The macroparticle just has one position; therefore,

the entire ensemble would have the same phase and thus scale coherently. This is equivalent

to treating macroparticles as point-like particles with charge qmp = w · qe , with w being the
macroparticle weighting and qe being the charge of a single electron. With regard to Eq. 4.1,

this would increase the radiation quadratically with the weighting, independent of the emitted

frequency. Using twice as many macroparticles with just half the original weighting would result

in quantitatively different spectra. This weighting-dependent radiation intensity is unphysical

and needs to be avoided.

If one, however, assumes that the macroparticle is a continuous charge distribution as the

particle-in-cell algorithm does, the radiation of such a particle would vanish for wavelengths

much smaller than the length of the macroparticle λ < ∆L. The reason is that when integrating

the phase shift over the charge distribution, the phases of different parts of the charge dis-

tributions cancel out if the charge distribution of the macroparticle is wider than the emitted

wavelength. This would result in no radiation at wavelengths shorter than the macroparticle

size (see Fig. 4.6). However, there is radiation as e.g., betatron radiation with a sub-nanometer

wavelength which is much shorter than the typical macroparticle extent used in particle-in-cell

simulations. The size of macroparticles would decrease with a finer spatial resolution of the

particle-in-cell simulation, thus making the cut-off dependent on the resolution of the simulation.

Again, this resolution dependency is unphysical and should be avoided.

This issue can be resolved by taking into account the discreteness of electrons represented

by the macroparticle and the macroparticle extent (and thus the extent of the ensemble rep-

resented). In order to do that, let us reexamine the macroparticle in particle-in-cell codes.

Macroparticles have a charge distribution but a single momentum to not be smeared out with

increasing time. By extending Eq. 2.10 to many particles, one is able to include the discrete
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Figure 4.6: Illustration of coherent and incoherent radiation scaling with different macroparticle representa-tions: On the left, a point-like macroparticle is assumed. Over the entire spectrum, the emitted radiation
scales quadratically with the weighting and is therefore coherent. In the center, a macroparticle with a

continuous charge distribution is illustrated. At wavelengths smaller than the macroparticle shape, no

radiation is emitted and the incoherent regime cannot be reproduced. On the right, a cloud of individual

electrons is considered. This discrete approach reproduces both the coherent and incoherent regime.

nature of the electrons represented by a macroparticle:

d2W

d Ω dω
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−∞
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.(4.10)

Here, N is the number of electrons represented by a single macroparticle, ~r is the central position

of the macroparticle, while ~rk is the position of the k
th
electron represented by the macroparticle.

The sum over the particles affects only the phase, but not on the vector part of the equation,

since all electrons in the macroparticle ensemble are assumed to have the same momentum

at all times. By separating the central position of the macroparticle from the position of the

associated electrons, the equation simplifies to Eq. 4.10. The influence of the actual position of

the electrons modeled is kept in the sum over all particles. This sum is the form factor of that

specific electron distribution. For simplicity let us redefine this sum as:

F 2(ω) =

∣∣∣∣∣
N∑
k=1

e
iω~n·~̂rk/c

∣∣∣∣∣
2

, (4.11)

with ~̂rk = ~rk(t)− ~r(t) being the position of the electron k relative to the center of the macropar-

ticle. Due to the equal momentum of all particles represented by the macroparticle, this position

does not change with time. This allows rewriting Eq. 4.10 as

d2W

d Ω dω
=

q2
e

16π3ε0c

∣∣∣∣∣∣∣
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2

· F 2(ω) (4.12)

33



Unfortunately, we do not know the exact position of the electrons, only their distribution.

For simplicity reasons, let us assume a one-dimensional case, with xk being the position of

the electron in the frame of the macroparticle and the observation vector ~n becoming unity.

The result can be easily extended to three dimensions. Let us assume that the electron with

index k has a spatial probability distribution ρ(xk). Thus, the probability distribution of the

entire ensemble of Nmp = w electrons represented by the macroparticle is the product of all

single-particle density distributions.

ρN(x1, x2, . . . , xN) =

N∏
k=1

ρ(xk) (4.13)

This allows defining an average form factor over all possible electron distributions:

F 2(ω) =

+∞∫
−∞
· · ·

+∞∫
−∞

dx1 . . . dxN ρ(x1, . . . , xN)
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−∞
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+∞∫
−∞

dx1 . . . dxN ρ(x1, . . . , xN)

(4.14)

Here we apply that the absolute square of complex numbers is the product of the complex

number with its complex conjugated value and calculate the form factor by separating the sum.

As a result, the form factor can be described by a simple equation

F 2(ω) = N +
(
N2 − N

) ∣∣∣∣∣∣
+∞∫
−∞

dxρ(x)eiωx

∣∣∣∣∣∣
2

= N +
(
N2 − N

)
· (FT (ρ(x)))2

(4.15)

that only depends on the Fourier transform of the probability distribution FT (ρ(x)) and the

number of real particles N represented by a macroparticle. This relation was already found in

1946 by Schiff [117]. It is commonly used for modeling the coherent fields in synchrotrons and

determining the bunch shape [118, 119]. This work (thesis) applies this form factor for the first

time to compute simultaneously coherent and incoherent far-field radiation in particle-in-cell

codes [R10].

The probability distribution is proportional to the density distribution associated with the

macroparticle and thus can be calculated depending on the shape selected for simulation.

Various macroparticle shapes have been implemented in the radiation plug-in of PIConGPU.

However, sudden density jumps as in the CIC shape (see section 3.2) lead to oscillations in the

form factor. Using a Gaussian density distribution of a size similar to that of the macroparticle

avoids these side lobes. Using a Gaussian form factor is therefore much better suited for

scaling the radiation intensity according to the coherent and incoherent regime and for avoiding

additional spectral peaks due to oscillations in the form factor [R10].

4.4 Window functions for continuous boundary conditions
Simulating the radiation in a finite-size simulation box requires looking into influences on the

radiation caused by these sharp boundaries. The retarded time in Eq. 2.10

tret = t −
~n · ~r(t)

c
(4.16)

depends on the particle position. Therefore, discontinuities in the position will lead to discontinu-

ities in the retarded time and thus to ringing effects in the calculated radiation spectra similar to
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the side lobes of a sinc function sinc(ω) when Fourier transforming a rectangular function Π(t).

This is a known problem in signal theory and can be avoided by introducing window functions as

filters [120, 121]. In contrast to most problems from signal theory, the most dominant cause for

these ringing effects is not the finite sampling time duration. The side-lobes originate from the

limited retarded time of the ensemble of particles. There are no particles beyond the spatial

extent of the simulation box. Thus, the range of retarded time is sharply limited by these bound-

aries, especially if the simulation time is short compared to the time that the light would need to

propagate through the simulation box, causing ringing artifacts like side-lobes. This is illustrated

by Fig. 4.7 which shows simulated spectra from a plasma under the influence of two external

electric fields oscillating at different frequencies ~E = 1011 V/m · (sin(2.5ωpet) + sin(5.5ωpe)) ~ex .

The frequencies are given in multiples of the plasma frequency ωpe , and the observation angle

is the angle between the x- and y-axis ~n = (cos θ, sin θ, 0). The simulation box has a size of

Lx = 7.12c/ωpe , Ly = 28.5c/ωpe and Lz = 1.78c/ωpe . The response to the external fields (marked

by red dotted lines) and radiation at the plasma frequency (marked by a red dashed line) can be

clearly identified (see Fig. 4.7). However, there are also side lobes overlapping the signal. These

originate from the hard cut-off at the boundaries of the simulation box. Let us, for now, just

consider the simulation box in the x-direction. Assuming a homogeneous density distribution,

the density can be described as ρ(x) = ρ0 · Π(x/Lx), with Π(x) being the rectangular function

Π(x) =

{
1 for − 0.5 ≤ x ≤ +0.5

0, for any other case .
(4.17)

By performing a Fourier transform, we get the density in reciprocal space:

ρ̃(kx) =
Lx
2
· sinc

(
L · kx

2

)
(4.18)

with sinc(y) = sin y
y . The extrema of the sinc function are at:

k̂x =
2

Lx
·

{(
n +

1

2

)
π −

1(
n + 1

2

)
π

}
with n ∈ N . (4.19)

Both minima and maxima of the sinc function appear as maxima in the spectrum since Eq. 2.10

takes the absolute square of the complex Fourier transform. If one looks at the simulation box

at various angles, these maxima depend on the observation angle as well:

ωnx(θ) =
ckx
|cos θ| (4.20)

=
2c

Lx · |cos θ| ·

{(
n +

1

2

)
π −

1(
n + 1

2

)
π

}
(4.21)

ωny (θ) =
2c

Ly · |sin θ| ·

{(
n +

1

2

)
π −

1(
n + 1

2

)
π

}
(4.22)

This can be generalized to all dimensions. The resulting maxima are illustrated by white dashed

lines for the y boundary and white dotted lines for the x boundary in Fig. 4.7 according to

Eq. 4.21 and 4.22.

In order to reduce the influence of these side lobes and in some cases to avoid them com-

pletely, the technique of window functions known from signal processing was integrated into

the radiation plug-in. Window functions are applied to signals and reduce the signal strength at

the start and end. This reduces the influence of the signal cut-off and reduces side lobes in the

Fourier space.
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Figure 4.7: Illustration of side lobes from simulation box boundaries: Radiation spectra of a homogeneous
plasma under the influence of an external electric field ~E = 1011 V/m · (sin(2.5ωpet) + sin(5.5ωpe)) ~ex . The

red dashed line illustrates the expected radiation signal at the plasma frequency while the red dotted

lines illustrate the expected emission signal due to the external field. The white dashed and dotted lines

are the side lobes caused by the finite simulation box. Due to the use of a logarithmic color scale, the

influence of the side lobes is emphasized.

The development of effective filters is complicated. For example, the use of a Gaussian

distribution is not a particularly good choice. However, a number of excellent filters are known

from signal processing. Therefore, only their properties are briefly explained in this work. A

detailed implementation can be found in [120, 121].

A list of filters included in PIConGPU and available since the beta-rc5 [122] release can be

found in table 4.1. Each signal generates side lobes. It is important to be able to separate the

signal from its side lobes at higher and lower frequencies. Therefore, an important attribute of

filters is the so-called side lobe fall off (SLFO) [120]. It indicates how many decibels a signal has

dropped at double or half the frequency.
7
The side lobe fall off (SLFO) is defined as

SLFO [dB/Octave] = 10 · log10

(
d2W/dωdΩ(2ωs)
d2W/dωdΩ(ωs)

)
(4.23)

with ωs being the frequency of a signal peak. The smaller the SLFO, the better a window function

suppresses side lobes caused by both the simulation box and radiation signals.

The reduced background of side lobes comes at the expense of a wider signal. While without a

filter the width of a signal depends only on the sampling rate, using a filter widens a signal. This

may cause a signal to swallow other weaker signals that are nearby in the spectrum. Therefore,

a desirable attribute of a filter is not to cause excessive signal broadening. The signal widening

is measured in the signal width at 3 dB in units of the sample resolution ∆x and is called the

3dB-width. This corresponds to the width of a signal at P1/P0 ≈ 2 which is more commonly

called the full width at half maximum (FWHM) in physics. The narrower the signal remains, the

better one can resolve nearby signals. Roughly speaking, two equally strong signals can be

distinguished if they are more than the 3 dB-width apart.8 A list of all implemented window

functions is given in Tab. 4.1, stating both the side lobe fall off and the 3dB-width.

In order to reduce the effect of the side lobes from the simulation box boundaries, a framework

to add spatial window functions was implemented in PIConGPU as part of this thesis. The

7
A decibel is a logarithmic unit that describes the signal strength of The signals P1 to a reference signal P0 using the
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Table 4.1: A list of window functions currently implemented in PIConGPU. Values are given according to [120, 121].

Window function SLFO[dB/octave] 3dB-width[1/∆x ] remarks
None [implicit rectangular] -6 5,57 The result without a window function.

Triangle -12 8,02

The side lobes are spaced apart with a

distance twice as long as without a

window function.

Hamming -6 8,17

Even though the asymptotic SLFO is

not good, the nearby side lobes are

strongly reduced.

Triplet -12 11,7
This window functions avoids any

side lobes.

Gauss -6 10,2
This is not a great window but

physically reasonable.

simulation is generally confined in three dimensions, therefore a three-dimensional window

function is needed. Since the spatial dimensions are independent, the window functionW can
be defined as a product of three one-dimensional filtersW1.

W(~r) =W1(x/Lx) · W1(y/Ly ) · W1(z/Lz) (4.24)

with Lx , Ly , and Lz being the extent of the simulation box in each dimension. The filterW(~r) is

applied to Eq. 2.10 according to the spatial position of each macroparticle.

d2W

dω d ΩW
(~n, ω) =

q2
e

16π3ε0c
·

∣∣∣∣∣∣∣
+∞∫
−∞

Ne∑
i=1

W(~ri) ·
~n ×

[(
~n − ~βi

)
×
.
~βi

]
(

1− ~n · ~βi
)2 · eiω(t−~n·~ri/c) dt

∣∣∣∣∣∣∣
2

. (4.25)

Obviously, using no filter is equivalent to the following 3-dimensional rectangular filter:

Wu(x, y , z) = Π(x/Lx) · Π(y/Ly ) · Π(z/Lz) (4.26)

thus causing the side lobes mentioned before. The window function attenuates the contribution

of particles near the simulation boundary. By selecting a suitable window function, the strength

of the side lobes in the simulation box is reduced. However, the influence of the radiation from

the edge of the simulation area is also reduced and quantitative predictions may become more

difficult.

Note that there is no perfect window function. The reduction of the side lobes must be

weighed against a broadening of the signal. Therefore, the window function has to be chosen

in view of the spectra expected. Additionally, applying a window function reduces the signal

intensity and makes quantitative predictions more difficult.

In order to illustrate the effect of using a window function, Fig. 4.8 gives the spectra for the

same simulation setup but using the Triangle and Triplet window function. When using the

Triangle window function (Fig. 4.8 (a)), only every second side lobe overlaps the spectra. The

response at the plasma frequency is clearly visible, but the response to the electric field is weaker

than the signal at the plasma frequency. By using the Triplet window (Fig. 4.8 (b)), no side lobes

overlap the spectra. The signals can be clearly identified. For both window functions, the overall

common logarithm: L = 10 · log10

(
P1
P0

)
dB. An octave is double (or half) the reference frequency.

8
This is not always true. See [120] for details.
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Figure 4.8: Comparing two window functions: Radiation spectra of the same simulation setup as in Fig. 4.7 but (a)
with a Triangle window function and (b) with a Triplet window. While the Triangle window shows wider

spaced side lobes as in Fig. 4.7, the Triplet window has no side lobes. The red lines mark the spectral

peaks expected. The remaining side lobes arise from the finite simulation duration.

signal strength is reduced. The remaining side lobes originate from the temporal cutoff due

to the finite simulation duration. These structures might contain valuable information on the

duration of a signal. In PIConGPU, window functions are therefore not applied over time.

The use of filters is essential for simulations where radiation is expected at the edges of the

simulation box. The Kelvin-Helmholtz instability (KHI) simulation presented in chapter 7 is such

a case. In contrast, simulations in which hardly any radiation is emitted near the simulation

box limits are inherently free of side lobes. For this reason, the use of window functions is not

required for laser wakefield (LWFA) simulations (chapter 6).

4.5 Summary and Outlook
This chapter introduced the general methods to compute directionally resolved radiation spectra

for arbitrary particle motion via Liénard-Wiechert potentials. A correct treatment of multiple

particles that takes into account the phase relation between all particles was discussed. The

technical implementation of the radiation diagnostics into the particle-in-cell code PIConGPU as

an in-situ synthetic diagnostics was briefly reviewed. This part was kept short on purpose since

it is discussed in detail in [61].

Subsequently, a number of benchmark tests were presented which validated the functionality

of the in-situ plug-in. Based on the initial one-particle tests from [61], this thesis focused on the

first many-particles tests and a detailed error analysis. These benchmark tests were published

in [R8] and demonstrate that the radiation analysis plug-in in PIConGPU produces correct results

even for many relativistic particles undergoing non-linear dynamics in highly intense laser fields.

Furthermore, two new technical methods, which were incorporated into the radiation plug-in,

were presented. The form factor description of macroparticles allows a quantitatively correct

prediction of coherent and non-coherent radiation. A mathematical method for deriving the

form factors for arbitrary particle distributions was shown. A detailed description was published

in [R10]. With this new method, quantitative predictions become possible.

The introduction of window function filters prevents side lobes in the spectrum caused by the

boundary of the simulation area. Their use is essential for certain classes of PIC simulations with

continuous boundary conditions to avoid interpreting misleading side lobes as real signals.

Only the extensions presented in this chapter made the work on radiation in plasmas in this

thesis possible.
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5 Radiation reaction
5.1 Taking radiation losses into account
In the previous sections, the emission of radiation by charged particles under acceleration and

its computational modeling was discussed. Numerical issues of computing the spectrally and

directionally resolved far-field radiation of test particles in a particle-in-cell simulation were

examined. However, this purely diagnostic approach ignores that the charged particle loses

energy due to the emitted radiation. This is an intrinsic drawback of the current radiation plug-in.

However, this can be solved by including a particle pusher that takes into account the particle’s

energy loss due to radiation.
9
The question is whether radiation damping effects are important

for laser plasma simulations. Anticipating the answer: for most scenarios currently not, but

with increasing laser intensities in the labs worldwide, the radiation reaction might no longer

be neglected. Following the most common classical radiation reaction considerations [59], the
radiation damping starts playing a role when the energy loss due to emitted radiation becomes

comparable with the kinetic and the potential energy of the charged particle in motion:

Erad ∼ E0 . (5.1)

The radiated energy can be approximated by the Larmor formula in the sub-relativistic approxi-

mation:

Erad = PLarmor · τ =
q2a2

6πε0c3
· τ (5.2)

with q and a being the particles charge and acceleration and τ being the characteristic time of

the dynamics. In the linear acceleration case [59], this characteristic time can be approximated

by

τ =
q2

6πε0c3m
(5.3)

with m being the mass of the particle. For particle motion longer than τ , radiation damping is

negligible compared to the motion due to an external field. By assuming an interaction in an

electromagnetic wave of frequency ω0, the kinetic and potential energy of the particle can be

approximated by E0 ∼ mω2
0x

2
, with x being a typical amplitude of the particle motion in the

9
Using the energy loss computed by the plug-in itself is not feasible. On the one hand, this calculation requires a

time integration and thus would always be applied delayed. On the other hand, this time integration would have

to be done for all billions of macroparticles separately which would require orders of magnitude more memory

per particle than currently used. These reasons restrict this method only to extremely small test setups.

39



electromagnetic field. Since the acceleration is the second time derivate of the location, it can be

approximated by a ∼ ω2
0x . Thus for

ω0τ � 1 (5.4)

or equivalently for photon energies below

~ω0 � 100 MeV (5.5)

the radiation reaction becomes marginal for the dynamics during a single oscillation.

However, the slight energy loss still has a long-term effect on the particle dynamics. This effect

highly depends on the scenario. For example, the radiation reaction becomes important for laser

irradiation of a target with over-critical plasma density [123–126]. The results of these studies

differ widely, ranging from no effect to a radiation damping starting already at normalized

intensities above a0 ≈ 50. For relativistic electron bunches interacting head-on with a laser

pulse, the radiation damping becomes important even earlier, for example at a0 = 10 for a

150 MeV electron bunch [127]. These laser intensities are within reach with the DRACO laser at

HZDR today [R11]. Considering radiation reaction in PIC-simulations is therefore not a purely

theoretical study but of importance for upcoming experiments.

5.2 A brief derivation of the radiation reaction force
Treating the equation of motion of a charged particle that emits radiation has been investigated

since the beginning of the 20th century [127]. However, for a point-like particle, like the electron,

there is no completely correct, classical solution [59]. Only quantum electrodynamics is capable

of handling the recoil force of an electron onto itself correctly. Such an approach, however,

requires a stochastic treatment of the electron motion which itself leads to issues regarding the

macroparticle sampling [128]. For instructional reasons, we will derive the radiation friction force

in the sub-relativistic regime only and will provide the relativistically correct equations without

deeper discussion since their derivation is lengthy and does not add to the understanding of the

subject.

In the sub-relativistic case, the radiation power emitted by an electron in all directions is given

by the Larmor formula:

.
Erad =

q2
.
β2

6πε0c
. (5.6)

Based on this equation, Abraham and Lorentz introduced the radiation reaction force ~Frad to

take into account the energy loss:

∆Erad = −
t2∫
t1

.
Erad d t = −

q2

6πε0c

t2∫
t1

.
β2 d t = c ·

t2∫
t1

~Frad · ~β d t . (5.7)

It is important to notice that an electron does not only interact with its own radiation field but

also with the so-called velocity field [58], an electromagnetic field caused by the particle motion,

which however does not carry away energy from the electron but is reabsorbed. The interaction

with the velocity field alters the electron motion, thus deriving a radiation force is only valid in a

time-average description [129].

The integration of the acceleration over time can be split using integration by parts

t2∫
t1

.
β2 d t =

(
~β ·

.
~β
)∣∣∣t2
t1︸ ︷︷ ︸

=0

−
t2∫
t1

..
~β · ~β d t (5.8)
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with the boundary term being zero for small time intervals [59, 129]. Rearranging Eq. 5.7 leads

to:

0 =

t2∫
t1

(
c · ~Frad −

q2

6πε0c

..
~β

)
· ~β d t . (5.9)

The radiation force can thus be assumed to be:

~Frad =
q2

6πε0c2

..
~β . (5.10)

This is the Abraham-Lorentz equation. Its relativistic generalization was accomplished by Dirac

in 1938 [130]. However, these equations have unphysical “runaway” solutions. An alternative

description was proposed by Landau and Lifshitz. By using the time derivative of Newton’s

second law mc
..
~β =

.
~Fext, one can replace the second-order time derivative of the normalized

speed in the Abraham-Lorentz equation:

~Frad =
q2

6πε0mc3

d

dt

(
~Fext

)
. (5.11)

This is the sub-relativistic version of the Landau-Lifshitz equation. The full relativistic Landau-

Lifshitz equation includes an additional summand scaling with q
2/m [127]:

~Frad =
q2

6πε0mc3

{
γq

(
∂

∂t
+ ~v · ~∇

)(
~E + ~v × ~B

)
+
q2

mc

[[(
~β · ~E

)
· ~E + c

(
~E + ~v × ~B

)
× ~B

]
− γ2~β ·

[(
~E + ~v × ~B

)2

−
(
~β · ~E

)2
]]} (5.12)

Even though the Landau-Lifshitz equation is just an approximation of the Abraham-Lorentz-Dirac

equation, it suffers less from runaway solutions and pre-acceleration [131]. It was shown that

the critical manifold of the Abraham-Lorentz-Dirac equation, which describes stable solutions, is

identical to the Landau-Lifshitz equation [132]. This, however, does not mean that the stable

solution provided is physically meaningful. It still shows unphysical discontinuities in the radiation

force [131].

5.3 Implementing the reduced Landau-Lifshitz equation
Implementing Eq. 5.12 into a particle-in-cell code to account for the radiation reaction is not an

easy task since it depends on time derivates of the electromagnetic field. In order to include

these time derivates numerically, not only the field’s current value needs to be held in memory

but at least a previous value as well. This doubles the required memory. It is appealing to

search for simplifications of the full Landau-Lifshitz equation resembling very similar physics

outcome but additionally being computationally less costly. While simplified versions of the

Landau-Lifshitz equation have been implemented in particle-in-cell codes before [133], a detailed

study on various simplifications has been performed only recently [94]. This study favors the

following reduced version of the Landau-Lifshitz equation:

~FRLL =
q4

6πε0m2c4

{[(
~β · ~E

)
· ~E + c

(
~E + ~v × ~B

)
× ~B

]
− γ2~β ·

[(
~E + ~v × ~B

)2

−
(
~β · ~E

)2
]}

. (5.13)

It simply neglects the proper time derivative
d
dt =

(
∂
∂t + ~v · ~∇

)
in the first summand. This leads

to no radiation force if the momentum is parallel to the electric field ~p ‖ ~E. However, this
simplification can be made if

~p

m2c2

∣∣∣~F⊥∣∣∣2 � d

dt
~F (5.14)
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is fulfilled [94], with ~F⊥ being the force perpendicular to the particle momentum. This condition

is true except for very extreme fields close to the Schwinger limit. It is a useful simplification

applicable to particle-in-cell codes.

As part of this thesis, the reduced Landau-Lifshitz equation was implemented in the particle-

in-cell code PIConGPU. This required several changes in the framework. Using the Boris or Vay

pushers (section 3.2) for integrating the particle dynamics numerically is inept since the radiation

reaction force does not preserve energy and the advantage of these pushers to conserve

energy becomes irrelevant. Instead, the Runge-Kutta 4
th
order scheme was implemented in the

framework as a general differential equation solver. Then a particle-pusher was implemented

that solved the following set of differential equations:

.
~r =

1

γmc
· ~p (5.15)

.
~p = q ·

(
~E(~r) +

1

γmc
~p × ~B(~r)

)
+

1

w
~FRLL(~r, ~p) (5.16)

with ~r , ~p, q, m, γ and w being the macroparticle’s position, momentum, charge, mass, relativistic

Lorentz factor, and weighting respectively, using the Runge-Kutta 4
th
order scheme. In Eq. 5.16,

the 1/w factor is important to notice. The change in momentum and the Lorentz force ~FL scale

both linearly with the weighting due to their linear dependency on macroparticle mass mmp and

charge qmp.

~FL ∼ qmp = qe · w (5.17).
~pmp ∼ mmp = me · w (5.18)

Therefore, the particle dynamics becomes independent of the weighting and only depends on the

constant charge-to-mass ratio. This is not the case for the regular and reduced Landau-Lifshitz

force (Eq. 5.12 ). It depends on the macroparticle charge and mass at different powers and thus

scales non-linearly with the weighting. The reduced equation (Eq. 5.13) scales quadratically with

the macroparticle weighting:

~FLL ∼
q4

mp

m2
mp

=
e4
e

m2
e

· w2 . (5.19)

This is, of course, unphysical, since the weighting is a purely numerical factor. This discrepancy

arises from the fact that the Landau-Lifshitz equation was solely derived for electrons. The

reduced Landau-Lifshitz force needs to be rescaled to a single electron in order to become

independent of the weighting factor. Multiplying the force with the inverse of the macroparticle

weighing (see Eq. 5.16) results in a particle dynamics independent of the macroparticle weighing.

Since the Runge-Kutta method relies on sub-stepping, the field interpolation method and the

particle-pusher framework in PIConGPU were extended to also support interpolation steps in

between the regular particle-in-cell iteration steps. With all these implementations, the first

pusher algorithm that includes radiation reaction in PIConGPU was implemented in October

2015.

5.4 Validating the radiation reaction in PIConGPU
In order to validate the correctness of the implementation and to estimate the limitations of

this radiation reaction model, various tests were performed. Two of them are discussed in more

detail here: an electron in a constant magnetic field and an electron interacting with a laser

pulse.
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In the first test case, an electron with a Lorentz factor γ0 is propagating in a spatially homoge-

neous and temporally constant magnetic field B0. Since the magnetic field performs no work

on the electron, the only cause for a change in the electron’s energy is the radiation reaction.

Starting from the relativistic Larmor equation for circular motion [59]

.
Erad =

2q2c

6πε0
·
β4γ4

r2
(5.20)

with the time depending radius of the electron trajectory r = mγβc
qB , the change of the electron’s

energy over time becomes:

.
γ ·m · c2 =

2q4γ2β2

6πε0m2c
· B2

0 . (5.21)

This differential equation of form
.
γ = χ · (γ2 − 1) can be solved by separation of variables and

has the solution [65]:

γ(t) =
γ0 + tanh(χt)

1 + γ0tanh(χt)
with χ =

2q4B2

6πε0m3c3
. (5.22)

The Lorentz factor of the electron reduces from initially γ0 to lim
t→∞

γ = 1. The rate of change is

defined by χ and scales quadratically with the magnetic field.

In order to verify our implementation, simulations at various initial Lorentz factors γ0 and

magnetic field strengths B0 were performed and compared with the analytical solution (Eq. 5.22).

Exemplarily the electron trajectory and the energy evolution are illustrated in Fig. 5.1 for γ0 = 100

and B0 = 107 T. The evolution of the Lorentz factor matches perfectly with the prediction.
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Figure 5.1: Energy loss of an electron moving in a constant magnetic field: Using the reduced Landau-Lifshitz
(RLL) pusher to include radiation reaction, an electron with initial γ0 = 100 was simulated in a magnetic

field of strength ~B0 = 107 T ~ez . Left: The electron trajectory (blue) is contrasted to the electron trajectory
without radiation damping (gray). Right: The energy loss is illustrated via the simulated (blue) and
theoretical (orange) Lorentz factor over time.

As a second test, the head-on interaction of a relativistic electron with a laser pulse is consid-

ered. The energy loss under the influence of an electric field can be described by neglecting the

first two terms in the Landau-Lifshitz equation (Eq. 5.12), since both are small compared to the

third term, [123, 127] as:

d γ

d t
= −

[
1

4πε0

q2ω2
0

mc3

]
· γ2(t) · a2

0(t) , (5.23)
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Figure 5.2: Simulation of an electron with initial γ0 = 100 interacting head-on with a laser pulse of FWHMpulse duration of τ = 30 fs: Left: The evolution of the relativistic Lorentz factor γ during the interaction
with the laser pulse is plotted over time t for â0 = 90. In blue, the results of the reduced Landau-Lifshitz

pusher (RLL) are plotted while in gray, the evolution computed using the Boris pusher is displayed. Dashed

lines represent time-averaged values while the thin solid lines show the detailed evolution.Right: The
Lorentz factor after the propagation through the laser pulse is plotted for various normalized laser field

strengths â0. The simulated results are compared to theoretical predictions according to Eq. 5.24 plotted

as a blue line.

with a0(t) = qeE(t)
mcω0

being the normalized laser amplitude. For a laser amplitude of a0(t) =

â0 · e
− 1

2

(
t−x/c
σt

)2

· sin(ω0t), with â0, σt and ω0 being the peak normalized electric field strength,

the laser pulse duration and laser frequency, integrating Eq. 5.23 gives the electron’s Lorentz

factor after passing through the laser pulse:

γ = γ0

[
1 +

2πreγ0â
2
0ω0σtχ

λ0 + 2πreγ0â
2
0ω0σtχ

]
(5.24)

with λ0 = 2πc
ω0
being the laser wavelength, re = 1

4πε0

e2

mec2 being the classical electron radius, γ0

being the initial Lorentz factor before the laser interaction and χ =
√
π

2

(
1− e−σ2

t ω
2
0

)
being a

factor coming from the time integration over the laser envelope
10
.

In order to verify the reduced Landau-Lifshitz (RLL) pusher implementation in PIConGPU, the

head-on interaction of an electron with initial Lorentz factor γ0 = 100 interacting with a laser

pulse of a full width at half maximum (FWHM) duration in intensity of τ = 30 fs = 2
√

ln(2)σt
was simulated for various intensities. An exemplary evolution of the Lorentz factor γ during

the laser head-on scattering is shown in Fig. 5.2 (left). The final Lorentz factor after the electron

propagated through the laser pulse is plotted for various peak intensities â0 in Fig. 5.2 (right).

The reduction in energy follows the approximation in Eq. 5.24 very well. The slight deviations are

caused by the limited temporal resolution of the particle-in-cell simulation and the neglecting of

ponderomotive forces, which scale with ∼ a2
0 and become more relevant at higher a0.

In summary, both test show excellent agreement with the theoretical predictions.

It is important to mention that this treatment of radiation losses is completely classical. In

order to extend the particle-in-cell algorithm towards including quantum electrodynamic effects,

scattering processes need to be included by Monte-Carlo methods [128]. By introducing photons,

the energy loss during emission can be treated naturally. This approach avoids some of the

10
Please note that Koga et al. [127] approximated this factor by 1. This approximation is, however, equivalent to a

63% shorter pulse compared to the pulse length definition by Koga et al.. The integration should not be neglected

in quantitative comparisons.
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shortcomings of the classical radiation reaction mentioned before and allows including the

probabilistic nature of the emission process. However, the introduction of QED scattering

processes comes at the cost of sampling issues due to the use of macroparticles in particle-in-

cell codes. Recently, two QED modules, one for scattering from strong electromagnetic fields

and one from the Coulomb field of the ion background, have been included in PIConGPU [65].

A comparison between the QED module and the reduced Landau-Lifshitz pusher, developed

as part of this thesis, showed good agreement as long as the emitted photon energy is much

smaller than the electron energy. However, the QED module is not capable of reproducing

coherent radiation effects - in contrast to the classical radiation plug-in. Thus in the classical

limit, only the in-situ radiation plug-in is capable of reproducing spectral features as e.g., higher

harmonics at multiples of the laser frequency or during betatron radiation in the wiggler regime.

5.5 Summary and Outlook
This chapter provided a brief theoretical introduction on how to include the energy loss caused

by radiation via a classical radiation-reaction force into PIConGPU. The reduced Landau-Lifshitz

(RLL) pusher algorithm was discussed in detail. The focus was put on the computational effective

implementation by reducing data access and the associated reduced physical accuracy of the

RLL algorithm. A required rescaling of the recoil force caused by the non-linear scaling of the

Landau-Lifshitz force with the macroparticle weighting was explained. Two exemplary test cases,

an electron moving in a homogeneous magnetic field and an electron interacting with an intense

laser pulse, were presented in detail. The simulation results agreed excellently with theoretical

predictions and validated the correct implementation of the radiation recoil pusher algorithm in

PIConGPU.

As part of this thesis, the framework for the pusher algorithms in PIConGPU was extended to

allow sub-stepping algorithms that integrate the particle motion with smaller time steps than

the PIC-cycle, thus allowing an increased numerical accuracy and a wider range of possible

algorithms. With this new framework, the reduced Landau-Lifshitz pusher was implemented and

tested. It now allows going beyond the limitations of previous simulations, were the radiation

losses needed to be negligible [R9]. The implemented classical recoil force was also an essential

test case for validating the newly developed synchrotron and bremsstrahlung modules included

in PIConGPU [65]. With upcoming experiments at higher laser intensities and with longer

acceleration durations due to longer gas nozzles used in laser wakefield experiments, taking

radiation losses into account will become essential in future simulations.
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6 Radiation as diagnostics duringlaser wakefield acceleration
6.1 Advantages of small-scale plasma accelerators and challengesin their diagnostics
Laser wakefield acceleration (LWFA) is a modern method for accelerating electrons that exploits

the plasma response to a short, intense laser pulse.

Conventional accelerators use radio-frequency (RF) cavities to generate electric fields for

accelerating charged particles. The electric fields reached in these cavities are limited to around

100 MV/m [8, 9]. Beyond this so-called vacuum breakdown limit, electrons are pulled out of the

metal surface into the vacuum. This causes the applied electric potential and the functionality of

the accelerating structure to break down. Therefore, reaching TeV electron energies requires a

10 km long linear accelerator when using these conventional techniques. Alternatively, a circular

accelerating structure, like the synchrotron accelerator, can be utilized to reuse the accelerating

structure and to reduce the size of the required construction [8]. But due to the constant

transverse acceleration, radiation losses limit the compactness of these structures as well. In

order to accelerate electrons to 100 GeV, the LEP accelerator at CERN was therefore built [134]

with a circumference of 27 km [135]. The proposed international linear collider (ILC) will have a

length of 31 km in order to achieve a final electron energy of 0.5 TeV [136]. This immense size

results of course from the high energies aimed for. But similar issues, regarding construction

costs, size and personnel, arise with medical or industrial accelerators operating at lower particle

energies. Their size is determined by the breakdown limit of the RF cavities as well.

Plasma-based accelerators such as the LWFA circumvent this limiting issue. Laser wakefield

accelerators can reach electric field strengths greater than 100 GeV/m [137, 138], thus allowing

more compact accelerator structures. By utilizing plasma structures of tens of micrometers in

size, laser wakefield accelerators also provide bunch lengths of similar size. Bunch durations

in the few-femtosecond range become available [21, 139] - which can hardly be reached with

conventional accelerators [140]. In combination with the relatively large amount of charge

accelerated, the LWFA can provide tens of kiloamperes of electric current [R2, 141, R12], while

conventional accelerators can only reach a few kiloamperes [140, 142]. This higher peak current

in combination with the compact accelerator structure makes LWFA ideally suited for driving

small, new light sources.

Starting with the initial idea by Tajima and Dawson in 1979 [7] of using excited plasma waves

to accelerate electrons, various concepts of accelerating particles by exciting plasma waves with
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lasers have been studied. With the developments of chirped pulse amplification by Mourou et

al. [143–145], laser intensities beyond 1015 W/cm2 became achievable and with today’s petawatt-

class lasers, intensities beyond 1021 W/cm2 can be reached. These high laser intensities at short

pulse durations enabled reaching higher electron energies. In 2004, the so-called blowout regime

[146, 147] was experimentally realized by three groups simultaneously [10, 12, 13] reaching

electron energies of 100 MeV with a significant charge in the order of a nanocoulomb. The crucial

technical step in reaching this regime was reducing the laser pulse duration to match the plasma

wavelength τ · c ≤ λpe . In contrast to all other previous experiments, the charge was located
in a quasi-monoenergetic electron bunch and not in a continuous energy distribution. Higher

charges and energies could be reached with this method. For example, a few picocoulomb of

charge were accelerated to a few GeV of energy [14, 15, 148, 149]. Most recently two orders of

magnitude more charge was reached by accelerating ∼ 300 pC to around 300 MeV at HZDR [R2,

R12].

By staging these LWFA accelerators and, subsequently, externally injecting the accelerated

bunch into a second plasma accelerator stage [150, 151], electron energies beyond a few GeV

are expected to become achievable in the future.

Most laser wakefield accelerators used today operate in a nonlinear plasma wave regime,

which cannot be treated self-consistently by analytical models [1]. Gaining an understanding of

the plasma dynamics thus heavily relies on particle-in-cell simulations. These simulations provide

a wealth of information of the plasma and laser dynamics occurring during the laser wakefield

acceleration. This ranges from time-resolved phase space distributions to a self-consistent

evolution of the laser in the plasma. However, this enormous amount of information cannot

be compared directly with experiments. In experiments, final electron energy distributions and

laser parameters are routinely measured [10, 12, 13, R2]. In order to get some information on

the electron phase space, radiation is often recorded as well. Common radiation diagnostics are

wave-breaking signatures [28] or betatron radiation [23–26, 152–155] which provide information

on the electron self-injection or on the accelerated electron beam in the plasma cavity. Further-

more, single shot real-time measurements of the plasma wake and the magnetic fields can be

performed via shadowgraph and Faraday-rotation measurements [21]. These two methods,

however, are limited to resolving only a short time period of a few femtoseconds, and cannot

provide a single-shot diagnostics over the entire laser plasma dynamics. A detailed review of

diagnostic methods for LWFA can be found in [156].

All these experimental measurements either provide information on the final (high-energy)

electron bunch, such as the electron energy distributionmeasurements or the betatron radiation,

or they provide information on a specific point in time, such as the shadowgraph diagnostics or

the wave-breaking radiation signature. Particle-in-cell codes, on the other hand, show a wealth

of plasma and laser dynamics during the laser-matter interaction, that so far cannot be observed

experimentally.

Since the laser-plasma dynamics changes throughout the interaction, the electron dynamics

changes as well. This electron phase space dynamics can only be continuously measured by

means of radiation diagnostics where the characteristic photon emission reflects the electron

distribution at a certain point in time and space. However, the correlation between the electron

phase space and the emitted radiation is non-trivial during LWFA and thus requires simulating

the LWFA plasma dynamics and the associated radiation. Such a synthetic radiation diagnostics is

capable of linking the plasma electron dynamics to the emitted radiation since both are available

in simulations and their correlation can be directly identified and quantified.

In the following, various radiation signatures are presented that allow determining different

states of the laser wakefield acceleration. However, the main focus is on a newly discovered

radiation signature that allows determining the spatial location of the blowout regime during

laser defocusing. This spectral signature not only allows determining whether the blowout

48



regime has been reached, but it also enables measuring the laser focus position in the plasma

for every laser shot even though its focus is altered by the laser’s non-linear interaction with the

plasma.

In section 6.2 a brief theoretical introduction to laser wakefield acceleration is provided. It

focuses on the fundamental principles, the highly nonlinear blowout regime, the laser dynamics

in the plasma, and various injection methods. Subsequently, section 6.3 introduces a simple

scattering model that allows describing the fundamental process behind the discovered radiation

signature. Details on various characteristic radiation signatures determined via a large-scale

particle-in-cell simulation are given in section 6.4. This large-scale simulation also illustrates

the limitations of the quasi-static scattering model. However, these limitations are the basis for

determining the focus position. The discovered radiation diagnostic method is tested against

numerous simulations based on an experimental setup used at HZDR to validate whether the

laser focus position can be determined by analyzing scattered radiation. The simulated spectra

show that the proposed spectral method allows determining the laser focus position precisely .

Finally, section 6.5 discusses this ongoing case study of a self-truncated ionization injection LWFA

setup used at HZDR for accelerating quasi-monoenergetic electron bunches at an unprecedented

charge. The new spectral diagnostic method, which is developed theoretically here, would allow

understanding the laser plasma dynamics better in experiments and could potentially settle

discrepancies between simulation and experiments. In the outlook (section 6.6), the advantages

of radiation diagnostics are briefly discussed on the basis of further practical applications.

6.2 Fundamental processes behind laser wakefield acceleration
Since the initial idea of using laser pulses as drivers for plasma-based accelerators in 1979

[7] a lot of research went into this field. Not all of the developed acceleration schemes are

relevant for this thesis, therefore, only the fundamental principle and the relevant concepts

for understanding the following sections will be introduced in this section. Whenever possible,

derivations that do not reveal fundamental principles are avoided and publications providing

more information are referenced. A detailed review of the field of laser-driven plasma-based

electron accelerators with a wealth of literature references can be found in [1].

6.2.1 Generating plasmas with relativistic lasers
A characteristic parameter to describe the intensity of a laser pulse is the so-called dimensionless

field strength parameter:

a0 =
qe · E

me · c · ω0
(6.1)

= 0.85 · 10−12 · λ0 [nm] ·
√
I0 [W/cm2] (6.2)

where qe and me are the electron charge and mass, E is the electric field, c is the speed of

light, ω0 and λ0 are the laser frequency and wavelength, and I0 is the laser intensity. This

dimensionless parameter gives the strength of the electric field relative to the resulting electron

energy. For a value of a0 = 1, an electron reaches a kinetic energy equal to its rest energy in

half a laser period. In order to quantify the intensity of the laser pulse in an experiment or a

simulation, the peak value reached in the vacuum is usually given.

The change in motion of a charged particle with charge q and mass m can be described by the

Lorentz force.

d~p

dt
= m

d~βγ

dt
= ~F = q ·

(
~E + ~v × ~B

)
(6.3)
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Even for today’s laser field strengths of a0 ∼ 10, ions with their mi/me ≥ mp/me = 1836 times

larger mass hardly reach relativistic velocities, so that their wiggling motion in the laser field can

be neglected.

Before a laser can excite a plasmawave, the electrons need to be separated from the ions and a

plasma with free-moving electrons needs to be generated. This requires energy, which is usually

provided in the form of an electric field in experiments. Classically, the necessary electrical

field strength needed to detach the electrons from the atomic potential can be estimated by

examining the deformation of the Coulomb potential under the influence of an external electric

field Eext
x :

Φ(x) = −
Z · q2

e

4πε0|x |
− qe · Eext

x · x (6.4)

with Φ(x) being the total potential at the position x , Z being the atomic number, and ε0 being

the electric constant (see Fig. 6.1). If the binding energy E is equal to the potential Φ in the

maximum ∂Φ(xbar)/∂x = 0,

qe ·Φ(xbar) = E , (6.5)

the minimal field strength or intensity at which ionization occurs can be determined:

a0 ≥
πε0

mecω0q2
e

·
E2

Zeff
(6.6)

I0 [W/cm2] ≥ 4.0 · 109 ·
E4

ion [eV]

Z2
eff

. (6.7)

Numerically this classical ionization is described by the BSImodel in particle-in-cell simulation

[157]. Of course, electrons can quantum-mechanically tunnel through the reduced potential

wall. This lead to ionization even at lower field strengths (see Fig. 6.1). In PIC simulations this

effect can be considered by the so-called ADK and Keldysh models [158].

0
x

0

1

2

classical
ionization
possible

tunnel
ionization

Coulomb potential
external field x Eext

x

total potential 

Figure 6.1: Illustration of ionization: This plot shows how an external electric field E changes the Coulomb potential
around an atom, thus releasing electrons. Classically, the external field must reduce the total potential of

Φ to the extent that the electron with binding energy E1 can overcome the barrier. Quantum mechanically,

ionization is already possible at stronger binding energies E2 due to tunneling.

In order to generate a plasma in the experiment, strong electrical currents can be used, which

convert neutral gas into a plasma in a so-called discharge capillary via collisional ionization.
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The laser pulse can then propagate through the pre-ionized plasma. In the case of intense

laser pulses, however, it is usually sufficient for the laser itself to ionize the gas via the field

ionization process described above. For example, the electron of the hydrogen atom is bound

with Eion = 13.6 eV. According to equation 6.6, it can be regarded as free-moving at field

strengths above a0 = 8 · 10−3
. These field strengths are reached by the laser pulse far before

the pulse peak so that the laser front itself generates a plasma without losing much of its total

energy or being significantly influenced in its dynamics. The only effect of this approach is an

ionization-induced blueshift of the pulse front and a slight defocusing of the laser pulse. In

a simulation, the assumption of pre-ionized gases is therefore justified even if no discharge

capillaries were used in the experiment itself.

For the so-called ionization injection, on the other hand, pre-ionization cannot be assumed. In

this scheme, the inner shell electrons separate from the ions, due to their strong binding energy,

only when the laser intensity is sufficiently high. This allows a more controlled injection into the

plasma cavity than with electrons from the outer shells. A detailed description of this method

can be found in section 6.2.5.

6.2.2 The laser’s ponderomotive force as the driver of a plasma wave
A laser pulse interacting with a plasma causes electrons to oscillate at the laser frequency.

Due to the spatial (transversal) and temporal (longitudinal) laser pulse envelope, electrons

experience varying field strengths during their oscillation and will undergo a drift in the direction

of decreasing intensity. This so-called ponderomotive force is a time-averaged force and can be

computed for non-relativistic field strengths (a0 � 1) by:

~Fpond = −
q2
e

4meω
2
0

~∇
(
Ê2
)

, (6.8)

with me , qe being the electron mass and charge and ω0 being the laser frequency while Ê is

the envelope of the laser amplitude [159]. For relativistic laser intensities (a0 & 1), deriving the

ponderomotive force becomes more complex and is still a field of ongoing research [159]. A

valid description that still contains the slow drift momentum ~ps of the electrons caused by the

laser ponderomotive force is

Fpond = −me · c2~∇

〈(
1 +

~p2
s

m2c2
+
a2

0

2

)1/2
〉

. (6.9)

with 〈. . . 〉 denoting the cycle-average [56]. While quantitatively resulting in a different pon-
deromotive force scaling, in the mildly relativistic regime the qualitative results are equivalent:

electrons are pushed to the side of the laser pulse like snow by a snowplow.

Such a laser pulse propagating through a plasma will be slowed down due to the refractive

index of the plasma medium. The dispersion relation of an electromagnetic wave of wave

number k is

ω2 = ω2
pe + c2k2

(6.10)

with ωpe being the plasma frequency

ωpe =

√
ne · q2

e

ε0 ·me
(6.11)

and with ne , qe , me and ε0 being the electron density, charge, mass and the vacuum permittivity

respectively [3]. The group velocity of the laser pulse is slower than the speed of light and it can
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excite a plasma wave (also called plasmon or Langmuir wave) with a phase velocity vpe equal to

the group velocity of the laser v laser
g [7]

vpe =
ωpe
kpe

= v laser
g =

∂ω

∂k
= c ·

√
1−

ω2
pe

ω2
0

(6.12)

with ω0 being the laser frequency and kpe the plasma wave number.

It can be shown, that such a plasma wave is excited most efficiently if the laser’s longitudinal

envelope is half as long as the plasma wavelength λpe = 2πc
ωpe
[7]. Such a pulse duration ensures

maximum laser energy without destroying the wakefield.

While oscillating in the laser field, the plasma electrons feel the ponderomotive force and are

pushed to the front and the side of the laser pulse. This displacement causes a charge separation

which attracts the electrons towards the positively charged plasma tail behind the laser after

the laser has passed. The electrons start oscillating around this ion tail. At non-relativistic laser

intensities (a0 < 1), these electron oscillations behind the laser pulse cause a sinusoidal plasma

density wave and a by π/2 shifted electric field modulation. A detailed derivation of this density

fluctuation and the parallel electric field generation in the non-relativistic case can be found in

[160, 161].

The influence of the laser ponderomotive force can be described by the potential Φ. In

normalized units, this potential can be computed by the following second-order differential

equation:

Ψ(ξ) =
qeΦ(ξ)

mec2
(6.13)

∂2Ψ

∂ξ2
= k2

pγ
2
p

[
βp

(
1−

1 + a2(ξ)

γ2
p(1 + Ψ(ξ))

)−1/2

− 1

]
(6.14)

with ξ = z − c · t being the co-moving position, βp = vφ/c ≈ vg/c being the normalized phase
velocity, which is approximately equal to the group velocity, γp = 1/

√
1− β2

p , being the according

Lorentz factor and kp = ωpe/c being the plasma wave number. The laser envelope a(ξ) is given

in units of normalized field strength a0.

For a given laser pulse, the potential can be solved numerically. From this solution, the

longitudinal electric field Ez and the density fluctuation ne can be derived:

Ez
E0

= −
c

ωpe

∂Ψ

∂ξ
(6.15)

ne
n0

= γ2
pβp

[(
1−

1 + a2(ξ)

γ2
p(1 + Ψ(ξ))2

)−1/2

− βp

]
(6.16)

with n0 being the initial homogeneous electron density of the plasma and E0 = mecωpe/qe being

the wave-breaking field introduced in Eq. 1.1.

Figure 6.2 depicts two exemplary cases of laser wakefield acceleration with a peak laser

field strength of a0 = 0.5 and a0 = 1.5. The plasma density is depicted as a black solid

line. Its sinusoidal modulation behind the driving laser beam can be clearly identified for the

subrelativistic laser intensity a0 = 0.5. A similar harmonic structure occurs for the accelerating

field Ez . For the mildly relativistic case a0 = 1.5, the plasma response becomes non-linear. A

high electron density accumulates at the end of the plasma cavity and the accelerating field

follows a sawtooth-like shape.

The electric field created by the plasma wake behind the laser has a longitudinal component

that allows accelerating electrons for half of the wake’s wavelength. The electrons in this field
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Figure 6.2: Two plasma wakes after a short laser pulse of different intensity: Both plots illustrate how a laser
pulse generates a plasma wake. The upper plot shows a laser pulse with a normalized field strength

a0 = 0.5. The resulting potential, accelerating field and density have approximately a sinusoidal evolution.

The lower plot shows a laser pulse in the mildly relativistic regime with a0 = 1.5. The response to the

pulse is nonlinear as can be clearly seen by the potential, density, and electric field. The green and red

shaded background mark the accelerating and decelerating region respectively. In both cases, a laser

pulse duration of σ = 15 fs and an initial plasma density of n0 = 1018 cm−3
was chosen. The x-axis

represents the co-moving longitudinal position ξ with the laser pulse being at ξ = 0. The y-axis represents

the following normalized quantities: the laser field Elaser in multiples of a0 in red, the accelerating field Ez
normalized to E0 in orange, the density ne normalized to the unperturbed density n0 minus 1 in black,

and the potential energy Φ in blue.

can reach relativistic velocities easily. Since after an initial acceleration the trapped electrons

follow the driving laser pulse with approximately the speed of light and gain momentum mainly

by the relativistic mass increase, the once trapped electrons can follow the laser pulse for quite

some time t � ω−1
pe and gain significant energy. The exact longitudinal field strength depends

on the laser intensity and the plasma density. But by a simple dressed-photon description [7]

and the critical longitudinal electric field strength of (Ecrit
‖ = mecωpeq

−1
e ) [162], the maximum

reachable Lorentz factor can be predicted as:

γmax = 2
ω2

0

ω2
pe

. (6.17)

In order to reach this energy, the electron propagates for t = ∆p/F = γmaxmec/qeE
crit
‖ close to
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the speed of light and reaches its maximum energy after [7]

Lγ = 2c
ω2

0

ω3
pe

. (6.18)

Exemplarily that means for a 800 nm Ti:Sapphire laser such as DRACO at HZDR [R11] and

moderate electron densities of ne = 3 · 1018 cm−3
, electrons can theoretically reach a maximum

energy of Emax = γmaxmec
2 ≈ 590 MeV after a distance of just Lγ = 3.6 mm.

In practice, exciting these plasma waves at low laser intensities has several drawbacks ranging

from lower energies than theoretically predicted, to continuous electron injection and thus

broad electron energy spectra, to limitations on how to contain the laser focus for millimeter

propagation distances. The issue of broad energy spectra is solved by going to the nonlinear

wave-breaking regime also called the blowout regime, discussed in section 6.2.3. Limitations

caused by the laser propagation are covered in section 6.2.4. Finally, various injection methods

are introduced that give control over the electron injection into the plasma cavity and thus on

the final energy distribution (section 6.2.5).

6.2.3 The blowout regime
With further laser improvements, the plasma wave excitation transitioned from the linear to

the non-linear regime (e.g., [163]). The same was true for simulations at that time. In 2002

Pukhov and Meyer-ter-Vehn published simulation results of a laser wakefield accelerator with

such high laser intensities that the ponderomotive force pushed aside all electrons, thereby

creating a singular electron-free cavity directly behind the driving pulse [146]. In this cavity a

quasi-monoenergetic few-fs short electron bunch was accelerated to 300 MeV. This regime was

dubbed "bubble", "blowout" or "cavitation" regime [1]. It was experimentally demonstrated in

2004 by three independent groups [10, 12, 13].

This regime not only provided an extremely strong accelerating electric field but also equally

strong transversal focusing fields, thus ensuring excellent electron beam quality. These trans-

verse focusing fields cause electrons which are injected off-axis to oscillate around the center of

the plasma cavity. This transverse oscillation of the accelerated electrons leads to the emission

of the so-called betatron radiation at x-ray frequencies [27, 164, 165].

Since this bubble regime causes highly nonlinear plasma dynamics, there is so far no consistent

3-dimensional theory. In order to investigate it, one has to rely on simulations from which a

variety of scaling laws could be derived [1].

In the ideal blowout regime, the plasma cavity takes a spherical shape with radius R ≈ λpe.

This regime can only be reached if the laser pulse is shorter than the plasma cavity created by

the laser pulse c · τ < λpe. In addition, the laser spot size should correspond to the radius of the

cavity w0 ≈ R. With this so-called matching condition, optimal self-guiding (see section 6.2.4) is
automatically fulfilled as well. For an optimal bubble cavity, at least a0 > 4 is required. However,

almost completely electron-free plasma cavities are generated for 2 ≤ a0 ≤ 4 as well. These also

show excellent acceleration properties but their shape is not yet spherical.

Under these ideal conditions, the back of the plasma cavity can reach a longitudinal electric

field strength of

Emax
z ≈

mecωpe
qe

·
√
a0 = Ecrit

‖ ·
√
a0 (6.19)

and can, therefore, increase the acceleration gradient by a factor
√
a0 compared to the linear

and weakly nonlinear regime. In the co-moving coordinate frame of the bubble, the accelerating

field along the laser propagation direction can be described by

Ez(ξ) =
kp · ξ

2
· E0 (6.20)
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with ξ ≈ z − c · t being the co-moving position and ξ = 0 representing the center of the bubble.

The acceleration field is independent of the radius and increases linearly with the distance to

the laser pulse, thus providing ideal acceleration properties [1].

The electric and magnetic fields governing the transversal focusing inside the cavity can be

described approximately by the following set of equations:

Er ≈
kp · r

4
· E0 (6.21)

Bθ ≈ −
kp · r
4 · c · E0 (6.22)

with r being the radial position in the cavity and r = 0 being the center. These fields act as strong

focusing forces on the relativistic electrons following the laser, pushing them back towards the

transversal center of the cavity.

Fr (r) ≈ qe · (Er (r)− c · Bθ(r)) = qe ·
kp · r

2
· E0 (6.23)

Since the transversal field increase linearly with the radius r , the normalized emittance of the

electron bunch is preserved during its acceleration [1]. Furthermore, these focusing fields are

independent of ξ and thus do not introduce an additional energy spread to the accelerated

electrons.

The plasma cavity itself is surrounded by a thin sheath of electrons which shield the outside

plasma from the fields inside the cavity. A characteristic density distribution showing this dense

electron sheath together with the electron-free cavity is depicted in Fig. 6.3. This figure shows a

two-dimensional density distribution (gray) alongside the transversal focusing force (red and

blue) and the laser field (green) in its upper half. It also shows the accelerating field (orange),

density distribution (black), laser envelope (red), and potential of the wake (blue) for the central

axis along the laser propagation direction in its lower half. These results have been determined

via a particle-in-cell simulation. The potential was calculated by integration.

Ψ(ξ) = −
ωpe · E0

c

ξ∫
+∞

Ezdz (6.24)

Characteristic for this highly non-linear regime is the massive density increase at the back of

the plasma cavity. In the above case, the end of the first bubble reaches a density of more than

400 times the initial plasma density n0. At the back of the plasma cavity, the accelerating electric

field Ez shows a much steeper increase towards the laser pulse than predicted by the linear

approximation (Eq. 6.20). The electric field reached right at the back of the bubble is therefore

much higher than predicted by the simple linearization (Eq. 6.19 and Eq. 6.19). These extremely

high field gradients are the origin of the wave-breaking injection in the bubble regime, discussed

in section 6.2.5.

6.2.4 How the laser evolution influences the acceleration process
There are two main limitations regarding laser wakefield acceleration: the maximum energy an

accelerated electron can reach in the plasma cavity, and the propagation length the laser driver

can sustain the laser cavity before losing too much energy and depleting. There exist scaling

laws for ideal laser conditions but even if these conditions are met in focus, the laser will evolve

and thus the acceleration process will be sub-optimal. Thus, before covering the ideal scaling

laws of electron energy gain and laser depletion, the laser evolution in a plasma will be briefly

outlined.
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Figure 6.3: Blowout regime: The upper plot show the plasma density distribution (gray) of a wake created by an
a0 = 5.0 laser pulse with laser pulse duration of σ = 15 fs in an initial plasma density of n0 = 1018 cm−3

.

In addition, the transversal focusing force (red and blue) and the laser field (green) overlap the density.

The lower plot shows the potential (blue), density (black), and accelerating electric field (orange) on axis,

determined by a particle-in-cell simulation. The green background marks the accelerating while the red

background marks the decelerating region. The axes are equivalent to Fig. 6.2.

A Gaussian laser pulse in a vacuum can be focused to a spot size of w0 using e.g., parabolic

mirrors. Without losing generality, the focus is located at the origin of the coordinate system

and the laser propagates in ~ez direction. The laser spot size w(z = 0) = w0 is minimal in the

focus. Before and after the focus the transversal profile spreads out, causing an increased spot

size w(z). After the so-called Rayleigh length

zR =
π · w2

0

λ0
(6.25)

behind the focus, the beam waist has increased by
√

2, with λ0 being the laser wavelength. The

spot size evolves as:

w(z) = w0

√
1 +

(
z

zR

)2

. (6.26)

At a Rayleigh length from the focus, the transversal area has doubled and thus the intensity of

the laser is half the magnitude compared to the focus. Thus increasing the laser pulse intensity

by a tighter focus to reach the blowout regime is counterproductive, because the intensity

reached is reduced faster due to diffraction thus reducing the accelerating length.
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Fortunately, the plasma itself can delay the vacuum diffraction significantly thus enabling to

keep high-intensity laser beam profiles for distances longer than the Rayleigh length zR. On the

one hand, the laser alters the plasma itself, changing its refractive index to cause self-focusing.

On the other hand, the refractive index of the plasma can be manipulated by the experimentalist

thus ensuring long propagation distances at quasi-constant laser intensity. For example, Geddes

et al. [10] used a pre-formed plasma channel to maintain the bubble regime.

The refractive index η of an electromagnetic wave propagating in ~ez direction in a medium is

the inverse phase velocity normalized to the speed of light:

η = c ·
kz
ω

. (6.27)

In order to focus a laser pulse refractively in a plasma, the phase velocity on-axis need to be

less than off-axis [1]. Thus the refractive index needs to be maximal on axis ∂η/∂r < 0, with r

being the transversal off-axis radius and kz being the wave number for an electromagnetic wave

propagating in ~ez direction.

According to the dispersion relation (Eq. 6.10), the refractive index becomes

η(r) =

√
1−

ω2
pe(r)

ω0

2

. (6.28)

When taking into account that the unperturbed plasma frequency ωpe,0 at the density n0 is

altered with changes in density and with the relativistic mass of the fast electrons in the laser

focus, the local plasma frequency becomes

ωpe(r) = ωpe,0 ·

√
n(r)

γe(r)n0
. (6.29)

For underdense plasmas with ωpe � ω0 this allows the approximation

η(r) ' 1−
ω2
pe,0

2ω2
0

n(r)

γe(r)n0
. (6.30)

When a high-power laser interacts with a plasma, the electrons oscillate and thus can reach a

relativistic Lorentz factor proportional to γ '
√

1 + a2
0. This allows approximating the refractive

index by a first-order Taylor approximation:

η(r) ' 1−
ω2
pe,0

2ω2
0

·
(

1−
a2

0(r)

2
+

∆np(r)

n0
+
δn(r)

n0

)
(6.31)

where the relative density gradient from a pre-formed plasma channel ∆np/n0 and the density

fluctuation from the plasma wave δn/n0 have been included for completeness [1].

Since the laser intensity and thus the relativistic mass increase is always maximal on axis,

the increased electron mass will always reduce the refractive index. It was shown that this

relativistic self-focusing effect only compensates the Rayleigh diffraction above a critical power

of P > Pc = 17.4 GW · (ω0/ωpe,0)2
[166]. However, it was also demonstrated that for laser pulse

lengths shorter than the plasma wavelength τ · c < λpe , the laser still strongly diffracts [167,

168] due to leading-edge erosion [169].

Additionally to the relativistic self-focusing, the expulsion of electrons due to the ponderomo-

tive force reduces the plasma density δn < 0 on axis and thus also leads to a reduced refraction

index and self-focusing. This effect is called ponderomotive self-channeling [1]. The combination

of both the relativistic and the ponderomotive self-focusing was extensively studied for long
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pulses [170, 171]. For laser pulses shorter than the plasma wavelength there exists no coherent

theoretical treatment so far. In order to understand the self-focusing of laser pulses for LWFA in

the bubble regime, numerical simulations are essential to derive scaling laws [172].

Assuming that the laser can sustain its ideal conditions either by a pre-formed plasma channel

or by a long Rayleigh length, compared to the experimental acceleration length, there are the

limits of dephasing and depletion that prevent laser wakefield accelerators to be scaled infinitely

long. First of all, electrons that are captured by LWFA cavity are accelerated in this cavity to

relativistic velocities. In order to be captured, they need to propagate as fast or faster than the

laser cavity in order to stay in phase. However, the cavity travels at the group velocity of the

laser pulse and thus below the speed of light. Particles inside the plasma cavity can exceed

this velocity easily and travel close to the speed of light. The electron will, therefore, propagate

closer to the laser pulse while being further accelerated. In the middle of the plasma cavity,

the longitudinal electric field changes from accelerating to decelerating the electrons. At this

point, no further energy gain is possible. From Eq. 6.17 it is known that the electron can reach

a maximum Lorentz factor of γmax = 2
ω2

0

ω2
pe
before its phase slips and it enters the decelerating

region. For non-relativistic laser intensities a2
0 � 1, the distance traveled before reaching this

maximum energy was given in Eq. 6.18. For relativistic intensities with a2
0 > 2 a correction factor

must be applied [R7, 172] which changes the dephasing length to:

Ld =
4c

3

ω2
0

ω3
pe

√
a0 . (6.32)

As the laser driver excites a plasma wave, its electromagnetic energy is converted into kinetic

and electromagnetic energy of the plasma wave. Since the kinetic and electromagnetic energy

of the plasma wave trailing the laser driver convert into each other, the energy per propagation

distance transferred from the laser to the plasma can be estimated by integrating the electric

field of the plasma along the propagation distance [1]. At some distance Ldp, the total energy

of the laser is transferred to the plasma wave and the laser ceases to exist. A derivation of

the non-relativistic and relativistic depletion length can be found in [173] or [172] with slightly

differing scaling. The latter defines the depletion length for a0 > 2 to be:

Ldp =
ω2

0

ω2
pe

· c · τ (6.33)

with τ being the laser pulse duration.

In most cases, the dephasing limit is reached before the depletion limit [1]. However, by

tapering the plasma density slowly along the propagation distance, the dephasing limit can

be extended and the laser depletion becomes the limiting factor [1, R7]. To overcome these

limitations, transferring the accelerated electron bunch from one plasma accelerator to a second

stage, driven by a fresh laser pulse, is the common method today. However, transferring the

bunches from one stage to another one is difficult due to beam losses and timing issues. There

is right now only one theoretical idea that could overcome both the electron dephasing and

laser depletion limit: the Traveling-Wave Electron Acceleration (TWEAC) scheme [R7] derived

from the original Traveling-Wave Thomson Scattering (TWTS) light source idea [174] using two of

the pulse-front-tilted laser pulses required by the TWTS scheme [R13–R17].

6.2.5 Getting electrons into the plasma cavity: self-injection methods
Previously it was explained how a laser can excite a plasma wave to generate a longitudinal elec-

tric field that can potentially accelerate electrons. The question arises, under which conditions
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electrons are trapped by the wakefield. This is particularly interesting for the blowout regime,

in which the acceleration fields are located in an (initially) electron-free plasma cavity. As with

conventional accelerators, an option would be to inject electron bunches externally into the

cavity. But due to the high demands on femtosecond timing in order to use the accelerating

phase of the plasma wake, such an approach has not yet been a great success. Significant energy

gains could be demonstrated but the overall energy spectrum was continuous [175]. So far, the

best approach to inject electrons into the plasma cavity is to use electrons from the plasma itself.

In the linear and non-linear regimes, the number of electrons that can potentially be trapped

and accelerated in the cavity can be estimated from the potential. A so-called separatrix defines

the region in phase space which separates captured electrons from uncaptured ones [1]. Since

this thesis concentrates exclusively on the acceleration in the blowout regime and the trapping

of electrons either by the so-called wave-breaking injection or the self-truncated ionization

injection, a description of the injection methods applicable in the linear and non-linear regime is

omitted. An overview on trapping electrons in these regimes can be found in [1] and the many

references therein.

The initially used injection method in the blowout regime is the so-called wave-breaking

injection [10, 12, 13]. Since the electron density is extremely high and the accelerating electric

field Ez has a minimum at the end of the plasma bubble, a bunch of electrons can spontaneously

inject into the plasma cavity. Due to the accelerating electric field in the bubble, the injected

electrons move forward relative to the bubble, enter the cavity, and are further accelerated. This

spontaneous self-injection occurs for normalized laser field intensities above a0 > 4.3 [176]11.

The advantage of this method is that injection occurs intrinsically and thus is technically easy

to achieve. It also provides several picocoulomb of charge in quasi-monoenergetic bunches [10,

12, 13]. Its main disadvantage is that it is hard to operate in experiments reliably. Since the

point of injection strongly depends on the non-linear bubble evolution, shot-to-shot fluctuations

have a significant influence on the bunch quality in current experiments. For example, with

the DRACO laser [R11] at HZDR, inevitable fluctuations in gas and laser quality result in optimal

bunch parameters being achieved only in one out of ten shots with wave-breaking injection.

A better controllable approach to injection is the so-called down-ramp injection. By reducing

the plasma density locally, the radius of the plasma bubble rb ∼ 1/
√
ne increases. The high

electron density on the back of the bubble is thus encased by the spatially enlarged plasma

cavity. These captured electrons immediately feel the accelerating electric field, gain enough

momentum to keep up with the laser pulse, and are further accelerated in the plasma cavity.

Such a density down-ramp can be achieved technically by holding a razor blade in the gas jet

providing the plasma. The shock front caused by this disturbance leads to an increase in density

on the downstream side where the injection occurs. Naturally, down-ramp injection also occurs

at the end of the plasma at the transition to vacuum. In experiments, using a density spike for

down-ramp injections leads to stable and reproducible injection. But due to the limited length of

the down ramp, the injection time and thus the total injected charge is limited. This method can

provide quasi-monoenergetic bunches but their charge is limited to about 100 pC [177].

Another method uses the strongly bond K-shell electrons from high-Z atoms. These are

ionized only at relatively high laser intensities and thus in a region that most lightly-bound outer

electrons cannot reach due to the ponderomotive potential of the laser. This method is called

ionization injection [178–180]. It provides an electron injection with a high charge. However,

the injection process can take place for the entire time that the laser intensity is high enough

to ionize the K-shell electrons. The injection is therefore continuous, and the final electron

bunch has a broad energy spread. Technically, this injection method is easy to implement in

experiments: Only a suitable gas or gas mixture has to be used. However, the simulation of this

11
This is valid for the 3D case. For 2D simulation, a0 > 5.36 is needed.
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injection method is more complicated since the PIC code needs to model the ionization process.

PIConGPU is capable of modeling ionization based on various methods since 2015 [101].

There are three conditions that must be met to accelerate electrons with this method. First

of all, the laser needs to reach a high enough intensity to ionize the strongly bound inner

electrons. For example, in order to ionize the last electron from N6+
, which has a binding energy

of Eion = 667 eV, a normalized field strength of a0 = 2.75 is needed for a Ti:Sapphire laser such

as DRACO at HZDR [R11]. The required intensity can be reached by either initially focusing the

laser to a sufficiently small spot size or by relying on relativistic self-focusing.

Secondly, the ionized electrons must reach a high longitudinal velocity to keep up with the

velocity of the plasma cavity vz ≥ vφ and to undergo further acceleration. A constant of motion
can be derived from the Hamiltonian equation and under the assumption that the laser plasma

dynamics is quasi-stationary and depends longitudinally only on ξ = z − vφ · t [181, 182]:

γ −
vφ
mc2

pz −Ψ = const. . (6.34)

Under the assumption that the just ionized electron has a velocity of zero, the constant of

motion can be used to quantify a longitudinal capturing condition. Initially, the electron has no

momentum γ = 1 and is ionized at a potential value of Ψi . When captured, the electron has

reached a longitudinal velocity of vz = vφ and is located at a potential value greater than Ψf .

Using the constant of motion, the following condition needs to be fulfilled in order to capture

ionized electrons:

1 + Ψf −Ψi = 1 + ∆Ψ ≤
γf

γ2
φ

=
1

γφ
(6.35)

Assuming that, as in most cases, γφ > 10, equation 6.35 simplifies to [179]:

∆Ψ . −1 . (6.36)

Thirdly, when capturing the electron, there must be a focusing field to compensate for any

transversal momentum gained until the capture condition vz = vφ is reached. This can be either

a radial electric field Er or for relativistic velocities an azimuthal magnetic field Bθ as present in

the bubble regime [1]. If there are no focusing fields, the captured electron eventually leaves the

accelerated region behind the laser due to its transverse drift.

In order to determine whether ionization injection can occur, the potential value at the

ionization thresholdΨi has to be compared with the lowest potential valueΨf (see the exemplary

wakefield in Fig. 6.4). Assuming that two bound states with an ionization threshold of EI
ion =

1.5 [a0] and EII
ion = 2.5 [a0] exist, one can see that only the second state (green) fulfills the

longitudinal capturing condition. The first state (orange) cannot be captured by the wakefield

since it is ionized before the potential is high enough to fulfill the capturing condition (Eq. 6.36).

Ionization injection can deliver several picocoulomb of charge but usually leads to a broadband

electron spectrum since the trapping condition can be fulfilled for a long time compared to the

acceleration process [179, 183]. In order to reduce the length of the injection region to a few

micrometers along the transversal propagation distance of the laser, Zeng et al. suggested the

so-called self-truncated ionization-injection method (STII) [184]. By not matching the transversal

spot-size condition in the blowout regime, the laser pulse undergoes a self-focusing dynamics

that leads to an oscillating spot size and thus more quickly changing trapping conditions. A

further injection can thus be suppressed and a narrow energy bandwidth is achieved while still

injecting up to Q ∼ 100 pC charge [185, 186]. During this dissertation, a new charge record was

reached using an STII scheme with a late focus position [R2]. A detailed discussion of this new

method can be found in section 6.5.
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Figure 6.4: Schematic diagram of ionization injection: This plot illustrates the capturing condition (Eq. 6.36) for
ionization injection. While the lower ionization state is ionized in a region where the maximum potential

difference is not low enough and electrons from that state thus will not be captured, the higher ionization

state is ionized in the capturing region. The electrons of the higher ionization state will reach a high

enough longitudinal velocity to follow the plasma wake. In the wake, they will be accelerated further. The

x-axis represents the co-moving position ξ. The left y-axis represents the potentialΨ (in blue) while the

right y-axis shows the scale of the normalized electric field of the laser Elaser (in red).

6.3 Fundamental laser-electron scattering theory
In the following sections, the scattering of laser photons from the plasma electrons is discussed.

In section 6.3.1, the origin of scattered radiation from the laser-plasma interaction is briefly

introduced and the expected radiation dynamics is motivated. Following that, a scattering

model is introduced that correlates an arbitrary electron motion in a laser field with the emitted

radiation. This model forms the basis for the radiation signatures discussed. In section 6.3.3,

the scattering signature of electrons in the blowout regime is examined using the simple model

from the previous section. A spectral method on how to determine the existence of the blowout

regime in the plasma via radiation is presented.

6.3.1 Electrons scatter laser photons
When going back to Tajima’s original results [7] (see section 6.2.2), a laser pulse drives a plasma

wave most efficiently when its pulse duration is approximately half as long as the plasma

wavelength λpe ' 2 · τ . Longer pulses would interact with the plasma wake while shorter pulses,
in principle, would drive the wake but would deplete much faster. For driving a solitary plasma

cavity in the blowout regime, laser durations are commonly in the order of τ ' 30 fs (FWHM

intensity) while plasma densities vary around ne ' 5 · 1018 cm−3
(e.g., [12]). Thus, the plasma

wavelength is around λpe = 2πc/ωpe ' 15µm while the laser pulse length is approximately

c · τ ' 9µm. Assuming a Gaussian-shaped laser pulse, this results in a not negligible laser

intensity in most of the bubble and the surrounding of the plasma cavity. This is illustrated in

Fig. 6.5 where the electron density in the blowout regime is plotted together with contours of

the FWHM and 5% intensity regions of the driving laser pulse. The overlap between the plasma

electrons and the laser at most of the front of the plasma cavity is apparent.

The electrons in the laser field will scatter laser photons. For relativistic lasers intensities
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Figure 6.5: Laser intensity around the plasma cavity: This plasma density ne plot of an LWFA in the blowout
regime illustrates that the laser extent covers most of the front of the bubble cavity. Laser intensity

contours are depicted at the FWHM and at 5% of the peak intensity. The laser with peak strength a0 = 5,

a spot size w0 = 19µm (FWHM intensity) and pulse duration τ = 30 fs propagates through a plasma of

homogeneous density of ne = 3 · 1018 cm−3
. At these common parameters, the electrons creating the

bubble will propagate through the laser field and thus will scatter laser light with characteristic red- and

blueshift due to the electron drift velocity.

a2
0 ≥ 1, higher harmonics of the laser fundamental frequency will be scattered as well [115].

These higher harmonics have been observed experimentally [116]. In contrast to the theory and

the experimental setup, which can assume quasi-stationary electrons that only oscillate in the

laser field, in the blowout regime, the short and highly intense laser pulse will push electrons

significantly due to the ponderomotive force causing a drift in addition to the fast oscillation in

the laser field. This drift motion will result in a blue- and redshift of the scattered photons.

The drift motion of the electrons changes with the laser and plasma evolution. This change

influences the degree of red- and blueshift.

On the very short time scale of the inverse laser frequency ∆tshort ∼ ω−1
0 , the electrons

oscillate in the laser field. Their drift motion does not change.

On the timescale of the inverse plasma frequency ∆tmid ∼ ω−1
pe , the drift motion of the

electrons changes. They are expelled from the laser focus and are pulled back behind the laser

from the attractive ion potential. Assuming that the plasma density does not change quickly

on that timescale, the electron trajectories are static, even though a constant flow of electrons

passes the laser. Thus, the emitted radiation will not change dramatically on that timescale

either. The radiation is emitted by ever-changing electrons from the flow around the laser pulse.

But since their dynamics around the laser field is similar, the observable radiation is alike.

However, while propagating through the plasma, the laser dynamics changes as well on the

time scale∆tlong ∼ ω0 ·ω−2
pe > ∆tmid > ∆tshort due to (self)-focusing and depletion. These changes

of the laser pulse’s shape and amplitude will alter the plasma response and thus the drift motion

of the electrons while the oscillation at the laser frequency stays relatively unaffected. Laser

self-focusing will increase the ponderomotive force acting on the electrons and thus will push the

electrons to higher drift velocities resulting in an increase in red- and blueshift of the scattered

radiation. Furthermore, laser depletion comes at the cost of a frequency shift at the front of the

laser [187, 188]. This frequency shift results in a frequency shift of the emitted photons as well,

even without dramatic blue or redshift due to the electron drift motion.
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6.3.2 The correlation between the electron drift and the scattered light
In the following model, the fast oscillation of electrons in the laser field is ignored, and only the

drift motion is considered. This is the so-called quasi-static approximation [189, 190]. Only the

drift motion of the electrons on the time scale of the inverse plasma frequency ∆tmid ∼ ω−1
pe

is considered. The fast oscillation, classically responsible for the radiation emission, can be

neglected in this model. Instead, the model assumes mono-energetic photons (e.g., from

the laser pulse) to be present. The emitted radiation is treated as the scattering of these

photons from the drifting electrons. This simplification does not allow predicting nonlinear

Thomson scattering with higher harmonics [115]. Higher harmonics could be included ad-hoc

by additionally introducing photon sources at multiples of the laser frequency. For now, only

scattering from the fundamental will be covered.

Assuming a plane wave with wave vector ~k oscillating at a frequency ω0, electrons drifting

with a normalized velocity ~β = ~v/c will scatter photons from that plane wave in all directions.

Depending on the observation direction ~n, these photons will be blue- or red-shifted according

to:

ωsc = ω0 ·
1− ~βd · ~k/k

1− ~βd · ~n
. (6.37)

The geometric relations for the three vectors is depicted in Fig. 6.6.

k

e
d

n0

electromagnetic wave 
    or laser pulse

Figure 6.6: Illustration of the geometric relations relevant for the laser scattering: The laser wave vector ~k , the
normalized drift velocity of the electron ~βd , the unit vector pointing in observation direction ~n are depicted

as well as the angle between the electron velocity and the laser propagation direction ϕ, and the angle

between the observation direction and the laser propagation direction θ. A laser pulse with wavelength λ0

was plotted but the same geometry applies to an electromagnetic plane wave.

In order to illustrate the scattering, a reduction to two dimensions is beneficial. Both the

electromagnetic wave and the electron will only propagate in a plane. The angle between the

wave vector ~k and the drift velocity ~βd is defined as ϕ, while the angle between the wave vector
~k and the observation direction ~n is defined as θ. Eq. 6.37 thus simplifies to:

ωsc = ω0 ·
1− βd cos(ϕ)

1− βd cos(ϕ− θ)
. (6.38)

The resulting scattering pattern is plotted in Fig. 6.7 for various drift velocities and directions.

From Eq. 6.38 it is obvious that independent of the electron drift, radiation emitted parallel

to the propagation direction of the electromagnetic wave ~k ‖ ~n → θ = 0 has a frequency
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Figure 6.7: Frequency shift of the scattered light: The frequency shift as observed in various observation direc-
tions θ is plotted for various electron drift velocities characterized by the absolute normalized drift velocity

βd and the angle of the drift direction ϕ. In drift direction, the radiation is blue-shifted while opposite to

the drift direction, the scattered radiation is red-shifted. In laser propagation direction θ = 0, the scattered

radiation is not shifted ωsc = ω0.

equaling the frequency of the electromagnetic wave ωsc = ω0. For a fixed velocity βd , the highest

scattering frequency is observed in the direction of the drift ~βd ‖ ~n → θ = ϕ while the lowest

scattering frequency is observed in opposite direction of the electron drift θ = ϕ+ π.

The spectral width of the scattered radiation is described by the so-called resonance function

R(ω − ωsc) with ω being the actually scattered radiation and ωsc being the mean scattered fre-

quency in direction ~n by an electron with normalized velocity ~β according to Eq. 6.37. Classically,

it describes the spectral bandwidth of the emitted radiation due to the finite oscillation duration.

The oscillation duration might be limited by either the spatial extent of the electromagnetic wave,

which the electron leaves due to its drift, or the temporally limited pulse duration, or both. For

the hypothetical plane wave, the resonance function becomes a delta distribution at the scatter

frequency R(ω)→ δ(ω − ωsc) because the plane wave has neither a spatial nor a temporal end.

For a finite laser pulse duration, the laser itself has a spectral bandwidth. Assuming the electron

propagates through the entire laser and does not change its non-relativistic drift motion, the

resonant function is:

R(ω) =

(
sin((ω − ωsc) · τ/2)

(ω − ωsc) · τ/2

)2

(6.39)

with τ being the laser pulse duration [115]. For relativistically drifting electrons, the resonance

function becomes more complex. The frequency bandwidth is proportional to the number of

oscillations N the electron undergoes in the electromagnetic field ∆ω/ω = 1/N. For short pulse

lasers, the bandwidth of the scattered radiation for a single electron is thus approximately given

by the bandwidth of the laser

∆ωsc
ωsc

'
∆λ0

λ0
≈

80 nm

800 nm
= 0.1 (6.40)

where the quantities given are based on the properties of the DRACO laser [R11, 191].

The probability of observing a photon of energy ~ω propagating in ~n, scattered by an elec-
tron with normalized drift velocity ~βd , is thus given by the resonance function and is sharply

peaked around the mean scattering frequency ωsc . The spectrally resolved emitted energy is
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proportional to this probability.

d2W

dωdΩ
(ω, ~n) ∼ R(ω) (6.41)

Furthermore, photons are not scattered uniformly in all directions but according to the

differential cross section of Thomson scattering [59]. For a quasi-stationary electron, the photon

distribution follows the differential Thomson scattering cross section [59] which is given for in ~ep
polarized electromagnetic waves by

dσ

dΩ
=

(
q2
e

4πε0mec2

)2

· sin2 φ (6.42)

with φ denoting the angle between the polarization of the electromagnetic wave ~ep and direction

of photon emission ~n. The scattering probability in 3D follows a torus-like shape, with no

scattering probability in polarization direction. For drifting electrons, the probability for scattering

towards the drifting direction increases while the probability for backward scattering decreases

[129]. For the special case of electrons drifting parallel to the wave vector ~k ‖ ~βd the scattering
probability scales as

dσ

dΩ
∼

(1− β cosφ1)2 − (1− β2) sin2 φ1 cos2 φ2

(1− β cosφ1)5
(6.43)

with φ1 being the angle between the drift direction and the observer and φ2 being the angle

between the observer and the polarization. For the case of a drift parallel to the polarization

direction ~β ‖ ~ep , the differential cross section scales as:

dσ

dΩ
∼

sin2 φ

(1− β cosφ)5
(6.44)

with all angles being equal φ = φ1 = φ2 in this case. Even though the probability of scattering

photons in the direction of polarization stays zero, the maximum of the differential cross

section occurs in the highly relativistic case at φmax =
√

(1− β)/2 [129] thus leading to stronger

radiation in polarization direction than in the quasi-static case. For arbitrary drift directions,

an expression for the differential cross section becomes more complex. While the scattering

probability changes the intensity of the scattered radiation, the frequency shift is unaffected.

For a given electron distribution f (~r, ~β) as in the Vlasov equation 3.1, the scattering distribution

can be calculated using the resonance function and the differential cross section. For a plane

wave, the position of the electron can be neglected which allows reducing the distribution

function to a velocity distribution function:

fv

(
~β
)

=

∫
V~r

d~r f (~r, ~β) . (6.45)

From this velocity distribution function, a radiation distribution function can be calculated by

integrating over all possible velocities:

F (ω, ~n, ~ep) =

∫
V~r

d~β fv (~β) · R
(
ω,ωsc

(
~β
))
·

dσ

dΩ

(
~n, ~β, ~ep

)
(6.46)

which is not yet normalized. The radiation distribution function is proportional to the spectrally

and angularly resolved radiation energy
d2W

dωdΩ ∼ F (ω, ~n, ~ep). Thus any electron distribution can

be translated to a scattering distribution which can be measured.
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Due to the linearity of integration, Eq. 6.46 can be split apart. This enables to quantify the

scattering for a particle distribution ft = f1 + f2 by computing the radiation distribution function

for f1 → F1 and f2 → F2 independently. The radiation distribution function of ft equals the

sum of both individual distributions Ft = F1 + F2. This allows computing the emitted radiation

by sampling the electron distribution f using test particles and adding all scattering patterns

for these test particles. The radiation of such combined electron distributions modeling the

blowout regime in 2D is shown in the next section in Fig. 6.9. The particle velocity distribution

is plotted on the left side while the associated scattering distribution is plotted on the right

side. A variety of different electron ensembles are shown underneath each other. The final

two plots display the combined velocity and radiation distribution of all previous ensembles.

The combined radiation plot shows clearly that while at θ = 0, all radiation distributions are

overlapping, they can be distinguished at off-axis observation directions θ 6= 0. The plots are

generated by a Monte-Carlo simulation which randomly generates particles according to a given

velocity distribution function. From these particle distributions, the scatter pattern is simulated

by assuming a resonance function of a plane wave R(ω,ωsc) = δ(ω − ωsc) and combining these

contributions via a histogram in finite frequency bins. Furthermore, the differential cross section
dω
dΩ has been assumed to be uniform, which is a good approch in the case of sub-relativistic

velocities at observation directions perpendicular to the polarization ~ep · ~n = 0.

In order to extend Eq. 6.46 to laser pulses with a finite temporal and spatial envelope, the

intensity envelope of the laser pulse needs to be taken into account because higher laser

intensity will cause more scattering. Thus an additional weighting proportional to the emitted

power is required similar to the classical derivation of the Thomson scattering cross section [59].

The power at a normalized laser intensity of a2
0 is according to the Larmor equation

P (a2
0) =

q2
eω

2
0

12πε0c
·
(

1 + a2
0/2
)
· a2

0 (6.47)

which assumes an average power over one laser period. The power is also proportional to the

number of photons from which to scatter. Extending Eq. 6.46 leads to the following equation

d2W

dΩdω
(ω, ~n) ∼ F (ω, ~n, ~ep) =

∫
V~r

d~r

∫
V~β

d~β f (~r, ~β) ·
dσ

dΩ

(
~n, ~β, ~ep

)
· P (a0(~r)) ·R(ω − ωsc(~β)) (6.48)

which requires the full particle distribution function f (~r, ~β) in order to incorporate the spatially

varying laser intensity. In this equation, electrons scatter photons according to the local laser

intensity and blue- or red-shift them with regard to their drift direction and the direction of

emission.

The particle distribution function is a solution to the Vlasov equation. Since the Vlasov equation

cannot be solved analytically for intense short laser pulses propagating through a plasma, the

solution for the radiation distribution function either comes from simulated particle distributions

or simplified model. Examples of the latter will be given in the next sections. Even with a known

particle distribution, deriving an analytical expression for the scattering pattern is not trivial and

requires various simplifications.

It is important to note, that typical particle-in-cell simulations cannot provide particle distribu-

tions suited for direct conversion to radiation distributions. Since particle-in-cell codes do not

separate the oscillatory motion from the drift motion, the oscillation in the laser field overlaps

the drift motion that is responsible for the frequency shift. Only quasi-static particle-in-cell codes,

that do not resolve the oscillatory motion of the electrons and just consider the ponderomotive

push of the laser pulse [77], provide drift velocities directly. However, the focus of this thesis

was not to include this model in quasi-static particle-in-cell codes but to apply this model for

66



making qualitative predictions and compare those with the full radiation simulation included in

PIConGPU [R8, R9].

6.3.3 Scattering in the bubble regime
As described in section 6.2, the ponderomotive force of the laser pulse excites a plasma wave.

In three dimensions, the electrons are pushed not only to the front but also to the side of the

laser. This snowplow effect is especially relevant in the blowout regime, where the laser is strong

enough to push all electrons in front aside.

In the linear regime and in the low-relativistic regime, where no blowout occurs, the velocity

distribution of the electrons has a Gaussian shape around the forward direction. In the blowout

regime, however, the electrons collectively follow a distinct path around the laser and character-

istic off-axis patterns occur additionally in the velocity distribution. This can most clearly be seen

by the narrow sheath which the electrons form when surrounding the bubble. In this case, a

large ensemble of electrons follows the same path in phase space. The density of the sheath

is much higher than the original plasma density. The electrons in the small but dense sheath

volume thus originate from a much larger volume in front of the laser.
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Figure 6.8: Phase space relevant for scattering at two laser intensities: In the linear regime a0 = 0.5, the electron

phase space in front of the laser shows a clear forward pattern, but no characteristic small angle pattern.

In the blowout regime a0 = 5.0, a characteristic angular structure emerges for a propagation direction

φ ≈ ±20◦.

This accumulation in phase space not only occurs in the bubble sheath behind the laser, it

also occurs in front of the laser where more or less characteristic flow patterns can be identified.

Figure 6.8 depicts the phase space distribution of two LWFA simulations for the electrons

surrounding the laser pulse. In order to clearly draw out the signatures, only the central z-y-

plane was selected, in order to avoid confusions with three-dimensional projections entirely. In

accordance with the scattering theory, the phase space is given in normalized velocity β = |~v |/c
and direction of propagation ϕ with ϕ = 0 being the laser propagation direction as before. In the

a0 = 0.5 case no clear structures other than the peak at ϕ = 0◦ can be identified. With relativistic

laser intensities, clear patterns in the direction ϕ ≈ ±20◦ can be identified additionally.

As a result, the broad phase space distribution in the linear case will not result in any charac-

teristic scattered-radiation signature other than a slight broadening of the scattered light of the

laser due to the inert motion of the plasma electrons.
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If one, however, takes the characteristic angular pattern of the electron motion in the blowout

regime, a clear broadening of the laser spectrum at off-axis angles can be seen. This is demon-

strated for a simplified model phase space distribution in Fig. 6.9. These plots depict the model

phase space distribution and the according scatter pattern. A simplified distribution function

was used as a basis and a random ensemble of test particles was created in a Monte Carlo

simulation. The radiation emitted was modeled according to Eq. 6.48. Since the distribution

f (β,ϕ) was limited to low velocities β, the influence of the directional scattering cross section

was approximated by
dσ
dΩ = 1. Furthermore, the influence of the spatial intensity distribution

P (a0(~r)) was also neglected. The spectral form of the scattered radiation was assumed to be a

delta distribution R(ω − ωsc) = δ(ω − ωsc). With these simplifications, various model photons

were randomly generated based on the distribution F (ω, ~n) using the ensemble distribution

f (β,ϕ) (see Eq. 6.48).

The first ensemble distribution (Fig. 6.9 1(a)) models the electron background. Most of the

electrons scattering laser light just interact with the base of the laser pulse at low intensities

a0 � 1. They do not gain a lot of velocity in this interaction 0 ≤ β � 1 and a good assumption is

that they drift in all directions due to the plasma’s temperature. Since the ensemble electrons

do not have significant velocity, there is no relevant red- or blueshift of the laser frequency in

any direction. The scattering pattern (Fig. 6.9 1(b)) thus shows only radiation around the laser

frequency ω0.

The second ensemble distribution (Fig. 6.9 2(a)) models the collective motion towards ϕ = 20◦

as observed in simulations of the bubble regime (Fig. 6.8). The velocity of the electrons ranges

from β = 0 to β ≈ 0.35. There are fewer electrons towards higher velocities than at low velocities.

This continuous velocity distribution leads to a continuous scattering pattern with the most

intense radiation always at the laser frequency ω0. If this ensemble distribution would not

contain low-energetic electrons, there would be no radiation at the laser frequency at angles

θ 6= 0. This is illustrated by the sample particle marked in purple. Its scattering pattern (purple

line Fig. 6.9 2(b)) reaches its highest frequency in the direction of flight θ = ϕ = 20◦. But with

the addition of low energetic particles, an example marked in orange, a continuous pattern till

ωsc = ω0 evolves that depends on the actual velocity distribution.

The third ensemble distribution (Fig. 6.9 3(a)) models the forward push due to the laser with

ϕ = 0◦ as also observed in both the linear and bubble regime (Fig. 6.8). The scattering pattern

(Fig. 6.9 3(b)) stays below to the laser frequency ωsc ≤ ω0. For the narrow forward observation

angle selected and with the low velocities β < 0.5, the redshift is insignificant.

When combining all these ensemble distributions in order to model the entire distribution

during the bubble regime (Fig. 6.9 4(a)) the scatter pattern can be added as well due to the

linearity of the scattering process as mentioned previously. This allows building complex models

of the scattered radiation by combining the scattering patterns of sub-ensembles of the complex

total electron distribution. The model ensemble distribution, which also includes a symmetric

sub-ensemble to 2(a) moving in ϕ = −20◦ direction, has a distinct scatter pattern. At larger

observation angles θ, the bandwidth of the observable radiation becomes larger. The maximum

frequency is observed under θ = ±20◦. The intensity towards off-axis angles decreases with an

increasing absolute angle |θ|.
The actual spectral peak position of the bandwidth could be used to determine the strength

of the ponderomotive push. So far, the model assumed a quasi-static laser pulse. With a

laser evolving due to diffraction and relativistic self-focusing, these clear angular patterns are

changing with the laser dynamics as well. They are therefore more suited for determining this

evolution than to actually characterize the strength and spatial structure of the laser, which

evolves more complexly during the propagation in plasma than described by the model so

far. Around the focus position, the significant broadening of the scattered laser light allows

determining the point of focusing in the plasma. This will be further discussed on the basis of a
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Figure 6.9:Model phase space and corresponding scattering pattern: These plots illustrate the way how tomodel
the characteristic scatter pattern for the LWFA blowout regime. The assumed ensemble distribution f (β,ϕ)

is plotted on the left (a) while the according scatter pattern F (ω, θ) is plotted on the right (b). Starting
from a omnidirectional but low-energetic background of electrons (1), the characteristic off-axis electrons
(2) and the forward moving electrons (3) all have a characteristic scattering pattern. In combination (4),
the radiation becomes broadband at off-axis angles.

3D LWFA simulation in section 6.4.3 where a surprising asymmetry of this process is revealed

which the simple quasi-static scattering model cannot explain. An exemplary case where the

69



focus position in the plasma is of interest in an experiment will be discussed in section 6.4.4.

6.4 Radiation signatures for determining the laser plasmadynamics
For an initial study of radiation emitted during laser wakefield acceleration, a large-scale simula-

tion was performed. The focus of this simulation was to quantitatively predict the total emitted

radiation of all electrons of the plasma for all relevant observation directions for the first time.

The goal of this radiation simulation was to discover new radiation signatures that might help to

determine the plasma dynamics during LWFA.

6.4.1 A large-scale LWFA simulation for studying the radiation
The LWFA setup used for this explorative simulation is in the blowout regime with self-injection.

Such a setup corresponds on the one hand to a multitude of nowadays experiments and on

the other hand is simple enough to provide generally valid results. The parameters were kept

in experimentally realizable limits: simulating a Gaussian laser pulse of maximum normalized

field strength a0 = 3.5 with a pulse duration of τ = 25 fs (FWHM of intensity) and a spot size

of w0 = 10µm (standard deviation of intensity) propagating through a pre-ionized hydrogen

plasma with a maximum electron density of ne = 5 · 1018 cm−3
. These are similar parameters as

later used in experiments at HZDR [R2, R11] which however applied a more sophisticated self-

focusing and injection scheme. On the basis of this experimentally realized setup, an extensive

simulation was subsequently performed to validate the applicability of the radiation signature

discovered with this simple setup (see chapter 6.4.4).

The simulation covered the radiation emitted in a half-dome of solid angle Ω = π. The

intrinsic symmetry of the LWFA leads to symmetric radiation patterns in all four quadrants

that allows scanning only a single quadrant (half-dome) with NΩ = 250 virtual detectors. This

half-dome alone already offers a wealth of details and reduces the computational demand

significantly. The frequencies simulated ranged from infrared over optical to ultraviolet radiation

ω ∈ [0.25ω0, 15ω0] (λ ∈ [3.2µm, 53 nm]) with ω0 = 2πc/λ0 being the laser frequency of the

λ0 = 800 nm laser. A total of Nω = 512 frequencies were sampled. The initial simulation focused

on this low-energy frequency range for two reasons. On the one hand, optics are more easily

available for these frequencies, thus simplifying the radiation focusing and detection in an

experiment. Since this low-energetic radiation is also emitted in a broad solid angle, an off-axis

detector allows resolving the emission associated with the laser plasma dynamics temporally, by

projecting the longitudinal position on a detector axis. On the other hand, the high-energetic

radiation, like the x-ray radiation from betatron oscillation [27], is emitted in a ∆θ ∼ γ−1
cone

in the electron direction of flight. This forward radiation thus arrives in a narrow spot in laser

propagation direction with only a sub-femtosecond delay between the initially emitted radiation

and the emission at the end of the acceleration process. Thus, the final emission overshadows

the initial, weak emission and the information of the initial acceleration process is lost. The x-ray

spectra are thus ideally suited to study the final electron distribution at the end of acceleration

[155], but will not reveal information on the plasma dynamics during the acceleration process.

A visualization of the computed half-dome sky-map together with a visualization of the LWFA

plasma density and the laser driver is given in Fig. 6.10. The plasma density shows clearly

a blowout cavity behind the laser driver. In the cavity, an injection can be identified. The

surrounding half dome illustrates the radiation power emitted at the moment of the snapshot

(t = 2.2 ps). The skin depth of the half dome represents the frequency on a logarithmic frequency

scale ranging from 0.25ω on the inner skin to 15ω0 to the outer skin. The laser frequency, emitted
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Figure 6.10: LWFA simulation box with radiation dome: This 3D visualization of the large-scale LWFA simulation
discussed in section 6.4 illustrates the relation between the laser-plasma dynamics and the additionally

computed radiation. The gray box shows the entire plasma simulation with the electron density (red) of

the wakefield which has been exited by the laser pulse (green). The half dome illustrates the emitted

radiation power at the current simulation time step. The position on the half dome is equivalent to the

observation direction. The depth of the half dome represents the frequency, while the color equals the

intensity of the radiation power with red being the strongest and blue being the lowest power.

mainly in the forward direction, can be clearly identified by the intense red color of high radiation

power. The position on the sky map represents the direction of the emission. The color of the

sky map is scaled non-linearly with the radiation power, red representing high and blue low

power. Since both the density and the power color-maps are non-linear and geared toward

an optimal visualization, color bars are not given here but will be introduced in the following

sections. This graphic representation already allows exploring the simulated radiation data in

order to look for interesting radiation signatures.

Such a simulation requires a lot of computing power and time. The setup was split into

four simulations, each with a subset of Nϕ = 64 observation directions (two of which were

the same in each simulation). This was feasible because the computational demand of the

particle-in-cell simulation was an order of magnitude lower than the computational demand of

the radiation calculation. Therefore, performing the particle-in-cell simulation four times was a

negligible extra cost. Each simulation ran on 32 k20x NVIDIA GPUs at the Taurus cluster of the

Center for High-Performance Computing (ZIH) at Technische Universität Dresden. With cluster

down-times and other competing simulations using the cluster, the time to finish this simulation

took approximately 9 months, starting in 2014. With cluster updates at ZIH and HZDR and with

GPU clusters becoming more common, this simulation could, at the time of writing this thesis,

be performed in a much shorter time.

The particle-in-cell simulation used a grid of ∆⊥ = 177.2 nm transversal resolution and ∆‖ =

44.3 nm longitudinal resolution. The time step duration was set to ∆t = 0.08 fs thus trading

numerical accuracy for higher frequency resolution. The electromagnetic fields were computed

using the Yee solver [82] together with the Esirkepov current deposition scheme [100]. The

particle motion was computed using the Boris pusher [87]. Tests with both the Vay [93] pusher

and the fields solver by Lehe [96] were also performed and showed no major differences.
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As discussed in section 6.2.4 the interaction between a relativistic laser pulse and a plasma

leads to self-focusing effects that can be utilized to reach higher laser intensities and the blowout

regime. The large-scale particle-in-cell simulation reveals just that. While the laser would reach

a normalized field strength of a0 = 3.5 in a vacuum, in the plasma a field strength of a0 ' 6.5

is reached. This is depicted in Fig. 6.11. This plot shows the maximum normalized laser field

strength a0 for various simulation time steps (solid orange line). For comparison, the evolution

in a vacuum is plotted as a dashed line alongside. Initially, both curves overlap. However,

with increasing laser intensity and plasma density, self-focusing sets on. This is marked by

the blue region. Only due to self-focusing, the laser field strength is increased by a factor of

approximately 2 which enables reaching the blowout regime. The self-focusing goes hand in

hand with a decrease in the laser spot size. Again, Fig. 6.11 depicts the spot size evolution in

the plasma (green solid line). Alongside, the vacuum evolution is plotted as a dashed green line.

Within the resolution limit of the simulation, there is no difference in focus position between

the vacuum and plasma propagation. This is not necessarily the case, as will be discussed

in section 6.5. However, in this scenario the vacuum focus is located close to the beginning

of the plasma density plateau, thus differences caused by self-focusing are negligible. After

the laser focus, the laser refracts and the spot size increases while the laser field strength

decreases. Additionally, the laser undergoes self-modulation due to the energy loss caused by

the generation of the plasma wave. The degree of self-modulation and its effect on radiation is

discussed in section 6.4.5.
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Figure 6.11: Laser focusing under the influence of plasma: Evolution of the laser normalized field strength a0 and

spot size w0 (FWHM intensity) in the plasma over time compared with the theoretical laser evolution

in a vacuum: Initially, both laser field strength a0 and spot size w0 agree with the vacuum prediction.

After 1 ps, a clear deviation between plasma and vacuum evolution occurs due to the self-focusing of the

laser in the plasma. This self-focusing leads to a smaller final spot size and thus to a much higher field

strength a0. The focus position is roughly the same for vacuum and plasma. After focusing, the laser

diffracts, and the field strength a0 decreases while the spot size w0 increases again.

Numerically, both the peak field strength and the laser spot size were determined using

the HDF5 data output produced every 2500
th
time step. A laser envelope was determined

by computing the analytical function using the Hilbert transform along the laser propagation

direction z for all transversal cells.

~Eanalyt(z) = ~E(z) +H
[
~E(z)

]
∈ C3

(6.49)
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withH being the Hilbert transform of the electric field ~E along the propagation direction z . This
function is defined for all transversal cells and hence for the entire simulation volume as well.

The absolute of the analytical function is the envelope of the laser field Eenv along the z -axis.

Eenv(z) =
∣∣∣~Eanalyt(z)

∣∣∣ ∈ R1
(6.50)

By determining the maximum value from that envelope, the maximum normalized laser field

strength can be computed

a0(t) =
qe

meω0c
max [Eenv(~r, t)] (6.51)

with max[. . . ] denoting the maximum value in the entire simulation volume that takes into

account all envelopes along the z -axis.

Due to the fast increase of the laser intensity, the blowout regime is reached right at the start

of the plasma density plateau. In this regime, electrons are injected into the cavity and are

accelerated for several picoseconds. The electron energy evolution is plotted in Fig. 6.12. The

first injections of electrons in the plasma cavity occur at around 1 ps < t < 2.5 ps. Initially, this is

a quite diffuse process, with several small-scale injections occurring quasi-simultaneously in this

short time window. With ongoing acceleration in the cavity, most of these injections join. During

the main acceleration phase there remain only two main electron-energy paths. Both show the

same energy gain over time of approximately
dEe
dt ≈ 80 MeV/ps. The ribbon with the slightly

higher energy contains less charge. It originates from an injection at around t ≈ 1.8 ps and

reaches a final energy Ee ≈ 130 MeV. The main ribbon arises at around t ≈ 2.2 ps and reaches

a final energy of around Ee ≈ 100 MeV. The acceleration ends at around t ≈ 4 ps when the

plasma density decreases rapidly and the strong accelerating field can no longer be sustained.

With further propagation, the electrons lose energy since the laser is too weak to generate a

plasma cavity and the bunch itself causes a plasma wakefield in the remaining, much less dense

plasma which leads to an energy loss of the injected bunch.

0 1 2 3 4 5 6 7
t [ps]

0

20

40

60

80

100

120

140

160

E e
[M

eV
]

injection

acceleration

end of plasma

vacuum propagation

dE
e

dt
80

Me
V

ps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Q

e
[pC M

eV
]

Figure 6.12: Evolution of the electron energy distribution during the LWFA simulation: The plot shows the
electron charge Qe distribution over energy Ee and its evolution over time t . After around 2 ps, the first

electrons are injected into the plasma cavity and are accelerated for the next ∼ 1 ps to an energy of

approximately Ee ≈ 100 MeV until dephasing. After the electron bunch and the laser leave the plasma

and propagate through a quasi-vacuum, the electron bunch energy does not change anymore.

The data plotted in Fig. 6.12 were generated using the energy histogram plug-in of PIConGPU
[R1]. It allows determining the electron energy distribution during the particle-in-cell simulation
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thus enabling more frequent data analysis steps than e.g., the analysis of the laser pulse

evolution, that relied on field data output.

6.4.2 Identifying several known radiation signatures
The radiation spectra are images of the electron dynamics in Fourier space. Since the electron

dynamics changes over the course of the laser wakefield acceleration, the radiation changes

as well. A detector with time resolution longer than the few picoseconds of the LWFA duration

measures the time-integrated radiation spectrum of all the various electron dynamics occurring

during the LWFA. Such an integrated spectrum would hardly allow identifying the electron

dynamics since weak radiation signals would be overlapped by stronger signals and could not

be identified.

This changes if a better time resolution becomes possible. A detector with extremely fast

sub-picosecond time resolution is not necessarily required for this. The plasma cavity, and thus

the origin of the radiation, propagates with the speed of light. Therefore, imaging the off-axis

radiation along the laser propagation direction onto a detector, e.g., a CCD camera, in addition to

resolving the frequency, allows determining where and thus when a specific radiation signature

occurred. The laser propagation axis is not orthogonal to the measured radiation. Imaging it

along several millimeters is thus experimentally challenging but possible [192]. Therefore, the

focus of this work is on off-axis radiation that allows spatial and/or temporal resolution of the

plasma dynamics.

In Fig. 6.13, an exemplary time evolution of a spectrum of the LWFA simulation is plotted. The

radiation depicted is emitted at an angle of θ = 20◦ from the laser propagation axis in the plane

of laser polarization. This direction was selected because the relatively large angle would allow a

sub-millimeter spatial and thus a sub-picosecond temporal resolution of the plasma dynamics

along the propagation direction. Furthermore, this observation direction contains a variety

of radiation signatures that allow determining the plasma dynamics. Some of these radiation

signatures are already known. Those are briefly discussed in this section. Two signatures,

however, were discovered during this thesis and are discussed in detail in the following sections.

Figure 6.13 plots the emitted radiation energy per solid angle and frequency as a color code

over six orders of magnitude. The temporal evolution is plotted along the x-axis, while the y-axis

states the frequency.

A well-known characteristic radiation signature of a laser-plasma interaction is the emission

of higher harmonics of the fundamental laser frequency for normalized field strength above

a0 & 1 [115, 116]. It is caused by the figure-8 motion of electrons in the presence of intense

electromagnetic fields where the electrons reach relativistic velocities and the influence of the

magnetic field can no longer be neglected. This non-linear motion causes the emission of

radiation at multiples of the laser frequency with characteristic directional structures. However,

since the observation presented is off-axis, all multiples of the fundamental laser frequency ω0

are observed. In Fig. 6.13, annotation (1) marks the second and third harmonic at ω = 2 · ω0 and

ω = 3ω0. There are even higher harmonics observable, which agrees with the theoretical work

in [115] that predicts intense radiation at these higher harmonics for laser intensities around

a0 ≈ 2, as is the case for the LWFA simulation at t ≈ 0.5 ps (see Fig. 6.11). However, theory

predicts that the higher harmonics till the 5
th
harmonic are stronger than the fundamental. This

is not the case in this LWFA plasma scenario due to two reasons. First of all, the theory assumes

a homogeneous field strength while in an LWFA, a finite laser pulse interacts with the plasma.

The field strength of a0 ≈ 2 is only valid in the center of the pulse. Most of the laser pulse

is at much lower field strength values, thus the fundamental is more intense than the higher

harmonic. Additionally, the theory assumes quasi-stationary electrons that only oscillate in the

laser field but do not drift. During the LWFA, the electrons are however pushed away by the
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Figure 6.13: Overview of the temporal evolution of the LWFA radiation spectrum: Depicted is the radiation
power spectra emitted under θ = 20◦ over the entire duration of the laser wakefield acceleration. On the

x-axis, the time is given. Since this spectrum is emitted off-axis, this correlates to a position along the

laser propagation path which can be resolved by projecting the radiation, e.g., onto a CCD camera, thus

avoiding a sub-picosecond resolution requirement. On the y-axis, the frequency of the emitted radiation

is given in multiples of the laser frequency ω0. The color code represents the energy emitted per solid

angle and frequency. The annotations mark: (1) high harmonics of the laser frequency, (2) wave-breaking

signature, (3) blowout signature during laser defocusing, and (4) laser self-phase modulation signature.

For details, please refer to the main text.

ponderomotive force of the laser pulse like snow by a snow plow. This causes the electron to

move away from the most intense part of the laser pulse, and fewer electrons actually interact

with the peak field strength. This combination makes predicting the exact ratio between the

higher harmonics an the fundamental for a non-linear LWFA impossible. However, over the

course of time, the higher harmonics gain in intensity compared to the fundamental because of

the increasing laser intensity (see Fig. 6.11).

After t > 1.2 ps, this higher-harmonic spectral signature is overlapped by the wave-breaking

signature caused by the rapid acceleration of electrons at the dense back of the plasma cavity

[28]. Between the first and second cavities of the nonlinear plasma wave, the accelerating electric

field undergoes a sign change. The peak field strength is of the order of the wave-breaking

field strength causing strong force gradients to the sides of the bubble sheath. Additionally, the

electron density at the back of this cavity is multiple times the density of the surrounding plasma.

The electrons propagating around the plasma cavity screen themselves from the ion background

and the cavity fields [190]. During wave-breaking electrons suddenly change from a shielded

region into the cavity with a high electric field strength. The occurring sudden acceleration force

can be described by a delta distribution in time [28] causing a broadband spectral signal ranging

from infrared to ultraviolet and is often accompanied by an injection of electrons. This radiation

signature is particularly strong because it is emitted coherently from the very thin sheath at the

end of the bubble whose thickness is similar to the emitted wavelengths [193]. This broadband

signature can indicate electron injection into the plasma cavity. It is observed several times

during this LWFA scenario. From Fig. 6.12 it is apparent that starting with t > 1 ps there are

always electrons being accelerated to energies of Ee ∼ 10 MeV. These electrons undergo rapid

acceleration and cause this broadband radiation signature, but not all of these electrons are

captured and accelerated to energies of Ee ∼ 100 MeV in the plasma cavity. Only the most
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intense broadband spectral signatures, marked by annotation (2) in Fig. 6.13, correspond to two

bands of electron acceleration reaching Ee ≈ 130 MeV and Ee ≈ 100 MeV (see Fig. 6.12). The

still broadband but weaker radiation after t > 2 ps does not correlate with a successful injection.

This continuous emission makes the wave-breaking signature unsuitable for unambiguously

identifying the origin of electron injection. As a side remark, the broadband radiation at t ≈ 4.1 ps

originates from the wave-breaking when the laser pulse becomes too weak to drive a non-linear

plasma wave in the blowout regime and the electron bunch starts to excite a nonlinear plasma

wave itself.

The most intense radiation signature occurs between 2 ps < t < 3 ps and is marked by

annotation point (3) in Fig. 6.13. It is caused by a distinct directional flow of electrons in front

of the laser pulse during the blowout regime that interacts with the defocusing laser pulse. A

detailed discussion of this signature can be found in the following section. Towards the end of

the laser wakefield acceleration, the laser undergoes self-phase modulation. A second intensity

peak can be observed at a slightly lower frequency than the initial laser frequency ω0. It reflects

the altered laser spectra. This self-phase modulation signature marked by (4) in Fig. 6.13 is

discussed in section 6.4.5.

6.4.3 Spectral broadening during the blowout regime
From the quasi-static scattering theory derived in section 6.3.3, an off-axis scattering of laser

light up to an observation angle of θ = 30◦ is expected in the blowout regime. This emitted

light is spectrally much broader than the laser pulse itself because the electrons that scatter

the light have velocities close to the speed of light and cause a significant red- and blueshift

of the photons. In the blowout regime, a sub-ensemble of electrons propagates in a narrow

angular direction towards ϕ ≈ ±20◦. Therefore, the broadest spectrum is expected under this

observation angle θ = ϕ.

Figure 6.13 already depicts the temporal evolution of the spectral broadening, marked by

point number three. The initial broadening starts at t ≈ 2.1 ps right when the laser focus is

reached (see Fig. 6.11) and the ponderomotive force of the laser pulse driving the plasma bubble

is strongest. With further time the laser defocuses and its intensity and ponderomotive potential

decreases. Along with that, the spectral broadening decreases as well. Figure 6.14 depicts four

directionally resolved spectra for time steps before, during and after the blowout radiation

signature.

Before the laser focus and the strongest ponderomotive force of the laser is reached, the laser

light is scattered in a narrow cone in the laser forward direction |θ| < 10◦ (Fig. 6.14 at t = 1.4 ps).

The scattered light is only weakly broadened. No significant radiation intensity can be detected

off-axis at θ ≈ 20◦. The corresponding electron velocity distribution is depicted in Fig. 6.15. For

this analysis, macroelectrons were selected in a similar manner as in Fig. 6.8: considering only

those particles that are in the central plane normal to the laser polarization and which are either

in front and close around the laser pulse. At t = 1.4 ps, there is not yet any significant off-axis

scattering structure as expected in the blowout regime. Most electrons go either in a forward

direction or slightly sideways. The first signs of the side streams can already be anticipated at

ϕ ≈ ±20◦ but these streams do not yet reach high velocities.

During the laser focus, when the laser spot size w0 reaches its minimum and the normalized

amplitude a0 reaches its maximum (Fig. 6.11), the characteristic broadband off-axis scattering

signature appears. The directionally resolved spectrum for this event at t = 2.1 ps is depicted

in figure 6.14. The off-axis radiation around ω ≈ ω0 reaches out to θ ≤ 30◦. At θ = 20◦ it

reaches an FWHM bandwidth of more than ∆λ ≈ 170 nm (see Fig. 6.16) and should thus be

easily distinguishable against scattering of laser light from other parts within the experimental
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Figure 6.14: Directionally resolved spectra for various times around the laser focus: The four spectra show the
directionally resolved radiation in the forward direction. The off-axis scattering is minimal right before the

laser focus (t = 1.4 ps < 2.0 ps). With the onset of the defocusing of the laser, strong off-axis scattering

can be observed (t = 2.1 ps), even at the second harmonic (t = 2.4 ps). The weaker, broadband, low-

frequency, off-axis background radiation at t = 2.1 ps originates from the initial acceleration of the

injected electrons during wave-breaking. Further away from the focusing point, the off-axis scattering

signature weakens again (t = 3.1 ps).

chamber. The velocity distribution during this phase clearly shows the characteristic lateral

currents at ϕ ≈ ±20◦ (Fig. 6.15).

With decreasing laser peak power and a wider spot size, the characteristic off-axis radiation

signature will vanish again. Before that at t = 2.4 ps, the spectral blowout signature becomes

significantly stronger. From the purely quasi-static approximation [189], also called the frozen

field approximation, which assumes that the laser evolution is negligibly slow on the time scale

of the plasma response, such an asymmetry in time is not to be expected. From the quasi-static

blowout model of Lu et al. which models the electron trajectories around a laser pulse, the

electron path depends only on the ponderomotive potential. From the laser evolution in the

simulation (Fig. 6.11), the laser is symmetric around the focus position at t = 2.1, ps. The

electron motion around the laser pulse should thus be symmetric with regard to this point in

time. The radiation spectra, however, show an order of magnitude stronger off-axis radiation

during defocusing (t > 2.1 s) than during the focusing (t < 2.1 s). The asymmetry with respect

to the central focus position originates from the delayed response of the plasma to the laser

evolution. While the typical plasma response time is of the order of ∆tmid ∼ ω−1
pe , the laser

evolution happens on time scales of ∆tlong ∼ ω0 · ω−2
pe . For this simulation setup, the ratio
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Figure 6.15: Velocity distributions around the laser focus: The four velocity distributions show the evolution of
the distinct, directionally sharp flow of electrons around the laser pulse during defocusing. Before the

defocusing, there are no sharp pattern (t = 1.4 ps < 2.0 ps). Right after the focus, the angularly sharp

electron flows occur towards ϕ = ±20◦ (t = 2.1 ps). They rapidly break down again (t = 2.4 ps) and

become more forward-directed ϕ = ±10◦ after defocusing (t = 3.1 ps).

between characteristic laser evolution and plasma time is

∆tlong

∆tmid
≈ 19 . (6.52)

The timescale ∆tmid on which the plasma adjusts to the laser is not significantly smaller than the

laser evolution time ∆tlong. The response time of the plasma to the evolving laser is thus not

negligible.

As the laser focuses, the electrons flow around an ever-decreasing laser spot size. The electron

current flows around the edge of the laser while it increases in intensity. This does not produce

a strong scatter signal because the laser spot size decreases while the plasma follows.

During defocusing, on the other hand, the laser pulse, which is now widening again, eats

its way into the electron current, which also narrowed down to the minimum spot size during

the focusing. The interaction of the electrons with the widening laser is stronger than during

focusing and a significant amount of laser light is scattered in off-axis directions. This can be

clearly seen in the velocity distribution diagram Fig. 6.15 at t = 2.4 ps. The two characteristic

currents in ϕ = ±20◦ become wider and less clearly recognizable due to the erosion by the laser

even though the laser is strong enough to drive a bubble.

With further laser defocusing, the laser intensity becomes too low to reach the blowout regime

and the characteristic off-axis velocity distribution vanishes as well as the off-axis, broadband
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Figure 6.16: Photon numbers of the radiation signature and possible background: The left side depicts the
radiation spectra at all characteristic times discussed before and compares is against a possible scattering

from pure laser light. The off-axis radiation is much broader than the laser light and thus can be identified

spectrally while blocking the laser light with a filter. The right side is an equivalent plot to Fig. 6.10 but

focuses on the blowout regime signal. The dashed lines mark the characteristic times on the left side.

The laser spectrum is scaled to the maximum photon number. From the plasma itself, no laser scattering

should occur in this direction. The laser bandwidth is just given for safety reasons to not destroy any
optical instruments in case of scattering other than from the plasma.

radiation signature. This is depicted in the reduced off-axis radiation at t = 3.1 ps in figure 6.14

and the two streams of electrons at ϕ±5◦ whose direction has approached the forward direction.

An essential question is whether this broadband off-axis radiation signature for the blowout

regime can be experimentally observed. There are two requirements: enough photons need

to be emitted to detect the signal, and the signal needs to be spectrally broader than the laser

light. The latter is only a safety measure to avoid destruction of the detector in case laser light
from optical components is scattered inside the chamber. It could be implemented by installing

a bandpass filter in front of the detector. At these large observation angles, the simulation

does not predict significantly stronger scattering from the plasma at the original laser frequency.

Under normal circumstances, no damage should, therefore, occur to the detectors due to direct

laser irradiation.

The spectrally resolved photon number can be determined by converting the classical spec-

trally resolved radiation energy to a photon spectrum

Nphoton =
1

~ω
d2W

dωdΩ
·

∆E

~
· ∆Ω (6.53)

with ∆E being the energy width of the detector and ∆Ω being the solid angle of observation

covered by the detector. As depicted in figure 6.16, both requirements are fulfilled. The

signal is broader than the laser spectrum and it reaches significant photon counts of up to

Nphotons ≈ 70, 000 photons
eVµsrad which would mean more than 300, 000 photons in a spectral range of

∆λ50 nm on a 1 cm× 1 cm-sized detector 1 m away.

The above radiation signature not only allows determining the existence of the blowout regime

but also pinpointing the focusing position and the duration of the defocusing until the laser

pulse can no longer sustain the blowout regime. The accuracy with which this radiation signature

can be used to determine the laser focus position in the plasma is demonstrated in the following

section using a large simulation survey.
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6.4.4 Determining the focus position with plasma radiation
A laser can undergo self-focusing in a plasma which leads to a different laser focus position

within the plasma than when propagating in a vacuum. Similar to an experimental setup, a simu-

lation specifies the vacuum focus position of the laser. The self-focusing in the plasma is then

treated self-consistently by the particle-in-cell simulation. In experiments, the actual laser focus

position in the plasma is vital for understanding and controlling the acceleration process, but it

cannot be measured. (A detailed case study on how strongly the laser self-focusing influences

the acceleration process during LWFA can be found in chapter 6.5.) Therefore, the input from PIC

simulations is essential to quantify this self-focusing and to improve the understanding of the re-

sulting laser plasma dynamics. As with any measured variable, the vacuum focus position is also

subject to inaccuracies. In addition, higher-order laser modes strongly influence self-focusing

but are difficult to quantify in experiments. As input for simulations, these inaccuracies lead to

possibly faulty predictions of the plasma focus positions and thus to a wrong understanding of

the laser plasma dynamics and electron acceleration. A measurement method to determine

the actual laser focus position in the plasma would allow a comparison between experiment

and simulations and thus a validation of the predictions of PIC simulations. However, such a

diagnostic procedure has not yet been experimentally implemented. The following parameter

study, therefore, provides a first essential step in validating whether the blowout radiation

signature is suitable for determining the focus position in experiments. It confirms that the

broadband off-axis signature discussed in the section 6.4.3 is, due to its asymmetry with respect

to focusing and defocusing, ideally suited to determine the focus position of the laser in the

plasma if the laser is strong enough to drive the plasma wake in the blowout regime.

Due to the vast number of simulations required for the parameter scan presented here,

radiation simulations were only computationally feasible in 2D geometry. This simplification can

be made since the main objective of this survey was the laser evolution which, in contrast to the

plasma-bubble structure or injection, is not strongly affected by a reduction to two dimensions.

The simulations performed with PIConGPU were chosen according to an experiment per-

formed at HZDR. In contrast to the previous simulation, the experiment applied the self-truncated

ionization-injection scheme (STII - see section 6.2.5) using helium gas with a nitrogen dopant.

Only nitrogen K-shell electrons are injected into the bubble and accelerated. Self-truncation

is based on significant self-focusing of the laser originating from locating the vacuum focus

behind the plasma. Determining the laser evolution and its actual focus position in the plasma is

therefore essential for understanding the injection and acceleration. For the following discussion

about the radiation parameter scan, the details of the setup are not essential. A thorough

discussion of this setup, including the challenges when simulating the laser plasma evolution

and resulting acceleration, can be found in chapter 6.5.

The focusing position in the plasma was varied by changing both the laser vacuum focusing

position and the plasma density. In all cases, relativistic-self focusing played an essential role.

The laser focus position under the influence of the plasma was determined by searching the

global maximum of the laser envelope computed using the simulation data output (see Eq. 6.51).

The simulations were capable of distinguishing the radiation from the background electrons

(helium K-shell and nitrogen L-shell) and the nitrogen K-shell electrons. As expected, the radiation

of the nitrogen K-shell electrons did not show the blowout signature, since they are separated

from the atoms in the more intense region of the laser and do not have the characteristic

collective velocity distribution as the background electrons.

An exemplary evolution of the laser and the radiation spectra is depicted in figure 6.17. With

the beginning of the plasma at z = c · t =& 0.5 mm radiation at the laser frequency is emitted.

It originates from the laser pulse which still has not yet reached enough intensity to drive a

blowout regime a0 < 3.0. Therefore, scattered light is not significantly blue- or red-shifted and
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Figure 6.17: Determining the focus position via the blowout blueshift: The upper left plot depicts the laser pulse
evolution with the normalized laser field strength a0 (orange) and the beam waist w0 (green) of an

exemplary simulation along the laser position z = c · t . The focus is at z ≈ 1.9 mm. The upper right plot

describes the spectral evolution with a frequency ω scale normalized to the laser frequency ω0. Dashed

lines mark the example spectra from the lower right plot in the corresponding color. The lower left

plot shows the laser intensity evolution in number of photons Nphotons at θ ≈ 26◦. The intensity peak

marks the focus position. In blue, the FWHM region of the intensity peak is marked. It was used as the

uncertainty of the focus position based on the radiation. The lower right plot shows three simulated

spectra for selected time steps over the wavelength λrad.

the main radiation is emitted at ω = ω0. This early regime is marked by 1©. This can also be
seen in the orange-colored spectrum originating from z = 1.00 mm (Fig. 6.17 lower right). Its

peak is centered around λ ≈ 800 nm. For comparison, the spectra in the lower right corner of

figure 6.17 also shows the model laser that might overshadow any scattering signal. At higher

frequencies, higher harmonics can clearly be identified in this pre-blowout regime.

Between z ≈ 1.4 and z ≈ 1.9 the laser intensity increases. The characteristic scattering of

photons at the laser frequency vanishes and the high harmonics start to blur. This is marked by

2© in figure 6.17. In contrast to the previous simulation, there is no significant wave-breaking

radiation, since the electrons already injected via STII reduce the field strength at the end of the

plasma bubble and thus prevent self-injection via wave-breaking.

At z = c · t = 1.95 mm, the maximum scattering intensity at ω = 1.2 · ω0 is reached. The

temporal evolution of radiation intensity at this frequency is depicted on the lower left of
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figure 6.17. The clear rise in intensity indicates the laser focus position. As the uncertainty of the

position, the FWHM of the radiation intensity is used. It is marked by the transparent blue box.

The focus position according to the radiation spectrum is thus zfocus = 1.95 mm± 0.09 mm. The

expected focus position according to the simulated field evolution is zfocus = 1.88 mm± 0.21 mm.

The spectral method perfectly reproduced the focus position.

Since only electrons in the laser propagation and polarization plane are modeled in this

two-dimensional simulation, the off-axis radiation is slightly different than in the 3D case. The

missing third dimension results in a sharp selection of electrons and therefore less broadband

radiation. Only the blue-shifted radiation, which is scattered by the electrons moving exactly

towards the virtual detector, is reproduced correctly. In a fully three-dimensional simulation, an

equivalent part of the radiation would also be scattered at the laser frequency. As the previous

3D simulation suggests, this would mean a spectrally much broader and thus more intense

radiation signal in the experiment.

The defocusing region of the laser in the blowout regime is marked with a 3© in Fig. 6.17.

It causes a significant off-axis radiation signature which is strongest close to the laser focus

and which decreases in intensity with decreasing laser peak intensity a0. Since this simulation

assumes a slightly lower plasma density, the ratio between characteristic laser evolution time

and plasma reaction time
ω0

ωpe
≈ 25 (6.54)

is higher than in the 3D simulation discussed in section 6.4.3. The decay of the signature thus

happens faster which allows determining the focus position more accurately.

Further downstream, the off-axis radiation signature vanishes again both due to the reducing

intensity when defocusing and due to the reduced number of electrons in the down ramp. This

final region is marked by 4©. The corresponding spectrum at z = 2.5 mm is depicted in purple in

the lower right plot. In comparison to the previous emission, the number of emitted photons is

strongly reduced.
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Figure 6.18: Results of the parameter scan: The plot illustrates the correlation between the focus position based
on the simulated laser field evolution and based on the emitted blue-shifted off-axis radiation. The focus

position was changed by adjusting the vacuum focus position and the plasma density. The focus position

determined via synthetic radiation diagnostics is equal within the margin of errors to the focus position

determined by a detailed analysis of the laser evolution in the PIC simulation.

These kinds of 2D radiation simulations were conducted for various laser vacuum focus
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positions and plasma densities. The vacuum focus was always set to be close to the end of

the gas jet or even behind it. The relativistic self-focusing leads to an earlier laser focus in the

plasma as discussed before. The laser focus was also moved forward by increasing the plasma

density and thus the strength of the plasma feedback on the laser. For all simulations, the focus

position was determined by analyzing the peak laser envelope value (Eq. 6.51) for each data

output. The temporal uncertainty of this numerical method was assumed to be equivalent to

the time between consecutive data outputs. Independent of this analysis, the position of the

maximum radiation intensity at ω = 1.2ω0 and θ ≈ 26◦ was determined. The uncertainty of this

position was the FWHM of the intensity peak.

Figure 6.18 shows the correlation between both methods. The spectral method reproduces

the results of the field method within the error margins. It is thus well suited for an experimental

determination of the focus position.

The spectral method slightly overestimates the focus position, as expected from the temporal

asymmetry of the blowout radiation signature. This is only not the case for focus positions

zfocus > 2.2 mm where the gas density drops significantly and the spectral method predicts an

earlier focus position. However, with the knowledge of the gas density distribution, the influence

of these shifts can be estimated and eliminated beforehand.

The spectral method poses a new experimental technique to determine the focus position of

the laser pulse in the gas. It requires only the laser to be strong enough in focus to reach the

blowout regime, which is the case for most experimental LWFA setups today.

6.4.5 Radiation signature of self-phase modulation
Coming back to the original 3D explorative radiation simulation, the plasma density decreases

after the density plateau. In the simulation, this is modeled by a gradual down-ramp gradient. As

in reality, there is a low-density plasma remaining through which both the laser and the electron

bunch need to propagate.

According to the laser evolution (Fig. 6.11), at some point in the down ramp, the laser intensity

will be too weak to drive a non-linear plasma wave in the blowout regime. At that point, electrons

will start to propagate through the ponderomotive potential of the laser pulse and directly

interact with the bunch. The bunch, on the other hand, contains enough charge (Q ≈ 220 pC)

that its electric field is capable of driving a non-linear plasma wave in the blowout regime. Thus,

at this stage, the first electron bunch becomes the driver of a non-linear plasma wave. Such a

scenario of an electron bunch driving a plasma wave is called a plasma wakefield accelerator

(PWFA) [194]. Since the electron bunch drives a wakefield, it loses energy, as can be seen in

Fig. 6.12. Due to the decreasing plasma density, the energy loss decreases as well. The entire

electron density distribution for a slice through the center of the laser is depicted in Fig. 6.19

(left side). The blowout bubble caused by the electron bunch can be clearly identified. In the

bubble itself, additional electrons are accelerated. However, due to the low plasma density, the

accelerating gradient and therefore the energy gain is negligible compared to the laser-driven

blowout regime.

During this PWFA stage, the laser pulse still exists and propagates in front of the electron

bunch (see FWHM contour line of the laser in Fig. 6.19). It excites a weak plasma wake. Along its

entire length, plasma electrons oscillate in its field as can be seen in the phase space diagram in

Fig. 6.19 (right side). Thomson scattering radiation will be emitted by these oscillating electrons.

Since the laser intensity is weak, the drift velocity of the electrons due to the ponderomotive

potential of the laser pulse can be neglected. Thus, radiation will be scattered predominately

at the laser frequency. However, due to the previous interaction of the laser with the plasma,

the laser underwent self-phase modulation and thus has a broader spectrum than initially

[195–197]. The exact change in frequency cannot be predicted. From the depletion length
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Figure 6.19: The laser plasma dynamics after the transition from LWFA to PWFA: The left plot shows the electron
density ne along one transversal position x and the co-propagating position ξ = z − c · t. The right
plot shows the phase space distribution of the normalized transversal momentum βxγ along the co-

propagating position ξ with Qe being the charge. The normalized field strength a0 of the laser envelope

is depicted in red. During the down ramp of the density profile, the laser becomes, due to refraction, too

weak to drive the blowout regime. In contrast to that, electron bunch contains enough charge to drive a

nonlinear wakefield in the blowout regime on its own. Only a few electrons in front of the bunch oscillate

in the laser field. These electron scatter light from the now broader laser spectrum.

estimates introduced in section 6.2.4, one can only determine how strong the influence will

be. As discussed previously, the laser peak intensity evolves due to self-focusing and refraction

and thus is not constant during the plasma interaction. The same is true for the density profile.

However, a rough estimate of the depletion length for a peak vacuum intensity of a0 = 3.5 and a

maximum density of ne = 5 · 1018 cm−3
results, according to Eq. 6.33, in a depletion length of

approximately Ldp = 8.2 mm = c · 27 ps. From this estimate, one can expect that the laser will

not vanish completely during the laser plasma interaction but since the depletion length is of

the order of the propagation distance, changes in the laser pulse, like self-phase modulation,

are to be expected.

In order to analyze the self-phase modulation of the laser pulse numerically, the analytic

function ~Eanalyt, introduced in section 6.4, was used again. For a spectral analysis, only the

polarization component of the laser pulse needs to be considered Eanalyt
x = ~ex · ~Eanalyt. The

instantaneous frequency can be determined by

ωlaser(z) = c ·
d

dz
arg
[
Eanalyt
x (z)

]
, (6.55)

with arg[. . . ] being the argument of a complex number. Numerically, the derivative is replaced

by a difference quotient.

The instantaneous frequency was computed for the entire simulation duration. It is plotted,

normalized to the initial laser frequency ω0, in Fig. 6.20. This graph shows the time evolution

along the x-axis and the co-moving longitudinal position ξ relative to the initial laser center along

the y-axis. The color code represents the instantaneous laser frequency, with red representing

a lower frequency than the initial laser frequency (red-shifted) and blue representing a higher

frequency (blue-shifted). During the interaction with the plasma, the front of the laser is red-

shifted to a frequency of approximately ωlaser ≈ 0.8 · ω0. The front part also moves slowly

backward with respect to the rest of the pulse. The analysis has been restricted to field strength

above 20% of the maximum laser field strength at each time step (Ex > 0.2max [Ex(z)]) to avoid

numerical inaccuracies in determining the instantaneous frequency at a low field strength.
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Figure 6.20: The spectral evolution of the laser pulse: This plot depicts the most intense frequency ω of the laser
pulse along the co-propagating coordinate axis ξ ' z − vlaser · t . The evolution of the laser spectrum
is plotted over time t. The spectral contributions have been determined via a Hilbert transform. The

frequency in units of the original frequency ω0 of the laser is given as color, with blue representing a

higher frequency (blueshift) while red representing a lower frequency (redshift). Initially, the laser has just

one frequency with slight variations due to its finite pulse duration. With increasing propagation through

the plasma, the front of the pulse is etched away and red-shifted. This shift in the driver frequency leads

to a frequency shift in scattered radiation as well.

This change in laser frequency leads to a change in scattering frequency. The source frequency

can no longer be assumed to be homogeneous. Since the electrons propagate through the laser

pulse, they not only oscillate according to the red-shifted part of the laser at ωlaser ≈ 0.8 · ω0

but also at the rear of the pulse at the initial laser frequency ωlaser ≈ ω0. Since the transition

between the red-shifted part of the pulse and the unaltered part of the pulse happens on a

length scale of a few micrometers, the transition between both frequencies happens fast, and

thus the main scattered radiation is at ω ≈ 0.8 · ω0 and ω ≈ ω0. This can be clearly seen in the

line splitting after t > 5 ps in Fig. 6.13. Exemplary spectra at various time steps are plotted in

Fig. 6.21. They show clearly the two peaks, one strongly red-shifted, in accordance with the laser

self-modulation.

Since this radiation spectrum can be observed at an off-axis angle of θ = 30◦, measuring the

scattered radiation in a background plasma is an alternative option for determining the laser

self-phase modulation towards depletion. Current experiments need to analyze the laser pulse

after the interaction by a spectrometer [198, 199]. This requires a separate diagnostics. However,

the simulation shows that by measuring the side-scattered radiation from the post-LWFA region

the redshift due to self-modulation can be determined equivalently. Especially in cases where the

radiation is measured anyway, the costs for laser post-diagnostics can be reduced. In addition,

this technique enables a non-invasive temporal resolution of the laser’s spectral evolution that

no other diagnostic method has been able to offer.

Furthermore, observing this double-peaked scattered radiation signature in experiments

clearly shows that a rest gas is still present when the laser becomes too weak to drive a strong

wakefield. It points to a PWFA regime, driven by the bunch which in turn is preceded by the laser

pulse.

Determining the laser spectrum is essential in compact Thomson scattering setups where the

laser pulse, after accelerating electrons via LWFA, is back-reflected onto the bunch by a plasma
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Figure 6.21: Red-shifted second scatter peak: The spectrum shows the number of photons Nphotons emitted per

wavelength λrad under an angle θ = 20◦. The figure illustrates the well separated second spectral peak

caused by scattering from the red-shifted front side of the laser. This spectral line splitting is a hallmark

signature of laser self-phase modulation.

wake [200, 201] or by a solid foil acting as a plasma mirror [202–206]. During the laser-bunch

interaction, high-energetic radiation is scattered towards the bunch propagation direction. The

spectrum of the scattered radiation depends sensitively on the laser spectrum. In order to

determine the laser spectra before the laser is reflected and right after the bunch interaction

in the plasma, all common methods cannot be applied since the laser spectrum measured will

be further altered. Thus, only measuring the scattered radiation gives the ability to determine

the quality and spectral distribution of the back-reflected laser pulse and thus the quality of the

Thomson source.

6.5 A case study: Ionization injection at the DRACO laser
Recently, an experimental laser wakefield acceleration campaign based on ionization injection

was conducted at HZDR. The experiment generated quasi-monoenergetic electron bunches of

more than Ee ≈ 300 MeV peak energy with more than Qe ≈ 300 pC of bunch charge [R2, R12].

The bunch generation was stable and reproducible. This not only provided an LWFA electron

source with unprecedented peak current that enabled using the generated bunches as a driver

for a second plasma wakefield accelerator (PWFA) stage [R18]. It also allowed performing a

unique parameter survey studying the beam loading effects in an isolated environment by

altering the dopant concentration without changing the plasma density significantly. As part of

this thesis, simulations for this experimental setup were conducted. These allowed studying the

beam loading effect qualitatively. The differences between the experimental measurements

and the simulation results lead to the development of a new laser model based on Laguerre

modes. Furthermore, a radiation diagnostics method was developed to quantify the remaining

differences between simulation and experiment.

In section 6.5.1, the experimental setup is briefly introduced. In the following section 6.5.2, the

injection and the subsequent electron acceleration, essential for quasi-mono-energetic beams,

is discussed based on the simulation results. The initial discrepancies between the simulations

based on a Gaussian laser pulse and the experiment are examined and improvements of using
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a laser model that includes the higher laser modes as in the experiment are discussed. However,

even with improved laser modeling in the simulation, in-plasma focusing and thus acceleration

still remains an issue that could not be satisfactorily modeled.

Therefore, the previous section 6.4.4 presented a new diagnostic method based on the

scattering model introduced in section 6.3.3 that allows determining the exact laser focus

position inside the plasma. It enables to pin down the remaining discrepancies between the

experiment and the simulation via future experimental measurements.

6.5.1 Reaching 300pC of charge with DRACO
The LWFA experiment performed at HZDR was based on an ionization injection scheme that

used helium gas with a nitrogen doping between 0.5% < p < 3.0% partial gas pressure. Both

the helium K-shell (n = 1) electrons and the nitrogen L-shell electrons (n = 2) have ionization

energies below a few tens of electron volts (Tab. 6.1). The nitrogen K-shell electrons, however,

detach from the ion above 500 eV and are thus ionized at relativistic laser intensities above

a0 > 2.2 only. The large difference in ionization energy between the K- and L-shell makes nitrogen

Table 6.1: Ionization energies of helium and nitrogen: Listed are all ionization energies from the neutral atom
state to the fully ionized state of helium and nitrogen in electron volts. Additionally, the classically required

electric field for ionizing the respective state is given in units of normalized intensity with regard to a

λ0 = 800 nm laser. The levels marked in orange are ionized by the laser pre-pulse already. The levels

marked in green require much higher fields strength for ionization. The electrons from these two states

are only ionized in the laser focus region and are the ones injected during the ionization injection process.

Level Transition Eion [eV] |~Eion| [a0]

He I He→ He1+ + e− 24.6 2.6 · 10−2

He II He1+ → He2+ + e− 54.4 6.4 · 10−2

N I N→ N1+ + e− 14.5 9.1 · 10−3

N II N1+ → N2+ + e− 29.6 1.9 · 10−2

N III N2+ → N3+ + e− 47.4 3.3 · 10−2

N IV N3+ → N4+ + e− 77.5 6.5 · 10−2

N V N4+ → N5+ + e− 97.9 8.3 · 10−2

N VI N5+ → N6+ + e− 552.1 2.20

N VII N6+ → N7+ + e− 667.0 2.75

ideally suited and a commonly used gas for ionization injection [179]. The large concentration of

helium compared to nitrogen creates the majority of plasma electrons and thus allows a stable

plasma wake in which the nitrogen concentration can be altered without significantly affecting

the overall plasma density. This allows changing the number of injected electrons by adjusting

the nitrogen dopant concentration while keeping the dynamics of the laser-driven plasma wake

unaltered.

The experiment was performed in a vacuum chamber. The plasma, in which the accelerating

wakefield was generated, was produced by a Laval nozzle from which the helium-nitrogen gas

mixture was released into the vacuum chamber at supersonic velocities. The gas doping was

adjusted by attaching pressurized gas bottles with predefined doping ratios. Depending on the

pressure at which the Laval nozzle was operated and depending on the height above the gas

exit, the density of the plasma could be adjusted between ne = 3 · 1018 cm−3
and 5 · 1018 cm−3

(giving the density of the ionized plasma with electrons from He2+
and N5+

). Due to its better

stability in the experiment, the density was mainly varied by adjusting the gas pressure. The

spatially resolved gas density distribution was measured by interferometric methods [207]. The

measured density profile was the basis of the simulated plasma profile. The simulated density
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profile was fitted according to experimental measurements and is depicted later in Fig. 6.25

when discussing simulations.

The plasma wakefield is driven by focusing the DRACO laser [R11] with an off-axis parabolic

mirror (f/20) onto the rear side of the gas jet. For this experiment, the DRACO system did not

operate at full power and without the last amplifier stage. It delivered pulses of 2.5 J total energy

and a duration of approximately τ = 30 fs (FWHM intensity). With the focusing mirror, a spot

size of w0 = 20µm (FWHM intensity) was reached. This spot size matches a plasma density of

ne = 2.8 · 1018 cm−3
. The density of the experiment is slightly higher and thus the spot size

is larger than according to the ideal matching condition. Since the focus was located at the

end of the gas profile, self-focusing plays an essential role as is demonstrated by simulations

in the next section. According to simulations, the self-focusing leads to a matching spot size

and much higher laser field strength. The pulse shape modulation leads to a self-truncated

ionization-injection (STII) process [184, 185, 208], that stops injection quickly and thus ensures

short and quasi-monoenergetic electron bunches to be accelerated in the plasma wake [R2,

R12].
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Figure 6.22: Laser intensity profile at various positions: These experimentally measured intensity Ilaser profiles

of the laser pulse along its propagation direction z reveal that a simple Gaussian envelope cannot

describe the laser pulse but that higher order Gauss-Laguerre modes need to be considered to model

the transverse structure of the laser pulse in simulations. For illustrative purposes, the theoretical

evolution of the laser beam waist w relative to the beam waist at focus w0 is plotted above the five

intensity plots. Each intensity graph is an average over ten laser shots and shows the transversal laser

profile.

Before the experimental campaign, the DRACO laser pulse was characterized in the vacuum. At

various positions around the laser focus, the transversal profile was measured with a stationary

CCD screen which was illuminated with a reduced laser intensity. The intensity was reduced by

introducing partially reflective plates into the optical beam line. The various focus positions were

achieved by moving the final focusing mirror. This measurement revealed that the laser not only

comprised a Gauss mode but contained higher, so-called Laguerre, modes, appearing as rings

around the central Gaussian pulse shape in the CCD intensity image. These rings are especially

dominant a couple of millimeters away from the focus position (see Fig. 6.22). Recent simulation

already suggested [209] that these higher modes have a significant influence on the performance

of the acceleration process. Therefore, these higher modes were added to PIConGPU and their

influence was investigated, as will be discussed in the simulation section 6.5.2. The influence of
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the laser profile in simulations revealed alterations in the laser plasma dynamics when including

higher Gauss-Laguerre modes. Taking into account these modes is obviously essential when

modeling the experiment with particle-in-cell codes.

As mentioned before, the experiment was able to produce bunch charges of Qe ≈ 300 pC.

Most of the injected electrons reached an energy of around Ee ≈ 300 MeV with a narrow energy

spread of ∆Ee ≈ 50 MeV under optimal beam loading conditions [R2]. These electron bunch

parameters were reasonably reproducible with the setup used in the experiment. Altering the

group dispersion delay (GDD) of the laser further increased the stability of this setup [R12].

In Fig. 6.24, the electron energy distribution for 10 consecutive shots is plotted. Only one

laser shot, labeled (j), did not produce an electron bunch with the expected parameters. This

stability allowed an extensive parameter survey [R2] that could study the influence of the bunch

self-charge on the acceleration process. By increasing the nitrogen doping, the trapped bunch

charge could be increased. The experiment revealed that with increased bunch charge the

energy spread of the bunch reduced until a point of optimal loading. During optimal loading,

the accelerated field seen by all bunch electrons is equal, and thus the energy spread is reduced.

By adding more charge, the bunch self-field alters the accelerating gradient further and the

electron energy spread increases again. This flattening of the accelerating electric field towards

the optimal loading charge could be verified by particle-in-cell simulations [R2] (see Fig. 6.23).
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Figure 6.23: Influence of the bunch charge on the acceleration field and the energy spread: The solid lines
display the acceleration field Ez on the right axis versus the co-moving longitudinal position z − c · t.
Additionally, the longitudinal phase space distribution is overlaid. The left axis depicted the longitudinal

momentum pz scale, with ρ being the charge density of the distribution. The color red represents a

scenario with low dopant concentration and thus lower charge than the blue case with high doping.

The bunch with a higher charge flattens the gradient of the acceleration field and thus leads to a lower

electron energy spread.

It is important to note that although the experiment could produce thousands of shots per

day, a single simulation of such a shot on more than a hundred GPUs took about 5 days. In

order not to lose computing time in finding the exact experimental conditions of an optimal

shot, an exact determination of the laser and plasma parameters with a shot-by-shot diagnosis

would be beneficial. This could reduce the parameter space to be covered by the simulation to

the (still large) range of experimental uncertainty. However, the constantly changing conditions

and the limited availability and precision of shot-by-shot diagnostics in experiments prevent

perfect adaptation of the simulation to the experiment. The simulation result should, therefore,
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Figure 6.24: Electron energy distribution in experiment: The electron distribution as measured in the experiment
is plotted for ten consecutive laser shots. The x-axis shows the transversal divergence of the electron

beam as measured on a fluorescent LANEX screen. The y-axis represents the electron energy which

was resolved using a bending magnet in the experimental setup and thus correlates to the second

spatial axis on the screen. In contrast to the results published in [R2], the density is rescaled to show

the distribution over the energy and not over the position. The last shot (j) in this sequence was one of

the few not successful shots without a quasi-mono-energetic electron bunch produced. The white line

and the denser structure around E = 90 MeV and 40 MeV are caused by the LANEX screen setup in the

experiment, which consists of several separated screens. More details on the experimental methods to

determine the electron energy distribution can be found in [210].

be regarded as a single experimental shot with similar uncertainty as in the experiment.

6.5.2 Simulating the ionization injection
While the experiments performed at HZDR provided a wealth of data to study beam loading

effects in laser wakefield acceleration, simulating the setup is essential to validate the assumption

and expectations on the inner dynamics of the plasma accelerator. Therefore, an extensive

simulation survey was conducted using the particle-in-cell code PIConGPU. During this study, the

exact setup was refined repeatedly to better model physical effects, minimize computational time

and verify hypotheses on both plasma dynamics and numerical effects. Not all simulation setups

are discussed in the following, but only the most important development steps are summarized.

Subsequently, the focus is on the description of the observed laser plasma dynamics.

The initial setup assumed a perfectly Gaussian laser envelope. The absence of higher order

Laguerre modes allowed a transversally smaller simulation box, set to 704× 2352× 704 cells. In

order to model the helium gas with the nitrogen doping, both species were added as initially

neutral atoms. In a fully ionized region, this would lead to a total of 11 macroparticles per cell.

To reduce the memory consumption of this approach, one macroparticle per cell was initialized

representing helium. A macroparticle representing nitrogen was only placed with a probability

of 1/6 into a cell. The weightings of both particles were adjusted accordingly to reflect various

real doping ratios. This approach allowed reducing the average number of macroparticles per

cell to be around 3.8, neglecting the few K-shell electrons from nitrogen. With this optimization,

a lower number of graphics processing units were needed to perform the simulation.

In several improvement and optimization steps, Gauss-Laguerre modes were introduced to

90



describe the laser. In order not to cut off these modes at the edges of the simulation box,

it was necessary to simulate a larger transversal area. The simulation box was enlarged to

1056× 2352× 1056 cells. Since both the K-shell electrons of helium and the L-shell electrons

of nitrogen have very low ionization energies (see Tab. 6.1), the laser front already frees these

electrons. The laser intensities present during their ionization are non-relativistic a0 � 1 and

relativistic self-focusing effects do not yet play a role. The gas can be treated as pre-ionized

without strongly influencing laser propagation. This model assumption allows combing both the

K-shell electrons of the helium and the L-shell electrons of the nitrogen into a singlemacroparticle.

In addition, an N5+
ion is initialized in each cell. This only serves as an electron supplier in

the simulation. The completely ionized helium ion can be neglected. Its influence on the laser

plasma dynamics is marginal due to its high mass, therefore it does not need to be treated by

the simulation. The average number of particles per cell becomes, therefore, 2 and even in

the full ionization ranges only at 4. On the one hand, this optimization has the advantage that

significantly less memory is required and fewer particles have to be treated, which reduces both

the number of computers required and the time to solution. On the other hand, the use of

nitrogen in each cell increases the sampling of the injected electrons and thus the accuracy of

the modeling.

The influence of different ionization models was also tested in the simulation study. Both the

classic BSI model and the ADK model [157, 158], based on quantum tunneling, showed very

similar results. The total charge and the maximum energy of the accelerated electrons were

approximately the same. Only the energy distribution curve was smoother with the ADK model,

as it avoids hard ionization thresholds. The Keldysh model, which was also tested, did not yield

any reasonable results and was therefore rejected. Since the BSImodel was significantly better

performing, it was used either alone or in combination with the ADK model. The combination

of both models takes into account quantum mechanical tunneling ionization but immediately

ionizes when the classical ionization threshold is exceeded. It is, therefore, the physically most

reasonable model.

The experiment and therefore the simulation were performed at various densities as well as

with different doping concentrations. The density curve used in the simulation was modeled

according to experimental measurements (see Fig. 6.25). This representation is normalized to

the plateau density. The profile’s form has been kept the same for all simulations since the

experimental measurements showed that it does not change significantly in the covered density

range.

As the figure 6.25 already indicates, the simulations examined two focus positions. While

the vacuum focus position of the laser was determined in the experiments to be zfocus ≈ 1 mm

behind the end of the gas down-ramp by measuring the transversal profile in ∆z = 300µm steps,

simulations yielded no high energetic electrons when using this focus position at low densities.

Therefore, the focus was moved towards the end of the gas density profile in simulations.

The energy distribution obtained at this focus position resembles more accurately the energy

distribution observed in the experiment. Up until recently the discrepancy between simulations

and experiments remained a mystery. However, recent experiments showed that a filter used

to reduce the laser intensity before measuring the laser profile showed defocusing effects and

moved the measured focus position further out. Since the filter was removed in the actual LWFA

experiment, but the focus position was stated with regard to the filter applied, a discrepancy of

up to 3 mm to the assumed focus position is possible. Thus, assuming a focus position inside

the gas jet instead of behind the jet as already suggested by simulations seems to be correct.

However, the initial mystery on the actual focus position lead to the development of focus

position diagnostics that is theoretically introduced in 6.3.3 and demonstrated on the example

of this experiment in 6.4.4.

In the following, only selected parameter sets will be discussed. More than 60 full-scale
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Figure 6.25:Modeled plasma density profile: The plot depicts the normalized density profile ne used in simulations
versus the laser propagation direction z or equivalently the propagation time t = z/c . It was modeled

according to the experimental measurements. These also suggest that the profile is not significantly

altered when operated at densities 3 · 1018 cm−3 ≤ ne ≤ 5 · 1018 cm−3
. The x-axis shows both the

simulation time when the density is reached by the laser as well as the actual position in the laboratory

frame. The inline axis is a reference to the focus position, with 0.0 mm marking the end of the gas

down-ramp. Both orange dots mark focus positions used in simulations.

simulations were performed over the course of 1.5 years to explore the parameter range given

by the experiment. This includes varying the doping, operating at various densities, and adjusting

laser parameters as duration, spot size or focus position. However, no perfect match could be

found in this initial parameter survey since the experimentally determined focus position was

off by several millimeters.

Nevertheless, various aspects of the laser wakefield acceleration process relevant for this

setup could be reproduced. This section concentrates on the laser plasma dynamics of only 3

distinct setups in detail.

The first setup discussed operates at a density of ne = 2.6 · 1018 cm−3
. This is slightly below

the lowest density used in the experiment. The reason for this slight difference comes from the

definition of peak density. While in experiments, the plateau density is also called peak density,

in simulations the high-density peaks at the beginning and the end of the plasma profile were

defined as peak densities. This difference was quickly determined, but the initial simulations at

these low densities already paved the way towards a better understanding of the fundamental

laser plasma dynamics.

With a purely Gaussian laser profile and with a focus position as in the experiment at 1 mm

behind the end of the gas jet, no electron injection and acceleration could be observed in

simulations. This aroused first doubts about the late laser focusing position. However, since the

laser focus position was determined to an accuracy of up to 300µm in the experiment, the focus

was moved forward by only 1 mm for the following test simulation. The laser evolution for this

simulation is depicted in Fig. 6.26.

For the Gaussian laser profile (opaque colors), relativistic self-focusing is observable (marked

in blue). The laser focuses at z ≈ 2.3 mm and reaches a peak electric field strength of a0 ≈ 5.5,

much higher than the laser peak field strength in a vacuum (depicted in dashed lines). The late

focus position thus leads to a regime that is governed by the non-linear self-focusing effects of a

relativistic laser pulse in the underdense plasma.
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Figure 6.26: Laser evolution for early focus and low density: The laser evolution is depicted versus propagation
time and distance. The characteristic parameters, normalized field intensity a0 (orange) and spot size

w0 (green), are plotted as solid lines. The opaque solid lines represent a purely Gaussian laser pulse

profile, while the pale solid lines represent the evolution of a laser pulse with Gauss-Laguerre modes as

determined in the experiment. The dashed line represents the theoretical evolution of a Gaussian beam

in vacuum. The laser vacuum focus is 0.0 mm behind the end of the density profile. The plasma density

is ne = 2.6 · 1018 cm−3
.
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Figure 6.27: The electron energy evolution for a Gauss-Laguerre and a Gauss-only laser profile for a lowplasma density and an early focus: The upper plots depict the electron energy Ee evolution, with the
horizontal axis being the simulation time and/or position along the laser propagation direction z for both

the Gauss-Laguerre (left) and Gauss-only (right) laser pulse shape. The lower plots illustrate the evolution

of the peak laser field strength Ex . The threshold of the first nitrogen K-shell ionization level (N
5+ → N6+

)

is depicted as a gray dashed line. An arrow marks the first passage of the ionization threshold. This

coincides with the time of injection.

As already mentioned in the section on the experiment, the laser characterization revealed

higher-order modes in the laser profile. These were modeled by the PIC code by adding Gauss-
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Laguerre modes to the laser implementation. This new code was intensely tested and then

used in the first production simulations for reproducing the experiments. Adding higher modes

completely changes the laser-plasma dynamics as depicted in Fig. 6.26 (pale colors). With the

higher modes, the laser pulse focuses much faster and its spot size becomes already smaller

than that of the Gauss profile in the up-ramp of the density profile. Equivalently, this leads to a

faster rising peak field strength. Even though the latter reaches only a0 ≈ 4.5− 5.0, the initial

threshold for ionization is reached much earlier. This allows for an earlier ionization injection

and thus a much higher electron bunch energy. This difference in electron acceleration can be

recognized clearly in Fig. 6.27.

Exceeding the ionization level earlier when considering the Gauss-Laguerre modes leads to an

earlier injection of electrons at z ≈ 1.0 mm. With a Gauss-only profile, the threshold is exceeded

at z ≈ 1.6 mm. Since the accelerating gradient is similar, the earlier injection leads to a higher

cut-off energy. However, the Gauss-Laguerre laser pulse seems to capture fewer electrons. The

total accelerated charge is much lower than with a Gauss-only profile. Even with a higher doping

than used in the experiment (p = 2.5% partial pressure), charges as in the experiment could not

be reached.

Therefore, the further investigation focused on the higher density regime by increasing the

density to a value of ne = 4.4 · 1018 cm−3
at which the experiment observed the best results.

Initially, the simulations kept the early focus position at 0.0 mm. The resulting laser evolution

is depicted in Fig. 6.28. In contrast to the previous case, the laser does not only focus due to

relativistic self-focusing but also keeps its minimal beam waist for more than 1 mm. This is true

for both the Gauss-Laguerre and the Gauss-only profile. Again, the Gauss-Laguerre laser pulse

shows a faster focusing but reaches a lower peak field strength than the Gauss-only profile.

At z ≈ 1.0 mm the Gauss-Laguerre laser pulse shows a constant beam waist w0. A bit later, at

z ≈ 1.8 mm the Gauss laser pulse shows an equivalently small and constant beam waist. This

marks the regime of self-guiding that is held until the end of the gas density profile.
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Figure 6.28: Laser evolution for early focus and higher density: The laser evolution is depicted versus propagation
time and distance and the quantities depicted are analog to figure 6.26. The main difference is the higher

plasma density (ne = 4.4 · 1018 cm−3
) compared to the previous example. With this setup, a self-guiding

regime (marked in yellow) is reached.

As in the low-density simulation, the faster focus of the Gauss-Laguerre laser leads to an

earlier passage of the ionization threshold and thus to an earlier electron injection and a higher
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final electron energy (see Fig. 6.29). Due to the self-focusing regime, the excellent accelerating

and focusing properties of the bubble regime are exploited in this setup and allow reaching

much higher electron energies. The Gauss-Laguerre laser pulse also shows an excellent quasi-

monoenergetic energy distribution, but the bunch contains again less charge than with the

Gaussian profile. Both laser intensities fluctuate in the self-focusing regime. The Gauss laser,

however, fluctuates at higher field strength that causes much stronger alterations in the bubble

structure and thus reduces the quasi-monoenergetic properties of the injected bunch. The final

energy distribution of the setup with the Gauss-profile, therefore, shows a much broader energy

distribution.
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Figure 6.29: The electron energy evolution for a Gauss-Laguerre and a Gauss-only laser profile for a higherplasma density and an early focus: This is a plot of the electron energy evolution (upper plots) and
laser fields strength (lower plots) for both a Gauss-Laguerre and a Gauss-only laser profile. The depicted

quantities are equivalent to Fig. 6.27. Much higher energies are reached with this setup.

While these results looked promising with regard to the cut-off energy, the focus position was

too close to the gas nozzle. Therefore, the simulation survey continued to explore the regimes

with a later focus position as assumed in the experiment.

In this regime at densities of ne = 4.4 · 1018 cm−3
and a laser focus position 1 mm behind

the end of the down-ramp, no self-guiding is reached anymore (see Fig. 6.30). Both the Gauss-

Laguerre and the Gauss laser pulse show a very similar self-focusing. In the plasma plateau

region, they reach similar spot size and peak field strength values. The self-focusing is cutoff

by the end of the plasma. This similar evolution points to a regime of operation which is stable

against fluctuations in the higher laser modes.

This is also reflected in electron energy evolution (Fig. 6.31). Due to the late focus position, the

ionization threshold is surmounted at z ≈ 1.7 − 1.8 mm which does not leave much distance

until the end of the plasma for acceleration. Surprisingly, the injection happens slightly earlier

with the Gauss pulse. However, the lower charge trapped with the Gauss-Laguerre pulse does

not reduce the accelerating gradient as strongly due to much smaller Coulomb field of the bunch

itself. Therefore, the Gauss-Laguerre setup reaches slightly higher final electron energies.

Even though this regime appears stable against fluctuations in the transversal higher-order

modes of the laser pulse, the energies reached are much lower than in experiments. The origin

of this discrepancy was not clear up until very recently. Since the discrepancy in maximum
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Figure 6.30: Laser evolution for late focus and higher density: The laser evolution is depicted versus propagation
time and distance and the quantities depicted are analog to figure 6.26. The main difference is that the

laser focus position is 1 mm behind the plasma down-ramp. With this setup, both the Gauss-Laguerre

and the Gauss-only laser pulse show a very similar evolution.
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Figure 6.31: The electron energy evolution for a Gauss-Laguerre and a Gauss-only laser profile for a higherplasma density and a later focus: This is a plot of the electron energy evolution (upper plots) and laser
fields strength (lower plots) for both a Gauss-Laguerre and a Gauss-only laser profile. The depicted

quantities are equivalent to Fig. 6.27. Much lower energies are reached with this further-back focus setup

but both the Gauss-Laguerre pulse and the Gauss-only pulse show a much more similar electron energy

evolution.

electron energy directly relates to the laser focus in the plasma, determining a laser focus in

the plasma itself while it undergoes relativistic self-focusing appeared to be the only option for

testing the predictions of the PIC simulations since differences in the self-focusing might have

pointed to a wrong treatment of this non-linear regime by the simulation software PIConGPU.

However, there was no method to determine the focus position of a laser in a plasma for each
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individual laser shot. In the future, the measurement of the laser focus position in the plasma

could be made possible by implementing a detector for the blowout radiation signature (see

section 6.4.4).

6.6 Conclusions and Outlook
This chapter provided an introduction to Laser Wakefield acceleration. After briefly covering the

sub-relativistic and mildly relativistic regime analytically, the introduction focused on the ideal

acceleration and focusing properties reached in the so-called blowout regime at normalized field

strength greater than a0 > 3. A brief summary was given of the influence of the laser evolution

in the plasma on the acceleration process, with a particular focus on self-focusing in the plasma.

Various injection methods were discussed, with an emphasis on both the wave-breaking injection

used in the initial simulation and the self-truncated ionization injection (STII) method which was

used in experiments and the corresponding simulations.

After this brief review, a scattering theory for laser-electron interaction was derived. It is based

on an arbitrary electron distribution which propagates through a laser pulse. An exact analytical

description of the scattering signal was derived. However, since no analytical solution is known

for the electrons’ velocity distribution in the blowout regime, simplified models had to be used.

As a first assumption for the electron distribution, the characteristic, off-axis electron stream

was incorporated in the simplified model. The semi-analytical model predicts a broad-band,

off-axis scattering during the blowout regime.

The reason for the development of this semi-analytical scattering theory was a large-scale

3D LWFA simulation, which for the first time calculated the emitted electromagnetic radiation

spectrum of all simulated particles. This simulation made it possible to explore new, previously

unknown scatter signals and to quantify these and other known signals against the general

radiation background of all electrons in the plasma. After a short discussion of the laser-plasma

dynamics based on the simulation data, the off-axis radiation development was discussed.

Several known radiation signatures, such as higher harmonics and wave-breaking radiation, have

been identified. Furthermore, the blowout regime radiation predicted by the semi-analytical

model could also be identified clearly. A temporal asymmetry due to laser focusing and defo-

cusing, which cannot be treated within the model, was found. Due to the delayed reaction of

the plasma to the laser development, the blowout signature is only visible during defocusing.

However, this allows determining the laser focus position in the plasma, which was not possible

before.

A simulation series in the course of an LWFA experiment at the HZDR demonstrated the

benefits of such a focus determination with the blowout radiation signature. In the experiment,

the vacuum focus position was behind the plasma. Based on this setup, several simulations

were performed to model the laser plasma dynamics of the experiment. However, due to a

single parameter that was determined incorrectly in the experiment, the simulations could not

reproduce the electron beam energies measured in the experiment. They showed that with a

late focus of the laser, as in the experiment, relativistic self-focusing effects strongly influenced

the laser development by pushing the focus further forward into the plasma as well as increasing

the peak intensity significantly in comparison to the vacuum. Nevertheless, the acceleration

gradients and lengths predicted by the simulations were not sufficiently large to reproduce

the measurement. Even a slightly earlier vacuum focus could not reproduce the results of

the experiment. Since the simulations also showed that higher laser modes have a significant

influence on the self-focusing behavior, a diagnostic method had to be developed that allows

determining the laser focus in the plasma. The previously discovered blowout signature was an

ideal candidate for that. A parameter study with 2D PIC simulations showed that the blowout
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signature could determine the focus position with very high accuracy.

Before this new diagnostic method could be implemented experimentally, a filter was identified

as the cause of an incorrect measurement of the vacuum focus in the experiment. At high laser

intensities, this filter defocused the laser, apparently shifting the focus further back. Since no

filter was used for the experiments, the real laser vacuum focus was probably located in the gas.

First experimental estimates suggest a shift of the focus to the center of the density profile. Once

the shift is accurately determined, another simulation campaign will model the laser plasma

dynamics.

Recent experiments also revealed that fine-tuning the group dispersion delay (GDD) increased

the electron beam quality [211]. Similar results were achieved experimentally at HZDR [R12].

However, so far, all measurements altered the GDD for optimizing the electron beam quality. In

order to include these spectrally and temporally adjusted laser pulses in particle-in-cell models,

a precise measurement of the spectra and temporal shape of the laser pulse is required in

experiments. Currently, the DRACO team is setting up a self-referenced spectral interferom-

eter [212–214] that allows characterizing the laser’s spectra and temporal structure with an

unprecedented resolution and dynamic range for each laser shot automatically. This diagnostic

method is called WizzlerHD and will provide the parameters to improve modeling the laser pulse
in simulations in the future.

The question remains whether the currently only theoretically modeled radiation diagnostics

method for the determination of the focus and the blowout regime can also be implemented

experimentally in the near future. An error in laser focus position measurements could thus

be identified much faster. The experimental implementation of the developed method is not

only useful for finding such errors, but it could also confirm, through a new and independent

measurement method, that the predictions of the PIC simulations are correct.
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7 Radiation signature of theKelvin-Helmholtz instability
7.1 Determination of plasma dynamics in astronomical objectsthrough radiation
Interstellar and intergalactic jets are of interest since they are suspected to be the origin of

yet unexplained extremely high energetic particles [42–44, 215–219], but also as they provide

a wealth of relativistic astro- and plasma physics [46]. The sources of these jets range from

young stellar objects to massive objects like black holes or neutron stars (pulsars) associated

with supernova remnants and active galactic nuclei [220] and are essential in understanding our

universe. These jets are associated with strong magnetic fields [47–49, 221] and non-thermal

radiation [29, 222, 223]. Since the plasma stream of the jet will shear on the surrounding plasma,

the Kelvin-Helmholtz instability (KHI) is expected to occur in these astrophysical jets [29, 224].

While it can not explain the extreme particle acceleration, this plasma instability converts the

kinetic energy of the jet electrons into magnetic energy and provides a mechanism behind the

strong magnetic fields observed in astronomical jets. Recent theoretical studies have shown

that the growth rate of the Kelvin-Helmholtz instability at density contrasts as expected in these

jets will be larger than any other competing plasma instability [55], thus the KHI is very likely to

occur.

While there is a comprehensive theoretical study on the plasma and particle dynamics occur-

ring during the Kelvin-Helmholtz instability including relativistic shearing velocities and kinetic

effects [53, 55, 70, 81, 225–228], these studies focus on the microscopic plasma dynamics and

provide no observables for identifying and quantifying the Kelvin-Helmholtz instability in jets

light years away.

There are also recent laboratory experiments that model plasma jets to improve our under-

standing of astrophysical jets [220] since even large-scale jet dynamics are hard to uncover

in astronomical observations, with a few exceptions like the Crab nebular [36, 229]. Recently,

the Kelvin-Helmholtz instability was identified by shadowgraph and schlieren methods in such

laboratory experiments [230, 231]. However, these experiments only provided a snapshot of the

dynamics.

As part of this thesis, a large-scale particle-in-cell simulation was performed simulating the

relativistic KHI and computing the emitted radiation [R1]. The data provided by this simulation

allowed developing an analytical model of the electron dynamics responsible for the primary

radiation, and identifying a characteristic polarization signature that enables determining the
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onset and end of the linear phase of the KHI [R4]. Additionally, a correlation between the emitted

power and the growth of the instability was identified that allows quantitatively studying the

dynamics of the instability via radiation.

The fundamental processes driving the Kelvin-Helmholtz instability are briefly explained in

section 7.2. The analytical model is discussed in section 7.3 and the large-scale simulation is

presented in section 7.4. The changes that need to be considered by an observer on Earth due

to Lorentz transformation are addressed in section 7.5. Possible observation scenarios and the

influence of less ideal jet geometries are covered in section 7.6.

7.2 An Introduction the the Kelvin-Helmholtz instability
The Kelvin-Helmholtz instability is a shear-flow instability that was first discovered for fluids

and gases where pressure fluctuations lead to turbulent mixing of the two liquids/gases along

the shear surface [232]. A very similar phenomenon occurs in shearing plasma streams and

was dubbed the magnetohydrodynamic Kelvin-Helmholtz instability. In plasmas, however, the

interaction between the two streams arises contact-less via magnetic fields generated by current

fluctuations. This plasma instability was studied using magnetohydrodynamic plasma theory

and simulation codes [233]. In recent years, computers became powerful enough to study the

sharing of two plasma streams with particle-in-cell codes [53]. The kinetic treatment of this

shear instability revealed the existence of DC-magnetic fields on the shear surface at relativistic

plasma velocities [54].

In the following section, the fundamental process driving the relativistic plasma Kelvin-

Helmholtz instability will be described and a quantitative description of the plasma dynamics

will be derived. Wherever possible, we will refer to the literature if derivations do not contribute

essentially to the understanding of the radiation of the Kelvin-Helmholtz instability, discussed in

the in proceeding section.

Figure 7.1: Illustration of two shearing plasma streams in the relative velocity frame: The two counter-
propagating streams are depicted in red and blue. The shear surface is drawn in green. The planes

of longitudinal (ESKHI) and transversal (MI) dynamics are depicted by gray planes.

A plasma stream shearing on another plasma stream is best described in the so-called

relative velocity frame, where the mean speeds of both streams are equal and the two streams

counter-propagate (see Fig. 7.1). Initially, the streams can be assumed to be charge neutral.
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In the following, we will discuss instabilities which are seeded by either small fluctuations of

the magnetic field or electric current on the shear surface. Due to a feedback mechanism,

the current fluctuation causes a change in the magnetic field which again increases the initial

current fluctuation and vice versa. This feedback between current and magnetic field leads to an

exponentially growing magnetic field and to a turbulent electron motion on the shear surface.

7.2.1 The electron-scale Kelvin-Helmholtz instability (ESKHI)
First of all, let us consider the longitudinal dynamics of two relativistically shearing plasma

streams. This is the so-called electron-scale Kelvin-Helmholtz instability (ESKHI) [55, 57]. In early

publications, this was also referenced as just the relativistic Kelvin-Helmholtz instability [53, 225,

234]. In the two-dimensional plane of longitudinal dynamics (depicted in Fig. 7.1), we assume

the density n = n(y) and the velocity ~v = (v0(y), 0, 0) only to vary in normal direction y , with the

Cartesian coordinates being (x, y , z). Due to the two-dimensional simplification assumed, the

electric field has only components in the longitudinal plane ~E = (Ex , Ey , 0), and the magnetic

field has only a perpendicular component ~B = (0, 0, Bz). The plasma dynamics is governed by

the continuity and conservation of momentum equations [3, 57]

∂ρ

∂t
+ ~∇ · ~J = 0 (7.1)

∂~p

∂t
+
(
~v · ~∇

)
~p = ~F = qe

(
~E + ~v × ~B

)
(7.2)

with ~p = γme~v being the momentum field, ~v being the velocity field, ρ = qe · n being the charge
density, qe being the charge of an electron and ~J = ~v · ρ being the current density. The dynamics
of the electric and magnetic field is described by Faraday’s and Ampère’s law [57, 59]

~∇× ~E = −
∂ ~B

∂t
(7.3)

c2 · ~∇× ~B =
∂ ~E

∂t
−

1

ε0

~J . (7.4)

Linearizing the field quantities Q in a constant Q0 and fluctuation term Q1 as

Q(x, y , t) = Q0 +Q1(x, y , t) (7.5)

Q1(x, y , t) = Q1(y) · ei(kx−ωt)
(7.6)

allows studying the dynamics of initially small fluctuations Q1 [55, 57, 225]. By linearizing the

particle density n in the continuity equation (Eq. 7.1, as part of ρ and ~J), the density perturbation

n1 can be solved. Similarly, by linearizing the momentum and velocity field in the conservation

of momentum equation (Eq. 7.2), the perturbation of the velocity field vx1 and vy1 can be

determined.

By combining these linearized equations, one obtains the linearized current density which can

again be used in the linearized Maxwell’s equation (Eq. 7.3 and Eq. 7.4) to derive an electromag-

netic eigenmode equation of the plasma shear under small perturbations [57, 225].

∂

∂y

(
χ1 · χ2 ·

∂Ex1

∂y

)
+ 2 · χ1 ·

(
∂

∂y

ω2
p+

c2

)
·
∂Ex1

∂y
+ χ1 · χ2

2 · Ex1 = 0 (7.7)

with the two parameters

χ1 =
1

γ2

ω2
pe

(ω − k · v0)2
− 1 (7.8)

χ2 =
ω2

c2
−
ω2
pe

c2
− k2

(7.9)
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depending on the velocity and density field. The quantity ωp+ =
√

q2
en+

ε0γme
is the plasma density

of the upper stream and takes into account the relativistically increased mass of the electron. A

detailed step-by-step derivation of the above equation can be found in P Alves et al. [55, 57].

Assuming a density jump and a sharp velocity jump at the shear surface

n =

{
n+ y > 0

n− y < 0
(7.10)

~v =

{
+v0 · ~ex y > 0

−v0 · ~ex y < 0
(7.11)

allows deriving a dispersion relation for the instability [53]. For equal densities n+ = n− = n, an

analytical solution exists [225].

Γ = Im(ω) =
ωp+

γ

√√√√√1

2

√1 + 8 ·
(
γkv0

ωp+

)2

− 1− 2

(
γkv0

ωp+

)2
 (7.12)

For non-equal densities n+ > n−, the dispersion relation can only be solved numerically [57]. The

dispersion relation yields an imaginary solution for ω that is zero for k = 0, increases towards

higher k values and decreases again after

kmax =

√
3

8

ωp+

γ · v0
(7.13)

till kcut−off =
ωp+

γ·v0
, where ω = 0 again. Following the initial definition of our perturbation (Eq. 7.6),

an imaginary frequency ω leads to an exponential growth. After a couple of folding times, only

the fastest growing mode at kmax will drive the instability. Thus, the characteristic growth rate of

the electron-scale Kelvin-Helmholtz instability is:

Γ = Im(ωmax) =
1√
8

ωp+

γ
. (7.14)

In a simplified picture, this means that in initial perturbation the magnetic field Bz leads to an

exponential growth in time

Bz(t) ∼ eΓ·t . (7.15)

Of course, this linearized theory has its limitations and this growth will stop in the so-called

saturation phase when the dynamics becomes nonlinear and the growth reduces.

7.2.2 More relativistic streams - the mushroom instability (MI)
The so-called mushroom instability (MI) occurs between two shearing plasma streams as well.

As the ESKHI, it leads to an exponentially growing magnetic field on the shear surface and finally

to a turbulent plasma dynamics across the shear surface. Initially, the mushroom instability

was just considered the transversal part of the known Kelvin-Helmholtz instability observed

in particle-in-cell simulations [53, 81, 235, 236], but with the work of Alves et al. [228], it was

identified as an independent plasma instability that dominates the dynamics at high Lorentz

factors of the plasma streams.

Analogous to the ESKHI, the dynamics of the mushroom instability can be studied using a

linearized theory. Starting with the same set of equation (Eq. 7.1 to Eq. 7.4), we linearize the

charge density, momentum, and electromagnetic fields as

Q(y , z, t) = Q0 +Q1(y , z, t) (7.16)

Q1(y , z, t) = Q1(y) · ei(kz−ωt) . (7.17)
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Similar to the previous derivation, the dispersion relation for the mushroom instability can be

derived for step-like plasma streams (Eq. 7.10 and Eq. 7.11). A detailed derivation can be found

in Alves et al. [57, 228].

The resulting dispersion relation for equal densities n+ = n− = n leads to the following

exponential growth rate Γ = Im(ω):

Γ =
ωpe√

2

(√
4k2v2

0

γω2
pe

+ χ2
3 − χ3

)−1/2

(7.18)

χ3 =
1

γ3
+
k2 · c2

ω2
pe

(7.19)

ωpe =

√
q2
en

ε0me
. (7.20)

Please note that the plasma frequency ωpe used here is not relativistically corrected as before

ωp+ = ωpe · γ−1/2
. The growth rate Γ(k) is zero at k = 0 and increases monotonically. The fastest

growing mode is found at k →∞ with

Γmax = ωpe
v0

c
√
γ

. (7.21)

Comparing the growth rates of the electron-scale Kelvin-Helmholtz instability (ESKHI) and the

mushroom instability (MI) for various Lorentz factors of the streams (Fig. 7.2) reveals that for

non-relativistic γ the growth rate of the ESKHI is larger. However, the growth rate of the ESKHI

reduces with γ−3/2
and thus more rapidly than compared to the MI, which decreases with γ−1/2

.

This causes the growth rate of the ESKHI falling below that of the MI. The MI is thus the dominant

instability in the relativistic regime.
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Figure 7.2: Comparison between the maximum growth rates of the ESKHI and MI: The maximum growth rates
Γ in units of the plasma frequency ωpe are plotted for both the electron-scale Kelvin-Helmholtz instability

(ESKHI) and the mushroom instability (MI) as a function of the Lorentz factor γ. The inset illustrates the

growth rates over normalized shear velocities v0/c = β0 using a linear Γ scaling. The orange dot marks

the growth rate of the MI at γ = 3 as used in the simulation discussed in section 7.4.

In a three-dimensional scenario, both instabilities will mix and the fastest growing mode will

dominate the dynamics. For the simulations presented in section 7.4, the Lorentz factor is
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γ = 3 and the expected dynamics is mainly governed by the MI. The predicted growth rate is

ΓMI = 0.54ωpe as marked by an orange dot in Fig. 7.2.

7.2.3 DC magnetic fields on the shear surface
When investigating the dispersion relations for both the electron-scale Kelvin-Helmholtz instabil-

ity (ESKHI) (Eq. 7.12) and the mushroom instability (MI) (Eq. 7.18), the growth rate Γ for a spatially

constant (DC) mode at k = 0 is zero. Since only modes with spatial modulation k > 0 grow, there

should be no DC magnetic field. However, recent particle-in-cell simulations revealed a growing

DC magnetic field on the shear surface [53, 54, 81, 228, 235, 237] that was demonstrated with

our simulation [R1, R3] as well. The existence of these DC magnetic fields cannot be described

by magneto-hydrodynamic theory and is an intrinsic kinetic effect [226].

The origin of this magnetic field is the thermal fluctuation of the electrons near the shear

surface. Assuming the two streams flowwith vx ≈ ±v0 in±~ex direction (see Fig. 7.1), the electrons
and protons follow additionally to the stream velocity a Maxwellian velocity distribution since the

plasma streams have a non-zero temperature T > 0. Due to this temperature, the particles will

diffuse across the shear surface. In thermal equilibrium, the electrons will drift across the shear

before the protons due to their lower mass me � mp. This leads to a charge separation and to a

current, which generates a magnetic field Bz . According to the Lorentz force, this magnetic field

pushes more electrons across the shear surface, thus increasing the current and the magnetic

field Bz . This feedback mechanism leads to an exponentially growing DC magnetic field on the

shear surface.

In order to quantitatively model this kinetic effect, the Vlasov equation (Eq. 3.1) needs to be

used. Since we are only interested in the particles crossing the shear, we can reduce the shear

surface geometry to a one-dimensional problem, allowing particles to propagate only along

y , while still allowing for three-dimensional velocities (usually abbreviated as 1D3V) [55, 226].

Initially, one can assume the shear surface region to be field free. This simplifies the equation

of motion to a free streaming approximation where y(t) = y0 + vy0 · t and ~v(t) = ~v0. Since

the entire dynamics is independent of vz , we will neglect this velocity component, reducing

the distribution function to F (y , vy , vx , t) =
∫ +∞
−∞ dvz f (y , ~v , t). A formal solution to the Vlasov

equation is the initial distribution function F (y , vy , vx , t) = F0(y0, vy0, vx0), which we separate in

two components, one for each stream F0(y) = F+
0 (y > 0) + F−0 (y < 0). The current density of

the electrons in the x -direction is thus:

Je±x = qe

+∞∫
−∞

dvx vx

+∞∫
−∞

dvy F0(y − vy0 · t, vy0, vx0) (7.22)

where we used the free-streaming equation of motion y0 = y − vy0 · t, vy0 to return to the initial

distribution function F0. This initial distribution function can be described by:

F±0 (y0, vy0, vx0) = n0 · fMB(vn0) · fMB(vx0 ∓ v0) (7.23)

fMB(v) =
1√

2πvT

e
− 1

2
v2

v2
T , (7.24)

with fMB being the Maxwell-Boltzmann distribution (for each dimension) for a thermal velocity

of vT =
√

kBT/me .
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Thus, according to Eq. 7.22, the current densities are:

Je±x = ±qev0n0

+∞∫
∓y/t

fMB(vy0) dvy0 (7.25)

= ∓
ev0n0

2
erfc

(
∓y√
2vT t

)
, (7.26)

with e = |qe | being the elementary charge and erfc(x) = 1− erf(x) being the complementary

error function. The lower limits of the integral in Eq. 7.25 ensures that only particles from the

specific stream are considered. Assuming the proton stream to be unperturbed at these time

scales, the total current density is

Jx(y) = ev0n0 ·

erfc
(

y√
2vT t

)
y > 0

erfc
(

y√
2vT t

)
− 2 y < 0

. (7.27)

By integrating Ampère’s equation (Eq. 7.4), the magnetic field generated by this current can be

determined:

Bz = −µ0

∫
dy Jx (7.28)

= −eµ0v0n0

[
|y | · erfc

(
|y |√
2vT t

)
−
√

2

π
vT · t · e

− 1
2

(
y
vT t

)2
]

. (7.29)

The evolution of the current density Jx and themagnetic fieldBz over time and along the shear

interface is depicted in Fig. 7.3. Comparing this to the magnetic field strength in particle-in-cell

simulation reveals that this theory underestimates the growth of the magnetic field strength.

This is due to the free-streaming approach which fails as soon as the feedback of the generated

magnetic field starts to change the electron dynamics. As mentioned before, the magnetic
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Figure 7.3: Slices through the simulation: Illustration of the current density Jx(y, t) and magnetic field Bz(y, t)

evolution using exemplary parameters γ = 3 and vT = 0.01v0 analog to the simulation performed in

section 7.4. Over time the DC field becomes stronger and propagates across the shear interface. The

model depicted is only valid in the initial phase where the feedback of the magnetic field onto the electrons

can be neglected.

field starts pushing more electrons across the shear surface and increases the current and the

magnetic field amplitude further.

105



However, in case of cold plasma streams vT � v0, the magnetic field grows not as fast as

observed in simulation, even when taking into account the feedback mechanism. The reason for

this is that in the cold plasma case, a different mechanism is driving the electrons across the

shear initially: the Lorentz force caused by the growing magnetic field on the shear surface due

to either the ESKHI or the mushroom instability
.
vy ∼ ~v0 × ~B = v0 × Bz . In a similar manner to

the warm plasma case discussed above, the current density and magnetic field can be computed

[226]. Assuming an exponentially increasing velocity vy ∼ eΓt
it can be shown that the DC

magnetic field at the shear interface grows equivalently to the highest mode of the ESKHI (or MI)

[226], derived by magneto-hydrodynamic theory.

The maximum field strength reached by the DC magnetic field can be estimated by allowing

Eq. 7.29 to reach arbitrary amplitudes. The characteristic width of the DC field is LDC =
√

2tvT ≈
c
√
γ/ωpe [54]. If the magnetic field is strong enough, the Larmor radius of the electrons rL = γmv

eB

becomes smaller than the characteristic width of the DC field. At these magnetic field amplitudes,

the electrons will no longer be able to cross the shear surface and will thus not contribute to a

further increase in current density. At LDC ≈ rL the magnetic fields stops growing. The amplitude
that is reached up to saturation is:

eBsat
z

meωpe
≈
√
γ0β0 ≈ 1.4

√
γ0β0 (7.30)

with the factor 1.4 being a result of 3D particle-in-cell simulations performed by Grismayer et al.

[54] with the OSIRIS code [76, 238]

These growing DC magnetic fields are the origin of the characteristic radiation signature of the

Kelvin-Helmholtz instability [R4] as we will discuss in the rest of this chapter in detail.

7.3 A microscopic model of the shear surface electron dynamics
In the linear regime, the Kelvin-Helmholtz instability is driven by the exponentially growing

magnetic field on the shear surface. While the microscopic dynamics of both the electrons and

the electromagnetic fields are quite complex, the mean magnetic field grows exponentially with

a relatively constant growth rate since the details of the electron and field interplay average

out on the scale of the shear surface (see section 7.2). Since the observable radiation is a sum

of the radiation of all electrons (Eq. 4.1), the emitted radiation can be approximated by the

mean motion of an electron in this exponentially growing magnetic field. By neglecting the

complex interplay between plasma dynamics and electromagnetic fields and just using the

global magnetic field evolution (Eq. 7.15) it becomes possible to derive a simple kinetic model

that describes the mean electron dynamics and the emitted radiation. The details of this kinetic

model and the resulting characteristic radiation are described in the following sections. Details

on the model have been published in [R4] while the analysis of the saturation was reported on

in [R1, R3].

7.3.1 The electron dynamics
As a simplification, our model only considers the most dominant magnetic field component

Bz . Even though all other field components grow exponentially during the linear phase as well,

their magnitude and thus their influence on the electron dynamics is orders of magnitude lower

[81]. The model also neglects any effects from local field fluctuations caused e.g., by charge

separation. The underlying magnetic field can be described as:

~B(t) = B0 · ~ez · eΓt
(7.31)
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with B0 denoting an initial magnetic field value at time t = 0, ~ez being the unit vector in z -

direction and Γ being the exponential growth rate of the magnetic field. The model further

assumes that the magnetic field amplitude is independent of the electron’s position which is

equivalent to a spatially homogeneous magnetic field.

Based on this magnetic field evolution (Eq. 7.31), the equation of motion can be derived using

the Lorentz force:

~F =
..
~r · γ ·m (7.32)

= q ·
(
~E + ~v × ~B

)
(7.33)

= q · B0 · eΓt
( .
~r × ~ez

)
(7.34)

with m being the mass,
.
~r = ~v the velocity, γ the relativistic Lorentz factor and

..
~r the acceleration

of the electron.

Obviously, there is no force and no change in motion in the z direction:
..
~r · ~ez =

..
z = 0. For the

other components, the Lorentz force leads to a system of coupled differential equations:

..
~r · ~ex =

..
x = +

q · B0

γ ·m · e
Γt · .y (7.35)

..
~r · ~ey =

..
y = −

q · B0

γ ·m · e
Γt · .x . (7.36)

This differential equation can be solved by the complex ansatz :

.
r(t) =

.
x(t) + i

.
y(t) = α · e iχ

Γ
·(1−eΓt+φ) . (7.37)

Without losing generality, one can assume an initial velocity in x direction
.
~r = v0 · ~ex . This leads

to the following simplified pair of equations:

.
x(t) = v0 · cos

(
χ
Γ ·
(

1− eΓt
))

(7.38).
y(t) = v0 · sin

(
χ
Γ ·
(

1− eΓt
))

(7.39)

with χ = q·B0

γ·m being a time constant.

By integrating this solution over time, one finds the electron trajectory to be

x(t) = x0 −
v0

Γ

{
cos
(χ

Γ

)
·
[

Ci
(χ

Γ

)
− Ci

(χ
Γ
eΓt
)]

+ sin
(χ

Γ

)
·
[

Si
(χ

Γ

)
− Si

(χ
Γ
eΓt
)]}

(7.40)

y(t) = y0 −
v0

Γ

{
sin
(χ

Γ

)
·
[

Ci
(χ

Γ

)
− Ci

(χ
Γ
eΓt
)]
− cos

(χ
Γ

)
·
[

Si
(χ

Γ

)
− Si

(χ
Γ
eΓt
)]}

, (7.41)

with the starting conditions x(0) = x0 and y(0) = y0. In this equation we used the sine- Si(z)

and cosine-integrals Ci(z):

Si(z) =

z∫
0

sin x

x
dx (7.42)

Ci(z) = −
+∞∫
z

cos x

x
dx . (7.43)

The electron will move on a spiral trajectory, approaching x → x∞ and y → y∞ for t →∞.

x∞ = x0 −
v0

Γ
·
[

cos
(χ

Γ

)
· Ci
(χ

Γ

)
+ sin

(χ
Γ

)
· Si
(χ

Γ

)
− sin

(χ
Γ

)
·
π

2

]
(7.44)

y∞ = y0 −
v0

Γ
·
[

sin
(χ

Γ

)
· Ci
(χ

Γ

)
− cos

(χ
Γ

)
· Si
(χ

Γ

)
+ cos

(χ
Γ

)
·
π

2

]
. (7.45)
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By redefining the original solution for the electron trajectory to spiral around the limes solution

(x∞, y∞)→ (0, 0), and introducing the simplifying definitions

C(t) = Ci
(χ

Γ
· eΓt

)
(7.46)

S(t) = Si
(χ

Γ
· eΓt

)
−
π

2
(7.47)

α =
χ

Γ
. (7.48)

one gets the simplified solution:

x̃(t) = x(t)− x∞ =
v0

Γ
[sinα · S(t) + cosα · C(t)] (7.49)

ỹ(t) = y(t)− y∞ =
v0

Γ
[sinα · C(t)− cosα · S(t)] . (7.50)

This allows describing the trajectory in circular coordinates. The radius becomes:

r =
√
x̃2 + ỹ2 =

v0

Γ
·
√
S2(t) + C2(t) , (7.51)

and the azimuth is:

tan(ϕ) =
sinα · C(t)− cosα · S(t)

sinα · S(t) + cosα · C(t)
. (7.52)

The solution of the equation of motion of an electron in an exponentially growing, spatially

homogeneous magnetic field is a spiral trajectory. An exemplary trajectory is plotted in Fig. 7.4.

The radius of the spiral decreases approximately exponentially with time. In agreement with
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Figure 7.4: The model electron trajectory: The trajectory of an electron in an exponentially growing, spatially
homogeneous magnetic field is plotted as assumed in the microscopic model. The entire trajectory is

plotted in blue while a single duration of an inverse growth rate ∆t = Γ−1
is marked in orange.

the fact that a magnetic field does not do any work
.
W = ~F ·

.
~r = 0, the absolute velocity

stays constant. However, the direction of the velocity changes increasingly - equivalent to the

azimuthal angle. The magnitude of the acceleration increases proportionally to the increase of

the magnetic field over time.

This solution is, of course, an approximation valid in the case of negligible spatial field gradients.

Since the KHI only occurs on the shear surface, this limits this solution to a small volume around
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the shear surface where the magnetic field undergoes a spatial extremum
∂Bz
∂y ≈ 0. This seems

like a dramatic limitation, but in this region, the acceleration is also strongest and thus this

region contributes dominantly to the total radiation.

In the following section 7.4, one will see that this simplification still describes the total radiation

quite well. For now, one has to keep in mind that this solution is only valid on the shear surface.

7.3.2 Deriving the emitted radiation polarization
Based on the derived particle motion, the emitted radiation can be calculated using Liénard-

Wiechert potentials as discussed in detail in chapter 2.1. Since the linear phase of the KHI lasts

approximately ∆tlin ≈ 20ω−1
pe [R4], the electrons will perform less than

Nrot ≈
χ
(

1− eΓ∆tlin
)

2πΓ
< 2 (7.53)

rotations before the end of the linear phase. With an initial magnetic field of B0 = Bsat
⊥ · e−Γ∆tlin ,

no periodic motion of the electrons is expected. Thus, the radiation spectra will not feature any

characteristic peaks, similar to the broadband synchrotron radiation [59]. However, in contrast

to synchrotron radiation, the curvature of the trajectory will be slightly stronger. This will alter

the degree of polarization compared to synchrotron radiation.

In order to compute the degree of polarization, we add a polarization filter F to the Liénard-

Wiechert equation (Eq. 2.10).

d2W

dω d Ω
(~n, ω,F) =

q2
e

16π2ε0c
·

∣∣∣∣∣∣∣
+∞∫
−∞

Ne∑
k=1

F ·
~n ×

[(
~n − ~βk

)
×
.
~βk

]
(

1− ~n · ~βk
)2 · eiω(t−~n·~rk/c) dt

∣∣∣∣∣∣∣
2

(7.54)

where the basic polarization filters are 3× 3matrices:

Fk =

δxk 0 0

0 δyk 0

0 0 δzk

 (7.55)

for k ∈ {x, y , z} and with δab being the Kronecker delta. Any linear combination of the above
is also a valid filter. Applying no filter is actually equivalent to the identity matrix and thus to a

linear combination of all three filters of the Cartesian coordinate system F1 = Fx + Fy + Fz .

Since our model describes the KHI in the relative velocity frame, there is no preferred direction

of observation. We define the characteristic degree of polarization for a filter F as integral over

the full solid angle 4π and all frequencies:

〈 PF 〉 =

∫ 4π
0 d Ω

∫∞
0 dω d2 W

dω d Ω (~n, ω,F)∫ 4π
0 d Ω

∫∞
0 dω d2 W

dω d Ω (~n, ω, 1)
. (7.56)

This is an averaged quantity over all observation directions ~n, frequencies ω and particles k .

We will see later in section 7.5.1 that this integrated quantity is also useful for observing the

radiation on Earth.

The analytical trajectory is more complex than the synchrotron case. Therefore, solving the

above equation by a numerical approach appeared to be more suitable. Due to the rotational

symmetry, it is useful to define the polarization as parallel and perpendicular to the radiation,

instead of relying on the Cartesian coordinates.

〈 P⊥ 〉 → F⊥ = Fz (7.57)

〈 P‖ 〉 → F‖ = Fx + Fy (7.58)
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In order to obtain the resulting characteristic polarization numerically, we computed the

radiation by sampling 2048 directions on a half dome. The contributions from the other 3 half

domes are identical for reasons of symmetry. Furthermore we calculated the radiation for 4096

frequencies in the range of ω ∈
[
0, 105Γ

]
. For a specific position on the trajectory, the radiation

will be, due to the relativistic velocity of the electron, mainly emitted in a 1/γe cone in the current

direction of propagation [129]. The radiation of the single electron is therefore dominated by

the polarization of the radiation in the final direction of motion at the cut-off of the numeric

trajectory. In order to compensate for this, the various propagation directions of electrons in the

shear surface need to be considered. This can be done by taking into account an ensemble of

electron trajectories with various start and final positions and averaging over their polarization.

This can be interpreted both as an average over an ensemble of electrons at the same time or

as a temporal average of a single electron. The first makes sense in the context of the KHI as

plasma instability while the latter can only be interpreted in the single particle model.

The resulting degree of polarization is independent of the initial magnetic field value B0 but

shows a dependency both on the particle velocity v0 and the growth rate Γ as plotted in Fig. 7.5.

It shows a stronger parallel polarization for increasing initial velocity as well as for higher growth
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Figure 7.5: The degree of polarization of the radiation emitted by electrons in an exponentially growing mag-netic field: The degree of polarization P‖, describing the polarization parallel to the plane of rotation, is
plotted for various Lorentz factors γe and growth rates Γ. A dependency on both the electron velocity

and the growth rate can be seen. They differ from the degree of polarization expected for synchrotron

radiation, which would be the distribution at Γ → 0. Marked with a cross is the degree of polarization

expected at the large-scale particle-in-cell simulations discussed in the following sections.

rates. However, the exact degree of polarization is relatively complex and shows local minima

as well. It is important to point out that the degree of polarization differs significantly from the

degree of polarization in the synchrotron case Γ→ 0. There, slight changes for sub-relativistic

velocities are known [239]. The effect of the exponential growth of the magnetic field has a

significant influence on the degree of polarization as well. Thus the degree of polarization allows

distinguishing between this exponentially growing magnetic field regime, expected during the

linear phase of the KHI, and the known characteristic polarization of synchrotron radiation.

In figure 7.5, the cross already marks the degree of polarization expected for the parameters

of the large-scale particle-in-cell simulation discussed in the following sections. The polarization

is
〈
P‖
〉

= 89.8% and 〈P⊥〉 = 10.2%.
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7.3.3 Deriving the correlation between radiation and KHI growth rate
In addition to the characteristic degree of polarization, the radiated power shows a characteristic

temporal evolution. The total emitted radiation power
.
εrad of an electron following the spiral

trajectory predicted by the model can be computed using the Larmor equation [59]

.
εrad(t) =

µ0q
2
eγ

6
e

6πc

[
(
.
~β)2 − (~β ×

.
~β)2
]

(7.59)

=
µ0q

4
eB

2
0γ

2
e

6πc ·m2
e

·
v2

0

c2
· e2Γt . (7.60)

It increases exponentially .
εrad ∼ e2Γt ≡ eΓ̃radt . (7.61)

In this equation, Γ̃rad is the growth rate of the radiation power as predicted by the microscopic

model.

Similarly, the total magnetic field energy evolves in the model. The component-wise total

magnetic field energy, used in the following sections, is defined as:

εBu(t) =

∫
V

1

2µ
B2
u(~r, t) d V (7.62)

for the magnetic field component ~B · ~eu = Bu with u ∈ {x, y , z}. For the model, which only
considers the contribution of the z component, the magnetic field energy increases exponentially

for a finite volume as

εBz(t) = 1
2µe

2Γt ·
∫
B2

0(~r) d V ∼ e2Γt ≡ eΓ̃Bz t . (7.63)

Introducing the exponential growth rate Γ̃Bz of the magnetic field energy in the model quantifies

the evolution of the magnetic field energy as

εBz(t) ∼ e2Γt ≡ eΓ̃Bz t . (7.64)

Since the KHI is driven by themagnetic field componentBz , its development defines the evolution

of the instability. Measuring εBz(t) is often used in simulations to determine the growth rate Γ

of the KHI using relation 7.63.

By comparing equation 7.61 with 7.63, the equivalent temporal growth of both quantities is ob-

vious. However, these quantities can hardly be measured in experiments or during astronomical

observations. Measuring the emitted radiation over time is much easier. Due to the discussed

correlation between the KHI growth rate Γ, the growth rate of the magnetic field energy Γ̃Bz of

the driving Bz component, and the emitted radiation power Γ̃rad, determining the characteristic

growth rate of the KHI by measuring the radiation power is possible.

d

d t

.
εrad(t).
εrad(0)

= 2Γ e2Γt =
d

d t

εBz(t)

εBz(0)
(7.65)

The previous conclusions are only valid for the microscopic model of the KHI. In case of a

three-dimensional shear surface on which the KHI occurs, this finding only applies to a very small

region on the shear surface, where the previously discussed limitations hold true. However, the

radiation power emitted within this small region increases dramatically compared to the bulk of

the streams.

In order to determine whether the radiation from the shear surface is strong enough to exceed

the background radiation, a realistic three-dimensional simulation is essential.
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7.4 Comparison to large scale simulations
In order to validate the kinetic model presented in the previous section, we performed a large-

scale particle-in-cell simulation of the relativistic Kelvin-Helmholtz instability (KHI). By additionally

simulating the emitted radiation with the in situ radiation plug-in of PIConGPU (see section 4.1),

the plasma dynamics could be compared with the emitted radiation. This allowed validating

the model predictions. However, particle-in-cell simulations of the KHI with relativistic shear

velocities have a high computational demand.

Since the plasma dynamics happens on length scales of the plasma wavelength λpe, the

simulation needs to resolve length scales smaller than:

λpe =
c

ωpe
=

√
mec2ε0

nee2
. (7.66)

However, the plasma wavelength decreases with the evolution of the KHI locally, since the

density increases in the vortices. Therefore, the spatial resolution must be set quite fine initially.

On the other hand, the KHI vortices in this regime are extended approximately as wide as the

inverse of the KHI waves number [53]:

LKHI ≈
2π

kmax
= 2π · λpe ·

√
8

3
· β0 · γ

3/2
e . (7.67)

With a higher Lorentz factor γe , the vortices become larger and a larger volume needs to be

simulated to cover several vortices completely.

These two requirements make simulating the KHI in the relativistic regime computationally

challenging since both resolving the small-scale plasma dynamics and the macroscopic plasma

vortices require many cells in particle-in-cell simulations.

Fortunately, we had the opportunity to use the largest supercomputer in the world at that

time: the Titan cluster at the Oak Ridge National Laboratory. Using PIConGPU, we simulated two

counter-propagating plasma streams of ionized hydrogen with Lorentz factors of γe = 3. This is

the Mushroom Instability (MI) regime as discussed in section 7.2.2.

The two counter-propagating streams were distributed over 8000× 768× 768 cells with each

cell initially containing 8 macroprotons and 8 macroelectrons. The mass ratio between the

proton and electron species was set to the relativistic value of me/mp = 1/1836 thus avoiding

a faster proton evolution. The cubic cells had an edge length of ∆x = 0.06 · λpe, allowing a

resolution of 16 grid points per initial plasma skin depth. Even if the vortex structure reaches a

10 times higher density than the initial density of the plasma stream, these structures would

still be resolved by 5 grid points with respect to the smaller plasma skin depth at these higher

densities (see Eq. 7.66). The large extent of the simulation box allowed resolving approximately

9 KHI vortices. However, such a large system required to use nearly all GPUs available on

the Titan cluster. The final simulation utilized 18, 432 GPUs reaching a peak performance of

7.2 PFLOP/s (double precision) and 1.5 PFLOP/s (single precision), being the particle-in-cell

simulation with the so far highest performance [R1].

The simulation went through 2000 PIC-cycle iterations at a temporal resolution of ∆t =

0.031ω−1
pe and covered a total time of tsim = 62ω−1

pe . This included not only the linear phase of

the KHI, during which the magnetic field grows exponentially, but also the initial phase and the

saturation regime.

Since the 9 vortices covered by the simulation box were smaller than a realistic shear surface

extent in an astrophysical jet, continuous boundary conditions on each outer surface of the

simulation box ensured that particles leaving the simulated volume would re-enter from the

opposite side. The evolution of the electric and magnetic fields was simulated using the field

112



solver by Yee [82] (see section 3.2). The reaction of both the ion and electron species to these

fields and the resulting particle propagation was treated with the Boris particle pusher [87]. The

resulting current was computed using the Esirkepov current deposition scheme [100] treating

the macroparticles as a triangular-shaped density cloud (TSC) [73].

Figure 7.6: A sketch of the KHI simulation setup: The two counter-propagating plasma streams are shown in
the center. They are surrounded by a half-dome grid. Each grid intersection represents one of the 481

observation directions ~n sampled for the simulation.

The radiation was calculated for frequencies between ω = 0.014ωpe and ω = 14ωpe on a

logarithmic frequency scale for every second electron simulated. In order to sample the total

radiation in all directions, the intrinsic symmetry of the setup was used and instead of the full

Ω = 4π solid angle. A half dome of Ω = 1π was sampled using 481 observation directions ~n.

These observation directions were distributed as:

~n =

sin θ · cosϕ

sin θ · sinϕ

cos θ

 (7.68)

with equidistant 32 samples along ϕ ∈ [0, 2π] and 32 equidistant sampling points along θ ∈
[π/2, π]. For θ = π all observation directions in ϕ are equal ~n = (0, 0,−1), thus of these only one

was used for calculation.

A sketch of this setup is depicted in figure 7.6. A detailed description of the simulation and its

performance can be found in [R1].

7.4.1 Evolution of the KHI
In this large-scale simulation, we expect three stages of plasma dynamics: the initial, the linear

and the saturation phase. The first stage describes the onset of fields in the two plasma streams.

By placing protons in the same position as electrons and setting the magnitude of the electric

and magnetic fields in the entire simulation volume to zero, the simulation is initialized as charge

neutral. Due to the streams’ temperature, the proton and electron pairs separate, thus creating

electric and magnetic fields. This initial “thermalization” is expected to cause an initial increase

113



of magnetic and electric field energy. The particles propagate in ±x direction. They create
current fluctuations in ±x direction causing strong By and By fluctuations compared to weak Bx
fluctuations. Thus the total component-wise magnetic field energy εBy and εBz should initially

increase (see Fig. 7.7), but we expect εBx to stay relatively constant.
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Figure 7.7: Evolution of the magnetic field energy: The evolution of the component-wise magnetic field energy
εBi derived from the simulation according to Eq. 7.62 is plotted versus time t . The solid lines depict values

from the large-scale KHI simulation. The dashed lines represent the corresponding field energy evolution

for a single plasma stream without driving a KHI. They are derived from a smaller simulation and scaled to

the volume of the KHI simulation. Initially, the energy is dominated by the stream thermalization. This is

followed by the linear phase of the KHI with exponential field growth. This phase can first be identified

by the increase of the Bx energy. Beforehand, the Bx energy has only been weakly growing due to the

stream thermalization. At t ≈ 30ω−1
pe the saturation of the KHI starts and the exponential growth reduces.

The vertical gray lines mark times for which slices are plotted in Fig. 7.8.

Due to these magnetic field fluctuations, the Kelvin-Helmholtz instability is seeded on the

shear surface. This leads to an exponential growth of the Bz magnetic field as discussed in

section 7.2. It is called the linear phase. Due to this growth of the magnetic field component Bz
over time, the electric field components Ex and Ey increase as well according to Maxwell’s law:

∇× ~E = −
∂ ~B

∂t
≈ −~ez ·

∂Bz
∂t

(7.69)

Ex , Ey ∼
∂Bz
∂t
6= 0 . (7.70)

Following Ampère’s law, the temporal changes in the electric field cause the other magnetic field

components to grow as well:

∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
∼
∂2Bz
∂2t

· (~ex + ~ey ) (7.71)

Bx , By ∼
∂2Bz
∂2t

6= 0 . (7.72)

Therefore, all magnetic field component will grow exponentially.

Initially, the exponentially growing magnetic field on the shear surface does not increase the

total magnetic field energy over the entire simulation volume much. But right with the onset of
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the KHI, the Bx field starts growing exponentially. At some point, the field growth caused by the

KHI outruns the growth due to thermalization and the Bz and By components increase faster.

However, at this time the linear phase of the KHI is already in progress. In order to illustrate

this influence of the stream thermalization, Fig. 7.7 shows the field evolution over time of a

single stream, which undergoes thermalization but does not drive a KHI, as dashed lines. The

separation in component-wise magnetic field energy between single stream and two stream

setup can be clearly identified for the Bx component at t ≈ 10ω−1
pe , while the separation for the

By and Bz component can only be identified after t ≈ 20ω−1
pe due to the strong contributions of

the stream thermalization at these components.
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Figure 7.8: Slices through the simulation volume for various time steps: The magnetic field Bz evolution is
depicted by slices through the simulation volume as illustrated in Fig. 7.6. Initially at t1, the magnetic field

is relatively weak and characterized by homogeneous field fluctuations. Later, at t2, the increasing fields

due to the KHI are clearly visible. Towards the end of the linear phase, at t3, the field extends farther out

and its magnitude increased further. The illustrated time steps are depicted by gray lines in Fig. 7.7.

Following this exponential growth of the magnetic field, the plasma reaches a saturation

regime where the electron crossing between the two streams is reduced since the magnetic field

becomes strong enough to trap electrons instead of leading to more charge separation [54].

Consequently, the increase in magnetic field energy levels off.

These three stages are depicted by slices of the magnetic field Bz along the longitudinal and

transversal plane in figure 7.8.

The simulation program PIConGPU can store field distributions on the hard drive, enabling a

post-processing field analysis. As discussed in section 3.3, for large simulations, like this one,

storing the field distribution is limited due to bandwidth and disk storage. In our case, this

allowed only data output every 200
th
time step. In order to analyze the field evolution with a
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higher temporal resolution, PIConGPU provides an in situ plug-in which integrates regularly the

total component-wise field energy for the entire simulation volume. This field energy analysis

plug-in reduces the electric and magnetic field data to 6 floating-point values. The reduced

data can be more regularly stored on disk, allowing a finer temporal resolution. This total

component-wise field energy, computed with the in-situ plug-in, is shown in figure 7.7. The

spatially resolved magnetic field values for the magnetic field component Bz are exemplarily

illustrated in figure 7.8. These values were obtained from the less frequent total data outputs.

This detailed discussion of the data output would not be necessary if the integration carried

out by the plug-in did not cause a drawback: the initial signs of emerging KHI are drowned

by the integration of the bulk magnetic field. Initially, the global field is dominated by the

“thermalization” of the streams. The field evolution caused by the KHI is therefore initially hidden

as discussed before. Subtracting the field energy from the field energy of the single stream

simulation allows a slightly better identification of the KHI evolution. However, this subtraction

has its limits, since the magnetic field grows orders of magnitude during the “thermalization”.

As discussed before, the Bx component is only slightly increased due to thermalization. It is

mainly driven by the KHI and thus ideally suited for identifying the evolution of the KHI in the

simulation. The correlation between εBx integrated over the entire volume and the magnetic

field energy at the shear surface plane, derived only for discrete time steps accessible via data

outputs, is demonstrated in figure 7.9. It can be clearly seen that εBx follows the evolution on

the shear surface.
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Figure 7.9: Comparison of the global component-wise magnetic field evolution with the component-wisemagnetic fields on the shear surface: The global field energy ε of the Bx magnetic field component
follows the same evolution as Bz on the shear surface and thus allows determining the evolution of

the KHI with a better temporal resolution than achievable by field data outputs of the entire simulation

volume. The energies are normalized to the time t = 24.8ω−1
pe , marked by a gray line.

In conclusion: using a globally integrated Bx in contrast to Bz allows analyzing the early phase

of the linear regime
12
. That is why we will use Bx for any further analysis of the KHI evolution.

From the simulated magnetic field, the exponential growth rate Γ can be determined numeri-

cally. In contrast to previous studies, we did not fit an exponential function eΓt
onto the data,

but resolved the temporal evolution of the growth rate by a logarithmically centered difference

12
Using the integrated “global” quantities also allows avoiding errors in selecting the right region of interest.
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scheme [R4]. The growth rate Γf (tk) of a quantity f (t) at time tk = ∆t · k can be determined by:

Γf (tk) =
log
(
f (tk+1)
f (tk−1)

)
tk+1 − tk−1

. (7.73)

By applying this method to the magnetic field energy εBx of the Bx component, as obtained

from the simulation, we derive the evolution of the growth rate ΓBx over time (see Fig. 7.10). The

growth rate peaks at around ΓBx ≈ 1ωpe . Based on this evolution we define the duration of the

linear phase of the KHI as the time, where the growth rate is larger than half of the maximum.

Based on this definition, the linear phase starts at t1 = 9.0ω−1
pe and ends at t2 = 30.7ω−1

pe . This

time needs to be compared to the time of the linear phase determined by polarization in the

next section.
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Figure 7.10: The growth rate ΓBx of the magnetic field energy εBx of the magnetic field component Bx overtime t: The plot depicts the growth rate evolution over time. The crossing of the half maximum line
defines the linear phase.

7.4.2 Polarization signature
Determining the degree of polarization for every observer and every frequency is possible

with PIConGPU. This allows a detailed analysis of the polarized radiation emitted during the

linear phase of the KHI. In Eq. 7.54 we determined the polarization by selecting a specific vector

component of the complex amplitude before calculating the radiation spectra via the spectrally

resolved Liénard-Wiechert potentials. In the radiation plug-in, such a filter can be avoided since

PIConGPU stores the complex amplitudes ~A ∈ C3
of the computed radiation (see Eq. 4.3) [R9].

The vector components of the complex amplitude are proportional to electric field components

of the emitted radiation (see section 2.1). Applying a polarization filter F as introduced in Eq. 7.54

is therefore possible during post-processing of the radiation data:

d2W

dω d Ω
(~n, ω,F, t = ∆t · k) =

∆t

16π2ε0c
·
∣∣∣F · ~Ak(ω, ~n)

∣∣∣2 . (7.74)

Equation 7.74 describes the total, spectrally resolved radiation emitted at frequencyω in direction

~n after a time of t = k · ∆t .
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In order to resolve the evolution of the polarization over time, the finite difference method has

to be applied to Eq. 7.74. The spectrally and directionally resolved power is the time derivative of

the radiated energy
d2
.
W

dωdΩ = d
dt

d2W
dωdΩ . On the one hand, the numeric integration for determining

the spectra requires adding several consecutive time steps. On the other hand, it is not feasible

to store the complex amplitudes for every time step. Therefore, the numeric differentiation has

to be performed between complex amplitudes several time steps apart:

d2
.
W

dωdΩ
(~n, ω,F, t = ∆t · k) =

1

16π2ε0cNA
·
∣∣∣F · (~Ak(ω, ~n)− ~Ak−Na(ω, ~n)

)∣∣∣2 (7.75)

with NA being the number of time steps between the two amplitudes used for the difference

quotient.

Analog to the method presented in section 7.3.2, the characteristic degree of polarization is

determined by integrating the radiation over the full solid angle (Eq. 7.56). Due to the symmetry

of the shear interface, only the radiation on a half dome of ∆Ω = π had to be simulated.

The resulting degree of polarization over time is thus numerically defined as:

〈PF〉 (t) =

.
W (F{x,y ,z}, t).
W (F1, t)

(7.76)

.
W (F, t) = 4 ·

∑
ω

∆ω
∑
~n

∆Ω
d2P

dωdΩ
(~n, ω,F, t) (7.77)

with the two sums being the sum over all frequencies and observation directions simulated, ∆ω

being the frequency step width
13
, and ∆Ω = ∆θ∆ϕ sin(θ) being the finite solid angle of each

virtual observation point (Eq. 7.68).

The resulting polarization is plotted in Fig. 7.11. The quantities simulated relate to the predic-

tions of the microscopic model as follows:

simulation model

〈Px 〉 = 1/2 · P‖ (7.78)

〈Py 〉 = 1/2 · P‖ (7.79)

〈Pz 〉 = P⊥ . (7.80)

Initially, the radiation is predominantly polarized perpendicularly to the plasma stream

Py , Pz � Px . The reason for this polarization is the fluctuation of the magnetic and electric field

which the electrons encounter in the bulk of the plasma stream. This characteristic polarization

is very similar to synchrotron radiation and has a characteristic degree of polarization of 7/16

for the two components perpendicular to the stream, Py and Pz , and 2/16 parallel to the stream

direction [59]. Recent studies found that radiation emitted during this jitter motion in magnetic

field fluctuations differs from synchrotron radiation [240]. However, these studies focused on

the spectral differences to synchrotron radiation, not on the polarization. For reasons of illus-

tration, we thus compare the initial polarization to synchrotron radiation and find an excellent

congruence.

At around t ≈ 10ω−1
pe , the degree of polarization starts changing rapidly. We define the

start of the linear phase of the KHI, according to polarization, as the point in time when the

degree of polarization matches the polarization of the microscopic model of the KHI vortex

dynamics better than the polarization of synchrotron radiation. This “better” match starts at

t = 9.0ω−1
pe , which is identical to the start of the linear phase determined via the growth rate

13
Due to the logarithmic frequency range, ∆ω differs for every frequency summand.
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Figure 7.11: The temporal evolution of the polarization before, during and after the linear phase of the KHI:
The linear phase can be determined by its characteristic polarization. Theoretical predictions for syn-

chrotron and model polarization are marked by dashed lines. The expected values are stated in the

color of the corresponding component. The linear phase starts when the model predictions are a better

match for the polarization than the synchrotron polarization. The linear phase ends, when the anisotropy

between 〈Px 〉 and 〈Py 〉 starts to grow.

of the magnetic field (see section 7.4.1). After this rapid change in polarization, the degree

of polarization stabilizes and stays approximately constant till t ≈ 30ω−1
pe . During this phase,

the polarization of the billion particles simulated, agrees very well with the simple microscopic

model, despite varying injection time and non-homogeneous magnetic field strength on the

shear surface. Nonetheless, the polarization in x -direction is slightly higher than predicted by the

microscopic model while the polarization in y -direction is slightly lower 〈Px 〉 > 0.5 ·
〈
P‖
〉
> 〈Py 〉.

This deviation originates from the decrease of the magnetic field strength further away from

the shear surface which makes the acceleration of particles in the center of the shear stronger

than at the return points further away from the interface. When crossing the shear surface, the

electrons propagate perpendicularly to the shear surface ~β ‖ ~ey . According to the Lorentz force,
the acceleration parallel to the plasma stream is larger during the crossing than the acceleration

perpendicular to the shear surface
.
βx �

.
βy . Therefore, radiation emitted by particles moving

across the shear surface is mainly x -polarized. At the turning points, further away from the

shear interface, the electrons propagate parallel to the stream ~β ‖ ~ex . Again, according to the
Lorentz force, the acceleration at this point is larger in y -direction than in x -direction

.
βx �

.
βy .

Thus the emitted radiation is mostly polarized in y -direction. Since the acceleration is stronger

in regions with larger magnetic fields, the radiation there is also stronger resulting in radiation

being more x - than y -polarized. This anisotropy is observed in the simulation as well. Due to

the inhomogeneity of the magnetic field perpendicular to the shear surface, a slight deviation

from the microscopic model occurs toward a higher x -polarization providing rise to a weaker

polarization.

At around t ≈ 30ω−1
pe , the degree of polarization, after a brief approach of 〈Px 〉 and 〈Py 〉,

starts to deviate from the prediction of the microscopic model. This marks the end of the linear

phase of the Kelvin-Helmholtz instability and the start of the saturation phase. We define the

end of the linear phase as the point, where the difference between 〈Px 〉 and 〈Py 〉 starts to grow
again since there exist yet no model of the polarization of the saturation phase, to define a

point in time of better matching. The end of the linear phase, according to polarization, is at
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t = 28.2ω−1
pe . This is very close to the previously defined end of the linear phase via the growth

rate ΓBx .

With the start of the saturation phase, the magnetic field becomes strong enough to trap

electrons crossing the shear surface. This prevents further increase in the magnetic field and

the magnetic field growth levels off [54]. According to Maxwell-Faraday’s law, the increasing

magnetic field Bz during the linear phase leads to an increase of the electric field Ey [55, 81].

The trapping at saturation leads to charge separation and an even stronger electric field Ey
between the two shears [234]. Due to this additional electric field, the acceleration inside the

shear surface is further increased compared to the radiation from the boundaries of the vortices.

This leads to stronger radiation from the inside of the shear surface and thus to an increase of

the anisotropy between the two parallel polarization components 〈Px 〉 � 〈Py 〉.
Furthermore, the z -polarization 〈Pz 〉 increases again with the onset of the saturation phase.

The bunching and trapping of the electrons lead to increased electric and magnetic field fluctu-

ations within the shear surface. The result is more acceleration in z -direction, which could be

neglected during the linear phase, and an increasing 〈Pz 〉 polarization.
We conclude that the polarization can be used to identify the linear phase and determine its

start and end since both the initial phase and the saturation phase differ in polarization from

the linear phase.

7.4.3 Correlation between radiation power and magnetic field evolution
The microscopic model predicts that the growth rate of the radiation power

.
εrad equals the

growth rate of the magnetic field energy. However, the simple model could not decide whether

the radiation from the shear surface is overshadowed by the radiation from the bulk of the

plasma streams or the radiation from the shear surface is strong enough to measure its growth

rate. Therefore we investigated the correlation in a three-dimensional particle-in-cell simulation.

The total radiation power can be computed from the spectra obtained with the radiation

plug-in:

.
εrad =

d

dt

∞∫
0

dω

4π∫
0

dΩ
d2W

dωdΩ
(ω, ~n, t) . (7.81)

Evaluating this integral numerically is equivalent to Eq. 7.77 with no polarization filter F = 1. The

total radiation power evolves similarly as the magnetic field energy εBx (Fig. 7.9). A numerical

analysis using the logarithmic finite difference method (Eq. 7.73) demonstrates the correlation

between the radiation power
.
εrad and the magnetic field energy εBz as depicted in Fig. 7.12.

During the initial phase, the numerically determined growth rates are still strongly influenced

by the initialization process, which started with no radiation power and magnetic field energy.

The initially high growth of the magnetic field energy εBz comes from the thermalization of the

bulk of the plasma. Its value is overestimated by the simulation since the initial conditions are

field free. The same is true for the radiation power growth rate. Even though the radiation of

the thermalizing bulk of the stream is very weak, its initial growth is about as high as that of εBz .

Only εBx shows nearly no increase at all since it is not directly affected by the thermalization.

With the onset of the Kelvin-Helmholtz instability, εBz and, to a lesser extent, εBx start growing

on the shear surface (see Fig. 7.9). However, this is not directly reflected in the growth rates,

since εBz is still largely defined by the magnetic field in the bulk of the streams which grows

much slower. Thus, only εBx is a suitable quantity to define the growth of the magnetic field

on the shear surface (see discussion section 7.4.1). Only when the magnetic field energy of

the Kelvin-Helmholtz instability on the shear surface becomes larger than the total magnetic

field energy in the bulk of the plasma streams, εBz becomes a useful quantity to determine
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Figure 7.12: The temporal evolution of the radiation growth rate Γrad and the growth rates (ΓBx and ΓBz ) ofthe magnetic field components Bx and Bz : During the linear phase, ΓBx and Γrad are equal within

11% thus demonstrating that the growth rate of the radiation allows measuring the growth the of the

Kelvin-Helmholtz instability.

the growth rate of the instability. During the linear phase, the growth rate Γrad of the radiation

power
.
εrad equals the growth rate ΓBx of the magnetic field energy of Bx . The deviation between

the two growth rates for the entire linear phase is below 11%. After the magnetic field energy

of the Kelvin-Helmholtz instability becomes larger than the magnetic field energy of the entire

bulk of the streams at around t > 20 ω−1
pe , the growth rate of the Bz magnetic field energy ΓBz

equals the growth rate of the radiation power Γrad as well. Both differ only be less than 9% after

t > 20 ω−1
pe .

After the linear phase, the magnetic fields start to saturate and thus all growth rates tend

towards zero. The growth rate of the radiation power Γrad reduces slower than those of the

magnetic fields due to the now increased electric fields caused by the charge separation that

adds to the electron acceleration and thus radiation power.

The agreement between the magnetic field growth rate and the growth rate of the radiation

power shows that the microscopic model is a valid approximation of the radiating process during

the linear phase. Since radiation from shears in interstellar jets can directly be measured on

Earth but the magnetic fields cannot, this correlation allows quantifying the growth rate of the

Kelvin-Helmholtz instability by means of radiation Γ = Γrad/2 = 0.48ωpe . The fact that the

radiation of the Kelvin-Helmholtz instability is not initially overshadowed by the radiation from

the jitter motion in the bulk of the jet is caused by the different spectrum of jitter radiation

[240]. The spectral power of jitter radiation drops relatively fast for frequencies below the jitter

frequency ωjm while synchrotron radiation and the radiation from the shear surface reduce

less toward lower frequencies. Since the analysis focused on frequencies above the plasma

frequencies, only ω ∈ [1− 14]ωpe were considered. At these frequencies, the jitter radiation is

extremely weak. This allows measuring the growth of the radiation caused by the KHI already

at the start of the linear phase. For frequencies larger than the jitter frequency, this distinction

would only be possible in the later stage of the linear phase (t > 20 ω−1
pe ) similar the how the

instability can be identified only delayed based on the growth rate ΓBz .
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7.5 Observer in the lab frame
So far, the radiation signature of the Kelvin-Helmholtz instability was discussed in the relative

velocity frame. However, except for special experimental setups where plasma jets counter-

propagate with the same speed as discussed separately in section 7.6.3, this is not the frame of

observation. The typical astrophysical survey will observe a jet at high-velocity shearing at the

surrounding, quasi-stationary interstellar medium. Therefore, the results presented so far need

to be translated to the lab frame of an observer on Earth. The following analysis assumes that

the jet plasma stream propagates towards the observer since it is the most likely observation of

interstellar jets and for the sake of simplicity. Jets propagating towards the observer are brighter

and thus better suited for observations since their emission angle reduces to ∆θ ∼ γ−1
[59, 129,

240] due to the search-light effect of radiation from relativistic particles.

7.5.1 Lorentz transforming the polarization signature
Transferring the degree of polarization from one reference frame to another one is not trivial

and requires Lorentz transforming the observation direction, the emission frequency, and

the magnetic and electric fields associated with the observed radiation. Only by combining

the transformations of these three quantities, the degree of polarization can be transferred

to another reference frame. In the following, the Lorentz transformation of the degree of

polarization is briefly sketched.

Prime symbols are introduced to mark quantities observed in the lab frame. Quantities in the

relative velocity frame will have no special marks, as in the previous sections. We assume that the

lab frame propagates with a relativistic Lorentz factor γLT in −x -direction. If the Lorentz factors
of the transformation and of the stream are equal (γLT = γe = 3), the lab frame observes a

plasma stream of γ′ = 17 shearing on a quasi-stationary plasma and approaching the observer.

The observation direction in the observer frame ~n′ is turned in comparison to the obser-

vation direction ~n in the relative velocity frame towards the velocity ~βLT defining the Lorentz

transformation:

~n′ =
~n + ~βLT · 1/βLT ·

[
(γLT − 1) · (~n · ~βLT/βLT)− γLT · βLT

]
γLT

(
1− ~βLT · ~n

) . (7.82)

Similarly, the infinitesimal solid angle dΩ, associated with each observer direction ~n, changes

under the Lorentz transformation

dΩ′ = dΩ ·
1

γ2
LT ·

(
1− ~βLT · ~n

) (7.83)

The solid angle for an observer directly in the direction of the Lorentz transformation does not

change, while the solid angle for an observer at 90◦ will decrease by γ−2
.

For transforming the frequency ω we use the Lorentz transformation of the wave vector
~k = ~n · ωc . In the observer frame, the wave vector is:

~k ′ = ~n +
∣∣∣~k∣∣∣ · ~βLT

βLT
·

[
(γLT − 1) ·

(
~n ·

~βLT

βLT

)
− γLT · βLT

]
(7.84)

and the frequency is

ω′ =
∣∣∣~k ′∣∣∣ · c . (7.85)
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This transformation allows computing dω′ ≈ ∆ω′ for the logarithmic frequency scale, as used in

the particle-in-cell radiation simulation.

In order to Lorentz-transform the degree of polarization, one can use the fact that that the

vector of the complex amplitudes in Eq. 2.10 is parallel to the electric field vector of the emitted

electromagnetic wave (Eq. 2.9). The component-wise magnitude of the complex amplitude

Lorentz-transforms like an electric field. Under such a transformation, electric fields transform

to both electric and magnetic fields and vice versa [58]. In order to take into account the

contributions of the magnetic component of the electromagnetic radiation, the relation ~B · c =

~n × ~E is used, with ~n being the propagation direction of the electromagnetic wave and also the

observation direction. The amplitudes transform as follows:

~E ∼ ~A (7.86)

~E′ = ~E′⊥ + ~E′‖ (7.87)

~E′⊥ = γLT ·
(
~E⊥ + ~βLT × ~B · c

)
(7.88)

~E⊥ = ~E − ~E‖ (7.89)

~E′‖ = ~E‖ =
~βLT

βLT
·

(
~E ·

~βLT

βLT

)
(7.90)

~A′ ∼ ~E′ (7.91)

This transformation was performed for every observation direction, every frequency, and

every time step saved on hard drive. In order to determine the polarization in the lab frame, an

integration over all frequencies and observation directions similar to Eq. 7.77 was performed

again. For integrating the complex amplitudes in the lab frame, the differentials dω and dΩ need

to be Lorentz-transformed according to Eq. 7.83 and Eq. 7.85.

It appears a bit counter-intuitive to integrate the radiation over the full solid angle in the

observer’s frame to compute the degree of polarization if the observer is only located in front

of the jet. But by examining the transformation above carefully, the radiation in jet direction

dominates the polarization due to the boost of the electric field and the differentials. Thus

by integrating over the full solid angle, only radiation emitted in jet direction has a significant

contribution and radiation emitted close to the jet direction has a small but not-negligible

contribution to the observed degree of polarization in the observer’s frame. However, these

small contributions need to be taken into account since astrophysical jets meander around their

main flow direction [29, 36] and thus an observer on Earth will measure radiation from small

angles around the idealized boost direction as well.

7.5.2 Consequences for an observer on Earth
The evolution of the polarization in the lab frame appears to be slower than in the relative

velocity frame since the time of observation in the lab frame needs to be Lorentz-transformed

as well:

t ′ = t · γLT . (7.92)

Furthermore, the radiation is observed at higher frequencies than in the relative velocity frame:

ω′ =

√
1 + βLT

1− βLT
· ω . (7.93)

This shift in frequency affects the radiation from the shear surface and the jitter radiation equally.

Distinguishing them and identifying the radiation from the Kelvin-Helmholtz instability remains

possible.
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In the lab frame, the polarization parallel to the jet direction 〈P ′x 〉 is imperceptible since
radiation is mostly emitted in the forward direction. Only the polarizations perpendicular to the

jet direction
〈
P ′y
〉
and 〈P ′z 〉 are significant. Their ratio is plotted in Fig. 7.13 for three different

Lorentz factors γLT . With the onset of the linear phase as determined previously via polarization

in the relative velocity frame, an anisotropy
14
in the polarization occurs that increases the

polarization parallel to the driving magnetic field 〈P ′z 〉. This anisotropy reduces towards the
end of the linear phase. The change in polarization is independent of the specific Lorentz

boost. Thus, this anisotropy in polarization is a hallmark signature of the linear phase of the

Kelvin-Helmholtz instability. It allows determining the start and end of the linear phase and gives

detailed information on when to determine the growth rate of the instability via the change in

radiation power observed on Earth.
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Figure 7.13: The anisotropy of the polarization during the linear phase of the KHI: The plot depicts the ratio
between the perpendicular polarizations 〈P ′z 〉 /

〈
P ′y

〉
, as observed in the lab frame, over time t. The

polarization anisotropy (〈P ′z 〉 /
〈
P ′y

〉
� 1) during the linear phase of the Kelvin-Helmholtz instability

occurs for various Lorentz factors γLT of the Lorentz transformations. Its stability against the actual

velocity of the transformation makes it a hallmark signature to identify the linear phase of the instability.

When measuring the logarithmic growth rate of the radiation power in the lab frame Γ′rad, the

time dilatation (Eq. 7.92) needs to be taken into account as well

Γ =
Γ′rad · γLT

2
. (7.94)

By measuring the relative velocity of interstellar jets via frequency shift of known transition lines

[241, 242], the Lorentz factor γLT can be measured and the growth rate Γ of the instability can

be determined.

14
Please note that anisotropy in this context does not mean dependent on the observation direction, but a preferred

polarization direction. A spatial resolution of the plasma jet is therefore not necessary.
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7.6 Discussion of possible observational systems
7.6.1 Influences of more realistic jets
So far we have discussed the results of an idealized Kelvin-Helmholtz instability, with streams of

equal density and with a sharp velocity gradient in order to carve out the plasma dynamics of the

instability clearly, to be able to unambiguously verify the results against analytical predictions,

and to validate the correlation between radiation and plasma dynamics. However, in realistic

plasma jets, both in astrophysical scenarios as well as in lab experiments, the conditions will

not be as ideal. There is no comprehensive theory that incorporates these effects in the plasma

dynamics yet. But there exists an extensive numerical study by P Alves et al. [55] that used

numerical means of solving the dispersion relation to determine scaling laws. Here we will briefly

summarize his findings as a reference for the upcoming discussion on how the radiation will be

altered when considering less idealistic shears.

Influences of velocity gradients
The simulation setup assumed a sharp velocity gradient. Realistically, a smooth transfer between

the two velocities is expected. When quantifying the velocity gradient as v‖(y) = v0 · tanh(y/L),

the growth rate decreases with a smoother velocity transition caused by a larger L value. In a

linear approximation for small L values, the growth rate of the ESKHI decreases with increasing

L as [55]

Γmax(k⊥max · L) = Γmax(0) ·
(

1−
√

3

8
πk⊥max · L

)
(7.95)

with Γmax(0) being themaximum growth rate of the ESKHI for a sharp velocity transition (Eq. 7.14)

and k⊥max the wave number of the fastest growing mode. This wave number k⊥max decreases

slightly with increasing L, and its value can only be determined by solving the dispersion relation

numerically. For estimates of small L values, it can be assumed to be constant. For larger

gradients L ' 0.2 c
ωpe
the growth rate needs to be determined by solving the dispersion relation

entirely numerically. At these larger gradients, the growth rate decreases slower than predicted

by the linear approximation, reaching around 0.2 · Γmax(0) at L = 1.0 c
ωpe
.

Similarly, the mushroom instability growth rate decreases with increasing L as well. While for

L = 0 the fastest growing mode was at an infinitely large wave number k →∞, it has a finite
value of kmax = 1/L [228] for a shear gradient L > 0. For the same L values, the MI growth rate

will always be larger than the growth rate of the ESKHI in the relativistic regime.

The maximum amplitude reachable by the DCmagnetic field is also reduced by a velocity shear

gradient since the decreased speed on the shear interface reduces the current and thus the

magnetic field while the evolution of the Larmor radius rL ∼ γv0

B depends on both the reduced

magnetic field and the velocity gradient. Numerical studies showed, that the magnetic field at

saturation can be approximated by

Bsat
⊥ (L̃) =

Bsat
⊥ (L̃)

1 + χ · L̃
(7.96)

with L̃ =
L·ωpe
c
√
γ being the normalized shear gradient width and χ a numerically determined factor

depending on the maximum shear velocity v0 [55].
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Influence of density gradients
If the density of the streams differs

n(y) =

{
n+ y > 0

n− y < 0
, (7.97)

the growth rate of the ESKHI reduces as well. Solving the dispersion relation numerically for

non-equal densities n+ 6= n− leads to a reduced maximum growth rate, a reduction in the

maximum unstable wave number, and an additional oscillating (real) term in the solution. It was

found that the growth rate scales for various density ratios r = n+/n− ≥ 1 as

Γmax(r)

Γmax(1)
∼


r−1/4 r & 1

r−1/3 r � 1 γ ≈ 1

r−1/2 r � 1 γ � 1

. (7.98)

For the MI, there exists no conclusive study on density ratios yet. However, it was found that a

vacuum gap can exist between the streams which does not prevent the MI to grow as long as

the gap is smaller than Lgap · ωpec < 2γ
2−1√
γ . This allows the MI to grow even for extremely large

gaps if the streams are highly relativistic. In this limit, the maximum growth rate is Γmax ≈ 5.48·c
Lgap

.

An extreme density ratio r � 1 will reduce the current created by the electron transport across

the shear surface by half and thus the increase of the magnetic field. However, this effect is

negligible in the cold plasma case since the growth of the DC term is equal to the growth of

either the ESKHI or the MI. Thus the increased rate of the DC magnetic field is reduced similarly

to the growth of the driving instability. The limiting factors for saturation still hold true, thus Bsat
⊥

is not reduced by non-equal densities.

Resulting effect on polarization and radiation power growth rate
Streams of different densities and velocity gradients between the shear interface will both

reduce the growth rate. This reduces the exponential growth of the radiation power equivalently,

thus allowing an astronomer to deduce the density contrast and velocity gradient right at shear

interface via radiation. Furthermore, since Bsat
⊥ is only weakly reduced, the reduced growth rate

extends the time till saturation and therefore the duration of the linear phase

Treal = Tideal ·
Γ(0, 0)

Γ(r, L)
, (7.99)

with Treal(r, L) being the duration of the linear phase under realistic conditions and Tideal being

the duration of the linear phase of the KHI under ideal conditions as simulated in section 7.4. This

increase of the duration eases the requirement on astrophysical or experimental observations

since the linear phase happens fast with regard to today’s observation capabilities (see following

sections 7.6.2 and 7.6.3). Due to a velocity gradient, the magnetic field amplitude at saturation

Bsat
⊥ reduces with ∼ L̃−1

. Thus even velocity gradients of several plasma skin depths will lower

the DCmagnetic field amplitude by not more than an order of magnitude. Due to the exponential

growth of the magnetic field, the reduction of the duration of the linear phase caused by the

decreased magnetic field amplitude is negligible.

The Kelvin-Helmholtz instability in the ESKHI and the MI regime even with velocity gradients

and density contrasts will grow faster than either the two-stream instability or the Weibel

instability under the same conditions [55]. Therefore, there are no other instabilities that will

destroy the characteristic radiation signature caused by the DC field of the KHI. However, the
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reduction in growth rate and thus the reduction in radiation power might make identifying the

start of the linear phase against the background radiation from the rest of the plasma stream

and other radiation sources more difficult.

According to the numeric study of the degree of polarization (Fig. 7.5), the polarization depends

on both the growth rate Γ driving the magnetic field on the shear surface and the Lorentz factor

of the electrons in the stream. A density contrast r = n+/n− will change the characteristic

polarization slightly due to the decreased growth rate. A velocity gradient will further alter

the characteristic polarization slightly due to the growth rate as well. Additionally, the degree

of polarization is altered due to the reduced Lorentz factor γ across the shear with a velocity

gradient. However, the characteristic polarization is only slightly modified due to changes in Γ or

γ, thus the effect is marginal and does not hinder detection.

7.6.2 Observation in jets from active galactic nuclei
Jets from active galactic nuclei (AGN) are expected to have Lorentz factors between γ = 101−103

[29]. The ambient medium, through which these jets propagate, have a density of approximately

nA = 10−4−10−3 cm−3
while the jets themselves vary in density between nJ = 10−5−10−2 cm−3

.

In the case of highly relativistic shear velocities and a significantly higher density of the envi-

ronmental plasma than that of the (Lorentz contracted) jet plasma in the observation frame

γ � 1 and na �
nj
γ

, (7.100)

the MI growth rates is Γmax = ωpe(nJ)/
√

2γ [228]. For nearly all possible density ratios, the

presumption (Eq. 7.100) is fulfilled, and the mushroom instability will grow with the same growth

rate in units of the plasma frequency. An additional shear velocity width (L̃) of the order of one

plasma skin depth would reduce the growth rate of the ESKHI further by a factor c3 = 0.2 [55]. A

similar reduction is a sound assumption for the MI.

Assuming that the (normalized) duration of the linear phase is equivalent to the idealized

setup of the KHI, independent of the Lorentz factor, we assume the idealized duration to be

T = 19ω−1
pe as in the simulation. This duration decreases according to Eq. 7.99 by a factor

Treal = Tideal ·
Γideal

Γreal
= Tideal ·

βSγ
−1/2

S

1/
√

2γJ · c3
(7.101)

with γS = 3 being the Lorentz factor of the reference simulation, βS the according to normalized

velocity and γJ the Lorentz factor of the jet. Additionally, the observed duration T
′
by an

observer on Earth is extended by γJ due to time dilatation, neglecting any additional change

due to relative motion between the AGN and the observer. The observation duration depends

only on the jet density and its Lorentz factor. For an exemplary jet of γJ = 200 and a jet density

of nJ = 10−4 cm−3
, the observed duration on Earth is T ′ > 6 min. Various observation durations

are plotted in Fig. 7.14 for γJ and nJ values expected for AGN jets.

Since today’s astronomical observation networks have response times of around two minutes

[50], the durations for jets with γ & 30 are in a range, where not only a single telescope can

observe the polarization but others could react and allow precise polarization and radiation

power measurements.

According to Eq. 7.93, the characteristic radiation as simulated would be in the lower radio

frequency range. Similar scalings are expected from other astrophysical jets both interstellar

and from other galaxies, like bipolar outflow from cataclysmic variable star [243] or gamma-ray

bursts [244].
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Figure 7.14: Expected observation duration of the linear phase of the KHI (in the MI regime) A contour plot
marks various expected observation duration for various Lorentz factors γJ of the plasma jet and

densities nJ expected for AGN jets. The observed duration of the linear phase for γJ & 30 is well in the

range of today’s observation capabilities.

7.6.3 Observation in lab experiments
The Kelvin-Helmholtz instability does not only occur in astrophysical jets. Recent laser plasma

experiments [230, 231] observed this instability. Their goal was to drive two plasma jets,

generated by laser foil irradiation against each other, to study shearing similar to those occurring

in astronomical jets. The fastest material in these experiments reaches v0 = 25 km/s ≈ 8·10−5 ·c .
At these low velocities, the KHI is driven by the ESKHImechanism, with expected growth rates of

Γ = 1√
8
ωpe . At densities around ne ∼ 1017 cm−3

, this leads to an observation duration around

T ′ = 8.6, ps according to Eq. 7.99. The frequency range of interest for the KHI signature is

expected to be ω ≈ 1− 102ωpe . For this non-relativistic setup, the radiation is expected to have

a wavelength in the near to long-wavelength infrared with wavelengths of λ ∼ 1− 10µm.

With increasing laser power, the plasma slabs generated in these experiments start reaching

relativistic velocities. The observation time will increase and the observation wavelength will

decrease.

Exemplarily, an experimental setup is assumed that would correspond to the simulation

presented in section 7.4. When converted into the lab frame, the simulation modeled a plasma

stream with Lorentz factor γ′ = 17. This can be determined by the relativistic velocity summation

β′ = 2β
1+β2 , with β =

√
1− 1/γ2 being the shear velocity simulated. Assuming again a shear

gradient on the plasma skin depth, the growth rate decreases by c3 = 0.2. Including both time

dilatation and the reduction due to the shear gradient, the observed duration of the linear phase

becomes T ′ = T · γ′ · c−1
3 ≈ 90 ps. Lorentz transforming the frequency range according to

Eq. 7.93 leads to a radiation signature at λ ≈ 300nm− 3nm which is in the ultraviolet to X-ray

range.

Both the expected wavelength at which the KHI signature can be observed and the expected

duration of the linear phase, observed in the lab, are depicted for various Lorentz factors γ of

the plasma stream shearing on a quasi-stationary plasma in Fig. 7.15.

For this calculation, the maximum growth rate of either the ESKHI (Eq. 7.14) or the MI (Eq. 7.21),

depending on the Lorentz factor, was used. The green range in Fig. 7.15 covers frequencies
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Figure 7.15: Expected observation duration and emitted wavelength in experiments: The expected observation
duration T ′ of the linear phase of the KHI for Lorentz factors γ of plasma streams generated in the

lab is plotted in blue. Additionally, the wavelength λ of the radiation signature is plotted. The lower

wavelength limit of this radiation is a soft limit and can extend further out. At the upper wavelength limit,

the radiation will not leave the plasma. The range of visible light is marked in orange.

starting from ωpe to ∼ 100ωpe . With slightly relativistic streams, the radiation signature will

become observable with today’s diagnostic methods [245–247], which allows not only identifying

the KHI via proton radiography [230] but measuring its growth rate via radiation and thus

determining plasma properties like shear and density gradients that have previously not been

measurable.

7.7 Summary and Outlook
With the large-scale simulation presented [R1, R3] we were able to simulate the relativistic

Kelvin-Helmholtz instability in the mushroom instability regime at unprecedented spatial and

temporal resolution. In combination with computing the emitted radiation, this allowed studying

the electromagnetic emission from the KHI during its linear phase for the first time [R4]. By

modeling the electron dynamics in the exponentially growing DC magnetic field on the shear

surface we derived an analytical model of the radiation power evolution and a semi-analytical

model of the degree of polarization. This model was validated against the large-scale particle-in-

cell simulation, thus verifying that the predicted polarization signature was clearly observable

and not covered by jitter radiation coming from the bulk of the plasma streams. The simulation

furthermore demonstrated that the radiation growth rate scales with the same growth rate as

the DC magnetic field driven by the shear instability despite thermalization processes in the

initially cold bulk of the plasma streams generating initially stronger magnetic fields than the

Kelvin-Helmholtz instability. This is beyond the capabilities of state-of-the-art magnetic field

measurements in astronomy, that rely on the Faraday rotation, which integrates the magnetic

field along the line of sight from radiation sources behind the plasma jet and thus would

take magnetic fields generated in the bulk of the plasma into account [48, 49]. In [R4], we

demonstrated that the characteristic polarization of the KHI survives Lorentz transformation and

leads to a characteristic polarization anisotropy during the linear phase. Possible scenarios of

observations in both active galactic nuclei (AGN) and laboratory experiments using laser-plasma
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interactions were demonstrated and limits on observation duration and wavelength ranges were

quantified for non-ideal shearing geometries.

Identifying the linear phase of the KHI and measuring its growth rate allows drawing con-

clusions on shear geometries, velocity gradients, and density contrasts. Quantifying these jet

parameters via measuring the polarized radiation is vital for improving the understanding of

these galactic jets. The polarization signature discovered is ideally suited for distinguishing the

KHI radiation from isotropically polarized radiation background. Since the orientation under a

Lorentz transformation is parallel to the magnetic field orientation (B⊥), the orientation of the

shear interface can be determined. With improvements in observational capabilities [34, 248,

249] even mapping complex jet-within-a-jet geometries [244] will become possible.
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8 Summary
Two novel diagnostic methods for the characterization of plasma states and for the quantifica-

tion of essential parameters were presented. Both methods allow determining the dynamics of

the plasma which could not be detected so far. These radiation signatures based on synthetic

diagnostics represent a novel approach in plasma simulation. By extending the simulation with

simultaneous in-situ diagnostics, quantitative predictions for possible experimental measure-

ments or astronomical observations are possible which allow a direct insight into the dynamics.

For laser wakefield acceleration (LWFA), occurring on micrometer scales, a spectral radiation

signature was discovered that allows identifying the occurrence of the blowout regime during

the laser pulse defocusing. This enables not only to decide whether and when the laser has

reached the blowout regime, aspired in many experiments, but also to measure the laser focus

in the plasma with an accuracy of approximately 100µm for every laser shot.

Analogous to the study of laser wakefield acceleration, a radiation signature for the relativistic

Kelvin-Helmholtz instability (KHI) was discovered. This polarization-based signature allows

identifying the linear phase of the instability which is responsible for the generation of strong

magnetic fields in stellar and interstellar plasma jets. Furthermore, the growth rate of the

Kelvin-Helmholtz instability can be determined by measuring the increase in radiation power

during the linear phase.

For both scenarios, a simple model was formulated to describe the emitted radiation. In

the case of LWFA, a general scattering model was developed that only required an electron

distribution around the laser pulse as input. This model can not only describe the blowout

signature but is universal enough to explain other scatter signatures as well. In the case of the

KHI, the driving magnetic field development was used as a basis to describe the microscopic

particle dynamics on the shear surface. Based on the derived particle dynamics, the evolution of

radiation and its characteristic polarization could be predicted.

At both the LWFA and the KHI, the predictions of the models were tested against a large-scale

particle-in-cell simulation. While the KHI showed excellent agreement between simulation and

model, the LWFA simulation showed an asymmetry in the emitted power with regard to the

longitudinal focus position during the blowout regime that could not be described by the quasi-

static scatter model. The predictive power of the KHI polarization signature was surprising since

the radiation signature allowed the identification of the linear phase and the determination

of the growth rate despite the radiation from the bulk of the jet. Thus, the simulation could

provide convincing evidence that the predictions of the model remain valid even when taking

into account the particles outside the shear surface, which would not have been possible with

the microscopic model alone. The asymmetry of the spectral blowout signature, on the other

hand, clearly showed the limits of the quasi-static model and made it evident that the usually
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assumed static form of the laser is only an approximation that reaches its limits in this case. The

particle-in-cell simulation showed that the laser pulse evolution has an undeniable influence

on the scattered radiation. The radiation intensity is significantly stronger when the laser pulse

defocuses and widens the bubble than when the pulse focuses, and the bubble size decreases.

Due to this influence, the spectral blowout signature starts only after the laser defocuses and

thus allows a precise determination of the laser focus position in the plasma. This enables the

relativistic self-focusing of the laser, which could previously only be modeled by PIC codes, to

be measured experimentally. As with the KHI, the LWFA simulation showed that the predicted

signature clearly differs from the background radiation.

For both the simulation of the relativistic KHI and the LWFA simulations enormous computing

capacities had to be used to model the plasma dynamics with sufficiently high spatial and

temporal resolution and to calculate the spectrally resolved radiation. While the LWFA radiation

simulation could be carried out by continuously repeated restarts on the Taurus cluster of

the Center for Information Services and High-Performance Computing (ZIH) at the Technische

Universität Dresden over several months, it was not possible to run the simulation of the

relativistic KHI at the ZIH due to its size. This simulation was carried out on the largest cluster

in the world at that time, the Titan Cluster of Oak Ridge National Lab. Only with their 18,000

GPUs, it became possible to simulate the relativistic KHI in a resolution that has never been

achieved before and to compute, for the first time, the emitted far-field radiation. Since such an

unprecedented highly efficient and highly resolved simulation of the KHI had not been carried

out before, this simulation was considered for the renowned Gordon Bell Prize 2013 as one of

6 finalists. Furthermore, it was awarded the HZDR Technology and Innovation Award in 2013.

While plasma and radiation simulations were very computationally challenging for both the

LWFA and KHI simulation, the subsequent analysis of the tremendous amounts of data produced

was equivalently time-consuming.

As already mentioned, these simulations provided not only a validation of the models but

also estimates on the observability of the discovered radiation signatures against influences

neglected by the simple models and concurrent background radiation like additional plasma

waves or thermal quivering. This consideration of other factors by simulating the radiation of all

modeled particles is a crucial criterion for quantitative predictions of synthetic diagnostics for

both experiments and astrophysical observations. Without consideration of all parasitic sources

of radiation, it would not have been possible to make a statement as to whether the polarization

signature of the linear phase of the KHI could also be differentiated by observers on Earth with

regard to the signal to noise ratio. Nor would it have been possible to estimate how strongly

the laser scattering from the less intense peripheries of the pulse covered the signature of the

blowout regime. Conducting these simulations was thus a crucial step in testing the feasibility

for future experimental and astronomical observation.

Finally, these simulations would not have been possible without the numerous improvements

and extensions of the particle-in-cell code and the radiation plug-in. Without the modeling

of the coherent and incoherent radiation of the macroparticles, a quantitative statement, as

it is essential for the determination of observability, would not have been possible. Without

the introduction of spatial filters, the influence of the simulation box would strongly influence

the spectra. Within the scope of this thesis, these and many other technical improvements

were incorporated into the PIC code PIConGPU, which made these comprehensive simulations

possible.
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9 Outlook: future applications forsmall- and large-scale plasmas
The use of synthetic radiation diagnostics for the identification of appropriate radiation sig-

natures is by no means complete with this work. This work presents only two initial, at first

glance very different but physically equivalently treatable scenarios in which radiation signatures

were discovered for future observations. Further scenarios, especially from the laser-plasma

interaction, are waiting to be studied.

These could include radiation signatures for surface instabilities generated during laser foil

irradiation, which could potentially be found in the intensity variations of the reflected peaks

during high harmonics generation [201, 250–252]. First preliminary simulations already showed

promising results, but for a thorough investigation, more computational resources will be

required and more advanced algorithms will be needed for the particle-in-cell simulation to

avoid recently discovered numerical artifacts when simulating higher harmonics with finite

difference time domain field solvers such as the Yee solver [253].

Recent experiments have shown that for overdense ωpe > ω0 targets of limited transverse

size, the passing laser imprints on the proton distribution accelerated during the laser target

irradiation [R19]. This could potentially be used for proton beam manipulation and optimization

as needed for medical application in cancer treatment. Due to the low rear-side plasma density

with varying degree of ionization, it is difficult for a probing approach to identify the alleged

electron diffusion and resulting electric field generation as the cause for the field formation

responsible for the shaping. However, the plasma electrons’ radiation could potentially self-

indicate the origin of the imprint process. Modeling the radiation and identifying a signature

could be possible in a similar manner using the in-situ radiation diagnostics presented here.

Another field in which the use of synthetic radiation diagnostics has already been successfully

demonstrated but where extensive studies would still be of interest is the nonlinear Thomson

scattering of electron bunches on laser pulses [R6]. The cited simulations carried out by the

author during this thesis have revealed discrepancies in the experimental assumptions on

electron beam dynamics that could be attributed to the Earth’s magnetic fields. As in the case of

the LWFA, synthetic radiation diagnostics has been able to enhance the understanding of the

experiment.

Moreover, it is essential to further expand the already established close collaboration between

experiment and simulation within the scope of laser wakefield acceleration. This cross-fertilizing

collaboration not only allows identifying errors in the experimental setup quickly and deepening

the understanding of laser plasma dynamics, but it also enables a unique validation of the

simulation based on real experiments which provides confidence in the simulation even in other

133



fields. Thanks to the synthetic radiation diagnostics presented here, a quantitative comparison

comes into reach.

The same intensification of cooperation is also necessary when modeling experiments with

simulations. While in most simulations today laser pulses are assumed to be Gaussian, the

studies presented in this thesis have already shown that realistic modeling has a significant

influence on the results of the simulation. But a real laser pulse is not yet fully described by

higher Laguerre modes. The laser spectrum, chirp, and other effects will probably also have a

significant impact on the plasma dynamics [R12] and should, therefore, be modeled in future

simulations. Close cooperation with the experiment is necessary to determine the experimental

parameters precisely enough that they can be used in simulations since scanning a poorly

determined experimental parameter over its range of uncertainty is a very time-consuming

process for simulations. Currently, an experimental setup is being developed at the HZDR

which, by using the Wizzler diagnostic method [212–214], automatically determines the laser

spectrum and temporal profile for each shot and which will provide precise input parameters

for simulations.

Furthermore, with increasing laser power, experiments will reach a regime where radiation

reaction will be important when modeling the laser-plasma interaction. With the now included

radiation reaction pusher algorithm, radiation signatures that reveal these radiation losses are

of particular interest. Simulation studies that combine both the synthetic radiation diagnostics

and the radiation damping will become more and more relevant in the near future.

By extending synthetic radiation diagnostics to electron oscillations on time scales shorter

than the iteration period of the PIC algorithm by externally emulating theses fast oscillations,

the photon scattering of X-ray probe lasers could be modeled as well [254–257]. This would

enable predicting scatter images as they will be measured during upcoming experiments at

the XFEL for temporally resolving the plasma dynamics during laser foil irradiation. In contrast

to all previous methods of computing these scattering images, this approach would be based

on Liénard-Wiechert potentials and thus automatically include spectral shifts due to electron

dynamics. Therefore, this method extends current predictions which are based on static electron

distributions. Thereby the limitation of the predictive capabilities of the scattering method due

to spectral broadening become obvious, but at the same time, providing estimates about the

electron dynamics based on this spectral broadening becomes possible. The physically more

correct approach used in PIConGPU would thus enable better quantitative predictions for XFEL

experiments than the previously used static-scattering models.

A number of plasma instabilities of relevance for astrophysics would also be of interest

for further investigations. For example, for the Weibel instability spectra have already been

calculated for individual electron trajectories [52, 103, 104, 106, 109, 258, 259], but there has

been no comprehensive study of the background radiation yet. Such a thorough investigation of

the radiation of Weibel instability would be possible with the radiation plug-in.

Another current application of synthetic radiation calculation can be found in the development

of modern compact radiation sources such as the Traveling Wave Thomson Scattering (TWTS)

[174, R13–R17, R20, 260]. This scheme achieves a significantly more effective laser electron

bunch overlap by pulse-front tilting the laser. Thus, it is capable of significantly increasing

the power of the emitted radiation through coherent superposition. Extensive simulations

are currently running to study this so far purely theoretical concept with simulations before

experiments are assembled.

The established feedback loop between experiment and simulation will stimulate both sides

in the long run and increase the confidence in the theoretical prediction capabilities of particle-

in-cell simulations and at the same time increase the in-depth comprehension of experiments

simulated with these codes. The synthetic radiation diagnostics poses an essential step to

realize these cross-checks between simulation and experiments. The experience from studying
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synthetic radiation provides the basis for extending the predictive capabilities of PIConGPU to

other fields such as laboratory astrophysics or plasma based light sources in the near future.

A worthwhile longer-term goal would be developing reconstruction methods that solve the

inverse problem and enable reconstructing the particle dynamics from radiation directly. Such

a task would require the development of reliable phase-retrieval algorithms beyond what is

technically feasible right now. The in-situ radiation calculation, presented in this thesis, could

provide synthetic data for both estimating the capabilities and limits of such algorithms, similar

to reconstruction algorithms for coherent transition radiation already developed today [R5], and

providing training data for machine learning algorithms.
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Glossary
ADK tunnel ionization model developed by Ammosov, Delone,

and Krainov

AGN active galactic nuclei

BSI barrier suppression ionization model

CCD charge-coupled device

CERN European Organization for Nuclear Research

CFL Courant–Friedrichs–Lewy condition

CIC cloud-in-cell macroparticle shape

CPU central processing unit

DC direct current - in the context of KHI: not oscillating

DRACO Dresden laser acceleration source

EOS European Southern Observatory

ESKHI electron-scale Kelvin-Helmholtz instability

FDTD finite-difference-time-domain method

FWHM full width at half maximum

GDD group dispersion delay

GPU graphics processing unit

HDF5 a hierarchical data format

HPC high-performance computing

HZDR Helmholtz-Zentrum Dresden - Rossendorf

ILC international linear collider

KHI Kelvin-Helmholtz instability

LEP Large Electron-Positron Collider
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LWFA laser wakefield acceleration

MD molecular dynamics

MHD magnetohydrodynamic

MI mushroom instability

NGC new general catalogue of nebulae and clusters of stars

NVIDIA a company specialized in developing and producing GPUs

PIC particle-in-cell

PIConGPU particle-in-cell code developed at HZDR

PWFA plasma wakefield acceleration

QED quantum electrodynamics

RAM random-access memory

RF radio-frequency

RGB Red Green Blue color space

RLL reduced Landau Lifshitz particle pusher

SLFO side lobe fall off

STII self-truncated ionization-injection

TSC triangular-shaped macroparticle shape

TWEAC Traveling-Wave Electron Acceleration

TWTS Traveling-Wave Thomson Scattering

VLBA Very Long Baseline Array

VLT Very Large Telescope

XFEL European X-Ray Free-Electron Laser Facility

ZIH center for information service and high-performance com-

puting of the TU Dresden
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