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Abstract

The origin of strong electrolyte flow during water electrolysis is investivgated, that arises at the

interface between electrolyte and hydrogen bubbles evolving at microelectrodes. This Marangoni

convection was unveiled only recently (X. Yang et al., PCCP, 2018, [1]) and is supposed to be

driven by shear stress at the gas-liquid interface caused by thermal and concentration gradients.

The present work firstly allows a quantification of the thermocapillary effect and discusses further

contributions to the Marangoni convection which may arise also from the electrocapillary effect.

Hydrogen gas bubbles were electrolytically generated at a horizontal Pt microelectrode in a 1 M

H2SO4 solution. Simultaneous measurements of the velocity and the temperature field of the elec-

trolyte close to the bubble interface were performed by means of particle tracking velocimetry and

luminescent lifetime imaging. Additionally, corresponding numerical simulations of the temper-

ature distribution in the cell and the electrolyte flow resulting from thermocapillary stress only

were performed. The results confirm significant Ohmic heating near the micro-electrode and a

strong flow driven along the interface away from the microelectrode. The results further show an

excellent match between simulation and experiment for both the velocity and the temperature field

within the wedge-like electrolyte volume at the bubble foot close to the electrode, thus indicat-

ing the thermocapillary effect as the major driving mechanism of the convection. Further away

from the microelectrode, but still below the bubble equator, however, quantitative differences be-
1



tween experiment and simulation appear in the velocity field, whereas the temperature gradient

still matches well. Thus, additional effects must act on the interface, which are not yet included in

the present simulation. The detailed discussion tends to rule out solution-based effects, generally

referred to as solutal effects, whereas electrocapillary effects are likely to play a role. Finally, the

thermocapillary effect is found to exert a force on the bubble which is retarding its departure from

the electrode.

Keywords: water electrolysis, thermocapillary convection, microbubbles, fluorescence lifetime

imaging, numerical simulation

1. Introduction

In the last decades, renewable energy technologies have become increasingly relevant due to

the worldwide efforts to reduce CO2 emissions. A major part of the future energy production in

many countries will be based on wind and solar power. These volatile energy sources, however,

cannot sustain a stable electrical grid and efficient energy storage and distribution systems are

necessary. In light of these developments, hydrogen has attracted growing interest as an energy

carrier for long-term storage, that can directly be produced through water electrolysis from the

electricity provided by renewables. However, conventional alkaline water electrolyzers currently

suffer from a relatively low efficiency, which limits their use on an industrial scale [3]. A significant

contribution to the losses comes from hydrogen and oxygen gas bubbles forming at and sticking

to the electrodes. On the one hand, they reduce the active electrode area, which causes higher

electrode overpotentials and ultimately limits the hydrogen production rate. On the other hand,
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Figure 1: Sketch of the concentration of dissolved hydrogen cH2 and the distribution of the current density j (left
half, from [2]) and of the induced Marangoni flow near the hydrogen bubble (right half, from [1]). The axisymmetric
coordinate system (r, z, θ) where the symmetry axis passes the centers of hydrogen bubble and cathode (vertical dashed
line) is defined as follows: r gives the radial distance to the symmetry axis, z measures the distance to the cathode
surface, and the angle θ is measured at the bubble center between the symmetry axis pointing downwards and the
interface position, i.e. from bottom to top.

the bubbles reduce the effective electrical conductivity of the electrolyte, thus causing a higher

ohmic resistance. In order to improve the efficiency of the process, several researchers have been

studying different methods for accelerating the removal of gas bubbles from the electrodes [4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15] or gaining improved understanding under microgravity condition [16,

17]. Nevertheless, a deeper understanding of the fundamental nucleation, growth and detachment

mechanisms of single gas bubbles is still necessary. The investigation of individual gas bubbles at

conventional electrodes, however, is nearly impossible due to the high bubble coverage and void

fraction at practical current densities. For this reason, studies regarding single bubbles are often

conducted at nano- or microelectrodes, which have the additional benefit that bubbles only grow

within a small volume above the electrode surface, which is known at any given time. Therefore,

they can be imaged more easily with high magnifications than on macroelectrodes where bubbles

form at random positions on a larger surface [18, 19, 20, 21, 2, 1, 22]. Since electrolytic gas

evolution occurs in many electrochemical systems, a better insight into this phenomenon is of

high technical and scientific interest, not only for hydrogen production but also for a large number
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of other industrial applications such as electrolyzers and photocatalytic reactors.

During electrolysis, gas bubbles are formed within the concentration boundary layer of the su-

persaturated gas at the electrode, known as the Nernst layer [23]. The detachment diameter of the

bubble is dictated by the balance of the forces acting on the bubble. The buoyancy force and the

pressure contact force tend to lift the bubble off the surface, whereas surface tension and often also

hydrodynamic forces retard the bubble detachment [13]. In a recent experiment by Yang et al. [1],

a strong electrolyte flow near hydrogen bubbles growing at a microelectrode was revealed which

was attributed to be driven by a gradient of the surface tension σ along the interface of gas and

electrolyte (see Fig. 1, right). Such types of flow are commonly referred to as Marangoni convec-

tion [24]. The resulting hydrodynamic force may delay the bubble detachment from the electrode,

as recently reported by Chen et al. [25] for oxygen bubbles generated by photocatalysis. It is also

well known, that Marangoni convection significantly influences the fluid dynamics and the mass

transfer of rising bubbles or drops [26, 27, 28]. Furthermore, thermal Marangoni convection plays

an important role for heat and mass transfer in subcooled pool boiling [29, 30, 31] where the flow

is caused by a gradient of the local saturation temperature from top to bottom of the vapor bubble

due to an accumulation of noncondensable gas at the bubble top, thereby decreasing the partial va-

por pressure. Additionally, convection of the interface of mercury drops due to differences in the

local interfacial potential caused by a non-uniform current distribution is known to be the source

of polographic maxima of the first kind [32].

However, the origin of the Marangoni convection observed at hydrogen bubbles generated at

microelectrodes during electrolysis is not yet clarified [1]. Generally, the shear stress boundary

condition at the gas-liquid interface is given by:

t̂ ·τf · n̂− t̂ ·τg · n̂ = t̂ · ∇σ (1)

where t̂ and n̂ denote the tangential and normal vector and τf and τg are the viscous stress tensors
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of fluid and gas, respectively. Thus, a gradient of the surface tension generates an imbalance of

the shear stress which causes the interface between fluid and gas to move. The resulting flow

is directed from small to large values of surface tension (see Fig. 1, right). The gradient of the

surface tension itself might be caused by thermal, solutal, voltaic and pressure effects [33]. When

neglecting the small overpressure due to the Young-Laplace law inside large bubbles of diameter

∼ 1 mm, it reads:
∂σ

∂s
= γ1

∂T
∂s

+
∑

i

γ(i)
2
∂c(i)

∂s
+γ3

∂Φ

∂s
(2)

Here, s, γ1,γ(i)
2 and γ3 denote the tangential coordinate along the interface and the partial deriva-

tives of the surface tension with respect to temperature T , species concentration c(i) and electric

potential Φ, respectively.

Thermal effects are related to the variation of the surface tension with temperature. At micro-

electrodes investigated here, a significant increase of the the current density j towards the wetted

outer part of the electrode can be expected (see Fig. 1 left), and Ohmic heating ∼ j2/σel, where

σel denotes the electrical conductivity of the electrolyte, will cause a temperature gradient along

the interface.

Solutal effects are related to concentration gradients of surface active species, labeled by index

i, i.e. ions or dissolved gases, along the interface. Especially due to the large current densities at

microelectrodes, concentration variations of ions and related changes of pH are likely to occur near

the bubble foot, but, to our knowledge, have not yet been studied in detail. Lubetkin [33] discussed

the influence of the inhomogeneous concentration of the dissolved hydrogen in the Nernst layer as

a possible mechanism, as depicted schematically in the left part of Fig. 1. However, it should be

expected that thermodynamic equilibrium holds at the interface, which implies that the concentra-

tion of dissolved hydrogen will be equal to the saturation concentration defined by Henry’s law.

Thus, when neglecting the pressure and the temperature dependence of the Henry coefficient, a

constant concentration of dissolved hydrogen along the interface is expected. Nevertheless, when
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leaving the equilibrium argument aside, analysis revealed that due to strong oversaturation near

the microelectrode, the solutal hydrogen effect could be of the same order as the thermal effect

caused by Ohmic heating [1].

Besides this issue under discussion, the surface tension is also known to depend on voltaic

effects (Lippman equation, [34, 35]), which might be of special importance here, where the bubble

interface experiences a strongly inhomogeneous electric field near the microelectrode.

In order to clarify the contribution of the solutal, the thermal and the voltaic Marangoni effect

at electrogenerated hydrogen bubbles growing at microelectrodes, it would be desirable to inves-

tigate the effects separately. However, in experiments always all effects are potentially present.

Furthermore, simultaneous measurements of temperature, species concentration and electric po-

tential at the interface of hydrogen bubble and electrolyte near the micro-electrode appear to be

quite difficult. On the other hand, numerical modeling easily allows to selectively include single

Marangoni effects into the simulations only.

In this work, the contribution of the thermocapillary effect to the Marangoni flow observed

experimentally at hydrogen bubbles grown at micro-electrodes is studied in detail. The motivation

is that the thermocapillary Marangoni effect is expected to be of major importance at microelec-

trodes. Therefore, the numerical modeling will be restricted to the thermal effect only. Simultane-

ous measurements of the temperature and the convection near the hydrogen bubble are performed,

and the comparison with the numerical results allows to draw conclusions on the contribution of

the thermocapillary effect to the Marangoni flow observed experimentally.

2. Numerics

2.1. Simulation setup

Numerical simulations are performed for a late stage of the bubble growth cycle (t/τb = 0.8,

with τb denoting the duration of the bubble growth cycle) where the bubble growth rate dR/dt is

small compared to the expected amplitude of the Marangoni convection. Thus, a bubble of fixed
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Figure 2: Sketch of the simulation setup in the (r,z)-plane. The dotted-dashed line denotes the symmetry axis r = 0.
Length scales are modified for better visibility. Only an outer ring of the electrode of about 9 µm in radial extension
is wetted by the electrolyte, whereas the inner 67 % of the electrode surface are covered by the bubble.

size attached at the microelectrode is considered. The detailed geometrical data of the bubble and

the corresponding value of the electrical current are taken from the experiment. The numerical

setup slightly simplifies the more complex geometry of the electrochemical cell used in the ex-

periment, as described below. The platinum cathode wire located at the center of the cuboid cell

bottom has a radius of 50 µm and a length of 5 mm. Because axial symmetry can be assumed in

the region near the vertical center axis, a cylindrical cell is used, and 2D simulations are performed

in the (r,z)-plane only. A sketch of the setup is shown in Fig. 2 where length scales were modified

to clarify the geometric details near the hydrogen bubble. The vertical and the radial extension

of the electrolyte volume is 5 mm. Here, the height is much smaller than in the experiment (45

mm) but is large enough to enable the local convection near the bubble interface to be simulated.

The same argument applies for the upper electrode covering the electrolyte surface, which is far

enough away to deliver a realistic distribution of the current density near the microelectrode. In

the bottom part of the cell, a further simplification is applied, which is expected to reasonably

model the important thermal fluxes out of the electrolyte volume, especially the large heat flux
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through the cathode. Here, the thermal contact of the platinum wire to subsequent electrical metal

connections is modeled by a single copper cylinder only, at which a proper boundary condition is

applied (see below). The copper cylinder has a radius of 0.5 mm and a height of 1 mm, and the

vertical extension of the bottom quartz glass part surrounding the cathode is 5 mm.

The electrochemical part of the problem is simplified to calculating the primary current density

~j in the electrolyte from solving the Laplace equation for the electric potential Φ

∆Φ = 0, ~j = σel∇Φ. (3)

For the aqueous electrolyte containing 1M H2SO4, a constant electrical conductivity of σel =

40 S/m is assumed. A constant voltage is applied at the electrodes such that the Faradaic current

of the cell amounts to 2.95 mA, in accordance to the depicted instant of the bubble cycle (see

Fig. 6).

The temperature distribution T (r,z, t) is calculated from solving the coupled equations of con-

vective heat transfer in the domains of the electrolyte, the H2 bubble, the Pt wire and the glass at

the bottom of the cell.

ρcp

(
∂T
∂t

+~u · ∇T
)

= k∆T +
j2

σel
(4)

Here, ρ, cp, k = Dth ρcp, Dth and ~u denote the corresponding material parameters density, heat

capacity, thermal conductivity, thermal diffusivity and the advection velocity (nonzero only inside

the electrolyte), respectively. The simulation takes into account the dominant Ohmic heat source of

Q = j2/σel in the electrolyte only. At the bottom of the quartz glass and at the bottom of the copper

wire, an ambient temperature of T0 = 20 ◦C is set, whereas at the remaining outer boundaries and

at the top of the cell thermal insulation applies. At material interfaces, continuity of temperature

is assumed. The material parameters used in the simulation are:
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platinum: ρ = 21450 kg/m3, cp = 130 J/(kg ·K), k = 72 W/(m ·K);

copper: ρ = 8700 kg/m3, cp = 385 J/(kg ·K), k = 400 W/(m ·K);

electrolyte: ρ = 1000 kg/m3, cp = 4182 J/(kg ·K), k = 0.58 W/(m ·K);

hydrogen: ρ = 0.09 kg/m3, cp = 14320 J/(kg ·K), k = 0.186 W/(m ·K);

quartz glass: ρ = 2201 kg/m3, cp = 1052 J/(kg ·K), k = 1.38 W/(m ·K).

The transient Navier-Stokes equation is solved for the electrolyte only and takes into account

buoyancy due to change of temperature within the Boussinesq approximation:

ρ

(
∂~u
∂t

+~u · ∇~u
)

= −∇p +η∆~u−ρβ~g(T −T0) (5)

Here, ρ0, η, β, p and ~g denote the density, the viscosity and the coefficient of thermal expansion

of the electrolyte, the pressure and the downward directed vector of gravitational acceleration,

respectively. At the interface between hydrogen bubble and electrolyte, the normal velocity com-

ponent has to vanish, and the thermal Marangoni condition (1) holds whereby the tangential stress

at the bubble side is neglected due to the much lower viscosity of the gas. At all other boundaries,

a non-slip condition is applied. The following material parameters were used: β = 3 · 10−4 K−1,

η = 1 · 10−3 kg/(m · s). For the Marangoni condition, the surface tension and the temperature co-

efficient were set to that of a water-air system as σ0 = 0.072 N/m, γ1 = −1.6 · 10−4 N/(m ·K).

Transient simulations were performed starting at ambient temperature from an electrolyte at rest

with constant Faradaic current for a period of 6 s at maximum to investigate the temporal evolution

of the cell temperature and the convection inside the electrolyte.

2.2. Simulation Methodology

The late stage of the bubble evolution for which simulations were performed is marked gray

in Fig. 6. Here, the bubble growth rate can be estimated to dR/dt ≈ 83 µm/s, which is more

than two orders of magnitude smaller than the amplitude of the observed Marangoni convection,
9



thus justifying the approach of using a fixed bubble size in the simulations. According to the

experiment, the size of the spherical bubble is assumed to be R = 560 µm, and the center of the

bubble is located R− 1.5 µm above the center of the cathode, such that the largest part of the

cathode is covered by the bubble, and only an outer ring of about 9 µm in radial extension remains

wetted (see Fig. 2). The resulting contact angle measured from the bubble center between the

symmetry axis pointing downward and the bubble interface position at the cathode amounts to

θc ≈ 4.2◦.

Next the different time scales involved are discussed. The bubble cycle τb in physical units

amounts to about 4.1 s, whereas the sampling period of the velocity and temperature measurement

according to Fig. 6 is about 0.4 s only. In the transient simulations, which start from ambient

temperature T0 when the cell current is switched on, the characteristic time of thermal diffusion

in the electrolyte amounts to τth = R2 ρcp/k ≈ 2.2 s, whereas in the hydrogen bubble it is only

τth ≈ 2.2 ms. However, heat is also advected by the thermocapillary motion of the electrolyte that

is forced immediately at the interface. When considering the Peclet number (Pe) which describes

the ratio of convective to diffusive heat transfer, by assuming a characteristic velocity U of 10

mm/s, a characteristic length being equal to the bubble radius R and the thermal diffusivity Dth =

k/(ρcp) of the electrolyte given above, Pe = U R/Dth ∼ 40 is obtained, stating that convective

transport clearly dominates. It can therefore be expected that the temperature and the velocity

profile near the interface develop rather quickly within less than a second. On the other hand,

the thermocapillary motion driven at the interface is expected to create a vortical flow within the

(r,z)-plane, as sketched in Fig. 1, right. Therefore, in order to account for realistic values also

more far away from the bubble interface, the characteristic time scale of the eddy circulation

should be considered. When approximating the eddy shape by a circle of the size of the hydrogen

bubble, by assuming a characteristic velocity of 10 mm/s, an eddy recirculation time of only about

2π ·R/U ∼ 0.35 s is obtained.

As mentioned above, inside the hydrogen bubble diffusion of heat is taken into account whereas
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Figure 3: Temperature vs. radial coordinate r along the cathode and the bottom wall of the cell at different instants of
time from the transient simulation.

convective heat transport is neglected. When using a characteristic velocity U of 10 mm/s, a char-

acteristic length being equal to the bubble radius R, and the thermal diffusivity of hydrogen given

above, a small Peclet number of only about Pe ∼ 0.1 is obtained, which justifies the approximation

made.

Finally, it is mentioned that the time scale of diffusive heat transfer through the glass bottom

based on the glass height is slow and amounts to about 42s, thus also the temperature at the bottom

is determined mainly by the advective time scale, which becomes also visible from the simulation

result shown in Fig. 3.

In summary, the above estimations show that when switching on the electrical current, within

a period of less than 1 s nearly stationary temperature and velocity fields near the bubble interface

will develop, which can be expected to realistically model the experimental data depicted for the

late instant of the bubble cycle. In the following the results of the transient simulation at t = 1s are

used for comparison with the experimental data. The simulations were performed with COMSOL

Multiphysics, version 5.3.
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3. Experiment

3.1. Electrochemical setup

The electrochemical setup was equivalent to that used by Yang et al. [1]. Water electrolysis

was carried out within a glass cuvette with a three-electrode system under potentiostatic condi-

tions [2] (see Fig. 4). As the working electrode a platinum wire with a diameter of 100 µm was

used. The wire was embedded in a glass tube with an outer diameter of 6 mm, which formed the

bottom of the electrolysis cell. A 1 M H2SO4 solution served as the electrolyte. All electrode

potentials refer to mercury/mercurous sulphate electrode (MSE, 650 mV vs. standard hydrogen

electrode (SHE)). A potential of -7 V was applied to the working electrode, which enables the

production of relatively large bubbles (∼ 1 mm) without any electrochemical side reactions. As

the larger bubble size gives rise to larger flow structures, accurate measurements of the Marangoni

convection and the temperature field at the foot of the growing bubble become feasible. To avoid

continuous heating of the bulk electrolyte the potential was only applied over a short time period

of 30 s. During this electrolysis cycle 7 bubbles were produced. Since phase averaging over a large

number of bubbles was necessary for a high measurement resolution, as will be discussed later,

100 electrolysis cycles were run which resulted in a total number of approx. 700 single bubbles for

this experiment. During the experiment, the bulk temperature of the electrolyte, in the following

denoted as Tref , was continuously measured with a Pt100 resistance thermometer. No heating of

the electrolyte was observed, and therefore Tref equals the room temperature.

3.2. Measurement Methodology

Fig. 4 schematically depicts the measurement setup. A high speed camera (PCO DIMAX HS4

by PCO GmbH) equipped with a Zeiss EC Plan-Neofluar 10×/0.3 microscope objective lens was

used to visualize the growing bubble and to measure the temperature and velocity field around

it, resulting in a field of view of approx. 1× 1 mm2. Temperature sensitive luminescent tracer
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Figure 4: Experimental setup.

particles were added to the electrolyte to obtain the temperature and velocity field simultaneously.

These particles consist of a polymethylmethacrylate (PMMA) matrix that is doped with the two

luminescence dyes europium thenoyltrifluoroacetonate (EuTTa) and perylene [36]. The particles

are monodisperse with a mean particle diameter of 7 µm. To illuminate the particles in the center

plane of the bubble a thin laser sheet generated by a 355 nm double pulse Nd:YAG laser was

used (see Fig. 4). When excited at this wavelength, the EuTTa dye emits phosphorescent light

in the red wavelength range, whereas the perylene dye emits blue fluorescence. The temperature

measurement principle is based on the fact that the initial intensity and the luminescence lifetime

of the EuTTa signal depend on temperature, while the perylene signal is temperature insensitive.

As in two-color laser induced fluorescence (LIF) [37] the temperature insensitive dye serves as a

reference to correct for spatial or temporal variations in the illumination intensity. In the present

case, however, a luminescence lifetime based technique was applied to measure the temperature

via the signals of individual particles [38, 39]. Since the lifetime is an intrinsic property of the

appropriated dye, it is not affected by variations in the illumination intensity, variations in the dye

concentration or photobleaching and no additional reference signal is needed. Thus, only the red

part of the luminescent light is of interest here and the blue part was filtered out by a 570 nm long

pass filter placed in front of the microscope objective.
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Figure 5: a) Timing sequence for temperature measurements and b) Calibration curve for temperature measurements.

After each laser pulse, the excited EuTTa luminescence decays exponentially over a time pe-

riod in the order of several hundred µs, as sketched in Fig. 5a. During the decay, two images

are taken in short succession by the high speed camera. The lifetime of the luminescence, which

is defined as the time when the intensity has decayed to 1/e of its initial value, decreases with

increasing temperature. Consequently, the ratio of the mean particle image intensity in the second

and first image similarly decreases with increasing temperature. Using a proper calibration proce-

dure, the intensity ratio of each particle image can be directly related to the particle’s temperature.

However, an in situ temperature calibration was not possible with the present experimental setup

and an ex situ calibration had to be performed. For this reason, a correction function depending on

the luminescent intensity in the first image was applied to account for the non-linear response of

the camera sensor, similar to the approach of Zhou et al.[40].

In addition to the flow and temperature field, the bubble geometry was visualized via shad-

owgraphy. As sketched in Fig. 4, a white LED background illumination was used to obtain bubble

shadow images. The timing sequence used for the camera recordings and the two light sources

is illustrated in Fig. 5a. In general, three images were recorded per laser pulse at approx. 4350

fps. The first image in this sequence was triggered prior to the laser pulse together with the LED
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background illumination in order to record a bubble shadow image. Note that the blue part of the

LED spectrum was removed by an additional filter to avoid excitation of the particle luminescence

during the shadow image. The next two images were taken shortly after the laser pulse to deter-

mine the temperature from the luminescence decay. The short time delay of 10 µs between the

laser pulse and the first luminescence image was chosen to avoid laser light reflections from the

bubble in this image. This is necessary since the long pass filter in front of the microscope ob-

jective does not perfectly block the laser light. The resulting calibration curve is depicted in Fig.

5b. The uncertainty of the temperature measurement, estimated based on the calibration data, is

approx. ±2.2 K for individual particle images (standard deviation). However, the accuracy can be

considerably increased since phase-resolved ensemble averaging is applied, as will be explained

later. Furthermore, since a gradient of the pH-value can be expected at the bubble foot, it should

be also mentioned that no pH-sensitivity of the luminescence lifetime was found in a separate test

investigating different solutions in the range of 0 ≤ pH ≤ 4.

The flow velocity was measured by particle tracking velocimetry (PTV) using two luminescent

particle image pairs. However, using the two consecutive lifetime images for tracking leads to high

relative uncertainties, since the particle displacement between those images was less than 1 pixel.

Instead, the images recorded after the first and second laser pulse were used (denoted as image 1

and image 3 in Fig. 5). The time distance between these images, i.e. the pulse distance, ∆t = 2000

µs, was set to enable accurate measurements of the fast Marangoni convection at the gas-liquid

interface.

Since the laser sheet is about 500 µm thick, out-of-focus particles may also contribute to the

image, although with a much lower intensity than in-focus particles. However, to avoid the in-

fluence of such out-of-focus particles on the temperature measurements, only a very low tracer

particle concentration was used. Therefore, a simple nearest neighbor tracking approach could

be applied for the PTV evaluation [41]. Despite the low particle concentration, temperature and

velocity fields with a high spatial resolution can be obtained by phase-averaging the data mea-
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sured for a large number of growing bubbles. This was possible since the bubble evolution cycle

is highly periodic, as shown in previous studies [21, 13, 12, 19]. For this purpose, the bubble

evolution cycle was divided into 10 phases. The bubble size, which was obtained from the shadow

images, served to receive the phase information. After sorting the data according to its phase,

the spatial temperature distribution was determined by averaging the data in bins of 12×12 pixel2

(15.3×15.3 µm2). For the velocity data, a bin size of 6×6 pixel2 (7.7×7.7 µm2) was applied.

4. Results

4.1. Bubble dynamics

The evolution of the bubble diameter and of the electric current during one bubble growth

cycle are depicted in Fig. 6 for a cathodic potential of -7 V. A more detailed discussion of the

typical behavior of the current at a microelectrode during a bubble cycle can be found in [21].

At the beginning of the cycle, the current magnitude reaches a peak since the diameter of the

newly formed bubble and thus the electrode coverage is small. With increasing bubble diameter

a growing part of the electrode gets blocked, which leads to an only slowly increasing current

magnitude over almost 80 % of the bubble lifetime. During this phase the bubble diameter follows

the db(t) ∝ t1/3 relation, which is typical for high current densities at the surface, particularly for

microelectrodes [19, 21, 42]. Because of the high local supersaturation level in this regime, almost

the entire hydrogen generated at the electrode surface diffuses directly into the bubble at its foot.

In the late phase, the bubble diameters deviate from this law in form of an accelerated growth

due to a strong increase of the magnitude of the cathodic current. The bubble detaches from the

surface approx. 4 seconds after nucleation with a diameter of approx. 1.3 mm. At this point

the buoyancy exceeds the forces that retard bubble detachment. Immediately after the bubble

detaches a new bubble is formed at the electrode and the process is repeated. The addition of

tracer particles does not alter the bubble dynamics as was shown in previous experiments [1]. As

already mentioned, the bubble growth cycle is highly periodic [21, 13, 12, 19, 1] which enables
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Figure 6: Evolution of the electric current and of the bubble diameter during one bubble growth cycle. The grey range
marks the sampling period (see text).

phase averaging over multiple bubbles. The gray area in Fig. 6 depicts the time period that was

used for phase averaging (0.75 . t/τb . 0.85). A later state of the bubble growth cycle was chosen,

since the bubble diameter and thus the flow structures are relatively large and the bubble growth is

relatively slow, which enables accurate measurements of the temperature and velocity field with a

high spatial resolution.

4.2. Marangoni effect

Ohmic losses lead to significant heating of the electrolyte especially near the microelectrode

where the spatial current density is at its maximum. Furthermore, heat conduction in the sur-

roundings influences the temperature distribution. Fig. 7 shows a zoomed view of the temperature

distribution T − Tref near the bubble foot from the simulation. Maximum heating occurs in the

small wedge between bubble and cell bottom/electrode near the outer edge of the cathode where

the current density is expected to be largest. The pear-like shape of the heated region visualizes

the downward diffusion of heat inside the cathode wire.

Fig. 8a depicts in a closer view the numerically simulated (left) and the experimentally mea-

sured (right) temperature field of the electrolyte in the vicinity of the hydrogen bubble. A good

qualitative and quantitative match between both can clearly be seen. As already mentioned, due
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Figure 7: Temperature of gas, electrolyte and cell from the simulation in the (r,z)-plane. Zoomed view near the bubble
foot. The geometry edges are marked as black lines.

to the high current density, the electrolyte significantly heats up near the bubble foot. From the

simulation data along the gas-liquid interface in Fig. 8b, a maximum temperature rise of approx.

14 K is found approximately above the outer edge of the microelectrode where the current density

is highest. In the experiment, a similar temperature increase towards the bubble foot is observed.

However, the temperature directly at the contact between bubble and electrode could not be mea-

sured due to shadowing effects and reflections at the bottom wall of the cell. Nevertheless, from

Fig. 8b a very good match of the temperature distribution along the interface between experiment

and simulation becomes evident. Here, because of the finite size of the tracer particles, a nor-

mal distance of about 5 µm away from the interface was chosen for detailed comparison with the

experiment. With increasing θ beyond the temperature maximum at about θ ≈ 7◦, an exponential-

like decay of the temperature difference is observed, whith a steep gradient in the beginning. At

θ ≈ 30◦, the gradient has already decreased to about 0.04 K/µm, and for θ ≥ 110◦ the temperature

remains nearly constant.

In Fig. 9a the numerically calculated Marangoni convection, which is solely driven by the

temperature gradient, is compared with the Marangoni convection measured during electrolysis.

Both results show in qualitative agreement a strong flow at the electrode-near part of the gas-
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Figure 8: (a): Temperature of the electrolyte near the bubble interface. Left: simulation, right: measurement. The
maximum of the color bar is limited by hand to 5 K to facilitate comparison. (b): Temperature at and in 5 µm distance
along the interface. The angle θ is measured from bottom to top, as defined in Fig. 1.

liquid interface, from which it can already be concluded that a substantial part of the measured

Marangoni convection is caused by the thermocapillary effect. However, a more detailed analysis

reveals that in the numerical case the accelerated region near the interface reaches the bubble

equator and is thus more extended compared to the experiment where the velocity decays more

quickly with increasing θ. From the simulation results that, despite not shown in number, the
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Figure 9: (a): Marangoni convection |~u| in the electrolyte near the bubble interface. Left - numerical simulation of
the thermal Marangoni effect. Right - measurement of the Marangoni convection during electrolysis. The color bar
is limited by hand to 15mm/s to facilitate comparison. (b): Comparison of the electrolyte convection |~u| along the
interface. Simulation and measurement results at normal distances of 5 µm and 35 µm away from the interface. The
angle θ is measured from bottom to top, as defined in Fig. 1.

convection which is forced directly at and parallel to the gas-liquid interface reaches a maximum

velocity of u ≈ 30 mm/s. Normal to the interface, the velocity quickly decays. Because of mass

conservation, the interface-parallel removal of electrolyte from the bubble-foot region leads to a

nearly horizontal replenishment flow, and a vortex forms, as shown in Fig. 9a. In the experiment,
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the vortex center is located close to the bubble foot. This observation of Marangoni convection

coincides with results of similar measurements from Yang et al. [1] (see Fig. 1). In the simulation,

however, as the accelerated region along the interface is larger, the vortex center is located further

away from the bubble foot.

Fig. 9b investigates in detail the behavior of the velocity magnitude along the interface. Again,

because of the finite size of the tracer particles, a curve at 5 µm distance and a second curve at 35

µm distance away from the interface are depicted for comparison of experimental and numerical

results. Within the wedge-like electrolyte volume at the bubble foot, the velocities agree very

well in both cases. The first velocity peak at θ ≈ 10◦ (5 µm) and respectively θ ≈ 25◦ (35 µm) is

attributed to the flow close to the bottom wall directed towards the bubble foot, which replenishes

the displaced electrolyte. At the first peak, the measured velocity magnitude at 5 µm away from the

interface is approx. 1 mm/s smaller than in the simulation, whereas at 35 µm it is 2 mm/s smaller.

However, this difference can be explained by the averaging imposed by the spatial binning. The

experimental data represents the mean velocity in each bin. Since the velocity gradient is very

steep, the velocity peak is biased to smaller values due to the spatial averaging [43]. Continuing

along the interface, the experimental and numerical data keep on to coincide very well up to θ≈ 40◦

for the case close to the interface and up to θ ≈ 50◦ at a distance of 35 µm.

At the interface distance of 5 µm, in good agreement of simulation and experiment, the largest

velocity of about 20.5 mm/s is found at a second local maximum at θ ≈ 30◦. Further upward

along the interface, the measured velocity starts to sharply decrease, whereas the simulated value

of the velocity, is decaying more slowly. At a distance of 35 µm away from the interface, the

simulation yields a maximum of about u = 9.8 mm/s at θ = 65◦ whereas the velocity maximum

found in the experiment is of only about 7.1 mm/s at an angle of about θ = 50◦. This difference

can be attributed to the different position of the recirculating vortex discussed above. Again, when

moving on along the interface, the experimental velocity decays much faster than the simulated

one. From the experimental data it can be seen that the velocity in both discussed cases falls
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Figure 10: Comparison of the shear stress τ originating from different sources along the bubble interface.

below 1 mm/s at θ ≈ 75◦ and reaches zero at θ ≈ 120◦. In comparison, the decay of velocity in

the simulation is clearly less steep, which coincides with the larger extent of of the accelerated

interface region discussed in Fig. 9a.

5. Discussion

The numerical and experimental data show a very good agreement within the wedge-like elec-

trolyte volume at the bubble foot for both the temperature and the velocity. The high current

density close to the electrode leads to a significant temperature increase with a strong gradient,

which could be predicted well by the numerical model. The temperature gradient drives a fast

Marangoni convection, as can be seen from the simulation which only takes the thermo-capillary

effect into account. Close to the bubble foot, the experimentally determined velocities agree very

well with the numerically calculated values. Thus, it can be concluded that the thermal effect is in

fact the major driving mechanism for the Marangoni convection observed in this experiment and

by Yang et al. [1]. If a solutal Marangoni effect exists, it only plays a minor role in this config-

uration. However, the extension of the Marangoni-accelerated interface is clearly over-predicted

by the simulation. The fluid decelerates much faster in the experiment than in the simulation to

become almost stagnant near the bubble equator.

The thermal Marangoni balance (1) at the interface between bubble and electrolyte can be sim-
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plified by neglecting the hydrogen shear part. As the interface-normal component of the velocity

must vanish, it reads [44]:

τ = ηr
∂

∂r

(uθ
r

)
=

1
r

dσ(T )
dθ

(6)

Here, axial symmetry is assumed, and spherical coordinates where used. This equality allows for

the comparison of the shear stress τ originating from different sources, based on the interface-

normal gradient of the tangential velocity uθ and on the tangential gradient of the surface tension.

As a linear dependency of the surface tension on temperature given by the Eötvös rule σ(T ) =

σ0−γ1 · (T −Tre f ) is assumed, its gradient can be determined from the temperature data.

For the experiment, the interface-normal velocity gradient ( ∂∂r

(
uθ
r

)
) along the interface was

determined from a linear fit of the velocity data which are closest to the interface. The results

obtained are shown in detail in Fig. 10. For the simulation results, as expected from the Marangoni

boundary condition (eq. (1)) applied, the shear stress calculated from the temperature distribution

(black x symbols) perfectly matches the calculated velocity gradient (blue line). In comparison,

the experimental result of the shear stress calculated from the temperature distribution measured

(green square symbols) shows a rather close match with the numerics, with slightly smaller values

at small angles θ < 48◦ and slightly larger values further along. However, looking at the shear

stress calculated from the velocity data measured (red circle symbols), larger differences to the

numerical data are found. Despite the fact that the scatter of data at small angles does not allow

a quantitative comparison, it is clearly seen that at larger angles θ > 35◦ the shear stress is falling

much more rapidly to zero when compared to the numerical result. This result coincides with

the match of the temperature distribution along the interface and the mismatch of the velocity

distribution arising at larger distances away from the microelectrode as discussed at Figs. 8 and 9.

It further underlines the reasoning that other phenomena beyond the thermocapillary effect must

exist which are not yet implemented in the numerical model. These counteract the thermocapillary

effect in the upper part of the bubble and decelerate the Marangoni convection, which is likely also
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to influence the position of the center of the recirculation region, as discussed above.

The Marangoni flow driven at the interface leads to a force on the bubble, which adds to

the force balance and thus influences the instant of departure and the dynamics of the bubble.

Integration of the shear stress given in eq. (6) over the bubble interface

FM = −

∫
τdA (7)

yields a resultant force in vertical direction (Fig 1). Hereby, dA denotes the interface-normal area

differential, and according to eq. (2) it holds

∂σ

∂θ
= γ1

∂T
∂θ

(8)

The calculated Marangoni force on the bubble amounts to 0.79 µN and is directed downward, thus

retarding the departure of the bubble from the electrode. In comparison, the buoyancy force acting

on this bubble of 0.56 mm radius is 7.2 µN in the upward direction. Therefore, the modulus of the

Marangoni force is one order of magnitude weaker than the buoyancy force.

In the following, possible further aspects neglected in the simulations so far are discussed.

Overall, it has to be kept in mind that in this work results of a transient simulation of electrolysis

near a hydrogen bubble of fixed size attached at a microelectrode are compared with experimental

phase-averaged results from the periodic growth of hydrogen bubbles. For the late stage of the

bubble cycle depicted, it can be assumed that the convection related to the lift-off of the previous

bubble has already declined [21]. Furthermore, as estimated above, the magnitude of flow caused

by the growth of gas volume is small compared to the Marangoni convection. The instant of time

(t = 1 s) depicted for presenting the simulation results was derived from an order of magnitude

estimation. Fig. 11 depicts the transient behavior of the velocity magnitude 5 µm away from the

bubble interface at θ = 33◦ where the maximum velocity was found (see Fig. 9). As can be seen,

already after 0.1 s the interface is moving almost with its final speed, which gives further support
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Figure 11: Simulation of the temporal behavior of the velocity magnitude 5 µm away from the bubble interface at
θ = 33◦ where the maximum velocity is found according to Fig. 9. Time is plotted on a logarithmic scale.

to the simulation methodology applied and moderates the possible influence of bubble growth.

Besides, it can be stated that the influence of thermal buoyancy, as taken into account also in

the simulations according to eq. (5), is of minor importance only with respect to the Marangoni

convection near the attached hydrogen bubble. Although not shown, additional simulations per-

formed when neglecting buoyancy were found to deliver almost identical results, as the buoyant

convection is much weaker than the Marangoni convection. A characteristic ratio of both types

of convection can be estimated by calculating the ratio of Grashof to Reynolds number squared

[45]. When using the bubble radius as characteristic length scale, with the maximum values of the

temperature difference ∆T and the Marangoni velocity U found in the simulation, it amounts to

about Gr/Re2 = βgR∆T/U2 ∼ 0.07 only.

Furthermore, in the simulations, the convection inside the hydrogen bubble and thus the con-

vective transport of heat was neglected. However, the recirculating flow driven in the gas bubble

but neglected here is unlikely to cause the difference observed. As mentioned above, diffusion

of heat dominates compared to the advective transport of heat in the bubble. Fig. 10 shows an

additional curve (light blue line) of the shear stress calulated from numerical temperature data

obtained when the thermal diffusivity of hydrogen is artificially enhanced by a factor of 10. The

close match with the experimentally obtained shear stress from temperature data clearly supports

this reasoning.
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Due to lack of data, in the simulations, the surface tension data (σ0,γ1) from the material com-

bination water/air were used instead of electrolyte/hydrogen, which is justified by the following

reasoning. The high surface tension of water is the result of strong cohesive forces between the

water molecules due to the formation of hydrogen bonds. Therefore, the surface tension of wa-

ter is only marginally affected by a change in the gas atmosphere from air to hydrogen since the

interaction between the gas and water molecules is very weak. The sulfate anions in the present

electrolyte also undergo hydrogen bondings with the water molecules, thereby increasing the sur-

face tension by about 1-2 %, depending on concentration. However, for a bubble of given shape, a

modification of the value of the surface tension itself (σ0) does not alter the Marangoni convection

at all. The effect is determined by the value of the temperature coefficient γ1 only. Despite wa-

ter/hydrogen data were not available, the argumentation above suggests that it is quite reasonable

to assume that the value for water/air is valid, as also the temperature-dependent equilibrium of

water evaporation should be about the same.

Additionally, as it is known that the Henry coefficient depends on temperature, neglected so-

lutal Marangoni effects are estimated. The saturation concentration of dissolved hydrogen at tem-

perature T can be determined from [46]

csat(T ) = csat(Tref) · exp
[
500 K

(
1
T
−

1
Tref

)]
.

If the temperature would rise by 50 K, the saturation concentration would reduce by about 0.17

mol/m3. The coefficient of solutal H2 variation of the surface tension is γH2
2 =−3.2 ·105 Nm2/mol.

Thus, the temperature rise would increase the surface tension by about 5 µN/m. In comparison, by

using the thermocapillary coefficient of dissolved hydrogen of γ1 = −1.6 · 10−4 N/(m ·K), a tem-

perature rise by 50 K directly reduces the surface tension by about 8 mN/m. Thus, the temperature

dependence of the Henry constant can be safely ignored, as the related changes of surface tension

are at least 1000 times smaller than the thermocapillary effect. Besides, as the temperature is re-

26



produced nicely in the simulation, temperature-related effects are unlikely to improve the match

between experiment and simulation.

Further solutal Marangoni effects might arise from the possible depletion of the electrolyte of

H2SO4 near the microelectrode. The current density in the wedge at the configuration studied here

amounts to about 107 A/m2, at which the pH of the electrolyte can be expected to increase [47],

and water splitting is likely to contribute to the mass transfer at the cathode. When neglecting

electromigration effects, the diffusive length scale over which H2SO4 depletion occurs can be

estimated from L∼
√

DH2SO4 ·τb where DH2SO4 ∼ 3 ·10−9 m2/s and τb ∼ 4.1 s denote the coefficient

of molecular diffusion of H2SO4 and the bubble cycle, respectively. Thus, a length of only about

111 µm is obtained. However, thermocapillary convection will at the same time replenish fresh

electrolyte in the wedge and advect depleted electrolyte along the interface. As this effect in the

wedge where convection is slow is difficult to to quantify, the numerical simulations were extended

by considering additionally a convection-diffusion equation for the concentration c of H2SO4:

∂c
∂t

+~u · ∇T = DH2SO4 ∆c (9)

The boundary conditions applied are complete depletion at the cathode whereas at other bound-

aries species flux has to vanish. From the result of the simulation shown in Fig. 12 it is to be seen

that the concentration gradient builds up quickly within less than a second and does not change

significantly at longer times. Most importantly, only small changes of concentration at angles

θ ≥ 15◦ appear.

Thus, the local depletion of the electrolyte near the microelectrode is unlikely to cause the

differences in convection found only at larger angles of θ > 35◦. Similar arguments apply for

possible electromigration effects neglected so far. Those are expected to play a role only close

to the microelectrode where the electric field is strong but are unlikely to be the reason for the

mismatch of velocity and stress more far away from the microelectrode.
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Figure 12: Concentration of H2SO4 along the interface versus angle θ (logarithmic scaling) at different instants of
time t.

Finally, additional temperature effects due to larger Ohmic losses in the depleted volume and

related buoyancy effects occur but are expected to be negligible, as the maximum values of tem-

perature and velocity of experiment and simulation nicely match. This also indicates that the

approximate use of the primary current distribution in the simulations is reasonable, as the main

specifics of the problem arise from the drastic increase of the current density near the wetted part

of the microelectrode, thereby reaching values of about 106 A/m2 at the cathode, and the related

strong local heating (∼ j2). Possible differences between experiment and simulation using the pri-

mary current density could be caused by the reaction overpotential, the related energy of which is

partially lost for heating, and by spatial variation of the electrical conductivity. However, based

on an extrapolation from data published by [48], the overpotential at the platinum cathode at the

current density mentioned above can be estimated to about 0.15 V, which is about two percent

of the cathodic potential only. Additionally, those local losses of heating power might be coun-

terbalanced by a smaller electrical conductivity of the depleted electrolyte near the cathode, as

mentioned above, which is also not considered when using the primary current density. In sum-

mary, using the primary current density is supported by these estimations, which, of course, should

be validated by improved simulation models in the future.

Last, the possible influence of electrocapillarity is discussed, which, as mentioned in the intro-

duction, arises from the dependence of the surface tension on the electric potential at the interface,
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and is not taken into account in the simulation. It should be pointed out here that this effect is

equivalent to considering Maxwell stress boundary conditions with a known surface charge den-

sity at the interface, as defined in the Taylor Melcher leaky dielectric model [49, 50]. From earlier

analytical work it is known that the Maxwell stress arising at the interface of a gas bubble and a

conductive medium in a vertical electrical field will cause upward interfacial convection below the

equator and downward interfacial convection above it, thus leading to a double vortex flow in the

meridional plane [51]. Despite in our case the geometry and the electric field distribution are more

complex, as the bubble is attached at a microelectrode, it could be speculated that a qualitatively

similar shear pattern would be caused. Then, the electrocapillary effect might be too weak to be-

come visible below the equator where the thermocapillary effect dominates, but it might prevail

above the equator where the thermocapillary effect is much weaker to trigger the departure of the

interfacial flow, as seen in the experiment. Thus, it could also contribute to an improved match

of both the velocity stress along the interface and the center position of the recirculating flow.

However, evidence has to be left to future investigations.

In conclusion, the convection found in the hydrogen evolution electrolysis experiments at mi-

croelectrodes can largely be attributed to the thermocapillary effect caused by Ohmic heating due

to the high current density appearing at the microelectrode. Numerical simulation proves that main

features of the convection forced parallel to the interface near the microelectrode and also the re-

lated temperature distribution can be attributed to the thermal Marangoni effect. Further research

might be necessary to resolve the origin of the small differences found between simulation and

experiment. The discussion above tends to rule out solutal effects whereas electrocapillary effects

are likely to play a role.
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