

Robust Mg cathodes in SRF gun-II

Rong Xiang on behalf of the SRF Gun Group

EWPAA 2019, 11 Sep. - 13 Sep. 2019, PSI

1

HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Outline

- 1. Status of ELBE SRF gun-II
- 2. Mg photocathodes in SRF gun-II
- 3. ps UV laser cleaning of Mg photocathodes
- 4. Alternative preparation methods of Mg
- 5. Summary and outlook

Rong Xiang I HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Rong Xiang I HZDR

		Milestone of cathode in gun
	Jun. 2010	cavity manufacture finish in Jlab
	Aug. 2014	commissioning at HZDR
	Feb. 2015	first CW beam with Cu cathode
	Nov. 2016	Mg cathode in operation
	Mar./Jun. 2017	Cs ₂ Te (Mo) in gun
	Since 2017	stable operation with Mg
		<image/>
SRF Gun-II in ELBE hall		SDEN Cept Comparison C

Rong Xiang I HZDR

Jochen Teichert, presentation on 11.09

1. Status of ELBE SRF gun-II

parameters of SRF gun II in operation

E_{acc} = 8 MV/m CW (20 MV/m peak field on axis)
E_{cathode}=12 MV/m (field on cathode)
I_{dark} ~ 30 nA @8 MV/m
4 MeV kinetic energy, bunch charge < 0.4 nC

Keyword: NC cathode for SC cavity

Semiconductor photocathodes

- high risk of contamination
- vacuum demanding
- preparation system
- high quantum efficiency (QE)
- less laser power required

Metallic photocathodes

- good compatibility with Nb cavity
- robust, long lifetime
- fast response
- low QE
- high UV laser power required

Cathodes applied in SRF Gun-II

Problem: cathode overheating in SRF gun II

in 2017, Cs_2Te cathodes #2016.03, #2017.03 disappeared in SRF gun II, cavity is recovered by warming up - cooling down cycle.

a "Clean" (Cs-free) cathode for SRF gun

Lide, D. R.. Properties of Solids, in: *CRC Handbook of Chemistry and Physic, Internet Version 2005*. Boca Raton, FL: CRC Press; 2005, P. 124 S. Halas, Materials Science-Poland, Vol. 24, No. 4, 2006

avoid overheating of cathode

thermal transition coefficient

(W/ <u>m.K</u>)	@ room	@ LN	
	temperature	temperature	
Cu	401	~ 500	
Mo	138	~ 220	
Mg	156	~ 200	
Al ₂ O ₃	30	~ 200	

✓ High QE @ 258nm after laser cleaning

✓ Bunch charge ~ 0.3 nC

No multipacting problem 2 Therm

✓ acceptable dark current

2. Mg photocathodes in SRF gun-II

? Thermal emittance

- ✓ Robust in SRF gun
- Replaced only due to vacuum issue in injector

- Steps: Machine bulk plug of Mg (Goodfellow & MaTecK)
 - Optical polishing
 - Remove oxide layer & clean in cleanroom
 - Install in transport chamber and check quality
 - Laser cleaning

Laser cleaning set-up at transport chamber at SRF gun

using the UV drive laser (100 mW, 100 kHz CW)

cleaning time: about 2 hours 12 μm x 12 μm step size, 100 ms dwell time

QE mapping with low laser power

QE measured in transport chamber with DC bias

DRESDEN concept

Part of examples

4. Alternative preparation of Mg phtocathodes

4. Alternative preparation of Mg phtocathodes

- Thermal treatment of Mono-crystal Mg
- QE reaches 0.12 %, smooth surface
- Repeatable, independent on heating speed
- Optimal working temperature 220 °C
- Working mechanism ? Poly-Mg?

4. Alternative preparation of Mg phtocathodes

• Ar+ ion bombardment

5. Summary and outlook

- Mg photocathodes operate successfully in SRF gun
 - Mg can reach high QE of 1~4×10⁻³
 - no multipacting and low dark current (<30 nA)
 - robust
- Photocathode manipulation is a high risk
 - careful quality check of cathodes
 - mechanics to avoid particle production
- Medium / high currents require semiconductor photocathodes
 - Cs₂Te is still the choice for medium currents (1 mA)
 - suitable substratum
 - new material (GaN)

Thank you for your attention!

Thanks to the ELBE team and our cooperators!

Bundesministerium für Bildung und Forschung

Influence of Cs₂Te tests to cavity

	vapour pressure, atm	
MAGNESIUM	ZINC	CADMIUM
8.32×10^{-20}	4.14×10^{-17}	3.92×10^{-14}
2.03×10^{-13}	2.32×10^{-11}	3.45×10^{-9}
1.08×10^{-9}	5·19×10 ⁻⁸	2.60×10^{-6}
		1.67×10^{-4}
3.23×10^{-7}	8.64×10^{-6}	2.05×10^{-4}
	2.60×10^{-4}	—
1.84×10^{-5}	3.23×10^{-4}	
3.74×10^{-4}		
3.89×10^{-3}		
6.15×10^{-3}		_
34,290	30,850	26,540
	MAGNESIUM 8.32×10^{-20} 2.03×10^{-13} 1.08×10^{-9} 3.23×10^{-7} 1.84×10^{-5} 3.74×10^{-4} 3.89×10^{-3} 6.15×10^{-3} 34,290	MAGNESIUM ZINC $8 \cdot 32 \times 10^{-20}$ $4 \cdot 14 \times 10^{-17}$ $2 \cdot 03 \times 10^{-13}$ $2 \cdot 32 \times 10^{-11}$ $1 \cdot 08 \times 10^{-9}$ $5 \cdot 19 \times 10^{-8}$ $3 \cdot 23 \times 10^{-7}$ $8 \cdot 64 \times 10^{-6}$ $$ $2 \cdot 60 \times 10^{-4}$ $1 \cdot 84 \times 10^{-5}$ $3 \cdot 23 \times 10^{-4}$ $3 \cdot 74 \times 10^{-4}$ $$ $3 \cdot 89 \times 10^{-3}$ $$ $3 \cdot 4, 290$ $30, 850$

New project: SRF Gun Lab (start from 2019)

