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Abstract

The capillary-induced bending of flexible fibres, a process also known as elasto-capillary deformation, is central to a
variety of industrial and non-industrial applications, among which stand out textile flotation, stabilization of emulsions,
micro-folding of elastic structures, and clogging of feather fibres by oil droplets. A consistent formulation for the direct
numerical simulation of a flexible fibre interacting with a fluidic interface is presently suggested. The fibre is geometrically
decomposed into a chain of spherical beads, which undergo stretching-bending-twisting interactions. The capillary force,
acting at the three-phase contact line, is calculated using a ternary diffuse-interface model. In a first stage, the fibre
deformation model and the ternary diffuse-interface model are validated against theoretical solutions. In a second stage,
the two- and three-dimensional elasto-capillary bending of a fibre by an immersed droplet are numerically investigated.
Partial wrapping and complete encapsulation could be simulated. The results show that the fibre curvature increases
linearly with the square of the elasto-capillary length, for both low and large structural deformation.

Keywords: Elasto-capillary deformation, fibre at fluidic interface, ternary diffuse interface model, direct numerical
simulation, droplet encapsulation.

1. Introduction

1.1. Elasto-capillary fibre deformation

At sub-millimetric scales, a fluid droplet can easily de-
form an elastic structure such as a fibre or an extremely
thin planar sheet. The dominant capillary forces can even
cause a complete encapsulation of the fluid droplet by the
elastic structure. This mechanism, known as the elasto-
capillary deformation of a microstructure, is central to a
wide variety of industrial applications, among which stand
out the separation of textile and paper fibres [1, 2], the
micro-folding of elastic structures [3, 4], along with the
stabilisation of emulsions by cellulose fibres [5, 6]. No-
table non-industrial applications include, for instance, the
clogging of feather fibres by oil droplets after an acciden-
tal ocean spills [7] and the coiling of filamentous molecules
around droplet-like proteins [8]. Figure 1 shows a schematic
diagram of the ternary system presently investigated. A fi-
bre is initially brought in contact with an immersed droplet
and eventually bends as a results of the capillary action.
After equilibrium is reached, the internal beam forces can-
cel out the external capillary forces.
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Figure 1: Schematic of the ternary system presently investigated. A
fluid droplet deforms a fibre decomposed into a chain of Nb spherical
beads.

1.2. Analytical elasto-capillary models

A number of analytical models have been suggested
to simulate the elasto-capillary bending of fibres by fluid
droplets. Most of the models recently reported in the lit-
erature were derived using a variational approach [9, 10],
where the concept of force is not invoked. In the varia-
tional approach, the total energy of the system, composed
of an interfacial energy and a bending structural energy, is
minimised. Using a Lagrange multiplier to minimise the
total energy, analytical solutions for the beam deforma-
tion could be suggested. Schulman et al. [11] used another
approach based on the Bernoulli-Euler small beam theory
to qualitatively compare the fibre curvature with experi-
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mental data. In the two-dimensional small beam theory, a
homogeneously distributed load is assumed to cancel out
the two meniscus forces acting on the fibre. The fibre pro-
file is then solved by making the second space derivative
y′′(x) proportional to the internal moment at the location
x [12, 13].

1.3. Direct numerical simulation of deformable fibre in flu-
ids

Most of the numerical advancement aimed at study-
ing the dynamics of fibres immersed in a fluid was done
for unary flow systems [14]. The idea behind decompos-
ing the flexible fibre into a chain of bonded spheres and
let it evolve dynamically with the fluid probably started
with the pioneering work of Yamamoto and Matsuoka [15].
Various simulations, which also used a similar fibre decom-
position into beads, later followed [16–20]. These previous
studies essentially compared the dynamics of deformable
fibres in laminar shear flows with those of rigid fibres. The
tumbling period of a fairly rigid fibre in a shear flow was
found to closely match the Jeffery’s predictions for elon-
gated prolates [19]. With increasing fibre flexibility, buck-
ling and snaking fibre dynamics eventually occurred [21].
Recent activities by Dotto and Marchioli [22] seem to sug-
gest an emerging research trend towards the study of fibre
dynamics in turbulent shear flows.

1.4. Motivations

The above-mentioned studies inspired us to develop an
alternative approach for the direct numerical simulation
of deformable fibres in a binary fluid. Yet, we here fo-
cus on the unsteady elasto-capillary bending of a flexible
fibre initially placed at a fluidic interface. Using a La-
grangian beam model [23, 24], the fibre is geometrically
decomposed into a chain of spherical beads, which undergo
stretching-bending-twisting structural interactions. The
capillary force, acting at the three-phase contact line, is
calculated using an Eulerian diffuse-interface model, which
essentially tracks the deformation of the fluid/fluid and the
fluid/solid interfaces [25]. To damp the unsteady dynam-
ics of this ternary system, the viscous drag acting on each
spherical bead is calculated using an Eulerian flow solver
[26].

2. Methods

2.1. Lagrangian representation of the fibre

Let us first define an inertial frame Oexeyez, where
O is a fixed origin and ex, ey, and ez are the three unit
vectors forming the Cartesian coordinate system. The fi-
bre, which evolves in time and space, is decomposed into
a chain of Nb spherical beads. The centre of mass of a
single bead is located at the position X(t), where t is the

time. The bead angular position is represented by a 4× 1
row-matrix unit quaternion as

q(t) =

[
qs
qv

]
=


qs
qx
qy
qz

 (1)

where qs is the scalar part and qv = [qx qy qz]
> the vec-

tor part. A detailed introduction to rigid body dynamics
in terms of quaternions may for instance be found in the
book written by Huang [27] and in the paper written by
Zhao and van Wachem [28]. The trajectory of each bead
is solved independently as [29]

dX

dt
= V , (2)

dq

dt
=

1

2
A · q, (3)

where V is the bead translational velocity and A is a 4×4
orthogonal matrix given by

A =


0 −Ωx −Ωy −Ωz

Ωx 0 −Ωz Ωy
Ωy Ωz 0 −Ωx
Ωz −Ωy Ωx 0

 . (4)

The operator “·” in Equation 3 denotes the product Aijqj
in the conventional ij-matrix notation. The rotational
bead velocity is expressed in the inertial frame as Ω =
[Ωx Ωy Ωz]

>. The bead velocities are advanced in time as

m
dV

dt
= F b + F h + F c + F e, (5)

I · dΩ

dt
= T b + T h + T c + T e, (6)

where m is the mass of a single bead and I its moment of
inertia. Note that, all beads have identical mass and mo-
ments of inertia. Because Equation 6 is solved in the body
frame, the transformed moments of inertia actually form a
constant diagonal tensor Ĩ. The torques are also expressed
in the body frame using the transformation T̃ = R> · T ,
where R is the 3 × 3 rotation matrix associated with the
bead quaternion q. Details on how Equation 6 is solved
can be found in the authors’ previous work [30]. The term
F b is a “beam” force holding the beads of the fibre to-
gether, F h a “hydrodynamic” drag force, F c a “capillary”
force responsible for the capillary-induced fibre deforma-
tion, and F e an “external” force. In a similar fashion T b,
T h, T c, and T e are respectively the beam torque, the hy-
drodynamic torque, the capillary torque, and an external
torque. The gravity and the hydrostatic contributions are
here neglected because in most applications the capillary
forces arising from the surface tension normally prevail by
several orders of magnitude.

2.2. Calculation of the beam forces and beam torques

For the sake of simplicity, only the i-th bead and the
j-th next neighbouring bead of a single fibre, with j =

2



bead orientation

Figure 2: Two-dimensional visualisation of the virtual elastic beam
connecting two successive beads of a fibre. The beam force reac-
tions are conveniently expressed in the local beam frame Xiex′ey′ez′
shown in orange.

i + 1, are considered in the present subsection. As illus-
trated in Figure 2, the two neighbouring beads are as-
sumed to be connected by a virtual elastic beam. A num-
ber of beam models have been developed in the past to
derive the beam forces acting on a discretised fibre portion
[15, 18, 19, 24, 31–37]. A brief description of these available
beam models can be found in the review provided by Guo
and Curtis [38]. The so-called “cohesive beam model”,
originally suggested by Andre et al. [39] and derived an-
alytically from the Euler-Bernoulli beam theory [12, 13],
was here implemented. In this model, the beam forces and
torques are expressed in a local beam frame Xiex′ey′ez′ ,
where ex′ is the unit beam vector defined by

ex′ =
Xj −Xi

|Xj −Xi|
. (7)

The additional two unit vectors forming the local beam
frame are given by

ey′ = R∗ · ey, (8)

ez′ = R∗ · ez, (9)

where R∗ is the 3 × 3 rotation matrix resulting from the
abscissa transformation ex → ex′ . The mathematical for-
mulations of this rotation matrix and of its corresponding
unit quaternion q∗ = [q∗s q

∗
x q
∗
y q
∗
z ]> are further detailed in

Appendix A. The total beam force is then conveniently
recast as

F b = F bx′ex′ + F by′ey′ + F bz′ez′ , (10)

where F bx′ex′ is the structural force acting in the axial
beam direction, and F by′ey′ + F bz′ez′ the structural force
acting in the direction normal to the beam axis. The axial
beam force components acting on the i-th and on the j-th
bead are expressed as(

F bx′

)
i

= +
πErb

2

(
|Xj −Xi| − 2rb

)
, (11)(

F bx′

)
j

= −
(
F bx′

)
i
, (12)

where E is the Young modulus with respect to fibre ma-
terial and rb the bead radius. Assuming a small deforma-
tion of the virtual elastic beam, the orientation angles of

the i-th bead are approximated in the local beam frame
as (θx′)i ≈ 2(qx′)i, (θy′)i ≈ 2(qy′)i, and (θz′)i ≈ 2(qz′)i,
where the vector part [qx′ qy′ qz′ ]

>
i of the quaternion q′i is

derived from the following Hamilton product

q′i =


qs′

qx′

qy′

qz′


i

= qi(q
∗)−1. (13)

The inverse unit quaternion, corresponding to the inverse
frame transformation, is given by (q∗)−1 = [q∗s ,−q∗x ,−q∗y ,−q∗z ]>.
The approximation of the orientation angles at the j-th
position is similarly derived from the Hamilton product
q′j = qj(q

∗)−1. Having defined the orientation angles in
the local bead frame, the two beam force components act-
ing in the first direction ey′ normal to the beam axis are
given by(

F by′
)
i

= −3πEr2b
8

[
(θz′)i + (θz′)j

]
, (14)(

F by′
)
j

= −
(
F by′
)
i
. (15)

The beam force components acting in the second normal
beam direction ez′ are given by(

F bz′
)
i

= +
3πEr2b

8

[
(θy′)i + (θy′)j

]
, (16)(

F bz′
)
j

= −
(
F bz′
)
i
. (17)

In a similar fashion, the beam torque is also decomposed
in the local beam frame as

T b = T bx′ex′ + T by′ey′ + T bz′ez′ . (18)

The i-th and j-th torsion-related torques acting in the ax-
ial beam direction are given by(

T bx′

)
i

= −πGrb
2

[
(θx′)j − (θx′)i

]
ex′ , (19)(

T bx′

)
j

= −
(
T bx′

)
i
, (20)

where G is the shear modulus with respect to the fibre ma-
terial. The two components of the bending torque acting
in the first direction ey′ normal to the beam axis are given
by (

T by′
)
i

= −πEr
3
b

4

[
2(θy′)i + (θy′)j

]
, (21)(

T by′
)
j

= −πEr
3
b

4

[
(θy′)i + 2(θy′)j

]
. (22)

Similarly, the two bending torque components in the sec-
ond normal beam direction ez′ are given by(

T bz′
)
i

= −πEr
3
b

4

[
2(θz′)i + (θz′)j

]
, (23)(

T bz′
)
j

= −πEr
3
b

4

[
(θz′)i + 2(θz′)j

]
. (24)

Owing to the use of quaternions, trigonometric functions
are never used. This is a significant advantage of the
present method.
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2.3. Eulerian representation of the fibre
The fibre volume fraction φ(x, t) is introduced to repre-

sent the fibre in an Eulerian manner. This volume fraction
will later be necessary to perform a volume integral and
resolve the capillary and hydrodynamic forces. The sharp
boundary of the i-th bead is here replaced with a smooth
profile function φi(x, t), which undergoes a smooth but
rapid transition from unity to zero as one moves from the
inner bead region to the outer bead region [40]. A number
of smooth profile functions are presented in the work of
Nakayama and Yamamoto [41]. A truncated hyperbolic
tangent profile is here chosen to mathematically represent
the volume of each spherical bead. The smooth profile
function of the i-th spherical bead takes the form

φi(x, t) =


1 if |x−Xi| < rb − ξc,
0 if |x−Xi| > rb + ξc,
1
2 + 1

2 tanh
(
rb−|x−Xi|√

2ξ

)
elsewhere,

(25)
where ξ is the interfacial length and ξc is an arbitrarily set
cut-off length. First, the cut-off length ξc is introduced to
efficiently calculate the right hand sides of the later Equa-
tions 35 and 36, where the integrals

∫
V dx run over the en-

tire space of the domain. The truncation hence eliminates
the far-off integration space for |rb−|x−Xi|| > ξc, where
φi(x) ≈ 0 [41]. The code implementation is also not yet
fully optimized and has a rather weak scaling efficiency
on high performance computers. Calling the hyperbolic
tangent over the whole domain simply is more time con-
suming. Second, the value of the cut-off length, specified
in the presented tests, has a negligible effect on the results
because only a very small portion of the interfacial energy
is stored in the truncated far-off tail. The profile summa-
tion φ, hereafter referred to as the fibre volume fraction, is
defined by the superposition of the individual Nb smooth
profile functions as

φ(x, t) =

Nb−1∑
i=0

φi(x, t). (26)

2.4. Eulerian representation of the binary fluid
The fibre is immersed in a binary fluid, composed of a

fluid constituent A and a fluid constituent B. The two vol-
ume fractions φA(x, t) and φB(x, t) are also introduced to
represent each fluid constituent in an Eulerian manner. A
variety of three-phase models have emerged in the recent
years to study the dynamics of individual spherical beads
in binary fluids [42–45]. A diffuse-interface approach [46]
is here employed to simulate the separation of the binary
fluid into its two fluid immiscible constituents A and B.
The dynamics of the separation is driven by the minimi-
sation of a free energy F [47]. In a ternary system, as is
the case here where a single fibre interacts with two im-
miscible fluid constituents, the free energy can be written
as [48–50]

F =
kBT0

v0

∫
V
f(φA, φB , φ) dx, (27)

Figure 3: Bulk free energy density fb = f0 + f1.

where V is the region of space occupied by the ternary sys-
tem, kB the Boltzmann constant, T0 the reference temper-
ature, v0 a reference unit volume, f a non-dimensional free
energy density yet to be defined, and dx an infinitesimal
volume element. The variables in the free energy density
f are normally termed “order parameters”[51]. Because
of the summation constraint φA + φB + φ = 1, the free
energy density can be conveniently recast as a function of
two order parameters only, which are here ψ = φA − φB
and φ. For consistency purposes, the term ψ is hereafter
referred to as the order parameter and φ as the fibre vol-
ume fraction. The following formulation, consistent with
that of other authors also active in the field [42, 52], is
suggested

f(ψ, φ) = f0(ψ) + f1(ψ, φ) +
ξ2

2
|∇ψ|2 , (28)

f0(ψ) =
1

4

(
1− ψ2

)2
, (29)

f1(ψ, φ) =
3

2
φ2 (ψ − ψ∗)2 , (30)

where f0(ψ) is a double well function with a first min-
ima located at ψ = −1 and a second minima located at
ψ = +1, f1(ψ, φ) is an additional term introduced to im-
pose ψ = ψ0 inside the fibre, ψ∗ is a user-defined control
parameter introduced to set the bead affinity, and ξ is the
interfacial thickness defined in Equation 25. As seen in
Figure 3, the bulk term fb = f0 + f1 turns into a single
well function with a minima located at ψ = ψ0 inside each
bead. The bulk term fb essentially ensures that ψ = +1
in fluid constituent A, ψ = −1 in fluid constituent B, and
ψ = ψ0 in each solid bead. The last term ξ2|∇ψ|2/2 in
Equation 28 is an interfacial term resulting in an energy
excess across each diffuse interface. The control param-
eter ψ∗ and the position of single well minimum ψ0 are
dependent on each other. Solving the functional deriva-
tive δfb/δψ = 0 gives the following dependency

ψ∗ =
2ψ0 + ψ3

0

3
. (31)

Imposing ψ = ψ0 inside the solid constituent was originally
suggested by Araki and Tanaka [53] to set the bead affinity.
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Figure 4: Free energy density f(x) and order parameter ψ(x) solved
for the given smooth profile φ(x). The area in grey highlights the
replacement of the sharp boundaries with two smoothly transitioning
order parameters.

A positive value ψ∗ > 0 results in a stronger affinity to
fluid constituent A, while ψ∗ < 0 results in a stronger
bead affinity to constituent B. For ψ∗ = 0 the bead has
an equal affinity to the two fluid constituent. In fact, for
the special case ψ∗ = 0, it can be shown that the bulk
term δfb/δψ exactly coincides with that suggested by Kim
[48] for a ternary fluid system, hence the coefficient 3/2
preceding the function f1 in Equation 30. Note that, the
term ψ∗ is the actual input parameter, while the term ψ0

is an output parameter. Yet, in all presented tests, the
value ψ0 delivered by the simulations exactly coincided
with its theoretical counterpart worked out with Equation
31. Because it is straightforward to check that ψ = ψ0

from an Eulerian contour, only the value of ψ0 is specified
hereafter. The order parameter ψ(x, t) is updated in time
according to the following modified Cahn-Hilliard equation

∂ψ

∂t
+ u · ∇ψ = M∇2µψ (32)

where M is the mobility of the binary fluid, u the Eule-
rian velocity field, and µψ = δF/δψ the chemical potential
with respect to the order parameter ψ. The formulation is
somewhat different to that recently suggested by the same
authors [30]. In fact, Equation 32 is easier to implement,
is associated with a lower computational cost, and leads
to more accurate simulation results. Figure 4 shows the
one-dimensional equilibrium solutions of the total free en-
ergy density f(x) and of the order parameter ψ(x), both
obtained for an arbitrarily set fibre volume fraction φ(x)
and a zero velocity field u = 0. The equilibrium solu-
tions of Equation 32 were obtained with ψ0 = 0.3 (value
arbitrarily chosen), ξ = 3∆, and ξc = 15∆, where ∆ is
the unit grid spacing. It is seen that the model delivers
expected solution profiles with respect to f and ψ. The
free energy density f peaks at the sharp bead boundary
defined by φ = 0.5 and the order parameter ψ smoothly
transitions over the same distance as that of the imposed
smooth profile φ(x). The width of the transitional area is
illustrated by the background area in grey.

2.5. Hydrodynamics

The total velocity field is here solved using the “Smooth
Profile Method” [41]. In this method, the Eulerian ve-
locity field is decomposed as u = (1 − φ)u + φu, where
the first term (1 − φ)u is the velocity field of the binary
fluid and the second term φu is the velocity field of all
beads. This latter, acting as a penalty term, is given by
φu =

∑
φi[Vi+Ωi×(x−Xi)]. The smooth profile method

is now well established and has been validated numerous
times. Further reading and validations can be found in
the works of Molina and Yamamoto [54] and those, more
recent, of Molina et al. [26]. Elasto-capillary deformation
occurs at submillimetric scales, where the capillary actions
are the main drivers responsible for the fibre deformation.
Unequal fluid densities and viscosities would only affect
the unsteady dynamics and not the equilibrium state il-
lustrated in Figure 1. For these reasons, a low-Reynolds-
number flow with equal densities and viscosities in all con-
stituents, that is ρA = ρB = ρ, and ηA = ηB = η, is
considered. Hence, the two volume fractions φA and φB
never appear in the implementation. The total velocity,
which satisfies the incompressibility condition ∇ · u = 0,
is advanced in time by solving the equation

ρ
∂u

∂t
= −∇p+ η∇2u + ρφfφ − ψ∇µψ − φ∇µφ, (33)

where fφ is the penalty term resulting from the fibre dy-
namics, and µφ = δF/δφ is the chemical potential with
respect to the fibre volume fraction φ. The last source
term −φ∇µφ in Equation 33 did not appear in the origi-
nal implementation [42], on which this work extends. The
addition of this extra source term was motivated by the
work of Boyer et al. [55], who suggested a Cahn-Hilliard
formulation for ternary fluid systems. Our tests showed
that this term was only necessary in two-dimensional sim-
ulations to improve stability. For three-dimensional simu-
lations, the use of this term was not really needed and a
remarkable match with the theory could be achieved [56].

2.6. Calculation of the capillary and hydrodynamic forces

A brief description of the overall numerical method is
necessary to explain how the hydrodynamic and capillary
forces are calculated. For a more complete description of
the numerical method, the reader is referred to our previ-
ous work [30, 56, 57]. Let ψn be the order parameter cal-
culated at the time tn. The field ψn+1 is first advanced in
time using Equation 32. In the next stage, the mass centre
Xn+1
i and the quaternion qn+1

i of each bead are advanced
in time using Equation 2 and Equation 3, respectively. A
fractional step approach is then used to calculate the to-
tal velocity field. Using the momentum Equation 33, an
intermediate velocity is first calculated as

u∗ = un+
1

ρ

tn+1∫
tn

(
−∇p∗ + η∇2un − ψn+1∇µn+1

ψ − φn+1∇µn+1
φ

)
dt

(34)

5



where p∗ is an intermediate pressure calculated by solving
the continuity equation∇·u∗ = 0. The hydrodynamic and
the capillary forces can then be calculated by assuming a
momentum conservation between the i-th bead and the
binary fluid. Since the hydrodynamic and the capillary
contributions are accounted for in the calculation of the
intermediate velocity, one obtains for the i-th spherical
bead

tn+1∫
tn

(
F h
i + F c

i

)
dt = ρ

∫
V
φn+1
i (u∗ − u∗i ) dx (35)

tn+1∫
tn

(
T h
i + T c

i

)
dt = ρ

∫
V
φn+1
i (x−Xi)× (u∗ − u∗i ) dx(36)

where u∗i = V n
i +Ωn

i ×(x−Xn+1
i ) is an intermediate veloc-

ity field associated with the i-th bead motion. The trans-
lational and rotational velocities of each bead are then
advanced in time using Equation 5 and 6. Finally, the ve-
locity field of the entire Lagrangian cloud is enforced onto
the total fluid velocity field as

un+1 = u∗ +

tn+1∫
tn

(
−1

ρ
∇p∗∗ + φfφ

)
dt (37)

where the pressure p∗∗ is obtained from the incompress-
ibility condition ∇ · un+1 = 0. The time integral of the
penalty term is calculated as

tn+1∫
tn

φfφdt = φn+1(un+1
φ − u∗). (38)

where φn+1un+1
φ =

∑
φn+1
i [V n+1

i + Ωn+1
i × (x−Xn+1

i )].

We also note that neither the Lagrangian forces (F h+F c),
nor the Lagrangian torques (T h + T c), nor the penalty
term φfφ need to be computed explicitly. Only their time
integrals are required. The total pressure at time tn+1,
though not explicitly required in the following, is given by
pn+1 = p∗ + p∗∗

2.7. Intermediate conclusions to the suggested methods

The present work essentially combines three ingredi-
ents, namely a Lagrangian beam model, an Eulerian bi-
nary fluid model, and an Eulerian hydrodynamic model,
which have been developed rather independently so far.
The suggested formulation of the free energy also differs
quite substantially from previous ones [42, 53], even though
other approaches based on, for instance, the level-set method
[43] would work equally well. Despite its associated high
computational cost, a major strength of the model lies
in its ability to simulate the unsteady three-dimensional
elasto-capillary deformation of fibres at a fluidic inter-
face. The model currently allows affordable simulations

of a singe fibre made of up to twenty beads in a two-
dimensional system and up to ten beads in three-dimensional
system. Simulating the dynamics of much larger fibres is
possible, yet it is associated with a much higher computa-
tional time. According to Yue et al. [58], using an adaptive
mesh refinement across the interfaces could potentially re-
duce the computational time by up to 80 %. Finally, bi-
nary diffuse interface models are particularly attractive to
simulate flows with moving contact lines [40]. Further re-
search is however necessary for diffuse immersed walls, as
is the case here with the fibre.

3. Results

The above equations were implemented in their non-
dimensional form using the Reynolds number Re, the We-
ber number We, the Peclet number Pe, and the elasto-
capillary number Ec defined as

Re =
ρ0U0L0

η0
(39)

We =
ρ0U

2
0L0

σ0
(40)

Pe =
U0L0

D0
(41)

Ec =
k0
σ0

(42)

where ρ0 = ρA is the reference density, η0 = ηA the ref-
erence viscosity, L0 = ∆ the reference length, and U0 a
reference velocity arbitrarily set. It could for instance be
the terminal velocity of a single bead in the reference fluid.
The diffusion coefficient is defined as D0 = e0M , where
e0 = kBT0/v0 is the reference free energy density seen in
Equation 27. The reference surface tension is given by
σ0 = e0L0. The term k0 = πrbE/2, defined in Equa-
tion 11, is a reference measure of the fibre stiffness. The
two limiting cases Ec = 0, respectively Ec → ∞, indi-
cate either loose beads in suspension or a fully rigid fibre.
The overall dynamics of the ternary system were found to
be quite sensitive to the ratio of the Weber number the
Reynolds number We/Re. A Weber number greater or
within the same order of magnitude as the Reynolds num-
ber resulted in a large oscillatory movement of the fibre
at the fluidic A/B interface, which in turn resulted in un-
necessarily long simulation times. An over-damped system
led to a much better numerical stability. For these reasons,
the Weber number is set to We = 0.1 and the Reynolds
number to Re = 0.01 in all subsequent simulations.

3.1. Validation of the Lagrangian beam model

The overall performance of the beam model is depen-
dent on the number of spherical beads Nb used to discre-
tise the fibre. The following well-known test was therefore
considered to work out the minimum number of beads nec-
essary to obtain meaningful results. A fibre, initially set
in horizontal position, had its left end fixed. That is, the
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Figure 5: Bending of a fibre subject to a punctual load placed on
its far right end. With Nb = 10, an excellent agreement is observed
between the theoretical results and those obtained with the numerical
beam model.

first bead had its position and velocities locked, Xi=0 = 0,
Vi=0 = 0, and Ωi=0 = 0. The far right end of the fibre
was subject to a downward point load P . An external
force hence acted on the last bead as F e

i=Nb−1 = −Pey.
The deformation of the fibre was simulated for an increas-
ing number of beads. The maximum vertical displacement
δ, obtained at equilibrium, was calculated at the fibre ex-
tremity. Figure 5 shows the maximum vertical displace-
ment δ as a function of the point load P . In the small-
deflection theory, the maximum vertical displacement δ at
the fibre extremity is given by

δ

L
=
PL2

3EI
, (43)

where L = 2(Nb − 1)rb is the length of the fibre and
I = πr4b/4 is the area moment of inertia. The analytical
solutions shown in Figure 5 for the large-deflection theory
were provided by Fertis [12]. It is seen that, in the small
deformation regime, that is δ/L < 1, the beam model per-
forms remarkably well irrespective of the number of beads
in the fibre. For larger deformation, a number of beads
equal or greater than Nb ≥ 10 was necessary to achieve an
accurate prediction of the bending.

3.2. Validation of the Eulerian hydrodynamic model

The calculation of hydrodynamic drag acting on a sin-
gle sedimenting sphere has already been validated by the
authors and showed an accuracy of about 10% in a low-
Reynolds number flow, in both two- and three-dimensional
systems [57]. Further three-dimensional validations of present
Eulerian hydrodynamic model with respect to the hydro-
dynamic drag acting on non-spherical rigid bodies were
also performed by Molina and Yamamoto [54]. Yet, an
additional series of tests involving the two-dimensional mo-
tion of fibre immersed in a unary shear flow was here per-

t0 t1 t2 t3 t4

Rigid fibre

Flexible fiber

Figure 6: Dynamics of a flexible and a fairly rigid fibre in a unary
shear flow (Nb = 10).

formed to validate the combination of the Eulerian hydro-
dynamic model with the Lagrangian beam model. The
reference fluid constituent was sheared by an upper wall
translating at a constant velocity Uw and by a lower wall
translating in the opposite direction at the same velocity
−Uw. Without any fibre in the domain, the solution of the
velocity field is simply given by u = [(γ0y) 0]>, where γ0 is
the resulting steady shear rate and y the vertical abscissa.
At time t = 0, the fibre long axis was set perpendicu-
lar to the direction of the shear flow. Figure 6 illustrates
the motion of a flexible fibre and that of a fairly rigid fi-
bre. The results were obtained with rb = 6∆, ξ = ∆,
ξc = 3∆, Re = 0.01, and N = 1802, where N is the num-
ber of grid points used to discretise the two-dimensional
domain. In a unary system, the transport Equation 28
does need not be solved. The values of the Weber and the
Peclet numbers are hence irrelevant in this section. The
results with respect to the flexible fibre were obtained with
k0/(L0η0γ0) = 15 ·103 and those with respect to the fairly
rigid fibre with k0/(L0η0γ0) = 75 · 103. The snaking mo-
tion of the flexible fibre along with the tumbling of the
fairly rigid fibre closely resemble that previously observed
by other authors [15, 19]. The orbit period of rotation T
of the rigid fibre was also calculated as a function of the
numbers of beads Nb forming the single fibre. Figure 7
compares the dimensionless period γ0T with a polynomial
function fitted to the data of Yamamoto and Matsuoka [15]
and with the theoretical solution proposed by Jeffery [59],
with the latter being further discussed in Appendix B. For
Nb ≤ 9, the quantitative predictions of the present model
are in excellent agreement with the literature data. Be-
cause the length of the ten-bead fibre was almost as large
as the height of the domain, a discrepancy is observed for
Nb = 10. Further three-dimensional validations with re-
spect to the tumbling motion of single rigid fibres in shears
flow were performed by Kobayashi and Yamamoto [60, 61].

3.3. Validation of the Eulerian binary fluid model

To validate the Eulerian binary fluid model, the follow-
ing test case was considered. A single bead was initially
placed in a horizontally stratified binary system as illus-
trated in Figure 8. The upper half of the domain was
filled with the fluid constituent A, that is ψ = 1, and the
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Figure 7: Orbit period (γ0T ) of a rigid fibre as a function of the bead
number Nb compared with literature data.

Figure 8: Contact angle as a function of the bead affinity parameter
ψ0.

lower half with the fluid constituent B, that is ψ = −1.
At time t = 0, the bead centre of mass aligned with the
horizontal A/B fluidic interface. A number of simulations
were then performed for increasing values of the bead affin-
ity parameter ψ0. When the bead reached its equilibrium
position, the geometric contact angle was calculated as
θ = cos−

1

(h/rb), where h was the shortest distance from
the bead centre to the horizontal A/B fluidic interface.
An analytical contact angle was also calculated using the
energy excesses across each interfacial area. It was given
by

θ = cos−1
(
σAS − σBS

σAB

)
, (44)

where σAS , σBS , and σAB were the energy excesses re-
spectively stored at the A/S interface, the B/S interface,
and the A/B interface. The energy excesses σAS and σBS
are illustrated in Figure 4. The theoretical value of the
surface tension, that is the energy excess stored across the
A/B interface, is given by σAB =

√
8σ0/3. The compar-

ison between the geometrically derived contact angle and
its analytical counterpart is shown in Figure 8. The results
were obtained with rb = 20∆, ξ = 3, ξc = 15∆, Re = 0.01,
We = 0.1, Pe = 1, and N = 1282. For a contact angle
within the range 40◦ < θ < 140◦, the match turns out
to be excellent. For contact angles outside this range, the
error becomes larger. This is attributed to the difficulty

t0 t1 t2 t3
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Figure 9: ψ-contour showing the capillary-induced tumbling of fibre,
which has an equal affinity to the two fluid constituents, i.e. ψ0 = 0.

in determining the geometric contact angle in the event of
an almost complete bead dewetting.

3.4. Fibre in a horizontally stratified binary fluid

A set of simulations involving the capillary-induced
tumbling of a fibre in a stratified fluid was here performed
to qualitatively assess the full numerical model. Because
the fluid is stagnant, no shear flow is imposed and so, the fi-
bre rotation is solely driven by the capillary actions occur-
ring at the three-phase contact line. These present results
hence act as qualitative tests and allow us to verify the final
orientation of the fibre attained at equilibrium. At time
t = 0, the fibre was inclined by 50◦ with respect to the hori-
zontal A/B fluidic interface. The upper half of the domain
was also filled with the fluid constituent A, that is ψ = 1,
and the lower half with the fluid constituent B, that is
ψ = −1. The simulations were performed with the follow-
ing input parameters Nb = 9, rb = 6∆, ξ = 2∆, ξc = 5∆,
Re = 0.01, We = 0.1, Pe = 1, and N = 1282. In this sec-
tion, the chosen input parameters result in a ratio of the
interfacial length to bead radius equalled to ξ/rb = 1/3.
Simulations with smaller ratio down to 1/6 were also per-
formed. Yet, we observed that the A/B fluidic interface
rapidly “jumped” from one bead to the next one, mak-
ing the unsteady dynamics rather unrealistic. The present
ratio ξb/rb led to a much smoother temporal evolution of
A/B fluidic interface in the fibre vicinity. Figure 9 shows
snapshots of the tumbling fibre exhibiting a neutral affin-
ity to the two fluid constituents, that is ψ0 = 0. The upper
time sequence is shown for a highly deformable fibre, i.e.
Ec = 1. The lower time sequence is shown for a more rigid
fibre, i.e. Ec = 10. As expected, the long axis of the fibre
eventually aligns with the A/B fluidic interface. Figure
10 shows the capillary-induced tumbling of a deformable
fibre, which had a stronger affinity to the upper fluid A,
that is ψ0 = 0.2. The bottom portion of the fibre, initially
immersed in the bottom fluid B, is pushed away towards
the upper fluid A. This, in turn, causes an asymmetri-
cal tumbling of the fibre. The above results show that
the model is capable of simultaneously reproducing the
capillary and deformability effects. The model was also
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Figure 10: ψ-contour showing the capillary-induced tumbling of fi-
bre, which has a stronger affinity to the upper fluid constituent A,
i.e. ψ0 = 0.2.

Figure 11: Capillary-induced tumbling of flexible fibre in a three-
dimensional stratified system.

tested in three-dimensional systems. Figure 11 shows, for
instance, the capillary-induced tumbling of a flexible fibre
having identical affinity to the two fluid constituent in a
three-dimensional stratified system. The checkered isosur-
face, defined as ψ = 0 represent the A/B fluidic interface.
The three-dimensional results were obtained with Nb = 8,
rb = 6, ξ = 2∆, ξc = 5∆, Re = 0.02, We = 0.1, Pe = 1,
Ec = 10, and N = 120 × 120 × 32. Further simulations
can be found in the supplementary material.

3.5. Elasto-capillary bending of fibre by a fluid droplet

In this section, the bending of a fibre by a fluid droplet
is investigated. At time t = 0, the droplet was initialised
to a half-disk filled with the fluid constituent A, that is
ψ = 1. The base of the half-disk was brought in contact
with the horizontal fibre. The elasto-capillary number was
here varied from Ec = 10 to Ec = 1000. The simulations
were performed with three levels of bead affinity, namely
with ψ0 = −0.2, ψ0 = 0, and ψ0 = 0.2. With the ex-
ception of the domain size, which was here increased to
N = 256 × 200, the input parameters, set to Nb = 18,
rb = 6∆, ξ = 2∆, ξc = 5∆, Re = 0.01, We = 0.1, and
Pe = 1 were identical to those used in the previous simu-
lations of the capillary-induced fibre tumbling. Figure 12
shows the three equilibrium states obtained with a highly
flexible fibre (Ec = 10), with an intermediately flexible
fibre (Ec = 40), and with a rigid fibre (Ec = 200). The
animated figure, available in the supplementary material,

Ec = 10 Ec = 60 Ec = 200
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Figure 12: Encapsulation of the droplet by a highly flexible fibre.
With greater elasto-capillary number only a partial wrapping is ob-
served. Fully wrapping is observed for low fibre stiffness.

shows that model is capable of simulating the dynamics of
the droplet encapsulation at low elasto-capillary number
Ec. With increasing Ec, only partial wrapping occurs.
Figure 12 shows the fibre curvature Rc as a function of
Ec, where Rc was estimated by best-fitting a circle to the
bended portion of the fibre (See Appendix Appendix C).
The fibre curvature is here normalised with the equivalent
droplet diameter Rdroplet defined in a two-dimensional do-
main by

πR2
droplet =

∫
ψ>0.5

ψdx. (45)

The results demonstrate a linear dependency between the
fibre curvature and the elasto-capillary number Ec, for
both small and large structural deformation. This linear
dependency has recently been confirmed experimentally
by Schulman et al. [11] for single polymer fibres brought
in contact to spherical glycerol droplets. The linear fit-
coefficient α in the legend of Figure 13 indicates that a
fibre with an affinity to the fluid droplet B (ψ0 < 0) expe-
riences a stronger bending than a fibre with an affinity to
the reference surrounding fluid A (ψ0 > 0). The increasing
value of α with increasing ψ0, as is the case here, is in fact
expected. The linear trend also shows that upon encapsu-
lation, which occurs at the left-end of the plot, the fibre
curvature reaches a value very close to the droplet radius.
This is also inline with the experimentally observed encap-
sulation, where the droplet radius was much larger than
the bead radius. The model is also well capable of simulat-
ing the full and partial encapsulation of three-dimensional
droplets. Figure 14 illustrates the three-dimensional equi-
librium solutions, for which the fibre had an equal affinity
to both fluid constituents, that is ψ0 = 0. The droplet
is represented by the isosurface ψ = 0. The unsteady
dynamics of the ternary system during the process of en-
capsulation can be found in the supplementary material.
Because the cost of three-dimensional simulations is ex-
pensive, not enough simulations data could be gained to
verify the linear trend seen in two-dimensional simulations.
The three-dimensional results were obtained withNb = 10,
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Figure 13: Linear dependency of the fibre curvature with the elasto-
capillary number.

Figure 14: Three-dimensional equilibrium solutions of the droplet
encapsulation for increasing Ec.

rb = 6, ξ = 2∆, ξc = 5∆, Re = 0.02, We = 0.1, Pe = 1,
and N = 128× 120× 120.

4. Conclusions

The investigation of flexible fibres in contact with liq-
uid droplets has been receiving increasing attention in the
recent years. Mostly steady-state, yet powerful, models de-
rived using the variational approach, have been suggested
in the literature. We here presented an alternative numer-
ical approach to study the unsteady dynamics of a flexi-
ble fibre interacting with a fluidic interface. The present
model combined a discrete element method to simulate
the structural fibre deformation, a Cahn-Hilliard solver to
track the fluidic interface, and a Navier-Stokes solver to
simulate the low-Reynolds-number flow. Both the com-
plete encapsulation and the partial wrapping of the fluid
droplet by a flexible fibre could be simulated. In-line with
previously reported experimental results, it was found that
curvature of the fibre increases linearly with the square of
the elasto-capillary length, for both low and large struc-
tural deformation. Future extension will allow the numer-
ical investigation of more complex binary-fluid structure

interactions [62], such as the elastocapillary self-folding of
fibre [63], the capillary stretching of multiple fibres [64],
and even the droplet encapsulation by a thin flexible sheet
[4]. The present method could also be extended to in-
vestigate intricate industrial applications, where the hy-
drodynamics and the elasto-capillary effects play equally
important roles. Such an application could for instance in-
volve the rise of air bubbles across a cloud of flexible fibres
suspended in water.
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Appendix A.

The following procedure describes the frame transfor-
mation Xiexeyez → Xiex′ey′ez′ . The unit quaternion
q∗, associated with the unit vector transformation ex′ =
R∗ · ex, where R∗ is a rotation matrix yet to be defined,
is first calculated as

q∗ =


q∗s
q∗x
q∗y
q∗z

 =
[qs qx qy qz]

>(
q2s + q2x + q2y + q2z

)1/2 , (A.1)

where qs = 1 + (ex · ex′) is calculated using the vectorial
dot product and [qx qy qz]

> = ex×ex′ is the vectorial cross
product. Leaving out the asterisk superscript for better
readability, the transformation matrix of any quaternion
[qs qx qy qz] is given by [27]

R = 2

 1
2 − q

2
y − q2z qyqx − qsqz qzqx + qsqy

qxqy + qsqz
1
2 − q

2
x − q2z qzqy − qsqx

qxqz − qsqy qyqz + qsqx
1
2 − q

2
x − q2y

 . (A.2)

The remaining two unit vectors forming the local beam
frame are now computed by transforming the unit vectors
of the inertial frame as ey′ = R∗ · ey and ez′ = R∗ · ez.

Appendix B.

A prolate particle with aspect ratio ep exhibits a pe-
riodic motion when placed in a laminar shear flow. The
prolate actually spends most of its time aligned with the
shear direction, but every half a period it rapidly tumbles
by 180◦ [65]. The rotation period of the prolate is given
by [59]

T =
2π

γ0

(
ep +

1

ep

)
. (B.1)

The equivalent aspect ratio of a cylindrical fibre ec is con-
veniently estimated as ec = 1.14e0.844p [66].
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Figure C.15: Estimation of the fibre curvature Rc using the method
of least squares.

Appendix C.

The fibre curvature is estimated by taking the radius
Rc of a circle fitted with the method of least squares to
six successive bead centres. Figure C.15 shows a series of
circles fitted to deformed fibres obtained for the following
elasto-capillary numbers Ec = 10, Ec = 20, and Ec = 40.
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