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Abstract: Hyperspectral (HS) imaging holds great potential for the mapping of geological targets. 9 

Innovative acquisition modes such as drone-borne or terrestrial remote sensing open up new scales 10 

and angles of observation, which allow to analyze small-scale, vertical, or difficult-to-access outcrops. 11 

A variety of available sensors operating in different spectral ranges can provide information about the 12 

abundance and spatial location of various geologic materials. However geological outcrops are 13 

inherently uneven and spectrally heterogeneous, may be covered by dust, lichen or weathering crusts, 14 

or contain spectrally indistinct objects, which is why classifications or domain mapping approaches are 15 

often used in geoscientific and mineral exploration applications as a means to discriminate mineral 16 

associations (e.g. ore or alteration zones) based on overall variations in HS data. Feature extraction 17 

(FE) algorithms are prominently used as a preparatory step to identify the first order variations within 18 

the data and, simultaneously, reduce noise and data dimensionality. The most established FE 19 

algorithms in geosciences are, by far, Principal Component Analysis (PCA) and Minimum Noise Fraction 20 

(MNF). Major progress has been conducted in the image processing community within the last decades, 21 

yielding innovative FE methods that incorporate spatial information for smoother and more accurate 22 

classification results. In this paper, we test the applicability of conventional (PCA, MNF) and innovative 23 

FE techniques (OTVCA: Orthogonal total variation component analysis and WSRRR: Wavelet-based 24 

sparse reduced-rank regression) on three case studies from geological HS mapping campaigns, 25 

including drone-borne mineral exploration, terrestrial paleoseismic outcrop scanning and thermal HS 26 

lithological mapping. This allows us to explore the performance of different FE approaches on complex 27 

geological data with sparse or partly inaccurate validation data. For all case studies, we demonstrate 28 

advantages of innovative FE algorithms in terms of classification accuracy and geological interpretability. 29 
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We promote the use of advanced image processing methods for applications in geoscience and mineral 30 

exploration as a tool to support geological mapping activities.  31 

 32 

Keywords: feature extraction, domain mapping, mineral exploration, image processing, hyperspectral imaging, 33 

classification 34 

1. Introduction 35 

A main application of spectral imaging in geosciences and mineral exploration is the 36 

discrimination of mineralogical or lithological domains, i.e. mixed material classes that are 37 

defined based on their relevance for the respective objective, such as distinctive ore or 38 

alteration zones. Domain mapping may correspond to a classification of overall data 39 

characteristics in the spatial and spectral domain. This approach differs from traditional mineral 40 

mapping, which uses the abundance of single minerals or compounds based on specific 41 

spectral characteristics.  42 

Domain or class mapping is a well-established remote sensing method and numerous 43 

approaches exist (Lu and Weng, 2007; Li et al., 2014; Benediktsson & Ghamisi, 2015), each 44 

tailored to the data type and objective of the study. The classification of spectral image data 45 

has a number of challenges such as high data dimensionality at a high redundancy, which 46 

leads to both memory and time intensive processing as well as the “curse of dimensionality” 47 

(Hughes, 1968). The latter describes the phenomenon of declining classification accuracies 48 

with rising data dimensionality at constant number of classes and training data (Hughes, 1968). 49 

Feature extraction (FE) methods are a common approach to tackle these challenges (Jia et 50 

al., 2013; Benediktsson & Ghamisi, 2015). By projecting the data into a lower dimensional 51 

feature space and selecting the most meaningful data features, the data size, dimensionality 52 

and redundancy can be reduced dramatically, while most of the informative value is preserved. 53 

The extraction of appropriate features is key for a successful subsequent classification, as it 54 

determines the amount and relevance of information preserved and passed to the classifier. 55 

The most traditional FE approaches such as principal component analysis (PCA) and minimum 56 
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noise fraction (MNF), first introduced by Pearson (1901) and Green et al. (1988), respectively, 57 

are based on the extraction of orthogonal features. These well-established approaches, 58 

however, only consider the input spectral information (e.g., reflectance information) and 59 

disregard the valuable spatial information of neighboring pixels, which, if included, can 60 

significantly improve the mapping abilities of machine learning algorithms (Ghamisi et al., 61 

2018; Fauvel et al., 2013). Respective advanced algorithms that are able to model both 62 

spectral and spatial information simultaneously (“spatially constrained” methods) have been 63 

developed over time and have outperformed classical FE approaches in terms of resulting 64 

classification accuracy using standard test datasets (Rasti et al., 2014; Rasti et al., 2016; Rasti 65 

& Gudmundsson, 2016). Such datasets commonly represent well validated land cover or urban 66 

scenes with rather distinct and homogeneous classes; thus, contrasting typical geoscience 67 

scenery. These algorithms incorporate spatial information either via a penalty term augmented 68 

to the fidelity term of a cost function or solve the problem subject to a constrain. In Rasti et al. 69 

(2016) and Rasti et al. (2014), two spatially constrained FE approaches, orthogonal total 70 

variation component analysis (OTVCA) and wavelet-based sparse reduced-rank regression 71 

(WSRRR), were proposed and used, respectively, and their performances were evaluated for 72 

land cover classification. The former one incorporates the spatial information via total variation 73 

penalty and the latter one incudes spatial information by applying ℓ"	penalty on the wavelet 74 

coefficients.  The obtained results in those previous studies also demonstrate that OTVCA and 75 

WSRRR improved the performance of conventional feature extraction approaches in terms of 76 

classification accuracies for land cover classification in both rural and urban areas. 77 

The presented study aims to showcase the potential of advanced FE for domain mapping in 78 

geoscientific and economic geology applications. Using three case studies, we compare the 79 

performance of two conventional (PCA, MNF) and two advanced spatially constrained FE 80 

algorithms (OTVCA, Rasti et al. (2016): Orthogonal total variation component analysis, 81 

WSRRR, Rasti et al. (2014): Wavelet-based sparse reduced-rank regression). A supervised 82 

support vector machine (SVM) classification is performed on each dataset to evaluate the 83 

quality and relevance of the extracted features in terms of classification accuracy and 84 
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geological meaningfulness. The case studies include real and representative applications of 85 

remote sensing in geosciences that cover different challenges with regard to target 86 

characteristics, platform and sensor, i.e. including (1) drone-borne data from a lightweight, low 87 

signal-to-noise ratio (SNR) sensor in the visible and near infrared (VNIR) range, (2) terrestrial 88 

small-angle (non-nadir) data from a sensor operating in the VNIR to short-wave infrared 89 

(SWIR) range, (3) terrestrial small-angle data in the long-wave infrared (LWIR) range providing 90 

spectrally highly mixed signatures. In all three examples, the provided training data is 91 

extremely limited and the domains of interest are spectrally indistinct, which is typical for 92 

geological targets.  93 

2. Methodology 94 

2.1 General workflow 95 

Figure 1 depicts a generalized overview on the used processing workflow.   96 

 97 

Figure 1. General workflow of hyperspectral data classification with and without prior application of 98 

feature extraction methods. 99 

 100 

In preparation, each case dataset was fully corrected for spectral and spatial rightness 101 

according to its sensor- and platform specific workflow (compare Jakob et al., 2017; Lorenz et 102 
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al., 2018a). Pixels unrelated to the geological target of the case study (e.g., calibration panels, 103 

sky, vegetation) were masked prior to further processing.  104 

A set of established (PCA, MNF) and innovative (OTVCA, WSRRR) FE algorithms was applied 105 

separately on each dataset using the same number of output features within each case study. 106 

The processing time was determined under equal computational prerequisites for each run. All 107 

the methods investigated in this paper are implemented in Matlab on a computer having 108 

Intel(R) Core(TM) i7-6700 processor (3.40 GHz), 32 GB of memory and 64-bit Operating 109 

System. Within each case study, an equal number of features was selected from each FE 110 

result. The feature subsets were defined by manually choosing image features with a 111 

geological meaning while rejecting features dominated by noise or illumination differences. For 112 

each case study, the feature subsets were used as an input for an SVM classification to 113 

discriminate geological domains of interest and provide a basis for a comparison of the FE 114 

approaches regarding their geoscientific value. The training data corresponds to regions of 115 

interest that were defined based on geological validation from field observations, samples and 116 

spectral reference measurements. An additional classification on the full, original dataset was 117 

performed for each case study to compare the classification performance of features vs. full 118 

data dimensionality. The accuracy of each classification result was estimated using three 119 

established accuracy measures: average accuracy (AA), overall accuracy (OA) and kappa 120 

coefficient (k). 121 

The tested FE algorithms as well as the used classifier are introduced in the following. 122 

2.2 Algorithms used 123 

Principal component analysis (PCA) aims at transforming the input hyperspectral data into 124 

a lower dimensional subspace using a linear transformation approach which maximizes the 125 

signal variance (Jolliffe, 2002). PCA reduces the dimensionality of hyperspectral datasets with 126 

interrelated variables, while it retains most of the variation in the dataset. The output of PCA is 127 

a set of features, also known as principal components (PCs), which are orthogonal to each 128 

other and are ordered in such a fashion that the first PC corresponds to the greatest variance, 129 
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the second component corresponds to the second greatest variance and so on. Therefore, the 130 

first few principal components which capture the major variance of the data can be a 131 

representative for the higher dimensional data. 132 

Minimum noise fraction (MNF), which was specifically proposed to analyze remotely-sensed 133 

hyperspectral and multispectral images, computes the normalized linear combinations of the 134 

original bands which maximize the SNR by minimizing the variance of the noise with respect 135 

to the variance of the signal, and therefore, maximize the quality of the input hyperspectral 136 

data (Green et al., 1988). In a similar manner to PCA, MNF produces orthogonal features 137 

ordered by their information content in which the first few components contain very high SNR. 138 

While PCA searches for an orthogonal subspace to capture the maximum variance of the data, 139 

MNF seeks a subspace to maximize the signal to noise ratio, making it more suitable for data 140 

restoration and data quality improvement. 141 

Orthogonal total variation component analysis (OTVCA) was recently introduced in Rasti 142 

et al. (2016) by developing a non-convex optimization technique and a low-rank (subspace) 143 

model. It extracts the most informative features from the observed data (F). OTVCA estimates 144 

the reduced features by solving the following constraint cost function problem: 145 

$𝐀&, 𝐕&) 	= argmin
𝐀,𝐕

"
1
2𝐅 − 𝐀𝐕526

1
+ λ∑ :;(𝐃>𝐚(@))1 + (𝐃B𝐚(@))1:

"

C
@D" s. t. 𝐕𝐓𝐕 = 𝐈𝐫, (1) 146 

where V contains the low-rank basis, ||𝐴||MN is the total variation norm applied spatially (Rasti 147 

et al., 2016) and 𝜆 is known as the TV tuning parameter which balances the amount of 148 

smoothness. We should note that the low-rank features, A, and the basis matrix (for the 149 

subspace), V, are unknown. Therefore, they both need to be estimated. To solve the 150 

aforementioned optimization problem, a cyclic descent (CD) was suggested in Rasti et al. 151 

(2016). As can be seen in Eq. (1), the cost function is composed of two terms. The first term, 152 

the fidelity term, tries to minimize the difference between F and the estimated AV5. The second 153 

term is the regularization term, which models the spatial dependencies using the total variation 154 

norm. 155 
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Wavelet-based sparse reduced-rank regression (WSRRR) was proposed in Rasti et al. 156 

(2014), to represent hyperspectral images using a few informative features automatically. 157 

WSRRR uses a sparse and low-rank model to represent the hyperspectral data. In Rasti et al. 158 

(2014), the following optimization model is used to estimate W and V, simultaneously: 159 

$𝐖& ,𝐕&) 	= argmin
𝐖,𝐕

"
1
2𝐅 − 𝐃𝐖𝐕526

1
+ λ∑ 2𝒘(T)2"

C
@D" s. t. 𝐕𝐓𝐕 = 𝐈𝐫,    (2) 160 

where D contains the two-dimensional wavelet basis and W contains unknown 2D wavelet 161 

coefficients. In order to enforce sparsity into (2), an 𝑙" penalty on the wavelet coefficients was 162 

considered. The promotion of sparsity on the extracted features improves the SNR, which 163 

leads to more accurate classification maps. As can be seen in Eq. (2), the cost function 164 

consists of two terms. The first term, the fidelity term, tries to minimize the difference between 165 

F and the estimated DWV5. The second term, the regularization term, tries to model spatial 166 

dependencies using an l1 norm applied on wavelet coefficients. 167 

Support vector machines (SVM) classifier is a widely-used technique for the classification 168 

of hyperspectral images since it can effectively handle the high dimensionality of hyperspectral 169 

images when only a limited number of training samples is available. Based on the studies 170 

conducted in Ghamisi et al. (2017), SVM is found to be efficient, stable, and accurate compared 171 

to several other machine learning-based classification techniques. There is a large number of 172 

scientific papers (such as these two review papers Ghamisi et al. (2017) and Benediktsson & 173 

Ghamisi, (2015)) which clearly demonstrate that a joint use of a robust FE technique and the 174 

SVM classifier can shape a strong machine learning approach, particularly for the classification 175 

of hyperspectral images. SVM tries to define an optimal separating hyperplane, also known 176 

here as a classification boundary, within the multidimensional feature space to differentiate 177 

between the training samples of two classes of interest. The best hyperplane is the one that 178 

leaves the maximum margin from the closest training samples (also known as support vectors) 179 

of both classes. The hyperplane is placed in the multidimensional feature space by considering 180 

an optimization problem that is solved via structural risk minimization.  181 
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The SVM was initially introduced to tackle linear problems, although decision boundaries often 182 

need to be nonlinear to address classification problems due to the complex and nonlinear 183 

nature of hyperspectral image classification. In such cases, a nonlinear mapping using kernel 184 

methods is used to project the data into a high-dimensional feature space where the input 185 

nonlinear data are linearly separable. For the current study, we use the Gaussian radial basis 186 

function (RBF) kernel, which is the most widely-used kernel for hyperspectral image analysis 187 

(Scholkopf & Smola, 2002; Waske et al., 2009). The RBF kernel contains two important 188 

parameters, including C (the parameter that controls the amount of penalty during the SVM 189 

optimization) and 𝜸 (the spread of the RBF kernel), which are automatically traced using a 190 

parameter selection method based on cross-validation (Chapelle et al., 2002). 191 

3. Introduction of case studies  192 

3.1 Case study 1: UAS-borne VNIR 193 

The first case study is a drone-borne hyperspectral survey over the Otanmäki mine, located 194 

200 kilometers southeast of Oulu in the center of Finland. The analyzed scene covers parts of 195 

the Metsämalmi outcrop, located at the eastern margin of the Otanmäki deposit (Fig. 2a). The 196 

site is characterized by Paleoproterozoic gabbro-anorthosites that intruded the Archean 197 

granitic gneiss basement. The gabbros host Fe-Ti-V oxide ore bodies, linked to a magnetite-198 

ilmenite mineralization of economic interest (Pääkkönen, 1956; Lindholm et al., 1980; Huhma 199 

et al., 2018). Recent geochemical studies attest to the high complexity of the Otanmäki suite 200 

in terms of lithology and geometry (Kärenlampi et al., 2019). The ore bodies occur as hundreds 201 

of lenses and veins with widths of 3–50 m and lengths up to 200 m (Maier et al., 2015), 202 

containing up to 40 wt.% magnetite. 203 

All abundant lithologies, including the ore, lack distinctive absorption features in the examined 204 

spectral range. The irregular shape of the ore bodies, their heterogeneous composition and 205 

locally dense lichen cover further contribute to create a challenging target for supervised 206 

classification methods. For this example, we defined four distinct classes: ore, amphibolite, 207 
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anorthosite and leucogabbro (Fig. 3). This distinction is based on a detailed, hand-drawn and 208 

subsequently geolocated geologic map made by Rautaruukki Oy, which was kindly provided 209 

by the Otanmäki Mine Oy company.  210 

 211 

Figure 2. Location of the three study areas as well as coverage of the discussed data sets (indicated by 212 

yellow polygons): a) UAS-based VNIR (case study 1), b) terrestrial VNIR-SWIR (case study 2), c) 213 

terrestrial LWIR (case study 3) 214 

 215 
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Figure 3. Spectral characteristics of the classes defined for each case study area. The displayed 216 

spectra are averages of all pixels used for training of each respective class. Spectral artifacts due to 217 

sensor gaps and strong atmosphere-related noise are whitened out for better visibility.  218 

 219 

The ore zone extents were mapped based on field observations, drillings, and magnetic 220 

susceptibility measurements. Due to potential local positioning inaccuracies, the geological 221 

map could not be used directly for the extraction of test and training pixels, but served as a 222 

general guideline for class discrimination and visual verification of classification results. The 223 

final selection of validation points was supported by geological as well as spectral field 224 

observations, and refined based on spectral homogeneity in the hyperspectral image to avoid 225 

accidental mislabeling due to shaded or highly inhomogeneous areas. The selected validation 226 

points were divided into 60–400 training pixels (average of 200 px) and 90–400 test pixels 227 

(average of 200 px) per class. The data set was acquired using a light-weight VNIR 228 

hyperspectral imager deployed from a hexacopter drone (for details see Table 1). The detailed 229 

acquisition and processing workflow can be found in Jakob et al. (2017) and Jackisch et al. 230 

(2019), respectively. 231 

 232 

 233 

 234 

Table 1. Overview on important sensor, target and acquisition parameters for the three case studies.  235 

Case Study 1 2 3 

Location Otanmäki, Finland Ristonmännikkö, Finland Naundorf, Germany 

Geological target Fe-Ti-V deposit 

(scraped outcrop) 

Tectonic structures in 

crystalline basement 

and sedimentary cover 

rocks 

(artificial trench wall) 

Hydrothermal 

alteration zones 

(quarry face) 
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Deployed Sensor Senop Rikola 

Hyperspectral Imager 

(504–900 nm, frame 

based) 

Specim AisaFENIX 

(380–2500 nm, push-

broom) 

Telops Hyper-Cam 

LW 

(7700-11800 nm, 

frame-based) 

Sensor Setup Drone-based 

(hexacopter) 

Ground-based (tripod) Ground-based (tripod) 

Sensor Orientation Nadir Horizontal Near-horizontal 

(varying) 

Sensor-Target 

Distance 

50 m  13 m 55 m 

Data size (columns/ 

rows/bands) 

960/890/50 1389/326/450 667/746/58 

Image footprint  ca. 30 m x 27 m ca. 20 m x 4 m ca. 15 m x 16 m 

Extracted features/ 

selected features 

15/6 20/10 20/12 

3.2 Case study 2: terrestrial VNIR-SWIR 236 

The VNIR-SWIR dataset from the Ristonmännikkö site was acquired during a ground-based 237 

hyperspectral imaging campaign at a paleoseismic trench dug across a post-glacial fault in the 238 

northern Finnish part of the Fennoscandian Shield (Kirsch et al., 2019; Fig. 2b). At this site, 239 

neotectonic deformation has produced discrete reverse fault scarps with small offsets within 240 

an Archean basement and glacial-cover sediment sequence. Seven lithologic classes were 241 

considered for classification, comprising basement units (granodiorite, migmatitic gneiss, mica 242 

gneiss, pegmatitic granite) and cover sequences (till 1, 2 and 3). The training data for the 243 

supervised classification is based on image spectra at 30 sample locations, labelled according 244 

to generalized lithologic descriptions provided by the geologists on site. Laboratory (X-ray 245 

diffraction analysis) and in-situ (handheld X-ray fluorescence (XRF) analyzer and VNIR-SWIR 246 
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spectrometer) analytical data were used for the validation of the spectral features and to 247 

establish a link between lithologic classes and spectral, mineralogical, and chemical 248 

composition (Kirsch et al., 2019). In order to increase the number of training pixels per class 249 

and to compensate for any georeferencing, registration and sample-localization errors, 24 250 

pixels surrounding each of the original validation points were also included in the training 251 

dataset. The selected validation points were divided into 50–175 training pixels (average of 252 

100 px) and 20–35 test pixels (average of 25 px) per class. A non-orthorectified geological 253 

map of the outcrop (Ojala et al., 2019) served as a guideline for a visual evaluation of 254 

classification results. 255 

Damp, cold and cloudy conditions during image acquisition had a clearly negative effect on the 256 

SNR of the hyperspectral data, which is manifested by low reflectance values, strong water 257 

absorptions and noisy spectra, particularly in the SWIR range (Fig. 3). This may lead to 258 

spectrally indistinctive classes but illustrates an acquisition during operational conditions. 259 

Details on the acquisition and processing workflow can be found in Table 1, as well as in 260 

Lorenz et al. (2018a), Kirsch et al. (2018) and Kirsch et al. (2019), respectively. 261 

3.3 Case study 3: terrestrial LWIR 262 

The third case study was performed at the Naundorf quarry in the state of Saxony, Germany 263 

(Fig. 2c). It showcases parts of the As-Zn-Cu-In-Ag-bearing polymetallic sulfide vein network 264 

characteristic for the Freiberg mining district. In the Naundorf quarry, the faults are associated 265 

with phyllic hydrothermal alteration of the late Variscan biotite granite host. 266 

The site has already been investigated using different HS sensors in Kirsch et al. (2018). The 267 

long-wave infrared data set was acquired as a mosaic of data frames using a Telops Hyper-268 

Cam LW HS imager (for details see Table 1). The detailed acquisition and processing workflow 269 

can be found in Lorenz et al. (2018b) and Kirsch et al. (2018), respectively. According to the 270 

mineralogical discrimination of Kirsch et al. (2018), the main lithological classes of the 271 

Naundorf quarry are monzogranite, moderately altered and pervasively altered monzogranite, 272 

mafic enclaves of quartz-monzonitic composition and quartz veins. For this study, the analyzed 273 
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scene was further subdivided, yielding a total of spectrally distinct 7 classes (Fig. 3): Qz-rich 274 

zones/veins, monzogranite (high and low quartz), mafic enclaves, moderately altered 275 

monzogranite, pervasive alteration, and gypsum. A schematic geological map of the outcrop 276 

was used for a general visual evaluation of the classification results. The map is based on field 277 

observations in the accessible portion of the outcrop and visual interpretation of an RGB 278 

textured digital outcrop model in the inaccessible part of the outcrop. However, due to the 279 

inaccessibility of most of the outcrop (in particular the middle and upper part) and the visual 280 

similarity of some classes, the map only outlines general expected lithological variations. A 281 

detailed discrimination of the hydrothermal alteration zone into gypsum-rich parts and 282 

pervasive alteration, the discrimination of monzogranite with differing quartz content or the 283 

exact location of all mafic enclaves for the full extent of the study area was not feasible. For 284 

this reason, the validation map does only include generalized lithological classes. Validation 285 

points for training and test data were therefore selected manually based on the available 286 

accurately geolocated geological as well as spectral field observations, and refined according 287 

to spectral homogeneity in the hyperspectral image to avoid mislabeling in shaded or 288 

inhomogeneous areas. The selected validation points were divided into 20–80 training pixels 289 

(average of 37 px) and 60–300 test pixels (average of 155 px) per class.  290 

4. Results 291 

4.1 General performance of the tested FE methods 292 

A comparison of the geologically most relevant feature bands per tested FE algorithm (shown 293 

exemplary for the first case study in Fig. 4) reveals similar content and quality in the first two 294 

or three bands for all tested FE methods. In successive bands, major differences arise.  295 

The most obvious trend is the overall more smooth and coherent appearance of the feature 296 

bands extracted by the spatially constrained methods OTVCA and WSRRR, with an apparent 297 

increase in spatial smoothing towards higher feature numbers. This effect is stronger for 298 

OTVCA and leads to the manifestation of large-scale blurry structures in feature bands of 299 
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higher index. In contrast, the traditional methods PCA and MNF yield much noisier, but also 300 

more detailed feature bands with consistent spatial resolution/scale throughout all feature 301 

bands. However, apart from the very first feature bands, extracted geology-relevant features 302 

additionally highlight noise and image artifacts that overprint the relevant information. In the 303 

depicted UAV-borne case study 1, these artifacts comprise mostly illumination differences 304 

between individual images of the processed mosaic as well as remaining topography-related 305 

artifacts. OTVCA and WSRRR seem to suppress this effect and show an overall much better 306 

separation of geology-related features and image artifacts, which allows for a much easier 307 

manual selection of relevant feature bands with parallel rejection of artifact- or noise-only 308 

feature bands. 309 
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 310 

Figure 4. Comparison of the six geologically most relevant feature bands per tested FE algorithm 311 

(index indicated by number label), which were selected for subsequent classification (case study: 312 

UAS-VNIR).  313 

 314 

The analysis of the processing time for feature extraction from each of the dataset shows clear 315 

differences in dependence of the algorithm (Fig. 5). The traditional FE methods, PCA and MNF, 316 

exhibit extremely short processing times (in average ~2 microseconds/pixel for PCA and ~30 317 

microseconds/pixel for MNF), while the innovative FE methods require longer processing times 318 
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(in average ~0.3 milliseconds/pixel for WSRRR and ~2.1 milliseconds/pixel for OTVCA). In 319 

particular OTVCA is very computing-intensive (about 1000 times slower than PCA). The trend 320 

is consistent for all three case studies. 321 

322 

Figure 5. Performance of the tested FE algorithms in regards of processing time (in milliseconds per 323 

data pixel) for the extraction of 20 image features per dataset. 324 

 325 

In terms of accuracy performance of SVM, the usage of FE prior to SVM is clearly 326 

advantageous, as it increases all analyzed accuracy measures (OA, AA, k) by several percent 327 

compared to no prior FE (Fig. 6).  328 

 329 
Figure 6. Average performance of SVM classification in terms of accuracy using the tested FE 330 

algorithms as well as using no prior FE. 331 
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The highest accuracy throughout all categories is accomplished by WSRRR (AA = 84%, 332 

OA=83%, k=88%, average of all case studies). Interesting is also the consistently better 333 

accuracy performance of PCA in comparison to MNF in all case studies (difference of 0.4-1% 334 

for all accuracy measures). 335 

4.2 Classification results VNIR (Otanmäki) 336 

The main host rock types of the Otanmäki site are leucogabbro, amphibolite and anorthosite. 337 

In theory, those lithologies are not discriminable in the analyzed part of the electromagnetic 338 

spectrum, as their main mineral components, plagioclase and amphibole, are spectrally 339 

indistinct in the VNIR. Leucogabbro and amphibolite accordingly show nearly equal spectral 340 

signatures in our data (Fig. 3). However, differences in the overall spectral shape of anorthosite 341 

and leucogabbro/amphibolite do exist (Fig. 3), which might correspond to alteration of the 342 

protolith or minor abundances of spectrally active minerals. The ore zones can be distinguished 343 

from non-ore zones based on locally abundant iron oxide absorption features of weathering 344 

products of the magnetite/ilmenite mineralization.  345 

In all performed classifications, anorthosite is clearly delineated as linear features following a 346 

NW-SE trend (Fig. 7). In contrast, leucogabbro and amphibolite are only separated clearly 347 

when using advanced spatially constrained FE methods. Despite their spectral similarity, slight 348 

differences in texture and brightness might allow a discrimination based on spatial features. 349 

Traditional FE attempts are not able to separate the two classes and show an intermingled and 350 

noisy result. The leucogabbro is mapped as a coherent unit in the NE part of the area, which 351 

corresponds to the spatial distribution of the unit in the reference geological map. The 352 

distribution pattern of the detected ore zones does not completely match those of the 353 

geological reference map, but agree largely with the general location and orientation of the 354 

mapped units and are coherent in all classification results. 355 



18 
 

 356 

Figure 7. Performance of SVM classification based on different FE approaches for the drone-borne 357 

VNIR survey over the Otanmäki ore deposit (Finland). A1-A5 refer to the respective class specific 358 

accuracies. 359 
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Not only do variable rock compositions inhibit a clearer classification, but the reference 360 

geologic map itself is prone to slight shifts in x-y directions. This might be due to inaccurate 361 

georeferencing of this map, but also the time difference between the geological mapping and 362 

our data acquisition might contribute to inaccuracies in regards of alteration, vegetation and 363 

soil coverage. Also, this geologic map was part of a much larger regional geologic mapping, 364 

meaning a larger scale was applied to distinguish target rocks at the time. It is unclear how 365 

well the drawn boundaries superimpose on the actual rock zones, but a shift of 1-2 m in each 366 

direction is likely.  367 

4.3 Classification results VNIR-SWIR (Ristonmännikkö) 368 

In the Ristonmännikkö case study, all methods deliver geologically sensible and interpretable 369 

results that to a large extent match the reference geological map (Fig. 8). Discrepancies to the 370 

geologic map and the validation data set that result in low classification accuracies (Fig. 8) 371 

include (i) the occurrence of migmatitic gneiss within the mica gneiss unit in the center of the 372 

outcrop in the classification image, which is mapped as either mica gneiss or pegmatitic granite 373 

in the reference map, (ii) the missing occurrence of mica gneiss in the right side of the reference 374 

image, (iii) the granodiorite mapped in the far left side of the classification image, which has a 375 

smaller spatial extent than the one in the reference map. These differences can be mostly 376 

explained by the missing geolocation of the field sketch, which challenges to locate the extent 377 

of the mapped lithological boundaries within the classification image. Such, the units on either 378 

end of the reference map are possibly only partly covered by the hyperspectral scan. 379 

Furthermore, misinterpretation during geological mapping cannot be excluded. 380 

There are only subtle differences between the classification results. For instance, the areal 381 

extent of till unit 3 differs slightly between the images.  382 
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383 

Figure 8. Performance of SVM classification based on different FE approaches for the terrestrial VNIR-384 

SWIR survey at Ristonmännikö paleoseismic trenches (Finland). A1-A7 refer to the respective class 385 

specific accuracies. 386 
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The noise level is greatest in the PCA image, followed by the classification image without prior 387 

FE, but some of the noise may actually correspond to real features, such as (i) pixels in the till 388 

units mapped as either one of the basement units, which may correspond to basement-derived 389 

pebbles in the till, and (ii) the pixels mapped as till 3 in any of the basement units (e.g., evident 390 

in the WSRRR image) which may be explained by the draping of these units with the friable till 391 

material from above. 392 

OTVCA provides the smoothest/cleanest result amongst all trialed classification approaches, 393 

the highest accuracy measures for all AA (92%), OA (92 %) and k (91%), and most closely 394 

resembles the appearance of a geologic map. However, locally, the uniformity displayed by 395 

the OTVCA image may hinder the delineation of faults, which manifest themselves as small-396 

scale, non-continuous, lithologically variable layers (e.g., shear plane in the lower left part of 397 

the scene easily identified in the PCA and MNF images).  398 

The suppression of noise may also result in the sharp appearance of transitions between units 399 

which may be gradual in reality (e.g. boundary between till units 2 and 3), and the obliteration 400 

of textural features, such as interlayering or foliation (compare smoothness of OTVCA with 401 

“striped” appearance of MNF in the central portion of the image). 402 

4.4 Classification results LWIR (Naundorf) 403 

All classification results for the Naundorf scene yield geologically plausible results that align 404 

well with field observations documented in the geological reference map (Fig. 9). The 405 

classification maps show a ubiquitous distribution of low- and high-quartz monzogranite host 406 

rocks and clearly defined zones of gypsum and pervasively altered monzogranite spatially 407 

limited to the core of the hydrothermal zone. The altered monzogranite is correctly mapped 408 

around pervasively altered hydrothermal zones, the mapped mafic enclaves correspond to 409 

their true size, shape and (random) distribution in the unaltered host rock. 410 
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 411 

Figure 9. Performance of SVM classification based on different FE approaches for the terrestrial LWIR 412 

survey at Naundorf quarry (Germany). A1-A7 refer to the respective class specific accuracies. 413 

 414 

The classification with no prior FE has the poorest performance in terms of overall classification 415 

accuracy (Fig. 9, AA=88%, OA=89%, k=86% for no FE vs.  AA=95%, OA=97%, k=97% for 416 

WSRRR). In comparison with the other classification maps, the classification with no prior FE 417 
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generally has a noisy appearance showing areas of mixed lithologies and units with highly 418 

serrated boundaries. From a geological perspective, the areal extents of mafic enclaves and 419 

high-Qz monzogranite appear underestimated, the quartz-rich veins are overestimated, and 420 

pervasively altered monzogranite is locally misclassified in areas outside of the hydrothermal 421 

zone. Whereas PCA, MNF and WSRRR deliver almost identical results, the OTVCA image is 422 

less noisy and generally exhibits pixel groups of larger size. This aggregation leads to a slight 423 

overestimation of areal extent of enclaves and other units as well as some geometric distortion 424 

and loss of textural details (e.g. the vein-like shape of gypsum in the upper part of the 425 

hydrothermal zone). 426 

Particularly low classification accuracies are obtained for the mafic enclave class, which is 427 

spectrally very similar to the low-quartz monzogranite. Due to the spectral non-distinctiveness 428 

of this class, classifications based on PCA and MNF lead to speckled results that lower the 429 

accuracy (A6=54%), whereas spatially constrained FE methods are able to discriminate this 430 

class as small but coherent regions (A6=72%). 431 

5. Discussion 432 

The results of the study showed a clear trend on the advantageous usage of feature extraction 433 

and selection for enhanced lithological classification. Data classification without prior FE 434 

showed to return the lowest accuracy of all classification attempts, which supports the theory 435 

on the “curse of dimensionality”. Variations of illumination due to shadow and changing 436 

weather conditions during data acquisition are particularly problematic when applying 437 

classification on datasets without prior FE. Within the classification result these illumination 438 

differences can become visible e.g. as sharp and straight class borders, affecting class 439 

discrimination. This effect can be substantially reduced by prior FE and the rejection of affected 440 

feature bands for classification.  441 

The importance of masking spectrally distinct but geologically irrelevant interfering image 442 

parts, such as vegetation or reference targets, prior to FE is apparent. Particularly in cases 443 
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where spectral differences between lithologies are subtle, those spectrally highly variant 444 

objects would otherwise dominate over geological information in extracted features.  445 

The study further showed clear differences in the performance of conventional and spatially 446 

constrained FE approaches. The use of traditional FE algorithms often leads to the 447 

discrimination of smaller objects within larger geological domains. The resulting speckled 448 

appearance mostly originates in spectrally indistinct classes, low SNR or small-scale 449 

illumination variations. Lithological domains, however, aim to be spatially homogeneous, even 450 

if of inhomogeneous mineralogical composition. Spatially constrained FE methods (OTVCA 451 

and WSRRR) yielded geologically more accurate classification results. The ability for spatial 452 

constraining allows to achieve a particularly smooth classification result, while still allowing the 453 

detection of small objects. This is especially advantageous for the detection of spatially small 454 

objects (e.g. mafic enclaves in the LWIR/Naundorf case study), which otherwise are easily 455 

missed due to this “class noise”. On the other hand, smooth classification results by spatially 456 

constrained FE methods can also lead to an overestimation in the size of small objects and 457 

loss of textural detail, in particular within non-continuous, lithologically variable zones. 458 

Classifications based on spatially constrained feature extraction methods, however, are not 459 

comparable to a subsequent smoothing of a noisy classification image. Post-processing of the 460 

classification result by filtering, smoothing or segmenting often helps to increase the 461 

classification accuracy, as separated misclassified pixels are replaced by the surrounding true 462 

positives. However, this approach is not able to reconstruct initially false classified areas and 463 

can even cause the extrapolation of errors to larger pixel groups. Secondly, very small objects, 464 

even if correctly classified, might be removed by the smoothing. Spatially constrained feature 465 

extraction methods, in contrast, determine spatially related pixel groups before the 466 

classification is performed. The achieved smoothing is therefore solely data-driven. Small 467 

classified objects have a much higher probability to be of true nature than in spatially non-468 

constrained FE. This makes spatially constrained feature extraction methods particularly suited 469 

for the classification of scenes with high spatial scale variability, for example for the mapping 470 

of veins, enclaves or clasts in a larger matrix. Similar to this study, where the performance of 471 
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different feature extraction approaches has been evaluated and compared against each other, 472 

in Rasti et al. (2016) and Rasti et al. (2014), OTVCA and WSRRR were proposed and used, 473 

respectively, and their performances were evaluated for land cover classification. The obtained 474 

results in those previous studies also demonstrate that OTVCA and WSRRR improved the 475 

performance of conventional feature extraction approaches in terms of classification 476 

accuracies for land cover classification in both rural and urban areas.  477 

The consistently better accuracy performance of PCA in comparison to MNF in all case studies 478 

can be explained by their respective underlying approach. MNF seeks a projection to minimize 479 

the Gaussian noise and cannot take into account other noise types such as stripping, sparse 480 

noise, and shot noise. PCA, on the other hand, captures the variance of the dataset regardless 481 

of the type of the existing noise. In this context, if the dataset has high SNR, as this is the case 482 

for our datasets, PCA can represent the data into a few informative PCs. In the experiments, 483 

after performing PCA, we selected only the PCs with high SNR and, therefore, the PCs with 484 

lower SNRs which often degrade the classification results have been neglected. This could be 485 

the reason why PCA could outperform MNF in our experiments.  486 

In terms of computation time, major differences were observed. The conventional methods, 487 

i.e., PCA and MNF, are non-iterative algorithms and therefore are much faster than the 488 

advanced approaches i.e., WSRRR and OTVCA which are both iterative algorithms. OTVCA 489 

performs slower than WSRRR due to the additional iteration step of the inner TV-optimization. 490 

We should note that the processing time of the advanced method could be improved using 491 

parallel programming which is out of the scope of this paper. 492 

Applying FE and classification workflows in geological applications of spectral imaging showed 493 

to pose specific challenges which inhibit standard benchmarking approaches for accuracy 494 

assessment. Major challenges arise from partly inaccurate geological maps and limited 495 

amounts of reliable sample data. Geological maps or field sketches are often not directly 496 

transferable as validation input due to both qualitative and geolocational inaccuracies and 497 

differences in resolution. The latter are a direct consequence of the discrepancy between 498 

objective, centimeter-precise HSI data and subjectively generalized geological observations 499 
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on a decimeter to regional scale. Validation data with pixel-precision is limited to small 500 

accessible regions. These circumstances lead to either sparse or unconfident definitions of 501 

training and test pixels. We thus recommend the selection of training points based on a mixture 502 

of existing maps, geological experience and spectroscopic knowledge. We could show that by 503 

such careful selection of few, but confident training pixels, geologically sound classification 504 

results can be achieved. The returned classification accuracy figures, however, should be 505 

treated with caution, as they are often spatially unrepresentative and not an appropriate 506 

measure for the evaluation of the geological accuracy of a classified result. The challenges of 507 

the current study further show the need for well-labeled benchmark datasets for geological 508 

targets that would allow to evaluate the performance of innovative methods on a standardized, 509 

comparable basis. It also demonstrates that the rapid acquisition and processing of HS data 510 

can tremendously improve the accuracy of mapping and at the same time improve safety and 511 

decrease the time of field activities.  512 

6. Conclusion 513 

We applied a selection of feature extraction methods on three different data sets representing 514 

characteristic scenarios of spectral imaging in geosciences and mineral exploration. The data 515 

sets are real life case studies acquired using innovative spectral imaging approaches such as 516 

UAS-borne or small-angle terrestrial mapping and using sensors operating at different spectral 517 

ranges in the VNIR, SWIR and LWIR. To evaluate the performance of the extracted features 518 

for geoscientific applications, we subsequently applied an SVM classification using sparse 519 

training sets.  520 

Our most important findings are: 521 

1) In all three case studies, the use of machine learning algorithms allowed the 522 

discrimination of mineral domains by overall spatial and spectral differences, which is 523 

particularly advantageous for spectrally similar materials or datasets with low signal-to-524 

noise. 525 
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2) Geological maps or field sketches are often not directly transferable as validation input 526 

due to generalization, local and qualitative inaccuracies, and a lack of reliable sample 527 

data. Besides the analysis of accuracy figures, additional evaluation of the classification 528 

result by geological expert knowledge is key to ensure scientifically meaningful results. 529 

3) Applying FE prior to classification improved the classification accuracy and speed 530 

compared to direct classification on the whole dataset. 531 

4) Innovative FE methods that promote spatial smoothness such as WSRRR and OTVCA 532 

outperformed more traditional FE methods such as PCA or MNF in all case studies. 533 

Beside the higher classification accuracy, the spatially constrained FE classification 534 

results are more accurate from a geological perspective.  535 

5) While OTVCA was comparably slow, WSRRR showed the best compromise between 536 

classification accuracy and computation time of all methods. Further development and 537 

optimization of the method might allow to further speed up the processing and will be an 538 

important step towards (near-)real-time data processing. 539 

6) The used methods could be successfully applied to diverse datasets in regards of 540 

spectral range, acquisition mode and data quality. The domain mapping approach using 541 

FE allowed us to extract valuable geological information even from spectrally indistinct 542 

lithologies or from data disturbed by atmospheric interference, low signal or illumination 543 

variations. 544 

Our study promotes the use of innovative, spatially constrained FE algorithms for mineral 545 

domain mapping in geoscience and mineral exploration. The algorithms are robust against the 546 

physical content of the input dataset and can therefore be used beyond a specific type of 547 

reflectance data, for example supporting a multi-sensor classification approach.   548 
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Figure 1. General workflow of hyperspectral data classification with and without prior application of 645 

feature extraction methods 646 

Figure 2. Location of the three study areas as well as coverage of the discussed data sets (indicated by 647 

yellow polygons): a) UAS-based VNIR (case study 1), b) terrestrial VNIR-SWIR (case study 2), c) 648 

terrestrial LWIR (case study 3) 649 

Figure 3. Spectral characteristics of the classes defined for each case study area. The displayed 650 

spectra are averages of all pixels used for training of each respective class. Spectral artefacts due to 651 

sensor gaps and strong atmosphere-related noise are whitened out for better visibility.  652 

Figure 4. Comparison of the six geologically most relevant feature bands per tested FE algorithm 653 

(index indicated by number label), which were selected for subsequent classification (case study: 654 

UAS-VNIR).  655 

Figure 5. Performance of the tested FE algorithms in regards of processing time (in seconds per data 656 

pixel) for the extraction of 20 image features per dataset. 657 

Figure 6. Average performance of SVM classification in terms of accuracy using the tested FE algorithms 658 

as well as using no prior FE 659 
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Figure 7. Performance of SVM classification based on different FE approaches for the drone-borne 660 

VNIR survey over the Otanmäki ore deposit (Finland). A1-A5 refer to the respective class specific 661 

accuracies. 662 

Figure 8. Performance of SVM classification based on different FE approaches for the terrestrial VNIR-663 

SWIR survey at Ristonmännikö paleoseismic trenches (Finland). A1-A7 refer to the respective class 664 

specific accuracies. 665 

Figure 9. Performance of SVM classification based on different FE approaches for the terrestrial LWIR 666 

survey at Naundorf quarry (Germany). A1-A7 refer to the respective class specific accuracies. 667 
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