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Abstract

FORCs (first-order reversal curves) diagrams prove to be an efficient experimental technique to investigate magnetic interactions
in complex systems. In experiments, as a rule, it is difficult to relate actual microstructural changes to the evolution of FORCs
diagrams. Here, using Molecular Dynamics simulations, we calculate FORCs for two simple models of a magnetic elastomer. The
simplicity of these models allows to relate directly both, the rigidity of the matrix and the magnetoelastic coupling to the shape and
intensity of FORCs diagrams.
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1. Introduction1

Magnetic elastomers are systems consisting of magnetic par-2

ticles embedded in a non-magnetic elastic matrix. Such sys-3

tems have a wide range of applications, from technical devices4

as magnetically controlled actuators and damping systems to5

artificial muscles and soft robotics [1].6

Diagrams of first-order reversal curves (FORCs) are a sensi-7

tive tool to characterise magnetic hysteretic behaviour [2, 3].8

FORCs diagrams have an advantage over well-known ∆M-9

experimental procedures, as they do not require to measure10

magnetisation in a remanent state and allow to avoid AC mea-11

surements in demagnetised state [4]. Pike and coauthors used12

FORCs diagrams to investigate various magnetic-particle-based13

systems [5, 6, 7, 8].14
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Figure 1: Sketch of a typical hysteresis curve with the first order reversal curve
(in orange).

In general, a FORCs diagram is calculated in the following
way. First, the hysteresis loop of a system of interest is mea-
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sured. Next, a set of partial hysteresis curves, or FORCs [9], is
obtained. In Fig. 1 we show a scheme of FORCs calculations.
Initially, the sample is saturated to Msat, by magnetising it at
field Hmax. Once the hysteresis loop between [−Hmax,Hmax] is
obtained (black), the field is decreased to a reversal field Ha.
The FORC is the curve (plotted in orange in Fig. 1) that shows
the magnetisation path from Ha back to saturation. This proce-
dure is repeated for many different values of Ha 6 Hb. From
all these FORCs, one can construct a two-dimensional function
M(Ha,Hb). The FORCs distribution, by definition, is the mixed
second derivative:

ρ(Ha,Hb) = −
∂2M(Ha,Hb)
∂Ha∂Hb

. (1)

Conventionally, in order to plot a FORCs dia-15

gram, one changes the coordinates from {Ha,Hb} to16

{Hc = (Hb − Ha)/2,Hu = (Ha + Hb)/2}, where Hc denotes17

the coercive field, whereas Hu is usually addressed as a local18

interaction field. The outcome is a contour plot in the positive19

Hc half-plane.20

Recently, FORCs measurements were successfully applied21

to characterise hybrid elastomers [10, 11]. Inspired by these22

works, as well as by the efficiency of coarse-grained computer23

models of such materials applied to elucidate the relationship24

between their microstructural changes and magnetic response25

[12], we decided to employ the same simulation approaches to26

model the relationship between FORCs diagrams and micro-27

scopic properties. The two computer models introduced in Ref-28

erence [12] use an implicit representation of the polymer ma-29

trix in the form of elastic constraints acting on the movement30

of explicit magnetic particles. In the first model, only transla-31

tional motion of the particles is restricted, whereas in the sec-32

ond one both, translations and rotations are penalised. Here, we33
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study the effect of the matrix rigidity on FORCs for both mod-34

els, varying additionally the interparticle interaction strength.35

2. Simulation Approach36

2.1. General Scheme37

We have performed Molecular Dynamics simulations [13]
with the software package ESPResSo 3.3.1 [14, 15]. We used a
Langevin thermostat under quasi-athermal and periodic bound-
ary conditions. We considered only magnetoactive elastomers
filled with monodisperse magnetically hard particles, that we
model as identical ideal spheres having a characteristic diam-
eter σ and a point magnetic dipole ~m located at their centres.
Therefore, the main interaction between them is described by
the magnetic dipole-dipole potential [16], that in dimensionless
units can be written as:

Udd(i, j) =

(
〈~mi, ~m j〉

|~ri j|
3 −

3
|~ri j|

5 〈~mi,~ri j〉〈~m j,~ri j〉

)
, (2)

where ~mi and ~m j are magnetic moments of ith and jth particles,38

respectively, and ~ri j is the vector connecting their centres.39

The steric repulsion between magnetic particles is described
by a truncated and shifted Lennard-Jones potential, also known
as the Weeks-Chandler-Andersen (WCA) potential [17]:

UWCA(i, j) =


4

 σ|~ri j|

12

−

 σ
|~ri j|

6 + cshift, |~ri j| ≤ rcut,

0, |~ri j| > rcut,

(3)

where rcut = 21/6σ is the truncation distance that makes the40

potential purely repulsive and cshift is the value of the Lennard-41

Jones term at |~ri j| = rcut.42

The Zeeman potential describes the interaction between43

magnetic particles with point dipoles and any uniform applied44

magnetic field, ~H:45

UH(i) = −〈 ~mi, ~H〉. (4)

In order to model the polymer matrix as elastic constraints
we use classical harmonic springs connecting the magnetic par-
ticles and randomly distributed fixed points in space:

UK(r) =
K
2

r2. (5)

where r is the elongation of the spring and K its elastic constant,46

that represents the rigidity of the matrix. In all cases the values47

of K have been taken from a normal distribution ranging a given48

interval.49

2.2. Penalty on particle translation. Model M150

The simplest model (M1) only considers translational con-51

straints on the magnetic particles. This is achieved by attach-52

ing one end of a single spring to the centre of each particle,53

as shown in Fig. 2(a). The other end is fixed to an anchoring54

point that corresponds to the elastic equilibrium position of the55

particle.56
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Figure 2: (a) Model M1: each magnetic particle centre is connected to one
end of a harmonic spring, whose other end is attached to a fixed anchoring
point. (b) Model M2: two springs are attached to the surface of each magnetic
particle, at the points corresponding to the projections of the head and the tail
of the central dipole. Each spring is also attached to a different anchoring point.
Springs rigidity constant is K, particle magnetic moment is ~m.

2.3. Penalty on particle translation and rotation. Model M257

In the second case (M2) both, translations and rotations of58

the particles are elastically constrained. This is achieved for59

each particle by attaching two identical harmonic springs that60

connect two different anchoring points and the surface of the61

particle at the projection points of the head and the tail of its62

central dipole, as shown in Fig. 2(b). Therefore, the elastic63

equilibrium position of each particle corresponds to a perfect64

alignment of its dipole with the anchoring points.65

2.4. The nature of the hysteresis in the model66

We perform molecular dynamics simulations at very low67

temperature. So, at each field value H, there’s a local mini-68

mum of the system energy, corresponding to optimised dipolar,69

Zeeman and elastic forces. The system is trapped in this mini-70

mum and any attempt to increase or decrease the magnetic field71

will move the system away from the given state after the barrier72

is overcome. So, on the simulation timescale, it does not matter73

how many times we integrate the system at a given field, as long74

as the number of steps is sufficient for the system to reach the75

local minima. To illustrate the character of the magnetic hys-76

teresis, in Fig. 3, we plot several loops obtained with different77

amount of integrations as indicated in the legend. It can clearly78

be seen, that the loop is stable.79

—80

3. Results and Discussions81

3.1. The impact of matrix rigidity and dipolar interactions on82

FORCs in M183

In Fig. 4 we plot eight FORCs diagrams for M1 model elas-84

tomers with different dimensionless values of matrix rigidity85

and magnetic moment of the particles. In the upper row, corre-86

sponding to
∣∣∣~m∣∣∣ = 1.0, the point of maximum intensity of the87

diagrams stays at zero independently from matrix rigidity, that88

grows from left to right. By increasing the mean value of K by89

factor of almost five (compare Fig. 4(a) and 4(d)), one can no-90

tice only a slight shortening of the bright region along Hc axis.91

The situation drastically changes if the interparticle interaction92

strength grows, as shown in the lower row, where
∣∣∣~m∣∣∣ = 2.0.93
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Figure 3: Hysteresis loops with different numbers of integrations performed at each value of H. The number of integrations are given in the legends. (a): model M1,
K ∈ [30, 40], |~m| = 2.0. (b): model M2, K ∈ [0.5, 1.0], |~m| = 2.0.
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Figure 4: FORCs diagrams for M1. Particle magnetic moment is constant in each row: (a)–(d)
∣∣∣~m∣∣∣ = 1.0; (e)–(h)

∣∣∣~m∣∣∣ = 2.0; The rigidity constant K is the same in
each column: (a) and (e) K ∈ [5, 10]; (b) and (f) K ∈ [10, 20]; (c) and (g) K ∈ [20, 30]; (d) and (h) K ∈ [30, 40].

First of all the maximum of the intensity shifts to nonzero val-94

ues of Hc. This shift is especially pronounced for the soft ma-95

trix, see Fig. 4(e). For this system the intensity is also the high-96

est and the region of the maximum is highly localised. With97

increasing rigidity, the coercive field corresponding to the point98

of maximal intensity shifts to the left (compare, for example,99

Fig. 4(f) and 4(h)). Moreover, the overall shape of the high-100

value region is changing, from a circular to an elongated shape.101

It is worth mentioning that in case of M1, when only transla-102

tion of magnetic particles is penalised by springs, FORCs are103

symmetric with respect to local interaction field Hu.104

Summarising this part, we find that the increase of inter-105

particle interactions in an elastomer with rotationally non-106

constrained magnetic particles leads to the shift of the FORCs107

diagram maximum towards larger values of Hc and broader dis-108

tribution along Hu. The effect of growing matrix rigidity is also109

reflected in FORCs through the opposite shift in values of Hc;110

moreover, the maximum becomes less pronounced.111
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Figure 5: FORCs diagrams for M2, K ∈ [0.5, 1.0]. (a)
∣∣∣~m∣∣∣ = 1.41 ≈

√
2; (b)

∣∣∣~m∣∣∣ = 2.0 =
√

4; (c)
∣∣∣~m∣∣∣ = 2.45 ≈

√
6.

3.2. The impact of magnetoelastic coupling and dipolar112

strength. Model M2113

Constraining both, rotations and translations of magnetic par-114

ticles leads to qualitative changes in FORCs diagrams, as ev-115

idenced by Fig. 5. Here, we plot FORCs diagrams for M2116

model elastomers corresponding to three different strengths of117

the magnetic moments of their particles, that grow from left to118

right. For weak dipole moments, FORCs diagram in Fig. 5(a)119

looks qualitatively similar to its corresponding counterpart in120

M1 systems (see Fig. 4(a)). However, in this case the spread121

along Hu is larger. As in M1 systems, with growing dipole122

strength the maximum of the FORCs diagram shifts to the right123

(compare, for example, Fig. 5(b) and Fig. 5(c)). The qualitative124

difference between FORCs diagrams corresponding to M1 and125

M2 systems is that in the second case the symmetry along the126

Hu axis tends to be lost. This is especially clear in Fig. 5(c).127

In summary, the analysis of M2 elastomer FORCs diagrams128

reveals that asymmetries of the high intensity region can stem129

from the constraints on rotational degrees of freedom of the130

magnetic particles. This effect is particularly pronounced when131

magnetic interparticle interactions are sufficiently strong.132

4. Conclusions133

In this work we presented in-silico analysis of FORCs dia-134

grams for two simple coarse-grained models of magnetic elas-135

tomers. In the first model the elastic matrix, modelled by har-136

monic springs, hinders only translational motion of magnetic137

particles. Thus, if an external magnetic field is applied, parti-138

cles can freely reorient, but their self-assembly is hindered. In139

the second model, not only translation, but also reorientation140

of magnetic particles is penalised. This way, the matrix hin-141

ders not only the self-assembly driven by interparticle magnetic142

forces, but also the overall magnetisation of the sample. In both143

models only elastic deformations were considered. We anal-144

ysed the influence of both dipolar strength and matrix rigidity145

on the shape and intensity of FORCs diagrams. We found that,146

independently from model and matrix rigidity, the increase of147

dipolar strength, responsible for interparticle correlations and148

self-assembly, results in the shift of the maximum of intensity149

of the FORCs diagram towards higher values of the coercive150

field. Moreover, if only particle translational degrees of free-151

dom are coupled to the matrix and the interparticle interaction152

is sufficiently strong, the growth of springs rigidity results in153

the shift of the maximum of FORCs diagram towards smaller154

values of coercive field and is accompanied by a broadening155

of the high intensity region in the vertical direction. Finally,156

in elastomers where only particle translations are hindered by157

the elastic matrix, we observed no asymmetry of FORCs dia-158

grams with respect to horizontal direction, i.e. the values of159

FORCs diagrams are the same if the local interaction field is in-160

verted. Such an asymmetry, however, is observed for the second161

model, and it is enhanced with the strengthening of the dipole162

moments. Strong dipole-dipole interparticle interactions lead to163

a more pronounced self-assembly and, thus, the local minima of164

the energy landscape get deeper, that manifests itself the FORC165

diagrams. Although we do not aim at quantitative descriptions166

of real elastomers, the effects found here are expected to be167

observed in magnetic elastomers with magnetically hard parti-168

cles, like NeFeB, and various constraints reflect the coupling169

between particle surface and polymer matrix170
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