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Abstract
Detailed derivation of the analytical, reciprocal-space approach of Hessian calculation within the self-

consistent-charge density functional based tight-binding framework (SCC-DFTB) is presented. This ap-
proach provides an accurate and efficient way for obtaining the SCC-DFTB Hessian of periodic systems. Its
superiority with respect to the traditional numerical force differentiation method is demonstrated for doped
graphene, graphene nanoribbons, boron-nitride nanotubes, bulk zinc-oxide and other systems.

1 Introduction

In the past two decades, density-functional based tight-binding method (DFTB) [1, 2, 3, 4] has become
a relatively popular tool for quantum mechanical simulations of large systems, otherwise computationally too
demanding for the standard density-functional theory (DFT) or other ab-initio methods. Introduced in the mid-
90s as an approximation to DFT, DFTB has been subjected to ongoing extensions and improvements, the so-
called self-consistent charge (SCC) DFTB [3] being perhaps the most important one. In spite of its shortcomings,
DFTB (along with its extensions) has shown to perform reasonably well for a variety of systems, sometimes even
with an accuracy comparable to that of its first-principles counterpart, with only a fraction of the computational
cost [5]. Having this in mind, and motivated by the need of having an efficient and reasonably accurate way
for studying the vibrational properties of large systems, Witek et al. [6], and subsequently Nishimoto and Irle
[7], developed an analytical method for obtaining the Hessian (i.e., matrix of geometrical second derivatives,
needed in calculation of vibrational frequencies), within the SCC-DFTB framework. Although considerably
more efficient than the traditional numerical force differentiation method of Hessian calculation, the application
of the approach from refs. [6] and [7] to periodic systems requires using supercells, which results in lower overall
accuracy and higher computational costs.

In this paper, we present an analytical and supercell-free method for calculating the SCC-DFTB Hessian of
periodic systems. The underlying approach is based on the direct evaluation of the discrete Fourier transform of
the Hessian (rather than the Hessian itself), which can be achieved by taking the second derivative of the total
energy with respect to collective and phase-modulated atomic displacements. This reciprocal-space method of
phonon calculations is not new, in fact, it has been implemented in the plane-wave and muffin-tin based DFT
codes long time ago, and is also known as the density-functional perturbation theory (DFPT) or linear-response
(LR) theory [8, 9]. The objective of this work is to develop the SCC-DFTB analogue of such an approach to
phonon calculations.

This paper is organized as follows: Section 2.1 provides a short review of the standard DFTB equations,
along with the notation used throughout the rest of the paper. In Section 2.2, we discuss the main idea
behind the reciprocal-space approach to Hessian calculation. In Section 2.3, we present a derivation of the
expression for evaluating the Fourier-transformed Hessian within SCC-DFTB. For the sake of clarity, only the
most important steps are shown here, while complete and extensive mathematical details can be found in the
Supplementary Material. Comparison of the reciprocal-space and the numerical force differentiation method of
phonon calculation, along with the underlying discussion, is given in Section 3, while some concluding remarks
are given in Section 4.
The theoretical formalism developed in this work has been implemented in a locally modified version of DFTB
program in Amsterdam Modeling Suite[10], version 2018.
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2 Theory

2.1 General DFTB Formalism

We begin by giving a brief overview of the SCC-DFTB framework, without going too deep into details. A
more thorough discussion on this topic, as well as the derivations of the equations presented in this Section, can
be found in the literature [11, 4]. In the SCC-DFTB approximation, the Kohn-Sham (KS) energy functional
for periodic systems can be written as:

E
[
{ck,n}

]
=
∑
k,n

fk,n c†k,n H0
k ck,n +

1

2

∑
I,J

∑
R

γIJ(R)∆zI∆zJ +
1

2

∑
I,J

∑
R

V rpl
IJ (R) (1)

In the first term, k is a vector in the Brillouin zone, n is the band index, ck,n is a column-vector of the orbital
coefficients, H0

k is the parameterized Hamiltonian matrix (in the Bloch basis) and fk,n is the electron occupation
function. In the last two terms, the sum runs over all atom pairs (I, J) and all lattice vectors R. In the second
term, the function γIJ describes the Coulomb interaction of atomic charge fluctuations ∆z. Finally, V rpl is the
so-called repulsion potential, parameterized as a short-ranged isotropic force-field. The three terms in eq. (1)
are called band-structure (EBS), charge-fluctuation (ECF ) and repulsion energy (Erpl), respectively. We note
that H0

k, γIJ and V rpl depend only on the pre-calculated parameter set and the geometry of the system, but
not on the orbital coefficients.

In (1), the elements of H0
k matrix are given by:[

H0
k

]
ab

=
∑
R

eikRH0
ab(R) (2)

with H0
ab(R) being the parameterized Hamiltonian matrix element between the basis functions a and b, located

on atoms within unit cells differing by R. The charge fluctuations are most commonly calculated using the
Mulliken population analysis [12]. According to it, the charge fluctuation on atom I is given by:

∆zI =
1

2

∑
k,n

fk,n
∑
a∈I

∑
b

(
ca∗k,n c

b
k,n

[
Sk

]
ab

+ cb∗k,n c
a
k,n

[
Sk

]
ab

)
− z0I (3)

where z0I is the valence charge of the corresponding neutral atom and Sk is the overlap matrix in the Bloch
basis, defined analogously as H0

k. To avoid the explicit writing of the double sum over the basis functions, it is
convenient to introduce the atom projection matrix PI and the charge projection matrix ZI,k, defined by:

PabI ≡

{
δa,b, if basis functions a and b belong to atom I

0 , otherwise
(4)

ZI,k ≡
1

2
(PISk + SkPI) (5)

Using (4) and (5), the expression for the Mulliken charge fluctuations (3) can be compactly written as:

∆zI =
1

2

∑
k,n

fk,n c†k,n (PISk + PISk) ck,n − z0I

=
∑
k,n

fk,n c†k,n ZI,k ck,n − z0I
(6)

According to the variational principle, the SCC-DFTB ground state energy is obtained by minimizing (1)
with respect to orbital coefficients, under the orthonormalization constraints: c†k,m Sk ck,n = δm,n. This leads
to a system of generalized eigenvalue equations for ck,n:[

H0
k +

∑
I

VI ZI,k

]
ck,n = εk,nSkck,n (7)

where the eigenvalues εk,n are the single-particle band-structure energies, and

VI ≡
∑
J

∑
R

γIJ(R)∆zJ (8)

is the electrostatic potential on atom I due to charge fluctuations on all atoms. The term in the square brackets
of (7) can be regarded as the total Hamiltonian matrix Hk. As Hk includes the term with the charge fluctu-
ations, which depend on the orbital coefficients, equations (6) and (7) have to be solved self-consistently, just
like the standard DFT KS equations. The SCC-DFTB ground-state energy is then given by evaluating the
expression (1) with the self-consistent orbital coefficients and charge fluctuations.
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2.2 Energy derivatives and vibrational properties

In the Born-Oppenheimer approximation, the frequencies and modes of phonons with wavevector q are
given as the eigenvalues and eigenvectors of the so-called dynamical matrix Dq, defined as:

D(B,β;A,α)
q ≡ 1√

MBMA

∑
R

eiqRΦ(B,β;A,α)
R (9)

where capital and Greek indexes denote atoms and Cartesian displacements, respectively, M is the atomic mass
and:

Φ(B,β;A,α)
R ≡ ∂2E

∂uβB,R ∂u
α
A,0

(10)

where uµX,R denotes the µ-th Cartesian component of the position of atom X belonging to lattice point R, is
known as the interatomic force constant matrix, Hessian matrix or simply Hessian. Although ΦR is formally
defined for all points of the Bravais lattice {R} of the system, in practice, it has non-negligible values only on
some finite subset of {R}, i.e., on a supercell of the underlying system. Since the dynamical matrix is just
the discrete Fourier transform of the Hessian, weighted by the inverse square root of atomic mass products,
calculating the Hessian poses the main challenge in the study of vibrational properties and related phenomena.

The conceptually easiest approach to this problem consists of numerical evaluation of the first-order force
derivatives with respect to atomic displacements. Although simple, this technique of Hessian calculation can
be quite slow and inefficient, since it requires doing a number of force calculations on a supercell on which the
Hessian is non-negligible, thereby typically resulting in much higher computational costs compared to calcula-
tions on the corresponding primitive unit cell. Numerical instabilities associated with numerical evaluation of
derivatives can also present a more severe issue in this case. Even if an analytical expression for evaluating the
force derivatives is available, the problem of using supercells is still present.

An alternative approach to phonon calculation is based on evaluating the discrete Fourier transform of the
Hessian directly, namely by using the following identity:

Φ̃(B,β;A,α)
q = ∂̃B,β-q ∂̃A,αq E (11)

where

∂̃X,µq ≡
∑
R

eiqR
∂

∂uµX,R
(12)

is the discrete Fourier-transform of the position derivative operator. Since (11) is valid for any q-point of
the reciprocal space, the entire phonon spectrum can be obtained without calculating ΦR at all. In practice,
however, it is generally much more efficient to evaluate Φ̃q on a regular grid of the Brillouin zone (often
referred to as the q-grid), apply the inverse Fourier transformation to get ΦR, and then use (9) to compute the
dynamical matrix at arbitrary q-point. From the properties of the discrete Fourier transform, it follows that
the density of the q-grid determines the size of the supercell on which ΦR is defined [13]. Whether there is an
actual advantage to this (i.e., reciprocal-space) approach to Hessian calculation, depends on the way the total
energy is calculated. In other words, for this approach to be useful for a given energy calculation method, one
must be able to efficiently evaluate the right-hand side (RHS) of (11) within that particular method. In the
following Section, we shall see that within SCC-DFTB, this can in fact be done analytically and without using
supercells, just like in plane-wave and mixed-basis DFT formalisms.

Before moving on, we briefly focus on the Fourier-transformed atomic position derivative operator (12). If
FR is any atomic-position-dependent quantity defined on all lattice points of a periodic system (e.g., orbital
coefficients, charge fluctuations etc.), then acting with ∂̃q on it results in a phase-modulated quantity:

∂̃A,µq FR = eiqR
∑
R′

eiqR
′ ∂FR

∂uµA,R+R′
≡ eiqRF (A,q)

R (13)

But no such modulation is present when acting on FR with two Fourier-transformed derivative operators with
opposite wave-vectors:

∂̃B,ν-q ∂̃A,µq FR = F (B,-q;A,q)
R (14)

On the far RHS of (13) and (14), the indexes of Cartesian displacements in the superscript have been dropped
for clarity. Unless specified otherwise, such notation shall be used from now on, i.e., any quantity with a
superscript containing the atom index and wave-vector pair(s) shall be assumed to be the phase-independent
part of the quantity obtained by applying the Fourier-transformed derivative operator(s).
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2.3 Second derivatives of SCC-DFTB energy

In this Section, we derive the expression for evaluating the RHS of (11), for the case where E is the SCC-
DFTB total energy. Following refs. [9] and [14], we do this by applying the variational principle to the second
derivative of the DFTB KS energy functional (1):

∂̃B,β-q ∂̃A,αq E = min
[
∂̃B,β-q ∂̃A,αq E

]
(15)

This way, the expressions for the second derivatives of each component of E (band-structure, charge-fluctuation
and repulsion) can be derived separately, so this is how we proceed. To keep the discussion as clear and as
simple as possible, only systems with a finite band-gap and integer electron occupations (i.e., insulators and
semiconductors at zero electron temperature) shall be considered here, while the corresponding equations for
the general case are given in the Supplementary Material.

A Second derivatives of EBS
The second derivative of the band-structure part of E reads:

∂̃B-q∂̃
A
q EBS =

∑
k,n

fk,n

[
c(B,-q;A,q)†
k,n Hk ck,n + c†k,n H0 (B,-q;A,q)

k ck,n + c†k,n H0
k c(B,-q;A,q)

k,n +

c(B,q)†
k,n H0 (A,q)

k ck,n + c(B,q)†
k,n H0

k+q c(A,q)
k,n + c†k,n H0 (B,q)†

k c(A,q)
k,n +

c(A,-q)†
k,n H0 (B,-q)

k ck,n + c(A,-q)†
k,n H0

k−q c(B,-q)
k,n + c†k,n H0 (A,-q)†

k c(B,-q)
k,n

] (16)

The matrix elements of H0 (A,q)
k and H0 (B,-q;A,q)

k are given by:[
H0 (A,q)

k

]
ab

=
∑
R

∇H0
ab(R)eikR

(
− δaA + eiqRδbA

)
(17a)[

H0 (B,-q;A,q)
k

]
ab

=
∑
R

∇2H0
ab(R)eikR

(
δA,B

(
δaA + δbA

)
− e−iqRδaAδbB − eiqRδbAδ

a
B

)
(17b)

where δXx = 1 if basis function x belongs to atom X, zero otherwise. A completely equivalent expression holds
for the matrix elements of S(A,q)

k and S(B,-q;A,q)
k as well. It is also worth mentioning that the RHS in (17) can

in fact be evaluated analytically (see appendix A), which contributes to the overall efficiency and accuracy of
the reciprocal-space approach.

B Second derivatives of ECF
The second derivative of the charge-fluctuation part of E reads:

∂̃B-q∂̃
A
q ECF =

∑
I,J

[
∆z(A,q)I γ(B,-q)

IJ ∆zJ +∆z(B,-q)I γ(A,q)
IJ ∆zJ

+ ∆z(B,-q)I γ̃IJ(q)∆z(A,q)J + ∆zI γ̃IJ(0)∆z(B,-q;A,q)J

]
+ ∂̃B-q∂̃

A
qECF [{∆z}]

(18)

Here, γ̃IJ(q) is the phase-modulated lattice sum of γIJ(R):

γ̃IJ(q) ≡
∑
R

γIJ(R)eiqR (19)

γ(A,q)
IJ is defined as:

γ(A,q)
IJ ≡

∑
R

(
− δJ,A∇γIA(R)eiqR + δI,A∇γAJ(R)

)
(20)

and:
∂̃B-q∂̃

A
qECF [{∆z}] = ∆zA

∑
R

(
−∆zB∇2γBA(R)eiqR + δA,B

∑
I

∆zI∇2γAI(R)
)

(21)

is the second derivative of the charge fluctuation interaction with respect to atom positions only (i.e., keeping the
charge fluctuations constant). The problem in (19)-(21) and (8) is that γ is a long-ranged function (it decays
as slowly as the Coulomb potential [5]), which makes the underlying lattice summations only conditionally
convergent. To overcome this issue, we use the well-known Ewald summation technique [15], more details on
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this can be found in Appendix B.
The first derivative of the charge fluctuations (the phase-independent part) can be written as:

∆z(A,q)I =
1

2

∑
k,n

fk,n

[
c†k,n

(
PISk+q + SkPI

)
c(A,q)
k,n + c(A,-q)†

k,n

(
PISk + Sk−qPI

)
ck,n

]
+∆z

(A,q)

I (22)

where ∆z
(A,q)

I is a term independent of the orbital coefficient derivatives:

∆z
(A,q)

I ≡ 1

2

∑
k,n

fk,n c†k,n

(
PIS

(A,q)
k + S(A,-q)†

k PI
)

ck,n (23)

Finally, the second derivative of the charge-fluctuations is given by:

∆z(B,-q;A,q)I =
1

2

∑
k,n

fk,n

[
c(B,-q;A,q)†
k,n ZI,k ck,n + c†k,n ZI,k c(B,-q;A,q)

k,n + c†k,n Z(B,-q;A,q)
I,k ck,n

+ c(B,q)†
k,n Z(A,q)

I,k ck,n + c(B,q)†
k,n ZI,k+q c(A,q)

k,n + c†k,n Z(B,q)†
I,k c(A,q)

k,n

+ c(A,-q)†
k,n Z(B,-q)

I,k ck,n + c(A,-q)†
k,n ZI,k−q c(B,-q)

k,n + c†k,n Z(A,-q)†
I,k c(B,-q)

k,n

] (24)

where Z(A,q)
I,k and Z(B,-q;A,q)

I,k are given exactly as in (5), with Sk replaced by S(A,q)
k and S(B,-q;A,q)

k , respectively.

C Second derivatives of Erpl
The second derivative of the repulsion energy is given by:

∂̃B-q∂̃
A
qErpl =

∑
R

(
−∇2V rpl

BA (R)eiqR + δA,B
∑
I

∇2V rpl
AI (R)

)
(25)

In contrast to γ, the DFTB repulsion potential is generally a short-ranged function which decays rapidly with
distance, so evaluating the lattice on the RHS of (25) is straightforward. Just like the repulsion energy, the
repulsion contribution to the Hessian can be obtained independently from the band-structure and charge-
fluctuation contributions.

Final expressions

So far, we have derived expressions for the second derivatives of all components of E . To proceed further,
the second derivatives of the orthonormalization constraints must be taken into account as well:

c(B,-q;A,q)†
k,n Sk ck,n + c†k,nS

(B,-q;A,q)
k ck,n + c†k,nSk c(B,-q;A,q)

k,n

+
(
c(B,q)†
k,n S(A,q)

k ck,n + c(B,q)†
k,n Sk+q c(A,q)

k,n + c†k,nS
(B,q)†
k c(A,q)

k,n

)
+
(
A↔ B q↔ −q

)
= 0

(26)

The left-hand side (LHS) of this equation is fully analogous to the term in the square brackets of (16), with
the Hamiltonian replaced by the overlap matrix.
Now, adding (16), (18) and (25), while making use of (19)-(24) and (26), the second derivative of the SCC-DFTB
energy functional becomes:

∂̃B-q∂̃
A
q E =

∑
k,n

fk,n

[
c(B,q)†
k,n

(
H0(A,q)

k +
∑
I

VIZ
(A,q)
I,k − εk,nS

(A,q)
k

)
ck,n

+ c†k,n

(
H0(A,-q)†

k +
∑
I

VIZ
(A,-q)†
I,k − εk,nS

(A,-q)†
k

)
c(B,-q)
k,n

+ c(B,q)†
k,n

(
Hk+q − εk,nSk+q

)
c(A,q)
k,n

]
+

[
A↔ B q↔ −q

]

+
∑
I,J

(
γ(B,-q)
IJ ∆z(A,q)I ∆zJ + γ(A,q)

IJ ∆z(B,-q)I ∆zJ + γ̃IJ(q)∆z(B,-q)I ∆z(A,q)J

)
+ ∂̃B-q∂̃

A
qEBS[{ck,n}] + ∂̃B-q∂̃

A
qECF [{∆z}] + ∂̃B-q∂̃

A
qErpl

(27)

where:
∂̃B-q∂̃

A
qEBS[{ck,n}] ≡

∑
k,n

fk,nc
†
k,n

(
H0(B,-q;A,q)

k +
∑
I

VIZ
(B,-q;A,q)
I,k − εk,nS

(B,-q;A,q)
k

)
ck,n (28)
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just like ∂̃B-q∂̃
A
qECF [{∆z}], depends only on the orbital coefficients (but not on their derivatives!) and the

geometry of the system.
We see that the expression for ∂̃B-q∂̃

A
q E , as given by (27), contains no second derivatives of either the orbital

coefficients or the charge fluctuations. Furthermore, it is variational with respect to the first derivatives of the
orbital coefficients and, provided that the orbital coefficients on its RHS minimize E , its minimum corresponds
to the true value of the second derivative of the SCC-DFTB energy [14].
Varying (27) results in the following equation for c(A,±q)

k,n :

−
(
Hk±q − εk,nSk±q

)
c(A,±q)
k,n =

(
H(A,±q)

k − εk,nS
(A,±q)
k

)
ck,n (29)

and an equivalent one for c(B,±q)
k,n . H(A,±q)

k is the matrix of the Hamiltonian total derivative, given by:

H(A,±q)
k ≡ H0 (A,±q)

k +
∑
I

[
VIZ

(A,±q)
I,k + V (A,±q)

I

(
PISk + Sk±qPI

)]
(30)

with:
V (A,±q)
I ≡

∑
J

(
γ(A,±q)
IJ ∆zJ + γ̃IJ(±q)∆z(A,±q)

J

)
(31)

being the total derivative of the electrostatic potential. In the literature, (29) is also known as the Sternheimer
equation [16].

So the problem of calculating ∂̃B-q∂̃
A
qE effectively reduces to the problem of determining the orbital coefficient

derivatives. These can be expressed as linear combinations of the orbital coefficients:

c(X,±q)
k,n =

∑
m

U (X,±q)

k (n,m) ck±q,m (32)

where U(X,±q)
k is a square matrix (with the number of rows and columns equal to the number of atomic basis

functions) to be determined. From (29), it immediately follows that the entries of U(X,±q)
k matrix, which refer

to the non-degenerate pairs of states at k and k± q points, are given by:

U (X,±q)

k (n,m) =
c†k+q,m

(
H(A,q)

k − εk,nS
(A,q)
k

)
ck,n

εk,n − εk±q,m

(33)

while for determining all other entries of U(X,±q)
k , the following relation can be used (see S1):

U (X,∓q)∗
k±q (m,n) + U (X,±q)

k (n,m) + c†k+q,m S(A,q)
k ck,n = 0 (34)

Inserting (32) to (22) and making use of (33) and (34), the following expression for charge-fluctuation derivatives
is obtained:

∆z(A,q)I =
∑
k

∑
n∈V

(∑
m∈C

fk,nM
(A,q)

k(m,n)

εk,n − εk+q,m

− 1

2

∑
m∈V

fk+q,mO
(A,q)

k(m,n)

)
c†k,n

(
PISk+q + SkPI

)
ck+q,m + ∆z

(A,q)

I (35)

Here, V and C refer to the sets of valence and conduction (i.e., occupied and empty) states, respectively,
while M (A,q)

k(m,n) is the (generalized) electron-phonon matrix element and O(A,q)

k(m,n) is the overlap derivative matrix
element:

M (A,q)

k(m,n) ≡ c†k+q,m

(
H(A,q)

k − εk,nS
(A,q)
k

)
ck,n O(A,q)

k(m,n) ≡ c†k+q,m S(A,q)
k ck,n (36)

It is easy to see that electron-phonon matrix elements and charge-fluctuation derivatives depend on each other,
so they must be calculated self-consistently, much like the charge-fluctuations and the orbital coefficients. At
last, combining (27) with (32)-(34), we arrive at the expression for the second derivatives of the SCC-DFTB
energy:

∂̃B-q∂̃
A
q E =

∑
k

∑
n∈V

[
2
∑
m∈C

fk,n
M (A,q)

k(m,n)M
(B,q)∗
k(m,n)

εk,n − εk+q,m

−
∑
m∈V

fk+q,m

(
M (A,q)

k(m,n)O
(B,q)∗
k(m,n) + M (B,q)∗

k(m,n)O
(A,q)

k(m,n)

)]

−
∑
I,J

γ̃IJ(q)∆z(B,q)∗I ∆z(A,q)J +
∑
I

[
∆z

(B,q)∗
I V (A,q)

I + ∆z
(A,q)∗
I V (B,q)

I

]
+ ∂̃B-q∂̃

A
qEBS[{ck,n}] + ∂̃B-q∂̃

A
qECF [{∆z}] + ∂̃B-q∂̃

A
qErpl

(37)
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This expression, along with (35), is the main result of this paper. Since all of the derivatives appearing in this
Section can be evaluated analytically, the entire SCC-DFTB reciprocal-space approach to Hessian calculation
can be considered analytical. Although all expressions here are derived for periodic systems, they are also
valid for non-periodic systems as well. This can be seen by taking the limit of infinitely large unit cells, thus
restricting all real-space summations to a single unit cell and all k and q-points to the Γ-point. In that case,
reciprocal-space summations can be omitted, Fourier-transformed derivatives reduce to ordinary derivatives
and our entire formulation becomes equivalent to the one developed by Witek et al. [6]. In closing of this
section, we once again point out that both (37) and (35) are only valid for systems with a finite band gap and
for vanishing electron temperature, while the corresponding expressions for the case of arbitrary temperature
can be found in the Supplementary Material ((S2.9) and (S2.11)).

7



3 Test Calculations

To test the performance of the reciprocal-space (analytical) approach to Hessian calculation and compare it
to the traditional numerical force differentiation method, we used both approaches to compute the Hessians for
a variety of systems of all dimensions. In order to check how much the numerical and analytical results differ,
we calculated the so-called root mean squared relative percentage difference [17] of the Hessians resulting from
the two approaches:

∆A,N ≡

√√√√ 1

(3Nat)2N

∑
R

∑
I,J

(
Φ(I;J)
A,R

Φ(I;J)
N ,R

− 1

)2

· 100% (38)

where ΦA and ΦN are analytically and numerically obtained Hessians, respectively, Nat is the number of
atoms in the system and N is the number neighbouring unit cells within the supercell on which the Hessians
are defined. In the analytical approach, this supercell is effectively determined by the q-grid used in the
underlying calculation (as already mentioned in Section 2.2), hence (38) (and comparing Hessians in general)
only makes sense if the q-grid parameters used in the calculation of ΦA are equal to the supercell parameters
in the calculation of ΦN . To make the comparison of both methods as consistent as possible, the same software
package was used in both approaches (the locally modified version of AMS DFTB [10]) and the k-grid parameters
used in the reciprocal-space integration were made inversely proportional to the (super)cell size. For example,
if the Brillouin zone of some system was sampled with a 12×12×6 k-grid, then a 6×6×3 k-grid was used for
doing calculations on a 2×2×2 supercell, a 4×4×3 k-grid for a 3×3×2 supercell and so on. In all cases, the
Hamiltonian and overlap derivatives were evaluated analytically, as described in appendix A.

Results and Discussion

Table 1 shows examples of ∆A,N for cubic boron-nitride (zinc-blende phase), where the numerical Hessians
were calculated with a different number of steps and step sizes. We see that ∆A,N always drops when the step
size is decreased, whereas such a clear trend is not present when increasing the number of displacement steps.
The latter behavior can be attributed to the anharmonic effects, which are not captured by the analytical
approach at this level of theory, but can always appear in the numerical approach for sufficiently large step
sizes. In any case, it is clear that in the limit of small displacement step sizes, the numerically obtained Hessians
converge to the analytically obtained one. Similar behavior of ∆A,N is obtained for all other systems considered
here, which confirms the accuracy of the analytic approach.

Table 1: Root mean square relative percentage difference between analytically and numerically obtained Hes-
sians (∆A,N , see eq. (38)) for zinc-blende BN . Number of steps and step sizes refer to the parameters used in
the numerical calculations.

total #
of steps

step size (Bohr)

0.0150 0.0100 0.0050 0.0025

2 2.466 1.157 0.470 0.151

4 1.705 1.467 0.242 0.045

6 2.005 1.498 0.240 0.024

8 2.123 1.473 0.276 0.018

Hessian calculation timings for selected systems and different supercell (q-grid) parameters are given in table
2. For completeness, DFTB model without charge self-consistency (also known as DFTB0) was also included
in the consideration. We see that only for small systems and DFTB0 are the numerical and the analytical
approach comparable in efficiency, while in all other cases the latter approach is much faster. The numerical
to analytical timing ratios increase with the number of atoms in the system, as well as the supercell (q-grid)
size, and are always greater in the SCC-DFTB case. This implies that the corresponding ratios would likely be
even larger for a more sophisticated DFTB framework (such as DFTB3 [5]).

When considering the overall efficiency of any quantum-chemical computational method, it is also important
to take the aspects of parallelizability and symmetry into account. Since our implementation of the analytical
method is currently serial and cannot make use of symmetry, all calculations (both numerical and analytical)
were carried out on a single CPU core, while disregarding all possible symmetries of the investigated systems.
But even if the same calculations had been performed using a parallel implementation that does support
symmetry, we expect that similar timing ratios would have been obtained, as both approaches are in principle
parallelizable and can exploit symmetry to the same extent. In the numerical case, for example, each force
constant can be evaluated independently, while the number of independent force constants is determined by
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the symmetry of the system. Likewise, in the analytical case each element of the Φ̃q matrix can be evaluated
independently, while the number of independent q-grid vectors is also determined by the symmetry of the
system [18].

Finally, in Figure 1, we provide examples of SCC-DFTB phonon band structures of exemplary systems
from Table 2. For h-BN and SiC, we also show the corresponding DFT PBE phonon spectra (calculated using
DFPT, as implemented in the Quantum ESPRESSO [19] package) for comparison. We see that for the h-BN
case, the agreement between SCC-DFTB and DFPT results is very good for acoustic branches (at least for
frequencies up to 10 THz), while the optical branches, although qualitatively similar, are shifted by about 3 to
5 THz with respect to the DFPT results. Similar conclusions apply to the SiC as well. Such a behavior has
nothing to do with the particular phonon calculation method, but it is merely a consequence of the quality of
the used DFTB parameter sets. Since testing and benchmarking of DFTB parameters is outside of the scope
of this work, we refrain from further discussion on this topic and refer the interested reader to the paper of
Niehaus et al. [20], which reports in more detail on the phonon dispersion calculations using different DFTB
parameter sets.

Table 2: Hessian calculation timings (in seconds) for the analytical (tA) and numerical (tN ) approaches. Nat

is the number of atoms in the primitive unit cell of the given system and references refer to the parameter set
used in the calculations.

system Ref. Nat
supercell
(q-grid)

SCC-DFTB DFTB0

tN tA tN/tA tN tA tN/tA

fullerene [3] 60 N/A 71.25 7.87 9.05 34.85 3.78 9.22

graphene nanoribbon [3] 52

2 3129.82 945.69 3.31 623.13 373.32 1.67

3 6781.11 1697.48 3.99 1438.13 567.75 2.53

4 13602.81 2268.69 5.99 3118.92 748.01 4.17

BN (18,18)-nanotube [19, 20] 72

2 5908.53 917.00 6.44 1774.76 478.60 3.71

3 13505.67 2070.13 6.52 4358.30 719.79 6.05

4 23206.95 2353.30 9.86 7383.50 968.84 7.62

h-BN monolayer [21] 2

3×3 10.56 2.99 3.53 5.24 2.30 2.80

4×4 30.05 5.21 5.77 12.93 3.92 3.30

5×5 43.77 8.17 5.35 14.29 6.00 2.38

BeCl trilayer [19, 20] 12

2×2 1260.91 83.05 15.18 248.58 25.05 9.92

3×3 5770.65 356.24 15.80 1207.91 56.14 21.52

4×4 17546.44 612.03 28.67 3593.52 99.43 36.14

Si-doped graphene [22] 32

1×1 446.98 72.51 6.16 102.65 26.10 3.93

2×2 4461.40 285.72 15.61 850.49 105.45 8.06

3×3 20877.22 863.71 24.17 4581.45 225.61 20.31

BN (zincblende) [19, 20] 2

2×2×2 34.26 20.08 1.71 12.68 15.77 0.80

3×3×3 180.83 80.09 2.26 51.45 54.93 0.94

4×4×4 929.98 188.96 4.92 222.13 129.90 1.71

ZnO bulk [23] 4

2×2×1 106.34 13.62 7.81 31.62 8.32 3.80

3×3×2 1039.87 75.18 13.83 224.85 37.82 5.95

4×4×3 6041.28 225.84 26.75 2072.09 103.35 20.05

4H SiC [19, 20] 8

2×2×1 1116.68 67.73 16.49 275.73 35.69 7.73

3×3×1 4333.59 274.94 15.76 973.96 79.76 12.21

4×4×1 13570.27 548.14 24.76 2989.49 140.80 21.23
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Figure 1: Phonon dispersions and DOS of selected systems. Solid black lines and dashed blue lines refer to the
results obtained from SCC-DFTB and DFT PBE, respectively

4 Conclusions

In summary, we have successfully derived the reciprocal-space approach of Hessian calculation within the
SCC-DFTB framework. This approach allows for the Hessian of periodic systems to be obtained accurately
and without doing any calculations on supercells, while also providing some information about electron-phonon
interactions, which can be of great importance in the study of transport phenomena [24]. The formulation
presented in this paper effectively generalizes previous analytical methods of SCC-DFTB Hessian calculation
[6, 7], which are less suited for periodic systems. Its efficiency has been demonstrated by performing test cal-
culations on various systems of all dimensions, where it showed to be significantly faster than the numerical
force-differentiation method, especially for large systems.

We believe that further research on DFTB-based phonon calculation methods can open a gateway to an
efficient ab-initio description of phonon-related properties (such as electrical or thermal conductivity, Raman
spectra, band-gap renormalization, superconductivity) of large systems, otherwise computationally too demand-
ing for ordinary DFT methods, and perhaps even lead to more extensive DFTB parameters development for
solid-state applications. This paper can be regarded as a first step in that direction. In our future work, we
plan various extensions of the theoretical formulation presented here (such as to DFTB3 framework and adding
support for spin-polarization), as well as its application to problems of interest.

Supplementary Material

See the supplementary material for additional information on: derivatives of the charge-fluctuations and
the orthonormalization constraints; second derivative of the charge-fluctuation energy; case of finite electron
temperature.

Data Availability

The data that support the method developments and test simulations of this study are available within the
article and its supplementary material.
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Appendix A Derivatives of the DFTB matrix elements

According to the Slater-Koster transformation rules [25], the two-center integrals Iab, between basis functions
a and b, located on atoms separated by vector r, can be written as:

Iab(r) =
∑
τ

Rτab(r)A
τ
l(ab)(r̂) (A.1)

where τ is the index of the Slater-Koster integral, r ≡ ‖r‖, and r̂ ≡ r/r. In the DFTB formalism, the radial
functions Rτab(r) are generally given on a numerical grid. However, they can always be cast to an analytical
form, for example, by spline interpolation. Unlike Rτab(r), the functions Aτl(ab)(r̂) depend only on the angular
momenta of a and b basis functions and not on their radial shape. Since they are given in a purely analytical
form, their derivatives can be obtained easily. For example, if a is an s- and b a p-type function, we have:

Aσspi(r̂) =
ri
r

(A.2a)

∂jA
σ
spi

(r̂) =
δij
r
− rirj

r2
(A.2b)

∂k∂jA
σ
spi

(r̂) = − 1

r3
(δijrk + δikrj + δjkri) + 3

rirjrk
r5

(A.2c)

where ri is the i-th component of r and ∂i ≡ ∂/∂ri. Similar expressions can be derived for all other combinations
of angular momenta.
Finally, the first and second derivative of Iab can be written as:

∂iIab(r) =
∑
τ

[
∂rR

τ
ab

ri
r
Aτl(ab) +Rτab ∂iA

τ
l(ab)

]
(A.3a)

∂j∂iIab(r) =
∑
τ

[(
∂2
rR

τ
ab −

∂rR
τ
ab

r

)
rirj
r2

Aτl(ab) + Rτab ∂i∂jA
τ
l(ab)

+
∂rR

τ
ab

r

(
δijA

τ
l(ab) + ri∂jA

τ
l(ab) + rj∂iA

τ
l(ab)

)]
(A.3b)

where the derivatives of Rτab can be obtained analytically.

Appendix B Lattice summations of the DFTB γ-function

The phase-modulated lattice sum of the γ function is given by:

γ̃IJ(q) ≡
∑
R

eiqRγIJ(R + uJ − uI) (B.1)

where uX is the position vector of atom X, as defined in the original unit cell.
Adding and subtracting the Coulomb potential, the expression for γ-function can be written as:

γIJ(r) =

(
γIJ(r)− 1

r

)
+

1

r
(B.2)

Since γIJ(r)→ 1/r as r →∞, the first term in this expression is short-ranged, making the lattice summation
over it straightforward. This is not the case for the second term, so here we use the Ewald summation technique
[15], i.e., we split it into a short-ranged and a long-ranged part:

1

r
=

erfc(αr)

r
+

erf(αr)

r
(B.3)

where α is an arbitrary positive real number. The short-ranged term can be added to the first term on the
RHS of (B.2), whereas the (generalized) Poisson summation formula can be used for the long-ranged part. The
expression for γ̃(q) then becomes:

γ̃IJ(q) =
∑
R

eiqRγαIJ(R + uJ − uI) +
∑
G

Ṽ α(G + q; uI − uJ)ei(G+q)(uI−uJ ) (B.4)
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The second sum here runs over all reciprocal vectors G, while α can be chosen to ensure good convergence of
both sums. γαIJ(r) is a short-ranged function, given by:

γαIJ(r) ≡ γIJ(r)− erf(αr)

r
+

2α√
π
δr=0 (B.5)

while the expression for Ṽ α(k; r) is more complicated, as it depends on the dimension of the underlying lattice
and on whether ‖k‖ is finite or not [26, 27]; see table 3 for details.

Table 3: Ṽ α(k; r) for different dimensions. Ω is the measure of the underlying unit cell (i.e., volume, area
and length for three-, two- and one-dimensional systems, respectively). For the two-dimensional case, z is the
component of r perpendicular to the direction of the periodicity. For the one-dimensional case, ρ ≡

√
x2 + y2,

where x and y are components of r perpendicular to the direction of the periodicity, Γ(u, v) is the upper
incomplete gamma-function and γE is the Euler-Mascheroni constant.

dim Ṽ α(k 6= 0; r) Ṽ α(k = 0; r)

3
4π

Ω

e−k
2/4α2

k2
0

2
π

Ω

1

k

[
e−kzerfc

(
k

2α
− αz

)
+ ekzerfc

(
k

2α
+ αz

)]
2π

Ω

[
z erf(αz) +

e−α
2z2

α
√
π

]

1
1

Ω

[
δρ6=0

∞∑
n=0

(−1)n

4nn!
(kρ)2nΓ

(
− n, k

2

4α2

)
+ δρ=0Γ

(
0,

k2

4α2

)]
− 1

Ω

[
γE + Γ(0, α2ρ2) + log(α2ρ2)

]

Lattice summations involving the derivatives of the γ-function ((20) and (21)) can be evaluated in a similar
manner.
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