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The deformation of the free surface of a paramagnetic liquid subjected to a non-

uniform magnetic field has been studied. A transient deformation of the surface

caused by the interplay of gravity, magnetic field and surface tension is observed

when a permanent magnet is moved vertically downwards to the free surface of the

liquid. Different concentrations of rare-earth metal salt (DyCl3) were used and dif-

ferent magnet velocities were studied. The deformation of the interface was followed

optically by means of a microscope and recorded with a high-speed camera. The

experimental results are compared and discussed with complementary numerical sim-

ulations. Detailed results are given for the static shape of the deformed surface and

the temporal evolution of the surface deformation below the center of the magnet.

The frequency of the surface oscillations is found to depend on the concentration of

the salt and is compared with analytical findings. Finally, a potential application of

the effects observed is presented.
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I. INTRODUCTION

Magnetizable materials can be manipulated in an elegant way by means of the magnetic

field gradient force. This so-called Kelvin force pulls paramagnetic material of positive

magnetic susceptibility χ into regions where the magnetic field has a higher magnitude. For

a magnetic liquid, the force density can be written as:

~fm =
χsol

µ0

( ~B · ∇) ~B (1)

where µ0 and ~B denote the vacuum permeability and the vector of the magnetic flux density.

χsol denotes the magnetic susceptibility of the solution which assembles from the product of

the molar susceptibilities χmol
i of the ions or molecules in solution and their concentrations

ci, i.e.

χsol =
∑
i

χmol
i ci + χH2O (2)

For an aqueous paramagnetic salt solution, the susceptibility of the metal ion (e.g. Dy3+)

dominates, and the diamagnetic susceptibility of water χH2O only weakly reduces the sus-

ceptibility of the solution1,2.

Paramagnetic ions have unpaired electrons, whose spin (an intrinsic magnetic moment of

electrons) can be considered as like tiny magnets that tend to align with the vector of the

magnetic field. Since the magnetic energy of ions is much smaller than the thermal energy of

the solution, these ions are subject to Brownian motion and should not be influenced by the

magnetic force. Surprisingly, robust changes in the concentration of paramagnetic ions under

the presence of an inhomogeneous magnetic field were observed in earlier studies3–8. The

manipulation of different fluids was studied; these contained both 3d ions4,5, such as Cu2+,

Mn2+, Fe2+, and 4f ions6–11, such as Dy3+, Ho3+, Nd3+ and Gd3+. The origin of the magnetic

properties is different for these metal ions. While in 4f ions the total angular momentum

(orbital and spin) is important, in 3d ions a spin moment with only little or no orbital

contribution characterizes the magnetic properties. Moreover, the unpaired magnetic 3d

electrons are outermost and are strongly affected by the external magnetic field. Meanwhile,

in the case of rare-earth ions, the magnetic 4f electrons are shielded by the electrons in 5s2

and 5p6 shells and are less strongly affected. Therefore, the magnetic properties of rare

earths are stable in the external magnetic field and the rare earth magnets are much harder
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to demagnetize. The motion of paramagnetic metal ions was also studied on and inside gel

structures exposed to an inhomogeneous magnetic field3,7,12–14.

The physical mechanism of the magnetic separation of rare earth ions in two works4,6

was explained in recent studies9,11. The evaporation of the solvent provides a concentration

gradient at the liquid’s free surface. The magnetic gradient force stabilizes regions with

higher concentrations and enables the levitation of the enriched layer over the less dense

bulk solution. Hence, a key element of this process is the existence of a free liquid-gas

interface. However, a non-uniform magnetic field not only modifies the transport process in

the paramagnetic liquid but also affects the stability of this interface. The main motivation

behind this work is to gain a better understanding of the behavior of the free surface of a

paramagnetic solution in an inhomogeneous field, which is a precondition for designing a

magnetic separator for rare earth elements.

Generally, magnetic fluids adapt the morphology of their surface in magnetic fields to

minimize its energy. The resulting interfacial instabilities in super-paramagnetic liquids, e.g

ferrofluids (χFF = 0.4−3.715) under external magnetic fields have been studied intensively in

recent decades. The best known instability is the normal-field or Rosensweig instability16.

It appears when a ferrofluid (magnetic fluid) is subjected to a sufficiently strong vertical

uniform magnetic field. The surface generates an ordered pattern of peaks and valleys. The

dynamics of a single peak of the Rosensweig instability were studied in17,18. Experimental

studies under micro-gravity showed that a sort of normal-field instability even forms if the

magnetic field is applied parallel to the fluid surface19. Recently, a modified normal-field

instability in ferrofluids in the presence of a magnetic field gradient was reported20. For a

thin layer of ferrofluid, the impact of the field gradient on the critical magnetization above

which the instability appears, and the characteristic wavelength, have been identified. It was

found that the magnetic field gradient force stabilizes the interface, hence a higher magnetic

force is needed for the onset of instability.

By contrast, much less is known about the related surface instabilities of paramagnetic

solutions. While the surface profile between aqueous copper sulfate solution and water was

insensitive to the direction of a high magnetic field (10 T)21, experiments with liquid oxygen

(χLOX = 3.47 · 10−3) in an inhomogeneous magnetic field22 showed similar findings to the

surfaces of ferrofluids20. Paramagnetic liquids exposed to magnetic fields can further be

used to control the mixing behavior of liquids in tubes, as was shown in23.
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By means of a combination of experiments and numerical simulations, here, for the first

time, we analyze the behavior of the free surface of a paramagnetic liquid after it moves

into an inhomogeneous magnetic field. We demonstrate that the response consists of the

superposition of damped surface oscillations onto a static deformation. Based on the ex-

cellent agreement between experiments and simulations in terms of frequencies and surface

shape, we can clearly identify the origin of the surface oscillations. These are gravity-driven

standing waves with an effective gravitational acceleration modified by the magnetic field

gradient, and which can be approximated by Bessel functions of zeroth order. Finally, an

application of the phenomena studied is provided in the form of a thermal/electric switch

employing DyCl3 solutions.

II. THEORY

Bringing a permanent magnet closer to the surface of a paramagnetic liquid will cause a

transient deformation of the shape of the surface and a flow inside the liquid. The velocity

~u in the liquid is given by solving the Navier-Stokes equation for an incompressible fluid

under the influence of gravity, magnetic force and surface tension, complemented by the

incompressibility constraint:

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
= −∇p+ η∆~u+ ρ~g + ~fm, (3)

∇ · ~u = 0 (4)

Here, ρ, η, t, p and ~g denote the density and the dynamic viscosity of the liquid, time, pres-

sure and the vector of gravitational acceleration, respectively. Eq. 3 has to be complemented

by proper boundary conditions. At the free surface of unknown shape, as well as capillary

stress, Maxwell stress also had to be considered.

Under the assumption of a current-free magnetic field ∇ × ~H = 0, collinear magnetiza-

tion of the liquid ~M = χsol ~H and an isothermal and irrotational flow field ∇ × ~u = 0, a

ferrohydromagnetic Bernoulli equation can be derived24,

p− χ

2µ0

B2 +
ρ

2
u2 + ρgh = const. , (5)

where B denotes the magnitude of the magnetic flux density. From this equation it can

be seen that the magnetic pressure (second term) might counteract gravity, thus tending
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to elevate the surface of a magnetic liquid. When a fluid at rest in a constant horizontal

magnetic field is considered, the height difference ∆h can be calculated as amounting to

∆h =
χ

2µ0

B2

ρg
(6)

which is known from Quincke’s method for determining the magnetic susceptibility of a

liquid. When a constant vertical magnetic field is considered, a further term arises in this

equation from the normal Maxwell stress at the interface, and the relation reads24:

∆h =
χ

2µ0

B2

ρg
(1 + χ) (7)

For paramagnetic salts dissolved in water, however, the correction compared to Eq. 6 is

small, since χsol � 1.

To derive the last two equations, the surface was assumed to be flat. However, when

the liquid is exposed to a spatially inhomogeneous magnetic field caused e.g. by a small

permanent magnet placed above the surface of a large reservoir, the surface deformation

will depend on the lateral coordinate. Therefore, the capillary pressure ∆pc,

∆pc =
σ

2R
, (8)

comes into play. Depending on the surface curvature 1/R, this tends to reduce the height dif-

ference. Here, σ denotes the surface tension between the liquid and the air. Axial symmetry

regarding the chosen magnet configuration was assumed.

In the general case of an inhomogeneous magnetic field above a free surface of a magnetic

liquid, the shape of the free surface of a liquid at rest follows from Eq. (3). In detail, it is

determined by the solution of the following equation along the interface24:

−∇p = ρ~g + µ0M ∇H; p = p0 −
2σ

R
− µ0

2
M2

n (9)

where Mn denotes the interface-normal component of the magnetization. Again, axial sym-

metry was assumed. In general, these equations need to be solved numerically, as analytical

solutions can only be found for specific generic geometries25. The application of a magnetic

field to a fluid at rest usually leads to a transient response by the liquid. If a free surface

exists, surface waves are generated. Purely hydrodynamic surface waves, generated e.g. by

mechanical or accoustic actuation, are determined by the influence of both gravity (acceler-

ation g) and surface tension (σ). The dispersion relation for the angular frequency ω = 2πf
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is given by26:

ω2 = gk +
σ

ρ
k3 (10)

Here, k = 2π/λ and λ denote the wave number and the wavelength of the wave mode

under consideration. Expression (10) is valid if the wavelength does not considerably exceed

the height of the vessel (“deep water”), a constraint which is fulfilled in the case under

consideration here (see Section VI). Furthermore, viscous effects have been neglected so far,

and will be discussed later in Section VI.

For surface waves of magnetic liquids in an inhomogeneous magnetic field, Eq. (10) has

to be modified and also extended and reads as22,24,27

ω2 = geffk +
σ

ρ
k3 − χ2

sol

4ρ

B2
0

µ0

k2 , (11)

where B0 denotes the magnitude of the magnetic flux density at the surface. The magnetic

pressure caused by an inhomogeneous magnetic field can be understood as modifying the

gravitational acceleration, and the resulting effective value geff is given by:

geff = g − µ0M

ρ
· ∂H
∂z

(12)

where the vertical coordinate z points in an upward direction. The role of geff is discussed in

more detail in Section VI. The additional term arising in Eq. (11) can usually be neglected for

aqueous solutions containing paramagnetic ions, since, as already mentioned above, χsol � 1.

III. EXPERIMENTAL SETUP

Paramagnetic solutions of the rare earth salt Dy(III) chloride hexahydrate, DyCl3 · 6

H2O (99.9%, abcr GmbH & Co. KG) were prepared by dissolving the salt in 0.1 M of

hydrochloric acid. Four different concentrations c0 (0.25 M, 0.5 M, 0.75 M and 1 M; 1 M

= 1 mol/l) of DyCl3 were considered. The saturation concentration of DyCl3 in water is

approx. 3.5 M - 3.8 M28. Thus, by choosing 0.1 M hydrochloric acid and concentrations

considerably below the saturation concentration, a complete dissociation of the dysprosium

salt without precipitation in the solution was ensured.

DyCl3 solution was injected into an optical cuvette with a square cross section D × D

(D = 60 mm) and a height H = 20 mm, see Fig. 1-a. The same filling protocol was

applied during all experiments, which were performed at room temperature of 22.7 oC ±
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a)

b)

FIG. 1. (a) Sketch of the experimental setup. The transparent glass cuvette contains the para-

magnetic DyCl3 solution. The origin of the cylindrical coordinate system is marked by a star.

The direction of gravity and the magnet’s approach are along the −z direction. (b) Magnetic flux

density and the magnetic field gradient term |( ~B · ∇) ~B| for the lowest magnet position at z0 = 4.5

mm (simulation result). The maximum values of both quantities shown were limited to enhance

the presentation.

0.4 oC. The magnetic field was provided by an axial assembly of two cylindrical NdFeB

magnets of different sizes: a large one (radius = height = 10 mm) on top and a smaller one

(radius = height = 5 mm) below (see Fig. 1-a). Both magnets are magnetized in the upward

direction. In the following, this magnet assembly is referred to as magnet for simplicity.

The magnetic flux density B and the magnetic field gradient term |( ~B · ∇) ~B| calculated
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by finite-element simulations (see Section IV) are shown in Fig. 1-b for the lowest magnet

position considered, where the lower magnet surface is placed at z0 = 4.5 mm. The magnet

was precisely located above the center of the cuvette. It was moved vertically along the

symmetry axis of the cuvette in z direction, see Fig. 1-a) using a motorized translation stage

(Newport). The diameter of the magnet was chosen to be considerably smaller than the

width D of the cuvette to limit the magnetic interaction with the center part of the cuvette.

Thus, possible sloshing phenomena related to the motion of the contact line of the liquid

along the side walls are reduced.

At the beginning of the experiments, the bottom of the magnet was 20 mm above the

surface of the liquid (z = 20 mm). The magnet was then moved vertically downwards

by 15.5 mm (z0 = 4.5 mm) towards the free surface, where it stayed for 5 s. After this

time, the magnet was removed upwards to its initial position with the same velocity. Both

final positions of the magnet were kept constant through all the experiments. Two different

velocities of the magnet were investigated, which can be grouped into a slow case (0.5 mm/s)

and a fast case (20 mm/s). All the experiments were repeated three times.

The interfacial deformation was monitored using a microscope connected to a high-speed

camera (IDT NX4-S1), and applying a background illumination provided by a LED and a

diffuser. The measurements were carried out at a magnification of M = 5 (resolution of

210 pixels/mm) and a frame rate of 200 images/s.

Fig. 2 shows characteristic stages of the interface in the center of the cell. The left image

depicts the undisturbed flat surface prior to magnetic actuation (height position h0). The

subsequent two pictures show snapshots of the deformed surface. The timescale is defined

such that at t = 0 s (Fig. 2, center) the magnet has reached the final position, closest to the

interface. The right-hand image presents the static deformation after the oscillations were

damped out.

To reconstruct the entire surface of the liquid at a given field of view of 4.8 mm, a

technique explained in Section V A was applied. For the detailed study of the surface of the

liquid, the latter was additionally identified using spherical polystyrene particles (diameter

of 36 µm) to ensure a better contrast, see Fig. 3.
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FIG. 2. Zoomed view of the surface of a DyCl3 solution and its deformation under the influence

of a magnetic field near the cell center. Left: Flat surface (vertical position h0) when the magnet

is far away. Center: Deformed surface when the magnet has reached the closest position (t = 0).

The point in the center (marked by a star) is denoted as h(t = 0, r = 0). Right: Deformed surface

at a later point in time t > 0 s. The marked distances refer to Eq. 15.

IV. SIMULATION SETUP

Numerical simulations were performed to calculate the transient deformation of the sur-

face of the liquid and to compare the data with the experimental results. The following

geometrical simplifications and modifications were applied. As the diameters of the cylin-

drical NdFeB magnets above the center are small compared to the diameter of the vessel,

a cylindrical vessel of diameter 60 mm was considered. Thus, because of axial symmetry,

2D simulations were performed in the (r, z) plane. The transient simulations start with a

plane surface above which the magnet is located in the final position of the experiment, i.e.

4.5 mm above the surface. Compared to the finite speed at which the magnet approaches

the surface in the experiments, this corresponds to an infinitely fast approach, and will thus

lead to larger oscillation amplitudes of the surface compared to the experiment, even in

the case of the fast approach in the experiment. The simulations were performed using the

commercial finite-element multiphysics software COMSOL V.52a.

The magnetostatic problem to calculate the magnetic field of the two permanent magnets

is performed as a preprocessing step. This is possible since the magnetic field does not

change over time and space because the magnetization of the solution is low compared to
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TABLE I. Material parameters of pure water and of the different aqueous DyCl3-solutions used in

the simulations and calculations in Table II (from6,31).

c [M] ρ [kg/m3] η [Pa· s] χsol

0.0 997.0 1.0 · 10−3 −9.10 · 10−6

0.25 1060.0 1.112 · 10−3 1.28 · 10−4

0.5 1118.5 1.224 · 10−3 2.67 · 10−4

0.75 1180.3 1.461 · 10−3 4.04 · 10−4

1.0 1239.3 1.724 · 10−3 5.41 · 10−4

the external field strength. In order to avoid any influence from boundary conditions applied

at a finite distance from the setup, infinite elements were used at the outer edges.

The simulation solves the Navier-Stokes equation (Eq. 3) for the paramagnetic liquid.

This includes the gravity force and the magnetic gradient force (Eq. 1) based on the magnetic

susceptibility of the solution and the distribution of the magnetic field and its gradient as

calculated previously. The deformable interface between the air and the salt solution is

taken into account using the Arbitrary Lagrangian Eulerian Method as described in29,30.

The boundary conditions applied are a no-slip condition at the walls of the vessel and a

free-slip condition at the surface, with a fixed contact point at the brim. The material

parameters of density, viscosity and magnetic susceptibility of the different aqueous DyCl3-

solutions are listed in Table I. For the surface tension, the value σ = 0.0718 N/m of a

water-air interface was used. Finally, an unstructured grid of about 113,000 elements was

used for the simulations resulting from validation studies in order to properly resolve regions

where large gradients occur or the surface is moving. For the case of a 0.75 M DyCl3

solution, which is the maximum concentration investigated numerically, the magnetic force

was linearly increased within an initial period of 1 s in order to reduce the initial amplitude

of the surface deformations (see Section V B).

V. RESULTS

The initially flat surface of the DyCl3 solution, h(r, t), becomes unstable when exposed to

an inhomogeneous magnetic field. This surface deformation proceeds in two steps: an initial
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oscillatory phase which evolves into a stationary deformation after the oscillations have been

damped out. In the following, the surface deformation ∆h(r, t) due to the magnetic field is

related to the initial level of the interface, h0(r) without field (cf. Fig. 2), given by

∆h(r, t) = h(r, t)− h0(r). (13)

The unusual feature of a lateral dependence of the undisturbed surface height h0(r) is in-

troduced to account for possible evaporation effects which may take place during the mea-

surements, as explained below in detail.

A. Stationary shape of the free surface

We first focus on investigating the stationary surface deformation ∆h∞(r) that remains

after the oscillations have declined. Figs. 3 and 4 show the surface topology of a 0.75 M

solution between the center and the edge of the cell without any influence from the magnetic

field (Fig. 3-a) and 4 s after the magnet has reached its final lower position in the case of a

fast approach (Fig. 3-b). Considering the axial symmetry of the setup in the center region

of the cuvette, only one half of a cuvette was studied, i.e. 0 mm < r < 30 mm.

To capture the whole free surface at a given field of view of 4.8 mm in this interval,

a series of 9 consecutive measurements were necessary, at different lateral positions of the

camera with slightly overlapping regions. Each measurement of the temporal response of

a surface segment on the approaching magnet takes about 5 min, after which adjustments

are necessary to change the field of view. Thus, in total, the measurements take about two

hours. During this long time, a small amount of solvent evaporates, which is visible as a

small depression in Fig. 3-a. The amount of evaporated solvent was estimated to be 0.8 cm3,

which represents less than 1.1% of the solution volume in total. Correspondingly, the change

in the bulk concentration due to evaporation also remains negligible. Thus, segment by

segment, the undisturbed surface positions h0(r) and the deformed surface positions h(r, t)

were measured.

The quantitative data extracted in these segments from the position of the polystyrene

particles in Fig. 3-b are shown in Fig. 4-a. The blue dots represent the center of the particles.

Only moderate image processing was performed and not all particles which are out of focus

were removed, which contributes to the fluctuations in the data. The data were fitted using
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FIG. 3. Interface structure of the 0.75 M DyCl3 solution, shown at an aspect ratio of z : r = 1 : 1

(a) without magnetic field influence, (b) 4 s after the magnet reached its end position (fast case).

The interface is identified using monodisperse polystyrene particles (darker points in the picture),

which rest on the liquid’s surface. The figure represents the interface in the central plane of the

cuvette. The edge of the cuvette is on the right-hand side of the figure (r = 30 mm), while the

center of the magnet is on the left side of the figure (r = 0 mm), where the largest elevation of

fluid is seen.

a polynomial of the seventh degree in order to obtain a smooth curve. This curve is plotted

in Fig. 4-b together with the static surface deformation for other Dy(III) concentrations,

obtained by simulations.

The elevation reaches a maximum in the center of the cell, vertically below the magnet

(r = 0 mm). As a result of mass conservation, there is a surface depression at the outer

part (r > 15 mm). The static shapes of the surface as obtained from the experiment and

simulation for the 0.75 M solution correspond very well. The maximum elevation of the

simulation result is slightly larger than the measured value, and the radial position of zero

height is found at a slightly smaller radial position than the measured value. Both these

small deviations may result from a moving contact point at the outer wall, which cannot be

avoided in the experiment, and is visible when looking at r = 30 mm. In general, as seen

from the simulation results, higher concentrations lead to higher surface elevations in the

center, compared to which other changes in the surface shape are small. The radial position

of zero height difference moves slightly towards the center of the cell when the concentration

increases (at 13.8 mm for 0.25 M, at 12.3 mm for 0.75 M).

Fig. 5 summarizes the behavior of the stationary elevation at the center of the cell

∆h∞(r = 0) at different Dy3+ concentrations. There is very good agreement between the

experimental results and the simulations for ∆h∞. As already seen in Fig. 4-b, the higher
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the salt concentration, i.e. the magnetic susceptibility of the solution, the higher the eleva-

tion of the interface at r = 0. For the magnet assembly studied here, the relation appears

to be nearly linear for concentrations larger than 0.25 M.

B. Temporal evolution of surface height

As already mentioned before, the approaching magnet causes an oscillatory response by

the surface of the paramagnetic liquid. To analyze this oscillatory behavior, we study the

development of the height difference ∆h(r = 0, t) in the center of the cell where ∆h(r, t)

attains its maximum. Fig. 6 shows the experimental results of the ∆h(t) dynamics for

different concentrations at both limiting cases: the slow case (Fig. 6-a) and the fast case

(Fig. 6-b). The time axis is defined such that at t = 0 s the magnet has reached its final

position close to the surface. As can be seen for t < 0 s, during the approach of the magnet,

the surface is rising, whereby its rising speed depends on the approach velocity of the magnet.

For t ≥ 0, both cases display sinusoidal interface oscillations, the amplitude of which is being

damped with time. As expected, the initial amplitude of the oscillations is larger the larger

the concentration is.

The oscillations in general result from the interplay between the inertia of the liquid,

which is accelerated by the field gradient force on the one hand, and gravity and surface

tension on the other hand, which aim to flatten the disturbance. Due to inertia, the liquid

with its free surface is not able to adapt fast enough to the increasing magnetic forcing

caused by the approaching magnet. Thus, after the magnet has reached the final position,

an overshooting is observed. This results in larger amplitude A (see Fig. 2) for the fast

cases (Fig. 6-b) than for the slow cases (Fig. 6-a). After about 5 s, the oscillations are

essentially declined in all cases and the static height differences correspond to the values

already discussed in the subsection above. Slightly later, the magnet is removed, which

causes the height difference to relax.

Fig. 7 shows the results of the simulation as a comparison. While they are very similar to

the experiments in the second half of the simulated timespan, a slightly different behavior

can be observed in the first phase. The reason is that, due to the details of the simulation

described above, the initially flat surface is abruptly exposed to the action of the magnet

at t = 0, which corresponds to an infinite speed of approach in terms of the experiment.
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a)

b)

FIG. 4. Shape of the static surface deformation after the decay of oscillations: a) experimental

result for 0.75 M DyCl3 observed at 4 s after the fast approach of the magnet, b) numerical results

for different bulk concentrations of DyCl3 in comparison with the experimental result for the 0.75

M solution (fitted curve).
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FIG. 5. Static surface elevation, ∆h∞, below the center of the magnet after decay of oscillation

versus bulk concentration: comparison between experimental and numerical results. The error

bars represent the minimum and maximum value of experimental results. Additionally, the fitted

value of the initial amplitude A1 of the transient oscillations according to Eq. 15 is given for the

fast application of the magnet (see Section V B).

This results in considerably larger initial amplitudes A when compared even to the fast

experimental case. For this reason, the case of 0.75 M had to be treated differently in the

simulation. To mimic an approaching magnet, the magnitude of the magnetic force fm was

linearly increased over a period of 1 s. As can be seen, the initial amplitude of oscillation

is strongly reduced. A further difference due to the infinitely fast application of the magnet

in the two simulation cases of 0.25 M and 0.5 M becomes visible in the initial time interval

0 < t < 6 s, where different dynamics are observed. From the temporal behavior of the

height difference it becomes obvious that more than one single frequency is involved in the

oscillations, which seems not to be the case for the experimental results. Moreover, for these

two cases, the first maximum surface elevation is reached with a slight delay (t > 0 s) in

comparison with all the experimental cases and also the simulated case of 0.75 M, where
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a)

b)

FIG. 6. Experimental result of the interfacial dynamics in the center of the cell for all investigated

DyCl3 concentrations for the slow (a) and the fast (b) case. The magnet velocity is given in the

insert. At t = 0, the magnet has reached the final position near the surface. At t = 5 s, the magnet

is removed upwards again.
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FIG. 7. Simulated interfacial dynamics in the center of the cell for different DyCl3 concentrations.

the maximum is reached at t = 0 s. Finally, for later points in time, t > 6 s, only a single

oscillation frequency remains in these two simulation cases, in qualitative agreement with all

the experimental results and also the special simulation case of 0.75 M as discussed above.

The oscillation frequencies extracted from Figs. 6 and 7 are plotted in Fig. 8 for the

different Dy3+ ion concentrations. As is clearly visible from the experiment, the frequency

decreases with an increasing concentration. The simulation results reproduce this trend very

well, despite a minor offset of about 12% towards larger frequencies. This offset may be due

to the fact that the contact line at the outer wall of the cuvette, which is full to the brim,

cannot be completely prevented from moving in the experiment; it is well known that this

slightly reduces the oscillation frequency of the surface waves32.

To better understand the nature of the surface oscillations which are excited, we compare

them with mechanically triggered waves. For that purpose, a small water droplet produced

by a 1 mL syringe falls from the tip of the needle to the center of the cuvette, which is filled

with pure water. The height of the free fall is 40 mm. The dynamics of the water surface

at the center after excitation by the drop, which reaches the surface at t = 0 s, is shown in
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FIG. 8. Frequency of the surface deformation versus bulk concentration: comparison between

experiments and simulations. The solid lines represent predicted frequencies of different modes of

surface waves as discussed later in Section VI.

Fig. 9. Similarly to the two simulated cases discussed above, for short times after the drop’s

impact, surface oscillations of different frequencies are visible as non-monotonic variations

in the oscillation amplitude. After about 3 s, sinusoidal oscillations of a single frequency

f = 5.7 Hz and a monotonically decaying amplitude remain. This point fits nicely into the

frequency trend plotted in Fig. 8, where it is inserted for cDy(III) = 0 M. As the volume of

the drop is very small (≈ 9 µL) compared to the volume of the cuvette (= 0.072 L), no

static height difference remains in Fig. 9.

VI. DISCUSSION

When a permanent magnet quickly approaches the free surface of a paramagnetic liquid,

beside a static deformation of the surface shape, surface oscillations are triggered. These

oscillations are standing waves, as the contact line is nearly perfectly pinned at the side
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FIG. 9. Dynamics of the surface of water in the cuvette excited by a falling drop. At t = 0 s the

drop reaches the surface.

walls of the cuvette, which is full to the brim. Once excited, the oscillations are damped

naturally with time because of viscous friction in the bulk, surface tension, and friction at

the contact line32.

In the following, we restrict our focus to axisymmetric surface deformations, which can be

described as the sum of the asymptotic surface shape A0(r) and a series of radial eigenfunc-

tions Fi(r) which oscillate over time but also decay over time32,33:

∆h(r, t) = A0(r) +
∞∑
i=1

Ai cos (2πfit+ δi)Fi(r) e
−γit.

(14)

Here, R, Ai, fi, δi and γi denote the radius of the vessel, the amplitude, the frequency, the

phase shift and the damping factor of mode i, respectively.

The shape of the static deformation A0(r) was studied in Section V A and is strongly in-

fluenced by the width of the magnet, which in the case considered here is much smaller

than the width of the cuvette D = 2 · R. As a result, the surface is elevated beneath the
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FIG. 10. N Modes i = 0 to i = 4 of a Bessel function expansion, which are radial eigenmodes of

the oscillating membrane of a drum.

magnet only, and, due to volume conservation, slightly lowered in the outer part. Therefore,

a zero must occur, which is found from the simulations at about r ∼ 13 mm for all the

salt concentrations investigated (see Fig. 4), in good agreement with the experimental value

measured for c = 0.75 M.

Beside the static deformation, the oscillations caused by the fast approach of the magnet

may be understood similarly to ordinary gravity-capillary waves, for which the dispersion

relation derived for infinite domains is shown in Eq. (10). Taking the magnetic field into

account then leads to the modified dispersion relation (11), where the gravitational accelera-

tion at the static surface has to be updated in line with Eq. (12). We have to admit that, for

further reasons, Eq. (11) may only hold true approximately, as in our case the gravitational

acceleration is only altered locally beneath the magnet. Thus, in our case, geff depends on r

and the vertical coordinate z.

For a cuvette of a given diameter, the eigenmodes, their wave numbers and frequencies result

from solving a related eigenvalue problem where the depth of the cuvette also needs to be

considered (e.g. see32,33). We do not intend to go into more detail here, but instead, for

illustration only, show in Fig. 10 the radial eigenmodes of a drum membrane excited by
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actuation in the center34, offering a qualitative insight into what the axisymmetric modes

look like. The aspect we would like to point out is that these modes are characterized by

a growing number of nodes. The eigenmodes shown in Fig. 10 are the Bessel functions of

index zero, the argument of which is stretched such that the nodes match with the pinned

contact line at the outer wall. Hence, the functions are given as J0(xir/R), where r and

R denote the radial coordinate and the radius of the cuvette, and the consecutive zeros

of J0(x) are given as x0 ≈ 2.4048, x1 ≈ 5.5201, x2 ≈ 8.6537, x3 ≈ 11.7915, x4 ≈ 14.9309,

cf. Ref.34. We would like to point out here that mode i = 0 shown in Fig. 10 will be excluded

from further consideration of the surface oscillations in the cuvette, as volume conservation

cannot be fulfilled in the case of a single node at the wall. In the following, we assume that

the eigenmode Fi(r) of the cuvette is characterized by i nodes in 0 < r < R.

When considering only the height variation in the center of the cell at r = 0 mm, using

Fi(0) = 1, Eq. (14) reduces to

∆h(0, t) = ∆h∞(0) +
∞∑
i=1

Ai cos (2πfit+ δi) e
−γit. (15)

Initially, due to the approaching magnet, beside a static surface deformation, a set of different

radial eigenmodes Fi(r) with frequencies fi is excited. However, higher modes, characterized

by a large number of nodes and a large oscillation frequency, can be expected to be damped

by viscosity more strongly than those of a smaller index i. Thus, it appears likely that a

mode with a single node at the surface is least damped and therefore visible at later points

in time. Qualitatively, this mode is the same shape as mode 1 of the drum shown in Fig. 10.

These arguments obtain further support from a more detailed observation of the surface

deformation in the experiment in the outer part of the cuvette. As shown in Fig. 11, the

temporal variation in the node position decays over time, and an asymptotic value of the

node is established near r ≈ 15 mm. This result is in full agreement with the simulation

result shown in Fig. 12 where the least damped mode is made visible at a late stage in the

oscillations.

Next, we discuss the frequencies of the surface waves. All experiments show surface

oscillations that are dominated by a single frequency which can be traced back to the i = 1

mode. In this case, Eq. (15) can be used to fit the oscillatory behavior ∆h(0, t) in both the

experiments and the simulation, when the focus is restricted to the interval 4 s < t < 10 s

where the single mode behavior also dominates in the simulations. While A and ∆h∞ were
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FIG. 11. Temporal behavior of the surface height ∆h in experiment with a 0.75 M Dy(III) solution.

An outer part of the cuvette (13.5 mm < r < 16.5 mm) is shown, within which the surface wave

has a node near r = 15 mm. The black dots shown mark the temporal position of the node at

which ∆h - ∆h∞ = 0 holds.

plotted in Fig. 5, the dominant frequencies are shown in Fig. 8. Here we note a decrease in

the frequency from about f = 6 Hz at c = 0 to about f = 4 Hz at c = 1 M with an increasing

Dy3+ concentration.

While only the i = 1 mode has been identified in the experiments, higher harmonics which

also possess higher frequencies than mode i = 1 are visible in the simulations at the early

stage. To understand why this behavior is not observed in the experiment, the frequency of

the magnetic excitation is estimated. It roughly follows from the time it takes to approach

the magnet, i.e. fexcitation ∼ 1/∆tapproach. For the fast case, fexcitation ∼ 1.3 Hz is obtained,

which is well below the observed oscillation frequency of mode i = 1. Consequently, the

approaching speed of the magnet in the experiments is too slow to excite additional higher

harmonics.

In the following, based on the oscillation frequencies f measured and the dispersion
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FIG. 12. Variation in the difference of surface deformation with respect to the static surface shape

at later points in time near t = 6.3 s where ∆h(0) is minimum, maximum and approximately zero.

Simulation result, c = 0.5 M.

relations (10)-(11), we calculate the corresponding wave numbers k and wavelengths λ =

2π/k of the oscillations. We will further discuss the contributions of the different terms

of the dispersion relations. The results are summarized in Table II. For the case of pure

water, the measured oscillation frequency corresponds to a wavelength of λ = 53 mm and,

according to the dispersion relation (10), a wave number of k=118 m−1. As can be seen, the

surface-tension-related term σ/ρ · k3 is only of minor importance compared to the gravity-

related term g · k.

For the DyCl3 solutions studied, the dispersion relation (11) applies, where the gravitational

acceleration is modified to its effective value geff. According to Equation (12), it holds that

geff =
χsol

ρµ0

B
∂B

∂z
, (16)

where the values of the magnetic flux density and its gradient at the center axis r = 0 are

calculated at z = 0. Based on the numerical result shown in Fig. 1 b, the magnitude of the

magnetic flux density is approximated as

B(z) = Bmax e
α(z−z0), (17)
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TABLE II. The oscillation frequencies f measured for the different solutions and related quantities

derived from the dispersion relations (10) or (11). For the DyCl3 solutions, g is replaced by the

value geff resulting from Eq. (16). Additionally, for three preset wave numbers, the quantities

resulting from Eq. (10) are calculated inversely. The material parameters used in the calculations

are given in Section IV.

Case f [s−1] λ [m] k [m−1] g [ms−2] g · k [s−2] σ
ρ · k

3 [s−2]
χ2
sol
4ρ

B2
0

µ0
k2 [s−2]

λ = D/2 8.28 0.030 209 9.81 2054 651 \

λ = 2D/3 6.78 0.040 157 9.81 1540 275 \

λ = D 5.30 0.060 105 9.81 1027 81 \

H2O 5.70 0.053 118 9.81 1162 120 \

cDy(III) = 0.25 M 5.41 0.050 126 8.06 1018 137 0.028

cDy(III) = 0.5 M 5.29 0.044 142 6.35 899 206 0.145

cDy(III) = 0.75 M 4.79 0.043 147 4.85 712 192 0.337

cDy(III) = 1 M 4.08 0.044 141 3.48 492 164 0.537

where Bmax = 0.7558 T and α = 220 m−1 denote the flux density at the magnet surface and

the vertical downward decay rate of the field. The values of geff obtained are listed in Table

II. Despite the continuous decrease in geff with increasing concentration, the gravity term

in the dispersion relation still dominates the surface tension even at the largest concentra-

tion investigated. Finally, the last term of the dispersion relation (11), which describes a

magnetic correction, is negligible at all concentrations investigated when compared to the

aforementioned terms of gravity and surface tension.

Table II further shows that as the salt concentration increases, the decrease in the oscil-

lation frequencies measured is accompanied by a moderate decrease in the wavelength. At

c = 0.5 M, based on the dispersion relation (11), a wavelength of 44 mm is found. This value

is in very good agreement with the simulation result of the least damped oscillation mode

shown in Fig. 12. Here, a wavelength of about 45 mm can be extracted, which is measured

as twice the distance between r = 0 and the position of the extremum of the amplitude.

In order to study the sensitivity of the oscillation frequency with respect to the wave

number, the upper three lines in Table II show cases where wave number values are preset,

and the inversely resulting terms of Eq. (10) and the oscillation frequencies are calculated.
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As expected, the frequency and wave number in the case of pure water lie between the

values obtained for λ = 2D/3 and λ = D. Moreover, as already seen above, the magnetic

term in the dispersion relation (11) is negligible. Therefore, in Fig. 8, for the three cases

of preset wave numbers the frequencies resulting from Eq. (11) are plotted, neglecting the

magnetic term. It can be seen that in the range of salt concentrations investigated here

the oscillation frequencies obtained for the two cases of λ = 2D/3 and λ = D act as upper

and lower boundaries for the oscillation frequencies measured and obtained by numerical

simulations. As the salt concentration increases, the reduction in the oscillation frequency

is accompanied by a moderate decrease in the wave number, as also listed in Table II.

The dispersion relations (10) and (11), as mentioned before, are valid under the side condi-

tion kH > 1, where H denotes the height of the filled vessel. As can be seen, this condition

is clearly fulfilled in all cases. The dispersion relations (10) and (11) furthermore exclude

any viscous effects which might also influence the oscillation frequency, beside the temporal

damping of the oscillation amplitude. However, the frequency correction factor derived in35

results in a nearly unchanged oscillation frequency in our case, as
√

1− (2ηk2/(ρω))2 ≈ 1.

This is also confirmed in surface-wave damping experiments performed in a vessel of a sim-

ilar size to that used here, where the frequency of the least damped mode was reported to

be nearly unchanged32.

Analogously to the normal field instability of ferrofluids, the surface elevation can be ex-

plained by minimizing the total energy of the system. The magnet elevates the paramagnetic

liquid, causing the magnetic energy to be lowered, since the fluid can be magnetized more

easily than air. On the other hand, it requires energy to lift the fluid and to form a new in-

terfacial area. The formation of the solitary wave of paramagnetic liquid causes a reduction

in the magnetic energy, but the surface energy and the potential energy of the liquid are

increased. The undulation in our system is determined by a gravity-driven standing wave,

associated with the effective gravitational acceleration due to the magnetic field gradient

force. The deformation is time-dependent and exhibits an oscillatory behavior, with the

i = 1 mode proving to be the dominant and least damped mode.
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VII. PARAMAGNETIC LIQUID AS A SWITCH

The surface deformation of ferrofluids finds numerous practical application in magnetic

seals and bearings. In contrast, for paramagnetic liquids, the effect has not yet been utilized

to any great extent. This section describes a possible application of this research, consisting

in using the paramagnetic liquid as a thermal or electrical switch. The principle is to use the

ionic solution as an electrical or thermal conductor, and silicon oil as electrical or thermal

insulator. The principle of a thermal or electrical switch was visually tested. For this

purpose, the cell with a square cross-section of 10 mm × 10 mm and a height of 45 mm

was filled with 2 different liquids: 1 M DyCl3 solution at the bottom and paraffin oil (Fluka

Analytical, CAS No. 8012-85-1) on top of it. The volume of oil was 0.25 mL; the rest was

filled with paramagnetic ionic solution. To keep the meniscus between the two liquids as

small as possible, a hydrophobic acrylic glass cell was chosen and the interface was adjusted

by adding the two liquids alternately. The cell was covered with a 0.13 mm thick coverslip.

The same magnet configuration was used as in experiments involving the observation of

free surface. Vertically symmetrical planes of the magnet and cell were aligned and the

magnet moved in the vertical direction. The magnet rests 35 mm from the coverslip in the

demagnetization phase and 0.1 mm away in the magnetization phase.

Representative pictures of the concept are collected in Fig. 13. Only the middle part of

the cell is shown. Fig. 13-a presents the state with no thermal/electrical contact, since the

paraffin oil rests on the Dy(III) solution without interruption. Neither liquid is influenced

by a magnetic field; the bottom of the magnet is 35 mm above the cover slip. When the

magnet is near enough, the paramagnetic ionic solution is attracted (Fig. 13-b) and the level

of paramagnetic solution approaches the cover slip in the central part of the cross section.

Hence, the paraffin oil is pushed to the walls of the cell. When the paramagnetic solution

comes into contact with the cover glass (Fig. 13-c) the thermal/electrical contact is possible

if the cover glass is replaced by an electrode. When the magnet is removed, the liquids

separate according to their densities and there is no contact between the DyCl3 solution

and the cover slip; hence, the switch is turned off. Fig. 13-d shows the distribution of

liquids shortly before the contact is cut off. The design and geometries of the switch can be

adjusted according to the desired requirements. This offers the possibility of a wide range

of applications, from the size of a microchip to macro dimensions.
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FIG. 13. Principle of an electrical/thermal switch with paraffin oil and paramagnetic liquid: a)

no magnet is applied, b) the magnet is approaching, c) the magnet is at its end position and the

Dy(III) solution is in contact with the cover slip, d) demagnetization phase.

VIII. CONCLUSION

This work investigated the response of the free surface of a paramagnetic liquid subjected

to an inhomogeneous magnetic field which changes over time. The magnetic actuation

results in deformations of the interface. The free surface was found to oscillate with a

specific frequency, which is defined by the concentration of the paramagnetic ions, and

which is independent of the velocity of the permanent magnet. The frequencies measured

in experiments are slightly lower than the data from the numerical simulation. However,

the surface elevation in the center and the morphology of the surface in the simulation

and experiment agree well. Hence, the theoretical model provides a good description of

the reaction of the paramagnetic liquid’s free surface evoked by a moderate magnetic field

gradient. It was further shown that the amplitude of the surface oscillations caused by a

magnetic field, in contrast to the frequency, depends on both the concentration and the

magnet velocity. The temporal dynamics of the height difference beneath the center of the

magnet can be mathematically described by an exponentially decaying cosine wave after

higher modes are damped out. Finally, as a potential application, an electronic switch was

demonstrated which utilizes the interfacial instability between a paramagnetic liquid and a

paraffin oil.
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