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Abstract  17 

Geological disposal is the preferred long-term solution 18 

for higher activity radioactive wastes (HAW) 19 

including Intermediate Level Waste (ILW). In a 20 

cementitious disposal system, cellulosic waste items 21 

present in ILW could undergo alkaline hydrolysis, 22 

producing significant quantities of isosaccharinic acid 23 

(ISA), a chelating agent for radionuclides. Although 24 

microbial degradation of ISA has been demonstrated, 25 

its impact upon the fate of radionuclides in a GDF is a 26 

topic of ongoing research. This study investigates the fate of U(VI) in pH neutral, anoxic, microbial enrichment 27 

cultures, approaching conditions similar to the far field of a GDF, containing ISA as the sole carbon source, and 28 

elevated phosphate concentrations, incubated both (i) under fermentation and (ii) Fe(III)-reducing conditions. In 29 

the fermentation experiment, U(VI) was precipitated as insoluble U(VI)-phosphates, whereas under Fe(III)-30 

reducing conditions, the majority of the uranium was precipitated as reduced U(IV)-phosphates, potentially via 31 



enzymatic reduction (mediated by metal-reducing bacteria including Geobacter species detected by 16S rRNA 32 

gene sequencing). Overall, this suggests the potential for the establishment of a microbially-mediated “bio-33 

barrier” extending into the far field geosphere surrounding a GDF which has the potential to evolve in response 34 

to aspects of a GDF and can have a controlling impact on the fate of radionuclides. 35 

Introduction  36 

In most nuclear countries, the disposal of longer-lived, intermediate level radioactive waste (ILW), a component 37 

of Higher Activity Waste (HAW) in the radioactive waste inventory, will be to a deep geological disposal 38 

facility (GDF). A GDF will employ a multiple engineered barrier system (EBS), intended to isolate and contain 39 

the waste for sufficient time to allow the majority of the radioactivity to decay (DEFRA et al., 2008; Morris et 40 

al., 2011; RWM, 2016a). Most EBS concepts include encapsulation of the wastes in cement within steel drums, 41 

which are then placed into an excavated vault. Upon re-saturation with groundwater, chemical conditioning will 42 

be achieved by a cementitious backfill of the vaults to provide a dominantly anoxic and high pH environment 43 

that enhances sorption and reduces radionuclide mobility (Holopainen, 1985; Berner, 1992; Crossland and 44 

Vines, 2001; RWM, 2015; Duro et al., 2020). 45 

In ILW, uranium (U) will typically be the dominant radionuclide by mass (RWM and NDA, 2015). Due to the 46 

long half-life of uranium (238U 4.468 x109 y) and of its resultant decay chain elements, it is important to 47 

understand the environmental behavior of U to support implementation of a GDF. Redox cycling of U exerts a 48 

major control on its mobility. Under oxic conditions uranium, as U(VI), can form mobile carbonate complexes 49 

(Clark et al., 1995); although transport is typically limited by sorption. The formation of stable U(VI) colloids at 50 

elevated pH has also been demonstrated (Bots et al., 2014; Smith et al., 2015). In contrast, following the onset 51 

of anoxic conditions post-closure of a GDF, sparingly soluble U(IV), often precipitated as U(IV) oxide phases, 52 

is expected to dominate (Lloyd et al., 2005). In addition, the hyperalkaline conditions (pH >12.5) in a GDF can 53 

reduce the mobility of uranium by formation of uranyl silicates and uranate phases which may sorb to 54 

cementitious phases (Wellman et al., 2007; Bots et al., 2014), although stable U(IV) silicate colloids have also 55 

recently been reported under alkaline conditions (Neill et al., 2018). A mix of both U(VI) and U(IV) species 56 

may co-exist in the EBS; an improved understanding of their different immobilization pathways is important for 57 

post-closure modelling. Both, U(IV) and U(VI), can form strong, insoluble complexes with phosphates (Rui et 58 

al., 2013; Mehta et al., 2015), which may be present, e.g. from the nuclear clean-up process (Thomas and 59 

Macaskie, 1996; Chambers et al., 2004; RWM, 2016b) or the surrounding host rock (Porder and Ramachandran, 60 

2013). There has been documentation of U(V) species in environmental studies, but it typically 61 



disproportionates (Renshaw et al., 2005; Vettese et al., 2020). The transport behavior of uranium may be further 62 

complicated by the presence of organic ligands, such as the decontamination agents ethylenediaminetetraacetic 63 

acid (EDTA) or nitriloacetic acid (NTA) that may be disposed of with the wastes (Francis, 1998; Hummel et al., 64 

2005; Suzuki and Suko, 2006). Of particular interest, with respect to the disposal of ILW, are cellulosic items 65 

which are present at around 1% by mass of the total ILW in some wastes (IAEA, 2003; NDA and DEFRA, 66 

2014). Under alkaline GDF conditions, cellulosic wastes are expected to undergo alkaline hydrolysis (Machell 67 

and Richards, 1957; Greenfield et al., 1992; Glaus et al., 1999; Knill and Kennedy, 2003), resulting in the 68 

production of a range of organic degradation products, of which isosaccharinic acid (ISA), a polyhydroxy 69 

ligand, is predicted to dominate (Whistler and BeMiller, 1958; van Loon and Glaus, 1998; Knill and Kennedy, 70 

2003; Pavasars et al., 2003; Glaus and van Loon, 2008). ISA sorbs weakly to surfaces within the cementitious 71 

wastes (Bradbury and Sarott, 1995; van Loon et al., 1997) and is known to form stable complexes with 72 

radionuclides, such as uranium, which could in turn increase their mobility (Baston et al., 1994; Rao et al., 73 

2004; Warwick et al., 2004). ISA has the potential to be degraded, e.g. by microbial activity, and thus 74 

understanding the biogeochemical influence of microbial ISA degradation on uranium speciation, and its impact 75 

upon transport behavior under GDF conditions, is important to help develop an understanding of how waste-76 

derived uranium could be affected by processes occurring in the GDF on the long term.  77 

Previous biogeochemical studies have focused on the removal of U(VI)(aq) from solution in the absence of strong 78 

chelating agents in the context of treatment of contaminated land. These studies used electron donor additions to 79 

stimulate microbial U(VI) reduction that promoted the formation of insoluble U(IV) (Lovley et al., 1991; 80 

Newsome et al., 2015a). Since ISA may be a potentially significant organic substrate in ILW that could control 81 

the fate of U(VI) in and around the GDF, its role as an electron donor and carbon source stimulating microbial 82 

metabolism needs to be understood. Indeed, anaerobic microbial ISA degradation has been investigated under a 83 

range of biogeochemical conditions and pH values. Under the oxygen-depleted conditions typically expected 84 

after closure of a GDF, the oxidation of ISA can be coupled to the reduction of a range of alternative electron 85 

acceptors present in the wastes (Bassil et al., 2015b; a; Kuippers et al., 2015; Rout et al., 2015), which may be 86 

incomplete at high pH (=10) due to diminishing energy yield when coupled to low redox potential electron 87 

acceptors, such as sulfate (Bassil et al., 2015b; a; Rout et al., 2015). Complete degradation was observed under 88 

a range of conditions with Fe(III) supplied as an electron acceptor, which may occur naturally in the geosphere 89 

and might also be produced in situ from the corrosion of steel present in ILW and engineering materials used in 90 

GDF construction (Lovley and Phillips, 1986; Konhauser, 1997; Duro et al., 2014). Alternatively, some metal-91 



reducing bacteria directly utilize U(VI) as an electron acceptor, potentially leading to its reductive precipitation 92 

as U(IV). To date, there have been no studies examining the role of U(VI) during microbial degradation of ISA, 93 

both as a potential complexant and/or electron donor, under conditions relevant to the near and far field of a 94 

GDF. 95 

In this study, enrichment cultures growing on ISA were used to represent potential biogeochemical conditions in 96 

the pH neutral far field environment surrounding a GDF. The focus was to investigate the fate of U(VI)(aq), 97 

when ISA was used as fermentation substrate, and to compare these results to data from an ISA-degrading, 98 

Fe(III)-reducing microbial enrichment. A microbial consortium that is expected to be adapted to such 99 

biogeochemical conditions, was retrieved from soil samples from an alkaline legacy lime workings site at 100 

Harpur Hill, Buxton, UK, a well characterized system and potential analogue for an evolved GDF environment 101 

(Williamson et al., 2013). Uranium was removed from solution under both conditions, although the fate of the 102 

radionuclide depended on the culturing conditions. Collectively, these data highlight the potential importance of 103 

microbial processes in influencing radionuclide mobility in the far field surrounding a GDF (alongside other 104 

relevant processes). 105 

Materials and methods 106 

Sediments. Shallow subsurface sediment samples (approximately 20 cm depth and pH 7.5) were collected at the 107 

margins of an alkaline legacy lime workings site at Harpur Hill, Buxton, U.K., a potential analogue site 108 

representative of the alkali-disturbed zone surrounding a  GDF that is known to contain ISA-degrading bacteria 109 

(Williamson et al., 2013; Bassil et al., 2015b; Kuippers et al., 2015). The sediment was kept in the dark at 4°C 110 

until use. 111 

Ca(ISA)2 preparation. Ca(ISA)2 was prepared from α-lactose monohydrate and Ca(OH)2 following the protocol 112 

of Vercammen et al. (Vercammen et al., 1999). 113 

Fe(III) oxyhydroxide preparation. Fe(III) oxyhydroxide was produced according to the method of 114 

(Schwertmann and Cornell, 2000), briefly, 0.6 M FeCl3 was hydrolyzed at pH 7, with six washing steps with 115 

18Ω de-ionized water and the Fe(III) suspension was standardized using ICP analysis. 116 

ISA-degrading, Fe(III)-reducing and fermenting enrichments. Stable enrichment cultures were obtained using 117 

a 1% (v/v) sediment inoculum and minimal medium (pH 7), approaching far field conditions of a GDF. The 118 

media contained 30 mM NaHCO3, 4.7 mM NH4Cl, 4.4 mM NaH2PO4·H2O, 1.3 mM KCl, and 10 mL L-1 of 119 

mineral and vitamin stock solutions (Lovley et al., 1984). Ca(ISA)2 was added as the sole added carbon source 120 



and electron donor to a final concentration of 3.5 mM. To create an ISA-degrading and Fe(III)-reducing 121 

enrichment culture, approximately 30 mmol L-1 Fe(III) oxyhydroxide was added to one set of enrichment 122 

cultures, as the sole added electron acceptor, whilst a second set of ISA-fermenting enrichment cultures was 123 

grown without added Fe(III) oxyhydroxide. Microorganisms able to degrade ISA were selected via periodic sub-124 

culturing (1% v/v inoculum) in fresh medium, typically every four weeks. Stable enrichment cultures were 125 

obtained after 12 consecutive transfers for inoculation into U(VI)-containing media. 126 

Preparation of experimental cultures with ISA and U(VI). Enrichment cultures, approaching potential far field 127 

GDF conditions, were prepared with 30 mL anoxic medium at pH 7 containing 3.5 mM ISA. Fe(III) 128 

oxyhydroxide (30 mmoles L-1) was added to the “U(VI)-ISA, Fe(III)-reducing” cultures, and these were also 129 

supplemented with 1 mM U(VI) (added as a spike of UO2
2+ in 0.001 M HCl) after autoclaving. A parallel set of 130 

“U(VI)-ISA fermentation” cultures without added Fe(III), and with 1 mM U(VI) as the sole electron acceptor 131 

were prepared. Finally, an inoculum (1% v/v) was added from the two stable enrichment cultures prepared with 132 

and without Fe(III), respectively, to initiate experiments. Controls were also prepared, containing the same 133 

media as above with an autoclaved (sterile) inoculum, no inoculum, or no U(VI). All serum bottles were 134 

incubated in the dark at room temperature. Periodically, samples were withdrawn and analyzed using a range of 135 

geochemical and spectroscopic techniques. 136 

Exploring the mechanism of U(VI) reduction. Here, we explored the fate of U(VI) in Fe(III)-reducing 137 

incubations that had reached peak Fe(II) levels and were then either sterilized (autoclaved) or left microbially 138 

active, prior to the addition of 1 mM UO2
2+ (in 0.001 M HCl). After further incubation for 30 days, the solids 139 

were centrifuged anoxically and analyzed by U LIII-edge X-ray absorption spectroscopy (XAS) on beamline 140 

B18 at Diamond Light Source. 141 

Geochemical characterization. Periodically, samples were withdrawn using anaerobic, aseptic techniques and 142 

pH, Eh, Fe(II)/Fe(III), Utotal and U(VI) were measured before preserving the samples at -80°C for further 143 

analysis. Microbial Fe(III) reduction was measured using the ferrozine assay (Lovley and Phillips, 1987). Total 144 

uranium in solution was quantified with inductively-coupled plasma mass spectrometry (ICP-MS) and on select 145 

samples U(VI) in solution was quantified spectrophotometrically with 2-(5-bromo-2-pyridylazo)-5-146 

diethylaminophenol at 578 nm (Johnson and Florence, 1971). ISA, organic acids, sulfate and phosphate were 147 

analyzed by ion exclusion high performance liquid ion chromatography (IE-HPLC), using a Dionex ICS5000 148 

(SI section S1 for methodological details). 149 



16S rRNA gene sequencing. 16S rRNA gene sequencing was performed with the Illumina MiSeq platform 150 

(Illumina, San Diego, CA, USA) using a Roche ‘Fast Start High Fidelity PCR System’ (Kuippers et al., 2018). 151 

The raw sequencing data were deposited at the NCBI Sequence Read Archive 152 

(http://www.ncbi.nlm.nih.gov/sra/) with the accession numbers SRR7769831 – SRR7769835. 153 

Mineralogical characterization. All preparation and analyses were performed under anaerobic conditions. 154 

Mineral phase identification was carried out using powder X-ray diffraction (XRD) crystallography on a Bruker 155 

D8 Advance using an anaerobic cell. Environmental Scanning Electron Microscopy (FEG ESEM, FEI Quanta 156 

650) and Transmission Electron Microscopy (FEG TEM, Philips CM200) with selected area electron diffraction 157 

(SAED) were also used to characterize samples. 158 

U(VI) speciation and coordination analysis in solids. X-ray Absorption Spectroscopy (XAS) was used to 159 

determine speciation and coordination of uranium in solids sampled at incubation end points. XAS data were 160 

collected for the LIII-edge and MIV-edge of uranium. For studies of the U MIV-edge High-Energy Resolution 161 

Fluorescence Detection X-Ray absorption near edge structure (HERFD XANES; Kvashnina et al., 2013, 2014), 162 

end-point samples were centrifuged and prepared in an anaerobic holder. Spectra were collected on the ID26 163 

beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble (Gauthier et al., 1999), using a 164 

Si(111) monochromator and an X-ray emission spectrometer (Glatzel et al., 2013). The U MIV-edge HERFD 165 

XANES spectra were normalized according to their maxima, before analysis using Athena linear combination 166 

fitting to further quantify the likely proportion of uranyl(IV), uranyl(V) and uranyl(VI) in the samples (Ravel 167 

and Newville, 2005). 168 

For U LIII-edge XAS, samples were centrifuged and diluted with cellulose to a final concentration of 169 

approximately 1% U w/w to form a pressed pellet. All samples were prepared under strictly anaerobic 170 

conditions and stored under argon atmosphere at -80 °C until analysis in a cryostat. Samples and standards 171 

(schoepite UO3 and uraninite UO2) were collected in fluorescence or transmission mode. Background 172 

subtraction was performed using Athena and Demeter software (Ravel and Newville, 2005). Shells and multiple 173 

scatterers (MS) were only included in the final fits, when they statistically improved the model as assessed by 174 

the F-test (Downward et al., 2007).  175 



Results and Discussion 176 

Microbial ISA degradation has the potential to impact on the fate and speciation of uranium in the geosphere 177 

surrounding a GDF. To test this, anoxic, stable enrichment cultures were set up at pH 7 containing ISA as the 178 

sole electron donor and carbon source, and aqueous U(VI). The enrichment cultures were prepared from 179 

sediments collected at Harpur Hill, Buxton in media selective for ISA-fermenting and ISA-degrading, Fe(III)-180 

reducing conditions with U(VI). 181 

Figure 1. Solution chemistry of U(VI)-ISA fermentation (left panel) and U(VI)-Fe(III)-reducing cultures (right 182 

panel), both with 1 mM U(VI). Panel A & C: IC results for ISA (red line), acetate (blue line), butyrate (green 183 

line) and ISA in sterile control (grey dashed line); B & D: ICP MS results for total uranium in solution (yellow 184 

line) and sterile control (grey dashed line); E: Ferrozine results for Fe(II) in solution for microbially active 185 

Fe(III)-reducing culture (red line) and sterile control (grey dashed line). Note: results for U(VI)(aq) analyses using 186 

Bromo PADAP are presented in SI Section S1, Figure S6). 187 

Solution chemistry. There was a lag of two days in both microbial enrichment experiments (with and without 188 

added Fe(III)) before a decrease in the ISA concentrations was observed. ISA was fully depleted by 14 days 189 

(Figure 1 A, C). In contrast, no decrease in soluble ISA concentration was observed in the heat-sterilized control 190 

incubations (Figure 1 A, C; SI Figure S1). The decrease in ISA concentration in the microbial enrichments was 191 

accompanied by a drop in redox potential to -110 mV in ISA-fermenting treatments and to -200 mV in 192 

treatments amended with Fe(III) (SI Figure S2). In the ISA-fermenting experiment, the pH remained broadly 193 

constant and in the Fe(III)-reducing experiment, modest generation of alkalinity was evident as the pH increased 194 

from 7.1 to 7.4 (SI Figure S3). No changes in Eh or pH were observed in abiotic controls (SI Figure S2 & S3). In 195 

microbially active incubations, an increase in concentrations of volatile fatty acids (VFAs; dominated by acetate 196 



and lower concentrations of butyrate) was noted during ISA degradation (Figure 1 A, C). VFA production 197 

plateaued in both treatments at day 14, when ISA was depleted, and the amount of carbon converted to VFAs 198 

was slightly higher in the fermentation experiment at 53% ±1.5% compared to 45% ±0.5% in the Fe(III)-199 

reducing experiment. Fe(II) ingrowth to solids (0.5 N HCl-extractable) in the Fe(III)-reducing incubations was 200 

only detected in biotic experiments. Here, Fe(II) production started after a lag phase of 7 days and continued to 201 

increase until day 14 when the concentration plateaued at approximately 56% ±3% (16 mmol L-1) of the 0.5 N 202 

HCl-extractable Fe(II) fraction (Figure 1E and SI Figure S4). In addition, the total 0.5 N HCl-extractable iron 203 

fraction (Fe(II) + Fe(III)) decreased from a peak of 30 mmol L-1 at the start of the experiment by approximately 204 

25% ±5% over the course of the incubation time (SI Figure S5), indicating formation of recalcitrant 205 

Fe(II)/Fe(III)-bearing solids. XRD analysis at the end of the incubation confirmed formation of siderite (FeCO3) 206 

and vivianite ((Fe3PO4)2·8H2O) in the incubations (SI Figure S11). Overall, ISA degradation in the Fe(III)-207 

reducing experiment was considered to proceed via a mixed microbial community of fermenting and Fe(III)-208 

reducing bacteria. However, the Fe(III)-reducing experiments showed a 10% decrease in the amount of carbon 209 

converted from ISA to VFAs compared to the U(VI)-ISA fermentation experiment, and following depletion of 210 

ISA the amount of VFAs decreased further, both indicators for continued oxidation of fermentation products to 211 

CO2 coupled to Fe(III) reduction. 212 

The concentration of total uranium (added as 1 mM U(VI)) in culture supernatants was monitored using ICP-213 

MS (Figure 1 B, D), and spectrophotometric analysis of U(VI) was consistent with these results (SI Figure S6). 214 

At the start of incubation, U(VI) was removed rapidly from solution, before ISA degradation was detected. This 215 

rapid removal of uranium was also noted in sterile control incubations, indicating oversaturation of the system 216 

was occurring (Figure 1 B, D & SI Figure S6). XRD analysis of the uranium precipitate revealed formation of a 217 

uranyl phosphate in sterile systems (SI Figure S11), potentially due to complexation with phosphate (1 mM) 218 

from the medium (Langmuir, 1978). However, U(VI) adsorption to ferrihydrite in the Fe(III)-amended 219 

experiment could not be excluded (Waite et al., 1994). When ISA levels started to decrease in the biotic 220 

experiments, a small proportion was concomitantly remobilized in both the ISA-fermenting and Fe(III)-reducing 221 

experiments; 2% and 13% U(VI), respectively. In the ISA-fermenting experiment, this U(VI) release was 222 

transient and removal was essentially complete by 35 days. By contrast, in the Fe(III)-reducing system, a small 223 

proportion (approximately 4% uranium) remained in solution throughout the remainder of the experiment. The 224 

spectrophotometric assay for U(VI) suggested the re-solubilized uranium was dominated by U(VI). Finally, 225 



comparison of the U(VI)-amended biotic experiments with controls that did not contain uranium (SI Figure S7), 226 

showed that uranium did not impede the rates of ISA biodegradation. 227 

Solid phase characterization. Biominerals that formed were characterized using XRD, TEM and ESEM. In 228 

addition, XAS was used to define the average U(VI) oxidation state and coordination environment in key 229 

samples, including the collection of U MIV-edge (SI Figure S8) and U LIII-edge (SI Figure S9) spectra. ICP MS 230 

data showed that in all microcosms the majority of uranium precipitated at the start of the incubation. XRD 231 

analysis on the sterile controls indicated this was potentially a uranyl phosphate phase similar to autunite (SI 232 

Figure S10 and S11). 233 

ISA-fermenting experiment with U(VI) 234 

In the ISA-fermenting enrichment culture, brief remobilization of approximately 2% of uranium between day 7 235 

and 21 was observed, with complete removal of uranium from solution by the end of the incubation period. 236 

Using XRD, the precipitate was identified as a uranyl phosphate (either K- or Na-autunite), a similar structure to 237 

the precipitate in the sterile controls (SI Figure S11). Further characterization by ESEM showed well-defined 238 

spherules with an average size of 800 nm ±14 nm that appeared to consist of smaller plates (SI Figure S13A). 239 

TEM images confirmed a typical autunite-like morphology (Gudavalli et al., 2013), and revealed individual 240 

plates ranging in size from 15 to 40 nm that aggregated into spherules (Figure 2A). EDS analysis of the 241 

corresponding TEM images identified O, P, U and trace Na (Figure 2B), consistent with metanatroautunite. U 242 

MIV-edge spectroscopy confirmed U(VI) was dominant (SI Figure S8), with linear combination fitting (LCF) of 243 

the U MIV-edge HERFD XANES showing approximately 98% U(VI) in the solid phase by the end of the 244 

incubation period (SI Figure S10; Table S1). EXAFS analyses were informed by the relevant U(VI)-phosphate 245 

literature (Locock and Burns, 2003) and the best fit contained 2 axial O backscatterers at 1.78 Å, 4 equatorial O 246 

backscatterers at 2.43 Å, and 3 P backscatterers at 3.62 Å (Table 1). This model suggests a U(VI) uranyl species 247 

coordinated by 3 phosphate ions around the equatorial plane, consistent with the autunite-like U(VI)-phosphate 248 

identified from XRD analysis (Singh et al., 2012; Mehta et al., 2016). 249 

Interestingly, although uranium was not reduced in the U(VI)-ISA fermentation experiment, TEM EDS analysis 250 

showed significant accumulation of U- and P-containing precipitates on the cells (SI Figure S14). These 251 

uranium precipitates could have complexed with ligands in the microbial cell surface, such as carboxyl, amine, 252 

hydroxyl, phosphate and sulfhydryl groups (Beveridge and Murray, 1980; Lloyd and Macaskie, 2000). Thus, 253 



uranium in the U(VI)-ISA fermentation experiment was primarily mineralized as an U(VI)-phosphate mineral 254 

which seemed partially associated with the microbial cell surface. 255 

Figure 2. Mineralogical analysis of ISA-fermenting U(VI) experiment (A-D) and ISA degradation, Fe(III)-256 

reducing U(VI) experiment (E-H) both with 1 mM U(VI). In detail: A) & E) TEM images with SAED; B) & F) 257 

corresponding EDS of TEM images; C) & G) non-phase shift corrected U LIII-edge EXAFS data and D) & H) 258 

corresponding k3 weighted Fourier transform of EXAFS data. EXAFS data are represented by blue lines and 259 

corresponding fits by red dotted lines. 260 

Table 1. EXAFS fit parameters for U(VI)-ISA degradation experiments with Fe(III) and without Fe(III) added 261 

both with 1 mM U(VI). ΔE0 is energy shift from calculated Fermi level in eV. The amplitude factor (S02) was 262 

fixed as 1.0 for the U(VI)-ISA + Fe(III) sample and 0.9 for the U(VI)-ISA fermentation sample. Indices are: ax 263 

for axial atoms and eq for equatorial atoms. * indicates linked to parameter above. 264 

U(VI)-Fe(III)-reducing, ISA biodegradation experiment 265 

At the start of the Fe(III)-reducing experiment, uranium was precipitated as a uranyl phosphate, similar to the 266 

ISA-fermenting experiment. After the incubation period, no crystalline uranium phase was detected by XRD in 267 

Sample Scattering 

path 

Coordination 

number 

Atomic 

distance (Å) 

Debye-Waller 

factor σ2 (Å2) 

R-factor ΔE0 

U(VI)-ISA 

fermentation Oax 2 1.76(1) 0.002(1) 0.0018 2.0(21) 

 

Oeq 4.5 2.26(1) 0.004(1)  

 

 

Pmonodentate 3 3.62(3) 0.005(3)  

 

 

Oax-rattle 2 3.52(1) 0.008(1)  

 

 

Oax-non-forward 2 3.52(1) 0.004(1)  

 

 

Oax-forward 2 3.52(1) 0.004(1)  

 U(VI)-ISA + 

Fe(III) Oeq 3 2.27(2) 0.006(3) 0.0013 5.2(14) 

 

Oeq 5 2.43(2) 0.005(2)  

 

 

Pbidentante 1.2 3.14(2) 0.005(2)    

 Pmonodentante 1.8 3.71(3) 0.005(2)*   



the microbially active incubations, whereas in the sterile, Fe(III)-reducing control a uranyl precipitate was 268 

identified (SI Figure S11). Instead, in the biotic experiment, siderite (FeCO3) and vivianite ((Fe3PO4)2·8H2O) 269 

had formed. U MIV-edge HERFD XANES data for the experiment end point confirmed the uranium was present 270 

predominantly as U(IV) (LCF showed 97% U(IV); SI Figure S10; SI Table S1). In ESEM (SI Figure S13B) and 271 

TEM images (Figure 2E; SI Figure S15) these U(IV) particles appeared as thin sheets agglomerated into clusters 272 

with a clearly different morphology to the end point uranium precipitate in the ISA fermentation experiment. 273 

Corresponding EDS analysis from several different areas of these clusters showed O, Fe, P, U and Ca (Figure 274 

2F).  275 

Again, EXAFS fitting for the sample was informed by relevant published literature and a good fit was achieved 276 

with a split shell of three equatorial O backscatterers at 2.29 Å, five equatorial O backscatterers at 2.42 Å, and 277 

two P backscatterer shells containing 1.2 atoms at 3.01 Å and 1.8 atoms at 3.75 Å (Figure 2G, H; Table 1). This 278 

model is consistent with a range of previously described U(IV)-phosphate structures, including a nanocrystalline 279 

ningyoite-like structure (Dusausoy et al., 1996; Newsome et al., 2015a) and phosphate coordinated monomeric 280 

U(IV) (Boyanov et al., 2011; Bargar et al., 2013; Alessi et al., 2014). Due to similar bond distances and 281 

coordination numbers, delineating between these phases to identify the exact U(IV)-phosphate phase is not 282 

possible using solely EXAFS and so from hereon, the U(IV)-phosphate phase present in this study will be 283 

referred to as ‘ningyoite-like’. In a sterile control prepared alongside with Fe(III) and U(VI), U(VI) reduction 284 

was absent, indicating U(VI) reduction to be a microbially-mediated process in the U(VI)-Fe(III)-reducing 285 

experiment. This is in contrast to the biotic U(VI)-ISA fermentation experiment, where U(VI) reduction was 286 

circumvented. Microbially-mediated mechanisms for U(VI) reduction include direct enzymatic reduction where 287 

U(VI) serves as an alternative electron acceptor (Lovley et al., 1991; Gorby and Lovley, 1992; Fredrickson et 288 

al., 2000), or indirectly microbially-mediated reduction of an electron acceptor, such as via reduction of Fe(III), 289 

which generates reducing capacity via Fe(II) for abiotic U(VI) reduction (Jeon et al., 2005; O’Loughlin et al., 290 

2010; Veeramani et al., 2011). To further explore the mechanism of reduction, an additional set of Fe(III)-291 

reducing microcosms was set up and U(VI) was added to these microcosms after Fe(III) reduction was 292 

complete. One set of these controls was autoclaved before U(VI) was added to study abiotic U(VI) reduction 293 

mediated by biogenic Fe(II), whilst U(VI) was added to the other control in a microbially active state. After 294 

incubation for a month, U LIII-edge XANES indicated that U(VI) was reduced to U(IV) only with a viable 295 

microbial inoculum (SI Figure S12), suggesting that direct microbial processes catalyzed U(VI) reduction in the 296 

presence of Fe(II)-bearing mineral phases.  297 



Microbial community analysis. 16S rRNA gene profiles were obtained by Illumina sequencing for all 298 

treatments at the end of incubation (Figure 3), to identify the microorganisms that may have been involved in 299 

controlling the biogeochemical fate of uranium. Sequence analyses of the original, pH 7.5 soil samples, 300 

retrieved from the potential analogue site, Harpur Hill, indicated a complex background microbial community 301 

dominated by sequences most closely affiliated with the classes Betaproteobacteria (22.3% of total sequence 302 

abundance) and Bacteroidia (16.6% of total sequence abundance; Figure 3). Alpha-rarefaction curves showed a 303 

significant decrease in species diversity after enrichment from over 1,000 observed operational taxonomic units 304 

(OTUs) in the original sediments, to approximately 135 OTUs in the ISA-fermenting experiment and 150 OTUs 305 

in the Fe(III)-reducing experiment (SI Figure S16). At the end of the experiments, both treatments were 306 

dominated by a class most closely affiliated with members of Clostridia (over 40% of total sequences), but close 307 

examination of the 16S rRNA gene sequences revealed a marked difference between the treatments at the family 308 

level. 309 

Figure 3. Microbial community fingerprinting showing the most important phylogenetic classes within 310 

sediments before incubation, alongside bioreduced ISA-fermenting and ISA, Fe(III)-reducing cultures with and 311 

without added U(VI) after 14 days of incubation performed by using 16S rRNA gene sequencing. 312 

Focusing on the ISA-fermenting enrichment with U(VI), this experiment was characterized, in addition to the 313 

strong enrichment of Clostridia (46.8% of genes detected), by a high relative abundance of sequences associated 314 

with members from the class Betaproteobacteria (18.7% of genes detected) and an enrichment of sequences 315 

affiliated with the class Negativicutes (of 12.8% of genes detected). The Negativicutes were comprised of 316 

sequences from the family Veillonellaceae (98% match). Another significant class comprised the Bacteroidia 317 

(12.5% of genes detected), of which most sequences were associated with a member from the vadinBC27 318 



wastewater sludge group (approximately 73% of this class) from the family Rikenellaceae. The microbial 319 

profile of the ISA-fermenting culture without added U(VI) comprised the same classes and species. 320 

By contrast, in the U(VI)-amended Fe(III)-reducing enrichment, the second most abundant class (after the 321 

Clostridia) comprised of members belonging to the Deltaproteobacteria (14.7% of total sequence abundance). 322 

Two families were enriched within this class, with the majority related to the Fe(III)-reducing family 323 

Geobacteraceae (11.8% of total sequence abundance, 97% match) and a smaller proportion related to species 324 

from the sulfate-reducing (and Fe(III)-reducing) Desulfovibrionaceae (3% of total sequence abundance, 98% 325 

match). Geobacter sp. are dissimilatory metal-reducing bacteria that can couple oxidation of organic carbon to 326 

the reduction of a wide range of terminal electron acceptors, including Fe(III) and U(VI) (Lovley et al., 1991). 327 

These species were not enriched in the -ISA-fermenting cultures which were established without an alternative 328 

electron acceptor. As discussed, the controls prepared to study the mechanism of U(VI) reduction indicated that 329 

enzymatic U(VI) reduction occurred in these microcosms, and indeed several potential candidates, known to be 330 

capable of enzymatic U(VI) reduction, were enriched, comprising  Geobacter spp. (Lovley et al., 1993; Vali et 331 

al., 2004; Shelobolina et al., 2008), Clostridia spp. (Francis et al., 1994; Boonchayaanant et al., 2009) and 332 

members of the family Veillonellaceae from the Negativicutes (Woolfolk and Whiteley, 1962; Gihring et al., 333 

2011). However, Clostridia spp. and Veillonellaceae spp. do not appear to be associated with the reduction of 334 

U(VI), as these species were also strongly enriched in the U(V)-ISA-fermenting experiment, where U(VI) 335 

reduction was absent. This implies species affiliated with Geobacteraceae potentially played an important role 336 

in the reduction of U(VI) to U(IV) in these systems. 337 

Overall, anaerobic microbial enrichment cultures fueled by ISA degradation, were able to couple the oxidation 338 

of ISA or its degradation products to the reduction of U(VI)-phosphate, when enriched on Fe(III) as an electron 339 

acceptor, whilst no U(VI) reduction was observed in the cultures incubated under ISA-fermenting conditions 340 

alone. In addition, 16S rRNA gene profiling identified Geobacter species as potential candidates involved in 341 

enzymatic U(VI) reduction, alongside other metal-reducing bacteria including species from the 342 

Desulfovibrionaceae and Veillonellaceae. These findings shed light on how the subsurface microbial 343 

community in and around a GDF may adapt to changing geochemical environments, and highlight the 344 

availability of terminal electron acceptors as a controlling factor in these systems. The microbial community 345 

structure in turn can have a profound impact on the oxidation state of uranium (and potentially other 346 

radionuclides) and therefore the speciation of end-member precipitates. Although early work on microbial 347 

U(VI) reduction noted uraninite (UO2) as the dominant end point mineral, U(IV)-phosphates have also been 348 



observed more recently as the products of microbial U(VI) reduction, especially in the presence of aqueous 349 

phosphate (Bernier-Latmani et al., 2010; Lee et al., 2010; Newsome et al., 2015a) or after reduction of a U(VI) 350 

phosphate mineral phase (Khijniak et al., 2005; Rui et al., 2013). Although the autunite-like mineral that was 351 

precipitated under ISA-fermenting conditions is a stable end product and a sink for U(VI) that can persist over 352 

geological timescales (Langmuir, 1978; Sato et al., 1997; Jerden and Sinha, 2003), the ningyoite-like precipitate 353 

from U(VI)-Fe(III)-reducing conditions is considered more recalcitrant towards oxidation and thus 354 

remobilization (Finch and Murakami, 1999; Jerden and Sinha, 2003; Pinto et al., 2012; Newsome et al., 2015b; 355 

a). Additional reducing capacity, associated with the Fe(II)-bearing minerals vivianite and siderite, was also 356 

identified, and both minerals have been shown to mediate the reduction of priority radionuclides, e.g. Tc(VII) 357 

and Np(V), and leading to their reductive immobilization (Lloyd et al., 2000; Law et al., 2010; McBeth et al., 358 

2011; Thorpe et al., 2014). 359 

Our work suggests that ningyoite is an ideal end member of U(VI) bioreduction associated with anoxic 360 

environments in radioactive waste disposal, and that biogeochemical factors (e.g. bioavailable Fe(III) and 361 

phosphate concentrations) can promote its formation within a ‘bio-barrier’, enhancing the strength-in-depth 362 

approach afforded by the multiple barriers of the EBS and geosphere. 363 
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