
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

X-ray spectrometer simulation code with a detailed support of mosaic 
crystals

Smid, M.; Pan, X.; Falk, K.;

Originally published:

December 2020

Computer Physics Communications 262(2020), 107881

DOI: https://doi.org/10.1016/j.cpc.2020.107811

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-29826

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

CC BY-NC-ND

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1016/j.cpc.2020.107811
https://www.hzdr.de/publications/Publ-29826
https://creativecommons.org/share-your-work/cclicenses/


X-ray spectrometer simulation code with a detailed support of mosaic

crystals
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Abstract

We present a newly developed ray tracing code called mmpxrt, dedicated to study and design x-ray
crystal optics, with a special focus on mosaic crystal spectrometers. Its main advantage over other
currently available ray tracing codes is that it includes detailed and benchmarked algorithm to treat
mosaic crystals, especially HOPG and HAPG (Highly Oriented / Annealed Pyrolitic Graphite). The
code is dedicated primarily to study crystal spectrometers, therefore their implementation is very
straightforward, and the code has mostly automatic evaluation of their performance. It can, however,
be used universally to study other crystal instruments, like monochromators, mirrors, and analyzers.
The code is publicly available, written in Python3 and is distributed as a Python library with test
cases included.
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PROGRAM SUMMARY
Program Title: mmpxrt
Program Repository:
https://gitlab.hzdr.de/smid55/mmpxrt
Licensing provisions: MIT
Programming language: Python 3

1. Introduction

Mosaic crystals have been used for x-ray spec-
trometers for decades [1, 2], in recent years, they
found many applications in high-intensity laser-
plasma studies where there a limited amount of
photons is detected in each shot and single shot
spectra are desirable. Then a high crystal re-
flectivity is required to obtain measurable signal.
This concerns especially applications for x-ray

∗Corresponding author.
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Thomson scattering (XRTS) [3] or laser-driven
betatron radiation [4].

First ray tracing model calculating with mo-
saic crystal was written already in 1991 [5] as a
part of the SHADOW code [6]. However, this
and later similar codes are not flexible for de-
tailed studies of x-ray spectrometers [7]. Novel
code was presented in 2012 [7], however this code
is not available for general public. This situation
led us to develop a novel code within modern lan-
guage Python3, optimized to easily model various
x-ray spectrometers and similar devices and sim-
ple enough to allow users with basic knowledge of
the language to run their own cases, allowing the
code to be publicly available.

Apart from focus on mosaic crystals, the
strength of the code is that it comes with built-in
evaluation tool to asses most basic spectrometer
parameters and which produces useful graphical
output. Its open structure in Python3 language
also allows e.g. batch simulations or parameter
scans.
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2. Code workflow

The code is designed to be powerful and easy-
to-use characterization of x-ray spectrometers.
The random nature of mosaic crystals implies that
a Monte Carlo simulational approach is very suit-
able. It uses the random nature of a Monte Carlo
simulation in two places. First, the properties of
each ray are randomly calculated based on given
probability distribution of direction, source posi-
tion, and energy. Second, the interaction with
mosaic crystal is governed by random spread of
the crystallites and penetration of the x-ray into
the crystal.

The code is technically a Python3 library, each
simulation is a Python script which loads the li-
brary, sets the predefined parameters and runs
the simulation. The detailed results, including
trajectories of all rays, are stored in python vari-
ables as well as saved into an output file and
an overview figure summarizing simulated spec-
trometer parameters is produced. This workflow
without an actual GUI (graphical user interface)
enables more powerful usage, for example auto-
mated varying of parameters, searching of optimal
conditions, or connection to calculation defining
the geometry of the spectrometer. However, an
effort has been made to make the usage so simple
that only very basic knowledge of Python pro-
gramming is needed. An example in Appendix B
shows a script varying the source to crystal dis-
tance and plotting the resolution of such spec-
trometer as a function of this distance (shown in
Fig. 4).

The basic workflow to simulate a spectrometer
starts by calling the mmpxrt.init() function, set
all parameters, then call mmpxrt.spectrometer()
to run the simulation and then
mmpxrt.spectrometer evaluate() to evaluate it and
to produce the output. The latter functions works
actually with two ray tracing simulations with dif-
ferent source parameters. First one has broad-
band energy spectrum and asses the properties
such as spectral range and dispersion relation.
The second simulation with monochromatic beam
calculates the point spread function, resolution,
efficiency, etc.

Applications which require higher flexibility
can skip the mmpxrt.spectrometer() routine and
go directly to the mmpxrt.raytrace() function and
simulate basically any geometry in any applica-
tion. Still, the simulation is designed to study
single element (crystal) only. Each ray there-
fore consists of three points. First, the source
point, where the position, initial angle, and en-
ergy of a ray are defined. The source position
can be either an ideal point or could be random
within a sphere to simulate finite source size, or
two points to assess the spatial imaging proper-
ties and corresponding blurring or deformation
of the spectra. Standard setting of beam initial
divergence is to assume a spherically divergent
source, but for the efficiency of the calculation,
the rays are randomly distributed only over the
area of the crystal. Other possibilities include
a narrow beam with either Gaussian or homoge-
neous circular profile. Energies of rays can be ei-
ther monochromatic, dichromatic, broadband, or
a custom spectrum can be given.

The second point of each ray corresponds to
the reflection point on the crystal. The crystal
can be either mosaic or monocrystal. The inter-
action with monocrystal is quite straightforward;
the interaction is more complex if the crystal has
a mosaic structure, which is described in the fol-
lowing section. The third point is the intersection
of the ray with the detector plane. This plane is
theoretically infinite, with arbitrary orientation.
For the evaluation algorithm, the real dimensions
and pixel size of used detector can be given to
produce more easy-to-read results.

3. Mosaicity algorithm

The mosaic crystals are composed of many
small crystallites (typically 10s - 100s nm in size)
with partially random orientation [2]. Their ori-
entation is described by the mosaic distribution
function, i.e. the distribution of their surface devi-
ation from the crystal surface. It was shown that
this distribution can be well described by dou-
ble Lorentzian profile, where one Lorentzian curve
with FWHM equal to the mosaicity m models
the peak, and a second one, significantly broader,
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models a wide background [8]. Still, it is com-
monly assumed that single Lorentzian is a suffi-
cient model for most cases. The mosaicity (or mo-
saic spread) m is typically provided by the crystal
manufacturer.

The mosaicity is usually estimated as the rock-
ing curve width of the crystal. This rocking curve
is measured with a diffractometer, where the in-
tensity of a reflected monoenergetic beam is mea-
sured while the angle of incidence on the crystal is
varied [8]. This mosaic distribution, whose spread
is typically in the order of 0.05◦−2◦, should not be
confused with intrinsic crystallite rocking curve
width. This value is more difficult to measure
experimentally, and typically lies in the order of
0.006◦ [8].

The propagation length of an x-ray within such
crystal can be in the order of 10s to 1000s µm.
Assuming the crystal is homogeneous with con-
stant attenuation factor, then the intensity I of
a beam in depth x in the material is given by
the exponential attenuation I(x) = exp(−x/λ),
where λ is the penetration depth. In general, λ
is a function of x-ray energy and material proper-
ties, and is hard to theoretically evaluate for such
structured material. The code relies on input of λ
from literature or measurement, but it can auto-
matically scale the value to different x-ray energy
assuming the energy dependence of λ in mosaic
crystal is similar to its dependence in amorphous
material (carbon for HOPG and HAPG crystals),
and having this dependence tabulated in input.
The penetration depth at any energy E is then
approximated as:

λ(E) = λ(Eref)
λT(E)

λT(Eref)
, (1)

where Eref is the x-ray energy at which the
reference data λ(Eref) was obtained, and λT(E) is
the tabulated penetration depth of the same but
non-mosaic material.

The mosaic crystals in the code are defined
by their shape (size and curvature), mosaicity m,
thickness l, peak reflectivity r (i.e., the reflectivity
corresponding to the optimal incidence angle) and
penetration depth λ. For each ray, the depth in
crystal where they are reflected is obtained from

Figure 1: Illustration of the vectors for estimation of the
mosaic reflection.

exponential random distribution with coefficient
λ
2

sin( θBragg), where the sin corrects for the in-
cidence angle of the crystal and the 1

2
factor is

there, because the ray has to penetrate through
the crystal to the reflection point and then back
to its surface.

Obtaining the angle of reflection from the mo-
saic crystal is the crucial part of the code, and
is illustrated in Fig. 1. The x-ray photon is in-
cident at the angle shown by the vector of the
incident ray (red). The normal of the crystal
surface is marked as black. The angle θ between
these two is close to the Bragg angle in order to
reflect the ray. At this stage, the code neglects
the intrinsic crystallite rocking curve width. With
that assumption, the angle between the normal
vector of any reflecting crystallite nc (blue) and
the incident ray has to be exactly θBragg. This
condition defines a circle of all possible solutions
(gray), which is in the code parameterized by ro-
tation angle ϕ. From those solutions, the result
has to be selected based on the Lorentzian distri-
bution of the crystallite orientations. Therefore,
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the probability p(θ, ϕ) is calculated by:

p(θ, ϕ) =
1

πm

(
1 +

(
α(ϕ)
m

)2
) , (2)

where α(θ, ϕ) is the angle between crystal surface
and a ray defined by angle ϕ. The crystallite nor-
mal vector defined by a value of ϕ, and therefore
the direction of reflected ray, is randomly selected
based on this nonstandard distribution using the
rejection sampling method.

The effect of intrinsic crystallite rocking curve
width is applied on the reflected beam after this
algorithm. It is approximated by tilting the the
vector by a random amount in the magnitude of
the intrinsic width in a random direction.

Prior to the simulation, the probability is cal-
ibrated to correspond to the given reflectivity of
the crystal. The probability of reflection of a
beam at angle θ is calculated as an integral over
all ϕ:

i(θ) =

∫ 360◦

0

p(θ, ϕ)dϕ. (3)

This probability for the optimal Bragg angle θ0

should then correspond to the given peak reflec-
tivity r; however, during the simulation, it is as-
sumed that r = 1, and the efficiency is corrected
for the factor later. For a ray with arbitrary in-
cidence angle θ, the probability of its reflection is
then obtained as r(θ) = i(θ)

i(θ0)
. This ensures that

a ray impinging with the optimal Bragg angle is
always reflected, and the probability of reflection
is decreasing with increasing deviation.

4. Evaluation

The strength of the code lies in the evaluation
tool, which calculate most important performance
parameters. Most of those are easy to under-
stand and are therefore only briefly described in
the user manual, however the spectral resolution,
efficiency and source size broadening deserves a
closer attention and are discussed here.

4.1. Spectral resolution

The code calculates three different values as
a measure of spectral resolution. All of them are
based on the 2D point spread function (PSF) as
shown e.g. in Fig. 2. This PSF is an image on
detector from a simulation with monoenergetic
beam. All methods try to asses a FWHM of the
PSF which is in mm, and then can be converted
to eV by using the central dispersion obtained
from the simulation with broadband spectrum.

The first method plots the vertical profile inte-
grating over horizontal (non-dispersive) direction
y, shown as white lineout in Fig. 2. It estimates
its FWHM (full width at half maximum) literally
as measuring the length of the profile which is
above half of its maximum value.

The second method uses the same approach
on a region limited in y. This region is marked by
red lines in the figure, and the resulting profile is
also drawn in red.

Figure 2: Point spread function, i.e., a signal made by a
monochromatic beam on a detector in the spectrometer
described in Sec. 5.2 with dSC = 730 mm.

The third method calculates the spread of the
points along the vertical (dispersion) direction as
a root-mean-square (RMS). This spread is con-
sequently multiplied by 2.3548 in order to corre-
spond to FWHM of Gaussian profile. This means
that if the PSF would have a Gaussian profile in
d, this would yield the same value as the first
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method; the difference between these methods
shows how much the PSF differs from Gaussian
shape.

4.2. Efficiency

The efficiency of a spectrometer is a crucial
value, which often decides which type of instru-
ment should be used. Comparing the efficiency of
mosaic and non-mosaic crystals is especially not
trivial due to their different physical structure and
properties. The efficiency η is calculated as

η = r
ndet

ngen

∗ Ωdiv

4π
, (4)

where r is the peak reflectivity of the crystal,
ndet and ngen are the numbers of detected and gen-
erated rays, respectively, and the solid angle cov-
ered by the source is Ωdiv = 4 arcsin(sin(dX/2) ∗
sin(dY/2), dX and dY being the horizontal and
vertical divergence of simulated source beam.
Since for monocrystals it is more common to work
with integrated reflectivity, the peak reflectivity
r is obtained as r = ri/rcw, where ri is the in-
tegrated reflectivity and rcw the rocking curve
width. This formula obviously assumes square-
shaped rocking curve, but is designed such that
if only the rocking curve width and integrated
reflectivity are known, the efficiency calculation
works correctly. For mosaic crystals, the value
of peak reflectivity has to be given as an input,
as this value is usually experimentally provided,
showing a probability of reflection of a ray in-
cident exactly on Bragg angle. As an example,
[8] shows a reflectivity map of two HAPG crys-
tals, where the peak reflectivity in the (002) or-
der was varied between 10−50%, presents results
for higher orders and compares them to previous
work [9].

4.3. Source size broadening

Source size broadening is an effect where a fi-
nite size of the source decreases the spectral res-
olution of the measurement. This is caused by
the fact, that photons emitted at different source
positions are reflected to places on the detector,
even if they have the exact same energy. Various
spectrometers can have various sensitivity to this

effect. The typical way how to asses this is to
simulate a larger source size and check the resolu-
tion. However, since this would be computation-
ally costly to include into standard spectrometer
routine, a more general and stable method is in-
cluded.

In the simulation with monochromatic source,
part of the initial ray positions are shifted by
a given spatial offset roff , i.e., instead of having
a larger source, two point sources are used. In
the evaluation phase, the code measures the spa-
tial offset of the detected signals for these two
sources on the detector doff , and calculates a fac-
tor ssource as :

ssource =
doffd

roff

, (5)

where d is the central dispersion evaluated in the
broadband run of the simulation. This quantity
has a unit of eV/mm, i.e. if multiplied by a source
size expected in the experiment, it provides an
lower estimate of the spectrometer resolution in
eV. In both cases presented in the Appendix of
this paper, this value (called source size broaden-
ing) is around 30 eV/mm.

5. Test cases

This section presents five spectrometer cases
and highlight interesting results, showing the
modes of operation and benefits of using this code
for design and evaluation of experiments. The
cases described in this section are also provided
as examples within the distribution package.

The first three cases present different features
of similar HOPG spectrometers. First case refers
to a study of PSF and shows how the penetra-
tion depth can be experimentally inferred. Second
case studies the mosaic focusing, and the third
one presents the spectral envelope of such spec-
trometer. The fourth case shows how mosaicity
can be measured and understood by studies with
collimated beam. The fifth case is the only one
using a monocrystal, specifically toroidally bent
germanium in two different cuts (220 and 400).
It shows how sensitive such spectrometer can be
to the rotation of the detector.
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5.1. Point spread function

The point spread function, i.e., the spectrum
observed when the source is monochromatic, is ex-
tremely important property of any spectrometer,
since it defines its spectral resolution. In spec-
trometers with monocrystals it is usually narrow
and directly related to the rocking curve width of
the crystal, however, in mosaic crystals, it can be
influenced by several factors and it is not trivial
task to tell which is the dominant one.

Figure 3: Experimental spectrum fitted by a raytracing
simulation by varying the penetration depth.

An experimental study showing the correct-
ness of the PSF modeled by a previous version of
this code, as well as estimating the penetration
depth of x-rays into the HOPG crystal was pub-
lished before [4]. Cyllindrically-bent HOPG crys-
tal with mosaicity m = 0.8◦ and thickness 2 mm
was used to measure a Cu Kα radiation at 8047
eV. Due to the thickness of the crystal, the width
of the PSF (and therefore the spectral resolution)
was dominantly controlled by the penetration of
the radiation through the surface of the crystal.
This penetration depth was varied in the simula-
tion and the resulting spectra were compared to
the experiment. By this way, the value of pene-
tration depth was inferred as λ(Eref) = 695 µm
at Eref = 8047 eV. Figure 3 shows the agree-
ment of the experimental data with the fitted sim-
ulated spectrum and the spectral lineout of the
PSF (green, offset for clarity). The value obtained
from this measurement is used as a default setting
in the code for HOPG crystals.

5.2. Mosaic focusing

The mosaic focusing in x-ray spectrometers
defines that in order to have the best spectral res-
olution, the source - crystal distance has to equal
the crystal - detector one, dSC = dCD [2]. It is,
however, usually not studied how precisely this
condition have to be met, or if it can be even vio-
lated if e.g. required by experimental constraints.

We present a case motivated by such experi-
mental constraints, where both the minimal source-
crystal and maximal crystal-detector distances were
given. This spatial limitations have not allowed
to use the focused scheme. However, this analy-
sis shows that influence of even 5 cm deviation
from ideal setup is perfectly acceptable in this
case. This experiment uses a cyllindrically bent
2 × 4 cm large HOPG crystal with radius of cur-
vature r = 115 mm and mosaicity m = 0.8◦. The
distance dSC was varied while crystal-detector dis-
tance was fixed at its maximal allowed value of
dCD = 680 mm.

Figure 4 shows the variation of the three mea-
sures of spectral resolution provided by the code
(as discussed in Sec. 4.1) as a function of dSC.
The point spread function of the spectrometer, i.e.
its response to a monochromatic beam (shown in
Fig. 2), has strongly assymetrical shape with rel-
atively narrow peak and long tail in the spectral
direction (vertical in figure). The resolution ob-
tained from RMS (blue curve) is therefore signif-
icantly different from the one obtained from its
FWHM (orange curve). The green curve shows
a resolution obtained as FWHM of the response
limited to a central 3 mm wide region of the spec-
trum on detector, as marked by red lines in Fig. 2
and described in Sec.4.1.

It is seen that the dSC distance of 730 mm
provides comparable results in terms of spectral
resolution as the focused regime (dSC = dCD =
680 mm). Note that this shows the resolution de-
crease due to mosaic defocusing. In a real sit-
uation, the resolution can be decreased due to
other effects such as source size, detector resolu-
tion, crystal imperfection, etc. The script which
runs the simulation and produces Fig. 4 is shown
in Appendix B as an example.
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Figure 4: Spectral resolution of spectrometers violating
the mosaic focusing condition.

Figure 5: The spectral envelope of a mosaic spectrome-
ter; simulated by the code (dashed) and experimental data
(solid).

5.3. Envelope of the spectrum

The x-ray spectrometers are usually set for
specific angle of incidence, which corresponds to
the so-called central ray, having the central en-
ergy. It is common to expect that the instrument
performs equally within its whole range. How-
ever, for spectrometers where mosaic effects be-
come important (corresponding to rm > 1 as dis-
cussed in [4]), the efficiency can significantly drop
for rays further from the central one. Therefore
it is important to know the spectral envelope,
i.e. the response of the instrument to broadband
source with a flat spectrum.

Figure 5 shows this envelope, as a lineout of
the simulated spectrum, compared with the ex-
perimental data. The x-ray source in the experi-
ment was a microfocus x-ray tube with tungsten

(W) target, operated at 80 kV and 1.6 mA. The
spectrum has been measured by a cylindrically
bent HOPG spectrometer with radius of curva-
ture r = 115 mm, lattice spacing 2d = 6.708Å,
size 2 × 4 cm and mosaicity m = 0.8◦. The dis-
tances were set as dSC = 560 mm, dCD = 590 mm,
and the angle of incidence θ = 11.9◦ corresponds
to the central energy of 8990 eV. As the detec-
tor was only 28 mm long, two measurements were
performed to extend the observed energy range.
The only difference between those sets of data was
the translation of the camera by around 10 mm
along the energy dispersion direction. The ex-
perimental spectrum shows dominant character-
istic lines of tungsten over a continuous broad-
band background emission. It is seen that this
background is reasonably well fit by the simulated
envelope. This comparison shows the validity of
the code in simulating the envelope, which is of
significant importance if such spectrometer would
be used for analysis of intensities of spectral lines
which would be further from each other.

In this setup, the variation of incidence angle
over the whole surface of the crystal is relatively
small compared to the mosaicity. Therefore, the
the envelope (spectral range) is given by the mo-
saic spread of the crystal. To highlight this de-
pendence, Figure 5 shows also simulations with
m = 0.4◦ and m = 1.2◦. This also hints that sim-
ilar measurement can be used to easily estimate
or verify the mosaicity.

5.4. Mosaicity studies with collimated beam

This section discusses a method of verifica-
tion of the mosaicity by using a collimated x-ray
beam. A thin collimated (parallel) x-ray beam
with energy E = 8150 eV is directed towards a
flat HAPG crystal with mosaicity m = 0.08◦ and
thickness D = 30 µm. The angle of incidence is
varied around the optimal Bragg angle (13.11◦)
to observe the changes in reflected beam. Fig. 6
shows profiles of the reflected beam 25 cm behind
the crystal. The horizontal broadening of the spot
is caused by the penetration of photons into the
crystal, and is given by formula (4) in [1] as

2D cos(θ) = 58 µm. (6)
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Figure 6: Simulated detected image for various Bragg an-
gles, where 13.1◦ corresponds to optimal condition.

In the plot for the optimal Bragg angle (θ =
13.1◦), the reflected spot has a minimal vertical
size, corresponding to sin(m) ∗ dCD = 34 µm. In
cases with higher deviation from the Bragg condi-
tion, the vertical size, i.e. the vertical divergence
of the reflected beam, rises, because the shape of
p(θ, ϕ) with varying ϕ is getting broader for sub-
optimal θ. This is because in the case with sub-
optimal θ, already the ’most optimal’ crystallite
has already significant deviation from the target
surface, so the variation with ϕ does produce only
small relative change.

The plot in Fig. 6 shows the total integrated
intensity (i.e. efficiency, blue) and the intensity of
the peak of the signal (orange). Both these values
might often be confused in experimental estima-
tion of mosaicity. The plot shows that neglecting
this effects leads to different shape of the rocking
curve. Also, both curves slightly vary from the
single Lorentzian curve (gray) due to the compli-
cated nature of mosaic reflection. Experimental
study of this phenomena will be a topic of a fol-
lowup publication.

5.5. Detector rotation

When using focusing toroidal crystals, the ori-
entation of detector is not easy to asses, as differ-
ent energies are focused in different points, which
might actually not lie on a straight line. The sim-
ulation can provide a deep insight into which ori-

entation provides best focusing in desired energy
range, and an estimation of needed experimental
precision.

Here we present two different setups, both us-
ing germanium crystals, to observe the radiation
around 8.1 keV. The first one uses Ge crystal in
220 cut, with radii of curvatures 1500 mm and 150
mm, source-crystal distance 300 mm and crystal-
detector 596 mm, as shown in Fig. 7. The second
employs Ge 400 crystal with radii of curvatures
400 mm and 200 mm, source-crystal distance 300
mm and crystal-detector 485 mm, see Fig. 8.

Figures 7 and 8 show the simulated image on
the detector for different rotations, where 0◦ cor-
responds to detector perpendicular to the incom-
ing beam. The optimal angles are −25◦ and +70◦

for Ge 220 and Ge 400, respectively. It is very
interesting to see that for the case with Ge 220, a
5◦ difference in orientation makes hardly any ob-
servable difference, but the setup with Ge 400 is
significantly more sensitive to this alignment.

6. Conclusions

We have presented a new ray tracing code
mmpxrt whose primary aim is to help in design
and evaluation of x-ray crystal spectrometers, both
with monocrystals and mosaic crystals. The code
is supplied as a Python3 library, which provides a
huge flexibility and possibility to scan any input
parameters, but requires a (minimal) program-
ming skills to operate it. It is provided with a set
of running examples based on cases presented in
this article, and with a user manual. The output
of the code summarizes all important parameters
needed to evaluate the spectrometer performance
in graphical, textual, and data form. This paper
have shown several interesting effects simulated in
mosaic spectrometers aimed to help experimental-
ists in understanding and designing similar tools.
All presented cases are included within the dis-
tribution so that prospective user can build on
top of them. Several follow up publications are
planned to show the application of this code for
experimental design and crosschecking its results
with measured data.
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Figure 7: Simulation of the Ge 220 spectrometer. Top
pane shows its geometry with marked definition of the an-
gle of the detector. Bottom part shows the detected image
for various rotations of the detector, showing that rotation
between -20 and -25 provides sufficiently good result. The
images are saturated to intensify the wings. Red and green
colors are changing each 100 eV to show the range of the
instrument.
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Appendix A. Standard output

The code automatically present the most use-
ful results in an overview figure. Examples of
such output is in Figures A.9 and A.10 for for
simulations with mosaic crystal and monocrys-
tal, respectively. The figures might not be self-
explanatory in order to keep things concise, the
meaning of each subfigure is written in here:

Geometry (side): The 2D-side view of the
spectrometer. The crystal lies in the X-Y plane
at z = 0, i.e. in the bottom of the figure. The
source is on the left, having x = 0, the detector
is on the right-hand side. The actual crystal and
detectors are drawn in black. The central ray is

Figure 8: Simulation of the Ge 400 spectrometer. Top
pane shows its geometry with marked definition of the an-
gle of the detector. Bottom part shows the detected image
for various rotations of the detector, showing that rotation
only between 69 and 71 provides a good result. The im-
ages are saturated to intensify the wings. Red and green
colors are changing each 50 eV to show the range of the
instrument.

drawn with orange, and all other rays are in light
blue.

Dispersion: The simulated dispersion of the
spectrometer. The horizontal axis is the detector
axis d[mm], i.e. the dispersion axis in in the de-
tector plane, where d=0 is where the central ray
is impinging the detector. The detector surface
is therefore parameterized by two axis: d and y.
Each blue point represents one ray, showing its
energy [eV] and its position on the detector. All
those points are fitted by quadratic dispersion (or-
ange), and the tangent at d = 0 is shown in black.
The vertical gray lines show the physical extent of
the detector, the horizontal ones project this ex-
tent to the energy scale, showing the real spectral
range.

AOI on the crystal: This figure represents
the top view on the crystal. The thick black lines
shows outline and diagonals of the crystal. Only
the central part of the crystal might be seen in
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some cases, then the diagonals help to see how
small part is shown. The intersection of the rays
from the monochromatic simulation with the crys-
tal are marked as circles whose color correspond
to the deviation of the angle of incidence of each
ray from the Bragg condition. This means that
the region filled with circles is the active region
of the crystal for single energy, and the range of
shown angles corresponds to either the rocking
curve width or to the mosaicity.

Detector image: The image of the broadband
simulation as would be seen on detector. It is a
2D histogram, where intensity of each pixel cor-
responds to the density of rays hitting the region.
Furthermore, the rays are distinguished into red
and green colors according to their energy in order
to give the impression of the range and resolution
of the instrument. The code automatically selects
a suitable stripe width (100 eV in Fig. A.9), and
the photons are ’changing’ the color each 50 eV.
The thick white line is the vertical lineout of this
image, i.e. the spectral envelope. The thin yel-
low line is the lineout of ’green’ rays, so that the
sharpness of its edges shows the spectral resolu-
tion.

Point spread function: The detected image
of the monochromatic simulation; this is more dis-
cussed in Sec. 4.1, as this data are crucial to infer
the spectral resolution.

3D view shows the overview of the spectrom-
eter geometry, similar as the first subfigure.

Appendix B. Example of input file

Below is an example of an input file in a struc-
ture of Python script, which generates Fig. 4.
The first part initializes variables to store the re-
sults. The for cycle goes through different source-
crystal distances dSC, for each it initializes the ray
tracing, set up simulation parameters and geome-
try, and runs the simulation via
mmpxrt.spectrometer(). The rest of the file makes
a plot of the dependence of the resolution on the
distance.

#!/usr/bin/env python3

import mmpxrt

import numpy as np

import matplotlib.pyplot as plt

dscs=np.arange(580,770,10) #Dsc to be simulated

res1=np.zeros(dscs.size) #arrays for simulated resolutions

res2=np.zeros(dscs.size)

res3=np.zeros(dscs.size)

for di,dsc in enumerate(dscs):

p=mmpxrt.init()

p[’source’][’EcentralRay’]=9040

p[’source’][’EmaxBandwidth’]=1000

p[’source’][’divergenceFWHM’]=-1 #automatic

p[’crystal’][’d2’]=6.708

p[’crystal’][’mosaicity’]=0.8

p[’crystal’][’width’]=20

p[’crystal’][’length’]=40

p[’crystal’][’radius_l’]=1e9

p[’crystal’][’radius_w’]=115

p[’crystal’][’crystalPeakReflectivity’]=0.45

p[’crystal’][’maxThickness’]=30e-3

p[’crystal’][’thickness’]=-1 #use exponential dist.

p[’geometry’][’detRot’]=0

p[’geometry’][’evaluation_width’]=3

p[’geometry’][’CrystalSource’]=dsc

p[’geometry’][’CrystalDetector’]=680

p[’geometry’][’evaluation_width’]=3

p[’geometry’][’detectorLength’]=40

p[’geometry’][’detectorPxSize’] = 5e-3

p[’simulation’][’numraysE’]=-1

p[’simulation’][’numraysB’]=1e6 #rays for broadband sim.

p[’simulation’][’numraysM’]=1e7 #rays for monochrom.sim.

p[’simulation’][’name’]=’Dsc-{:2d}’.format(dsc);

p[’simulation’][’comment’]=’MMpXRT simu., Michal Smid’

p[’simulation’][’num_processes’]=15

rrrs = mmpxrt.spectrometer(p) #the simualtion itself

disp=p[’evalu’][’dispersionLinearCentral’]

res1[di]=p[’evalu’][’verticalSpreadRMS’]*disp

res2[di]=p[’evalu’][’verticalSpreadFWHM’]*disp

res3[di]=p[’evalu’][’verticalSpreadFWHMNarrow’]*disp

# %% Drawing the output figure

plt.plot([680,680],[0,10],linewidth=3,color=[0.5,0.5,0.5])

plt.plot(dscs,res1,label=’RMS’)

plt.plot(dscs,res2,label=’FWHM, wide’)

plt.plot(dscs,res3,’-’,label=’FWHM, narrow’)

plt.grid()

plt.legend()

plt.xlabel("source-crystal distance $d_\mathtt{{SC}}$ [mm]")

plt.ylabel("spectral resolution [eV]")

plt.ylim(0,25)

plt.xlim(580,760)

plt.text(680,10.5,’$d_\mathtt{{CD}}$’)

plt.xticks(np.arange(580,780,20))

plt.savefig(’Fig7.png’ , bbox_inches =’tight’,dpi=200)
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Figure A.9: Graphical output of the simulation with mosaic crystal described in Sec. 5.2.

11



Figure A.10: Graphical output of the simulation with Ge(400) crystal described in Sec. 5.5.
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