
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Modeling the gluon and ghost propagators in Landau gauge by 
truncated Dyson-Schwinger equations

Kaptari, L. P.; Kämpfer, B.; Zhang, P.;

Originally published:

August 2019

European Physical Journal Plus 134(2019), 383

DOI: https://doi.org/10.1140/epjp/i2019-12837-1

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-28153

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1140/epjp/i2019-12837-1
https://www.hzdr.de/publications/Publ-28153


ar
X

iv
:1

81
1.

01
47

9v
1 

 [
he

p-
ph

] 
 5

 N
ov

 2
01

8

Analytical properties of the gluon propagator from truncated

Dyson-Schwinger equation in complex Euclidean space
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Abstract

We suggest a framework based on the rainbow approximation with effective parameters adjusted

to lattice data. The analytic structure of the gluon and ghost propagators of QCD in Landau gauge

is analyzed by means of numerical solutions of the coupled system of truncated Dyson-Schwinger

equations. We find that the gluon and ghost dressing functions are singular in complex Euclidean space

with singularities as isolated pairwise conjugated poles. These poles hamper solving numerically the

Bethe-Salpeter equation for glueballs as bound states of two interacting dressed gluons. Nevertheless,

we argue that, by knowing the position of the poles and their residues, a reliable algorithm for numerical

solving the Bethe-Salpeter equation can be established.
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I. INTRODUCTION

Due to the non-Abelian and confinement properties of Quantum Chromodynamics (QCD),

gluons obeying self-interactions can form colorless pure gluonic bound states, also referred to as

glueballs. The occurence of glueballs is one of the early predictions of the strong interactions de-

scribed by QCD [1]. However, despite many years of experimental efforts, none of these gluonic

states have been established unambiguously, cf. Ref. [2]. Possible reasons for this include the

mixing between glueballs and ”conventional” mesons, the lack of solid information on the glue-

ball production mechanism, and the lack of knowledge about glueball decay properties. There-

fore, study of glueballs is one the most interesting and challenging problems intensively studied

by theorists and experimentalists; a bulk of the running and projected experiments of the re-

search centers, Belle (Japan), BESIII (Beijing, China), LHC (CERN), GlueX (JLAB,USA),

NICA (Dubna, Russia), HIAF (China), FAIR (GSI, Germany) etc., include in the research

programms comprehensive investigations of possible manifestations of glueballs. Theoretically,

there are several approaches in studying glueballs. One can mention phenomenological models

mimicking certain nonperturbative QCD aspects, such as the flux tube model [3, 4], constituent

models [1, 5–9], holographic approaches [10–12], approaches based on QCD Sum Rules [13–17].

”Experimental” studies are performed within the Lattice QCD (LQCD) approaches [18–21]

(for a more detailed review see Ref. [22] and references therein). It should be noted that these

theoretical approaches provide values of glueball masses which can differ from each other as

much as 1 GeV and even more. No single approach has consistently reproduced lattice gauge

calculations, cf. Refs. [18–21]. One can assert only that the consensus of the past two decades

from lattice gauge theory and theoretical predictions is that the lightest glueball is a scalar

(JPC = 0++) state in the 1.5-1.8 GeV mass range, accompanied by a tensor (JPC = 2++) state

above 2 GeV.

Another interesting problem is the glueball-meson mixing in the lowest-lying scalar mesons.

The question whether the lowest-lying scalar mesons are of a pure quarconium nature, or there

are mixing phenomena of glueball states [23] remains still open. To solve these problems one

needs to develop models within which it becomes possible to investigate, on a common footing,

the glueball masses, glueball wave functions, decay modes and constants, etc. Such approaches

can be based on the combined Dyson-Schwinger (DS) and Bethe-Salpeter (BS) formalisms, cf.

Refs. [24, 25]. It is worth mentioning that theoretically such models, with direct calculations
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of the corresponding diagrams, encounter difficulties in solving the DS equation, related to

divergencies of loop integrals and to the theoretical constrains on gluon-ghost and gluon-gluon

vertices, such as Slavnov-Taylor identities. These circumstances result in rather cumbersome

expressions for the DS equation, hindering straightforward numerical calculations.

In the present paper we suggest an approach, similar to the rainbow Dyson-Schwinger-

Bethe-Salpeter model for quark propagators [26], to solve the DS equation for gluon and ghost

propagator with effective rainbow kernels. The formidable success of the rainbow approximation

for quarks in describing mesons as quark-antiquark bound states within the framework of the

BS equation with momentum dependent quark mass functions, determined directly by the DS

equation, such as meson masses [26–30], electromagnetic properties of pseudoscalar mesons [31–

34]) and other observables [35–39], persuades us that the rainbow-like approximation may

be successfully applied to gluons, ghosts and glueballs as well. The key property of such a

framework is the self-consistency of the treatment of the quark and gluon propagators in both,

DS and BS equations by employing in both cases the same approximate interaction kernel.

Recall that the rainbow model for quarks consists of a replacement of the product of the

coupling g dressed gluon propagator Dab
µν(k

2) and dressed quark-gluon vertex Γν by an effective

running coupling and by the free vertex Γ0
ν [26, 37],

g2

4π
Dab

µν(k
2)Γν →

Z(k2)

k2
Dfree

µν Γ(0)
ν , (1)

where a, b are color indices and Z(k2) is the effective rainbow running coupling. The explicit

form of Z(k2) has been induced by the fact that, in the Landau gauge, it is proportional to the

nonperturbative running coupling αs(k
2) which, in turn, is determined by the gluon Z(k2) and

ghost G(k2) dressing functions [40–48] as

αs(k
2) =

g2

4π
G2(k2, µ2)Z(k2, µ2), (2)

where µ2 is a renormalization scale parameter at k2 = µ2 whith G2(k2, k2)Z(k2, k2) = 1. In

what follows, the parameter µ2 is suppressed in our notation and a simple notation G(k2) and

Z(k2) is used for the dressing functions.

In principle, if one were able to solve the DS equation, the approach would not depend on

any additional parameters. However, due to known technical problems, one restricts oneself to

calculations of the few first terms of the perturbative series, usually within one-loop approxi-

mation, thus arriving at the truncated Dyson-Schwinger (tDS) and truncated Bethe-Salpeter
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(tBS) equations, known as the rainbow-ladder approximation. The merit of such an approach

is that, once the effective parameters are fixed, the whole spectrum of the tBS bound states is

supposed to be described without additional approximations.

In the present paper we investigate the prerequisites to the interaction kernel of the com-

bined Dyson-Schwinger and Bethe-Salpeter formalisms to be used in subsequent calculations

to describe the glueball mass spectrum. Note that within such an approach it becomes possible

to theoretically investigate not only the mass spectrum of glueballs, but also different processes

of their decay, which are directly connected with fundamental QCD problems (e.g., U(1) axial

anomaly, transition form factors etc.) and with the challenging problem of changes of hadron

matter characteristics at finite temperatures and densities. All these circumstances require

an adequate theoretical foundation to describe the glueball mass spectrum and their covariant

wave functions (i.e. the tBS partial amplitudes) needed in calculations of the relevant Feynman

diagrams and observables.

Due to the momentum dependence of the gluon and ghost dressing functions, the tBS equa-

tion requires an analytical continuation of the gluon and ghost propagators in the complex plane

of Euclidean momenta which can be achieved either by corresponding numerical continuations

of the solution obtained along the positive real axis or by solving directly the DS equation in

the complex domain of validity of the equation itself. An analysis of the analytical properties

of the propagators is of crucial importance, since if they are singular functions, the numerical

calculations of corresponding integrals can be essentially hampered or even impossible in such a

case. We perform a detailed analysis of the tDS equations solution by combining the Rouché’s

and Cauchy’s theorems. Since the main goal of our analysis is the subsequent use of the gluon

and ghost propagator functions evaluated at such complex momenta for which they are needed

in the tBS equation, we focus our attention on this region of Euclidean space.

Our paper is organized as follows. In Sec. II, Subsecs. IIA and IIB, we briefly discuss the

tBS and tDS equations, relevant to describe a glueball as two-gluon bound states. The rainbow

approximation for the tDS equation kernel is introduced in Subsec. IIC, and the numerical solu-

tions of the tDS together with comparison with lattice QCD data are presented in Subsec. IID.

Section III is entirely dedicated to the solution of the tDS equation for complex Euclidean

momenta, where the solutions are sought. The analytical structure of the gluon and ghost

propagators in complex Euclidean space is discussed in Subsec. IIIA. It is found that the ghost

dressing function is analytical in the right hemisphere and contains pole-like singularities in the
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left hemisphere of complex momenta squared, k2, while the gluon dressing function contains

singularities in the entire Euclidean space. A thorough investigation of the pole structure of

propagators is presented in Subsec. III B. By combining Rouché’s and Cauchy’s theorems, the

position of first few poles and the corresponding residues of the dressing functions are found

with a good accuracy. This information is useful in elaborating adequate algorithms for numer-

ically solving the tBS equations in presence of pole-like singularities. Conclusions and summary

are collected in Sec. IV. In the Appendix A, the behaviour of the nonperturbative running cou-

pling is discussed in connection with the choice of the rainbow kernels and a parametrization

of the lattice QCD data in form of a sum of Gaussian terms is presented.

II. BETHE-SALPETER AND DYSON-SCHWINGER EQUATIONS

As mentioned above, our ultimate goal is to elaborate an effective model, based on the

Dyson-Schwinger-Bethe-Salpeter approach, to describe a glueball made from two gluons that are

solutions of the tDS equation for the gluon propagator. As in the rainbow approach [26, 37, 38],

a central requirement of our model is the self-consistent treatment of the gluon propagator in

both, tBS and tDS equations. In the following we work along this strategy, i.e. we elaborate

an effective model within which (i) the solution of the gluon and ghost propagators, consistent

with the lattice data, is sought along the positive real axis of the momentum, (ii) then the real

solution is generalized for complex momenta, relevant to the domain in Euclidean space where

the tBS is defined, and (iii) an analysis, regarding the analytical properties of the complex

solution, can be performed.

A. Bethe-Salpeter equation

We are working in Landau gauge and, consequently, we need to take into account the contri-

bution of the Faddeev-Popov ghosts. Thus, one needs a generalization of the usual BS scheme

that allows for mixing of bound states of different fields. In general, the completye system of

BS equations includes also the contribution of quark-antiquark bound states, i.e. involves also

glueball-meson mixing in the BS calculations. The problem of how large can be these mixing

effects is not yet clearly settled. However, there are some indications, based on lattice calcula-

tions of the pure glue pseudoscalar glueball [49], that at least in the pseudoscalar channel the

glueball-meson mixing can be neglected, see also the discussion in Ref. [24]. In what follows
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we will be interested in bound states for a pure gauge theory, that is neglecting quarks. The

corresponding system of coupled tBS equations is presented diagrammatically in Fig. 1. The

explicit form of the corresponding equations can be found, e.g. in Ref. [25].

k2, ν

k1, µ

k2

k1, µ

k2, ν

k1

k1, µ

k2, ν

k1

k2

k1

k2

P

P

−2

=

=

+

FIG. 1: Diagrammatic representation of the Bethe-Salpeter equations for gluon (wiggly lines) and

ghost (dashed lines) bound states. The irreducible one-particle vertices and the full propagators are

represented by filled blobs.

To solve this system numerically, we need reliable information on the nonperturbative prop-

agators of ghosts and gluons and their analytical properties in complex Euclidean momentum

space. This can be achieved, e.g. by solving the tDS coupled equations for the gluon and

ghost propagators along the real axis of the momentum k and then to use the tDS equation at

complex external momenta k in Euclidean space.

B. Dyson-Schwinger equation

The coupled equations of the quark, ghost and gluon propagators, and the corresponding

vertex functions are often considered as integral formulation being equivalent to full QCD.While

there are attempts to solve this coupled set of DS equations by sutable numerical procedures,

for certain purposes some approximations and truncations [28, 39, 43] of the exact interactions

are appropriate. This leads to the truncated Dyson-Schwinger system of coupled equations for

the gluon, ghost and quark propagators as depicted in Fig. 2. As mentioned above, accounting

for the quark loop diagrams in the full tDS equation results in a gluon-quark mixing in the

tDS equation and in a glueball-meson mixing in tBS. In most calculations such a mixing is

neglected in the tBS equations. For the sake of consistency and in order to reduce the number

of phenomenological parameters of the approach, the quark loops in our approach are neglected
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FIG. 2: Diagrammatic representation of the Dyson-Schwinger equations for gluon, ghost and quark

propagator. The internal wiggly, dashed and solid lines denote the full propagators represented by

filled blobs. The irreducible one-particle vertices are denoted by open circles. In the gluon Dyson-

Schwinger equation terms with four-gluon vertices have been dismissed.

as well. This can be justified by the observation [39, 50, 51] that in the tDS equation the

unquenched effects are rather small in the dynamical quark masses. As for the gluon propagator,

such effects are seen only in the neighbourhood of the gluon bump, k ∼ 0.85 − 1.0GeV/c,

where the screening effect from the creation of quark-antiquark pairs from the vacuum slightly

decreases the value of the gluon dressing around its maximum. In our approach this effect is

implicitly taken into account by adjusting the phenomenological parameters of the model to

the full, unquenched lattice calculations [52, 53].

In the Landau gauge the gluon propagator Dab
µν(k) and ghost propagatorDab

G (k) are expressed

via the dressing functions Z(k) and G(k) as

Dab
µν(k) = −iδabDµν = −iδab

Z(k)

k2
tµν(k), (3)

Dab
G (k) = iδabDG(k) = iδab

G(k)

k2
, (4)

where tµν(k) is the transverse projection operator, tµν(k) = gµν−
kµkν
k2

. Then the corresponding
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dressing functions obey the tDS equation (cf. Fig. 2).

G−1(k2) = Z̃3 +
3

4π3k2
i

∫
d4q

[
g2

4π
Γ(0)
µ (q)Dµν(p2)Γν(k, q, p)

]
G(q2)

q2
, (5)

Z−1(k2) = Z3 +
i

8π3k2

∫
d4q

Z(q2)

q2

[
g2

4π
Γ(0)
µρα(k, p,−q)Dρσ(p2)Γβσν(q,−p,−k)

]
tαβ(q)tµν(k)−

−
i

4π3k2

∫
d4q

G(q)

q2
Γ(0)
µ (q)

[
g2

4π
DG(p

2)Γν(p)

]
tµν(k), (6)

where p = q−k and Z3 and Z̃3 are the gluon and ghost renormalization constants, respectively.

To solve this system of equations one needs information about the three-gluon vertex Γβσν , the

gluon-ghost vertex Γν , the coupling g and the propagators Dab
µν and Dab

G . The simplest approach

consists in a replacement of the full dressed three-gluon and ghost-gluon vertices by their bare

values, known as the Mandelstam approximation [54–56] and the y-max approximation [57].

In order to simplify the angular integration, in the Mandelstam approximation the gluon-ghost

coupling is neglected. Then the resulting solution exhibits a rather singular gluon propagator

at the origin. In Ref. [57] the coupling of the gluon to the ghost was not neglected, however

additional simplifications for Z(k2) and G(k2) have been introduced, again to facilitate the

angular integrations and the analytical and numerical analysis of the equations. From these

calculations it has been concluded that it is not the gluon, but rather the ghost propagator that

is highly singular in the deep infrared limit. A more rigorous analysis of the tDS equation has

been presented in a series of publictions (see, e.g. Refs. [42, 44, 58, 59] and references therein),

where much attention has been focused on a detailed investigation of the gluon-gluon and ghost-

gluon vertices and on the implementation of the Slavnov-Taylor identities for these vertices.

With some additional approximations the infrared behavior of gluon and ghost propagators has

been obtained analytically and compared with the available lattice calculations. In Ref. [60] a

thorough analysis of the relevance of the Slavnov-Taylor identities, renormalization procedures

and divergences in the tDS equation is presented in some details. Comparison of the numerical

calculations for the gluon and ghost dressing functions and running coupling αs with lattice data

have been presented as well. Similar calculations together with a comparison with lattice data

are presented also in Ref. [48] (for a more detailed review see Ref. [61] and references therein

quoted). It should be noted that the above quted approaches result in rather cumbersome

expressions for the system of tDS equations which, consequently, cause difficulties in finding

the numerical solutions. Yet, a direct generalization to complex Euclidean space becomes

problematic due to numerical problems at large |k2| of the complex momentum.
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C. Rainbow approximation for ghosts and gluons

In the present paper we suggest an approximation for the interaction kernels in Eqs. (5)

and (6), similar to the rainbow model [26, 37, 38], Eq. (1), which allows for an analytical

angular integration in the gluon and ghost loops and facilitates further numerical calculations

for the complex momenta. The results of the lattice calculations of the running coupling αs(k
2),

Eq. (2), can serve as a guideline in choosing the explicit form of these kernels. The gist of our

approximations is as follows:
[
g2

4π
Γ(0)
µ (q)Dµν(p2)Γν(k, q, p)

]
= Γ(0)

µ (q)tµν(p)Γ(0)
ν (k)F eff

1 (p2), (7)

[
g2

4π
Γ(0)
µρα(k, p,−q)Dρσ(p2)Γβσν(q,−p,−k)

]
= AΓ(0)

µρα(k, p,−q)tρσ(p)Γ
(0)
βσν(q,−p,−k)F eff

1 (p2), (8)

[
g2

4π
DG(p

2)Γν(p)

]
= Γ(0)

ν (p)F eff
2 (p2), (9)

where A ∼ 1/3 is a phenomenological parameter which takes into account the difference in

normalizations of the gluon and ghost vertices. The effective form-factors F eff
1,2 (p2) are propor-

tional to the infra-red part of the running coupling αs(k
2), see Eq. (2). The free gluon-gluon

vertices Γ
(0)
µρα and Γ

(0)
βσν as well as the ghost-gluon vertices Γ

(0)
µ (q) and Γ

(0)
ν (q) read in the Landau

gauge

Γ(0)
µρα(k, p,−q) = 2kαgµρ + 2qµgρα − 2kρgαµ, (10)

Γ
(0)
βσν(q,−p,−k) = 2qνgβσ + 2kβgνσ − 2kσgβν , (11)

Γ(0)
µ (q) = −qµ; Γ(0)

ν (p) = −pν = −(q − k)ν = −qν . (12)

The rainbow approximation for the propagators in Minkowski space is obtained by inserting

Eqs. (7)-(11) in to Eqs. (5) and (6) and by contracting the Lorenz indices. Further calculations

are performed in Euclidean space. For this, we perform the Wick rotation of the loop integrals

and specify explicitly the form of F eff
1,2 (p2). Since we envisage the further use of the tDS

equation solution in the tBS equation for bound states, where the main contribution comes

from the IR region, the perturbative ultra-violet (UV) parts of F eff
1,2 are neglected. Such

an approximation corresponds rather to the AWW kernel [38] than to the full Maris-Tandy

model [26]. As in the case of the quark rainbow approximation [26, 36, 37, 43, 62], the explicit

form of F eff
1,2 (p2) is inspired by the fact that the r.h.s. of Eqs. (7)-(9) are proportional to

the running coupling (2). The available QCD lattice results [52] show that, in the deep IR

9



region, αs increases as k2 increases and reaches its maximum value at k ∼ 0.8 − 0.9 GeV/c;

then it decreases as k2 increases and acquires the perturbative behaviour in the UV region. In

Ref. [52] an interpolation formula consisting of three terms (monopole, dipole and quadrupole,

multiplied by k2) has been proposed to fit the data. However, we prefer an interpolation formula

which, in our subsequent calculations, allows to perform angular integrations analytically and

assures a good convergence of the loop integrals. For this we use a Gaussian interpolation

formula and refitted the lattice data [52] in the IR region with several Gaussian terms and

achieved a good agreement with data (see Appendix). This stimulate us to use for F eff
1,2 (p2) the

same interpolation formulae. We found that one Gaussian term for F eff
2 (p2) and two terms for

F eff
1 (p2) are quite sufficient to obtain a reliable solution of Eqs. (5)-(6):

F eff
1 (p2) = D1

p2

ω6
1

exp
(
−p2/ω2

1

)
+D2

p2

ω6
2

exp
(
−p2/ω2

2

)
, (13)

F eff
2 (p2) = D3

p2

ω6
3

exp
(
−p2/ω2

3

)
.. (14)

With such a choice of the effective interaction, the angular integration can be carried out

analytically leaving one with a system of one-dimensional integral equations in Euclidean space,

G−1(k2) = Z̃3 −
9

8π

2∑

i=1

Di

k2ω2
i

∫
G(q2)I

(s)
2

(
2qk

ω2
i

)
e
−

(q−k)2

ω2
i dq2, (15)

Z−1(k) = Z3 −
3A

8πk4

2∑

i=1

∫
dq2

Di

ω2
i q

2
Z(q)e

−
(q−k)2

ω2
i

{
I
(s)
1

(
2kq

ω2
i

)[
− 12k3q − 12kq3 − 5krω2

i

]

+ I
(s)
2

(
2kq

ω2
i

)[
6k4 + 6q4 + 10ω4

i + 18k2q2 + 24k2ω2
i + 24q2ω2

i

]}

+
3D3

8πk4

∫
dq2G(q)e

−
(q−k)2

ω2
3 I

(s)
2

(
2kq

ω2
3

)
, (16)

where I
(s)
n (x), with x ≡

2kq

ω2
, are the scaled (as emphasized by the label ”(s)”) modified Bessel

functions of the first kind defined as I
(s)
n (x) ≡ exp (−x) In(x).

D. Numerical solution along the real axis

The resulting system of one-dimensional integral equations (15) and (16) we solve numeri-

cally by an iteration procedure. For this we discretize the loop integrals by using the Gaussian

integration formula, so that the system of integral equations reduces to a system of algebraic
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equations. Independent parameters are ωi and Di, i = 1 · · ·3, see Eqs. (13), (14). We find that

the iteration procedure converges rather fast and practically does not depend on the choice of

the trial start functions. The phenomenological parameters ωi and Di have been adjusted in

such a way as to reproduce as close as possible the lattice QCD results [52, 53].

Few remarks are in order here. First, the deep infrared behaviour of the ghost and gluon

propagators requires a separate consideration. It has been established that the gluon dressing

Z(k2) vanishes at the origin, while the ghost G(k2) is highly singular, see e.g. Refs. [40, 44, 48,

58]. In the deep IR region, k ≤ ǫ the gluon and ghost dressing are predicted to behave as

Z(k2 ≤ ǫ2) ∼ (k2)2κ; G(k2 ≤ ǫ2) ∼ (k2)−κ, (17)

where κ varies in the interval κ ≃ 0.45− 0.92 and ǫ ∼ 0.1− 1.0 MeV/c. In this region, we force

”by hand” the ghost and gluon propagator to follow Eq. (17), i.e. they do not change during

the iteration procedure. In other words, the iteration starts at k > ǫ. We choose κ = 0.45

and ǫ = 0.1 MeV. Since ǫ is extremely small, the constrains in Eq. (17) do not affect the

loop integrations and they are not substantial at all in our further calculations. Second, the

Gaussian form of the interaction kernels (13)-(14) assures a good convergence of the iteration

procedure. In principle, it suffices to employ a relatively small mesh (48− 64 Gaussian nodes)

to find a stable solution of Eqs. (15)-(16). However, in the subsequent calculations of the

propagators in complex plane, the tDS equation solution along the real axis q is used for

complex values of k2 for which the integrands become highly oscillating functions at large

values of Im k2. To assure a good accuracy of numerical calculations in this case one needs

to have the solution of the tDS equation along the real axis in a sufficiently dense Gaussian

mesh. For this sake, the whole interval q = [0..qmax] is divided in to three parts: (i) [0 ≤ q ≤ ǫ]

with 16 Gaussian nodes. In this interval the ghost and gluon dressing functions are taken in

accordance with Eqs. (17), (ii) [ǫ ≤ q ≤ 1.1 GeV/c] is the interval around the maximum of

the gluon propagator. Here the Gaussian mesh is taken to consist on 156 nodes, (iii) in the

remaining interval [1.1 GeV/c ≤ q ≤ qmax] the Gaussian mesh with 120-156 nodes is used. The

maximum value qmax is chosen so that the integrands (15)-(16) are independent of qmax. In

our case, the value qmax = 5 GeV/c is sufficient to assure a good accuracy of the solution. By

iterating Eqs. (15)-(16), we fit the parameters Di and ωi of the kernels (13)-(14) to obtain a

reliable agreement with the lattice QCD results [52, 53]. The renormalization constants Z̃3

and Z3 are defined at the renormalization point µ = 2.56 GeV and µ = 3.0 GeV respectively.

With the set of parameters D1 = 1.128 GeV2/c2, D2 = 0.314 GeV2/c2, D3 = 95 GeV2/c2,
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ω1 = 0.7 GeV/c, ω2 = 2.16 GeV/c and ω3 = 0.55 GeV/c the renormalization constants are

found to be Z̃3 = 1.065 and Z3 = 1.05. The corresponding solution for the ghost and gluon

propagators are presented in Fig. 3. It is seen that both, ghost and gluon dressings are smooth,

0 1 2 3 4 5 6
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FIG. 3: (Color online) Solution of the tDS equations (15)-(16) (solid lines) in comparison with lattice

calculations [52, 53] (filled circles). Left panel: ghost dressing function, right panel: gluon dressing

function.

positively defined functions not containing any singularity, except for the ghost dressing, which

according to Eq. (17), is singular at the origin. One can conclude that, with the chosen set

of parameters, the solution of the tDS equation satisfactorily describes the lattice data. This

encourages us to use the tDS equation along the real q to find solutions for complex k, treating

it as external parameter in the tDS equation.

III. SOLUTIONS OF THE tDS EQUATION IN COMPLEX PLANE

The solution of the tDS equation along the positive real axis of momenta is generalized to

complex values of k2, needed to solve the tBS equation for bound states. The tBS equation

is defined in a restricted complex domain of Euclidean space, which is determined by the

propagators of the constituents. Usually this momentum region is displayed as the dependence

of the imaginary part of the constituent gluon momentum squared, Im k2, on its real part,

Re k2, determined by the tBS equation. In terms of the relative momentum krel of the two

dressed gluons residing in a glueball, the corresponding dependence is

k2 = −
M2

gg

4
+ k2

rel ± iMggkrel (18)
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determining in the Euclidean complex momentum plane a parabola Im k2 =

± Mgg

√
Re k2 +

M2
gg

4
with vertex at Im k2 = 0 at Re k2 = −M2

gg/4 depending on the glueball

mass Mgg. The symmetry axis is the Re k2 axis, i.e. the parabola extends to Re k2 → ∞.

It should be noted that, for the quark-antiquark bound states the use of the complex rainbow

solution in to the tBS equation provides an amazingly good description of many properties of

light mesons (masses, widths, decay rates etc., cf. [28, 29, 31–33, 35, 63, 64]). However, for

heavier mesons the quark propagators possess pole-like singularities [65, 66] which hamper the

numerical procedure in solving the tBS equation. An analogous situation can appear for the

complex solution of the gluon and ghost propagators. Hence, a more detailed investigation

of the gluon dressing functions in the complex Euclidean plane is required. There are some

considerations, based on studies of the gauge fixing problem, according to which the gluon

propagator contains complex conjugate poles in the negative half-plane of squared complex

momenta k2 [67–69]. The knowledge of the nature of singularities and their exact location in

the complex plane is of a great importance since it will allow one to develop effective algo-

rithms adequate for numerical calculations. For instance, if one determines exactly the domain

of analyticity of the propagator functions, one can take advantage of the fact that any ana-

lytical function can always be approximated by rational complex functions [70]; then, one can

parametrize the integrand in the tBS equation by simple functions which allow ones to carry

out some integrations analytically.

There are several possible procedures (cf. Refs. [71, 72]) of how to obtain a complex solu-

tion of the tDS equations once the equation has been solved for real and spacelike Euclidean

momenta. First, one can use the so-called shell method. This method acknowledges the fact

that for fixed external momentum k2 the relative momentum (p− q)2 samples only a parabolic

domain in the complex momentum plane. Therefore, one starts with a sample of external

momenta on the boundary of a typical domain very close to the real positive momentum axis.

The tDS equations are then solved on this boundary, while the interior points are obtained by

interpolation. In the next step, a slightly larger parabolic domain is used, with points in the

interior given by the previous solution. This way one extends the solution of the tDS equations

step by step further away from the Euclidean result into the whole complex plane. A short-

coming of the method is that there is an accumulation of numerical errors at each step of the

calculations.

A second option is to deform the loop integration path itself away from the real positive k2

13



axis [65, 73]. This can be done by deforming the integration contour and solving the integral

equation along this new contour. For complex momenta k, one has to solve the integral equation

along a deformed contour in the complex plane. In practice, one changes the integration contour

by rotating it in the complex plane, multiplying both the internal and the external variable by

a phase factor eiφ, so one gets the complex variables k = |k|eiφ and q = |q|eiφ and solves the

tDS equation along the rays φ = const. This method works quite well in the first quadrant,

φ ≤ π/2, but fails at φ > π/2, see e.g. Ref. [65, 66]. This is because along the rays φ = const

all the values of |k|, from |k| = 0 to |k| → ∞ contribute to the tDS equation, even if one

needs the solution only in a restricted area of the parabola Im k2 < 0. Consequently, numerical

instabilities are inevitable at φ > π/2.

The third method, which we use in this work, consists in finding a solution to the integral

equations in a straightforward way from the tDS equation along the real q on a complex grid

for the external momentum k inside and in the neighbourhood of the parabola (18). As in the

previous case, numerical instabilities can be caused by oscillations of the exponent e−(k−q)2/ω2

and of the Bessel functions I
(s)
1,2(2kq/ω

2) at large |k2|. However, one can get rid of such a

numerical problem by taking into account that parabola (18) restricts only a small portion of

the complex plane at Re k2 < 0, where the numerical problems are minimized. For positive

values of Re k2 > 0, where |k2| can be large, the tBS wave function of a glueball is expected

to decrease rapidly with increasing argument krel, and at kmax
rel ∼ 3 − 4 GeV/c to become

negligibly small. So, one can solve the complex tDS equation at not too large |k2|, where

a reliable calculation of the loop integrals in Eqs. (15)-(16) is still possible. Then one takes

advantage of the fact that, at larger values of krel, the highly oscillating integrals in (15)-(16) are

negligible small or even vanish at krel → ∞, in accordance with the Riemann-Lebesgue lemma.

Consequently, such integrals can be safely neglected. This means that it suffices to investigate

the behaviour of the gluon and ghost propagators for a parabola with kmax
rel ∼ 3− 4 GeV/c. In

what follows we analyze the analytical properties of the dressing functions Z(k) and G(k) in

the complex domain of parabola from Rek2 corresponding to glueball masses Mgg ≤ 5GeV/c2

up to Re k2 corresponding to kmax
rel ∼ 3.5 GeV/c.
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A. Analytical structure of the gluon and ghost propagators in complex Euclidean

space

To determine the analytical properties of Z(k) and G(k) we use a combined method [65, 66]

based on calculations of the Cauchy and Rushe integrals. In a closed domain, the Cauchy

integral of an analytical function f(z) vanishes. Contrarily, the non-zero Cauchy integral un-

doubtedly indicates that f(z) is singular inside the domain. In this case, to locate and inves-

tigate the nature of the singularities one computes the Cauchy integral of the inverse function

g(z) = 1/f(z). The vanishing Cauchy integral of the inverse function means that g(z) is ana-

lytical in the considered domain. Consequently, one concludes that the singularities of f(z) can

be solely of the pole-type. Evidently, the positions of such poles coincide with the positions of

the zeros of g. The zeros of g can be found by the Rushe theorem 1, according to which the

Rouché integral must be an integer, exactly equal to the number of zeros inside the domain.

Our calculations show that both, Cauchy integral of G(k2) and Cauchy integral of Z(k2), are

different from zero, i.e. G(k2) and Z(k2) are singular inside the parabola. Then, the further

strategy of finding these singularities is as follows:

(i) Consider consecutively the dressing functions G(k2) and Z(k2). Choose a contour inside

the parabola and compute the Cauchy integral of G(k2) (or Z(k2)). If the integral is zero, we

choose another contour nearby the previous one and repeat the calculations until a non-zero

integral is encountered. Check whether the singularities here are of pole-type, i.e. compute the

Cauchy integral of the inverse, G(k2)−1 (or Z(k2)−1), which must be zero if singularities are

isolated poles.

(ii) Compute the Rouché integral of G(k2)−1 (or Z(k2)−1). Since the inverse function has been

found to be analytical, such an integral, according to the Rouché’s theorem, gives exactly the

number of zeros inside the contour.

(iii) Squeeze the contour and repeat items (i)-(ii), keeping the zero inside, until an isolated zero

of G(k2)−1 (or Z(k2)−1) is located with a desired accuracy. The corresponding integrals around

1 Rouché integral of an analytical complex function g(z) on a closed contour γ is defined by 1
2πi

∮
γ

g′(z)
g(z) dz.
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such isolated poles k2
0i read as

1

2πi

∮

γ

[
G(k2)

(
Z(k2)

)]
dk2 =

∑

i

res
[
G(k2

0i)
(
Z(k2

0i)
)]

, (19)

1

2πi

∮

γ

G−1(k2)
(
Z−1(k2)

)
dk2 = 0. (20)

1

2πi

∮

γ

[G−1(k2) (Z−1(k2))]
′

k2

G−1(k2) (Z−1(k2))
dk2 = NG(Z), (21)

where NG(Z) is the number of poles in the domain enclosed by the contour γ (an effective

algorithm for numerical evaluations of Cauchy-like integrals can be found, e.g. in Ref. [74]).

In such a way we find the poles of G(k2) and Z(k2) together with their residues relevant for

further calculations. In subsequent numerical calculations of integrals, involving functions with

pole-like singularities, one can use the following theorem: if a complex function f(z) possesses

isolated poles, then it can be represented in the form

f(z) = f̃(z) +
∑

i

res[f(z0i)]

z − z0i
, (22)

where f̃(z) is analytical within the considered domain and, consequently, can be computed as

f̃(z) =
1

2πi

∮

γ

f̃(ξ)

ξ − z
dξ =

1

2πi

∮

γ

f(ξ)

ξ − z
dξ. (23)

Note that a good numerical test of the performed calculations is the following procedure.

Enclose a few poles by a larger contour and ensure that the Cauchy integral of G(k2) or Z(k2)

is different from zero and that the Rouché integral of the inverse, G(k2)−1 or Z(k2)−1, is an

integer equal to the number of enclosed poles. Note that the Cauchy integral of G(k2) or Z(k2)

in this case must coincide with the sum of individual residues of the isolated poles.

B. Pole structure of the dressing functions

Results of our calculations are presented in Table I and Fig. 4. It is seen that for Mgg <

5GeV/c2 all singularities of the gluon dressing Z(k2) are pairwise complex conjugated. There

are two complex conjugated poles at Re k2 > 0 which means that a glueball bound state

contains at least two poles, regardless the glueball mass Mgg, except for very low values of

Mgg < 0.5 GeV, see Fig. 4. Contrarily, all singularities of the ghosts are located in the region

Re k2 < 0 with one real pole at Re k2 ≈ −0.69 GeV2/c2.
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TABLE I: The pole structure of the gluon, Z(k2), and ghost, G(k2), dressing functions. The pole

positions (Re k20 , Im k20) and the corresponding residues are in units of (GeV/c)2. Only the first, four

self-conjugated poles on k2 close to the parabolas (18), see also Fig. 4, are presented.

Gluons 1 2 3 4

k20i (-3.52, ± 6.97) (-1.975, ± 2.05) (-0.605,± 6.02) (0.11,± 0.61)

res[Z(k20i ] (-0.0536, ∓ 0.01755) (0.051,∓ 0.081) (0.79, ∓ 0.079) (0.589,± 0.0791)

Ghosts 1 2 3 4

k20i (-2.47, ± 7.37) (-1.915,± 4.15) (-0.687, 0.0) –

res[G(k20i ] (0.4667 ± 0.036) (0.494, ± 0.082) (0.956,∓ 0.0) –

Results of calculations by Eqs. (19)-(21) provide all the necessary ingredients for Eqs. (22)-

(23,) allowing to establish easily reliable algorithms for solving numerically the tBS equation

even in the presence of pole-like singularities.

With these calculations our analysis of the pole structure is completed. Let us recall the

prepositions: (i) The tDS equation is solved in an approach similar to the rainbow approxima-

tion with IR part only. The phenomenological parameters have been adjusted to lattice QCD

results. (ii) The tDS equation, restricted to the momentum range relevant for gg bound states,

Mgg < 5GeV/c2.

IV. SUMMARY

We analyse analytical properties of solutions of the truncated Dyson-Schwinger equation for

the ghost and gluon propagators in the Euclidean complex momentum domain which is deter-

mined by the truncated Bethe-Salpeter equation for two-gluon bound states. Our approach is

based on an approximation, similar to the rainbow approach for quarks, with effective param-

eters adjusted in accordance with the available lattice QCD data. It is found that, within the

suggested approach with only the infrared terms in the combined effective vertex-gluon dressing

and vertex-ghost dressing kernels, the solutions Z(k2) and G(k2) are singular in the whole con-

sidered domain for Mgg < 5GeV/c2, with singularities as isolated pairwise complex conjugated

poles. The exact position of the poles and the corresponding residues of the propagators can
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FIG. 4: (Color online) Positions of few first poles of the gluon Z(k2), full stars, and ghost, G(k2), open

stars, dressing function in the complex k2 plane, labeled in correspondence to the Table I. The relevant

sections of the parabola (18) corresponding to the glueball bound-state mass Mgg are presented for

Mgg = 0.5, 1.5, 2, 3 and 4 GeV, from right to left. The tendency is that, with increasing glueball

bound-state mass Mgg, more and more poles are located in the physical area, relevant to the tBS

equation.

be found by applying Rouché theorem and computing the Cauchy integrals.

The position of the few first poles and the corresponding residues are found with good

accuracy to be used in further calculations based on the Bethe-Salpeter equation. It is also

found that, with only the effective infrared term in the parametrization of the combined vertex-

gluon and vertex-ghost kernels, the ghost dressing function exhibits a pole on the negative real

axis. The performed analysis is aimed at elaborating adequate numerical algorithms to solve the

truncated Bethe-Salpeter equation in presence of singularities and to investigate the properties

of glueballs, e.g. scalar and pseudoscalar glueball states.
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Appendix A

The model interaction kernels in the rainbow approximations is inspired essentially by the

behaviour of the running coupling (2) in the IR region, which now is available from the lattice

QCD data [52]. In order to facilitate the calculations, the explicit expressions for the kernels

are taken in form of Gaussian terms. Accordingly, it is preferably to have the parametrization

of the running coupling also in such a form. Usually, in original publications of the lattice QCD

results one employs parametrizations to fit data as a sum of several multipole terms, cf. [52, 53].

For our purpose we have to refit the data within another, Gaussian-like formula. Here below

we present a fit for the running coupling (2) in form of a sum of several Gaussian terms with

fitting parameters found from a Levenberg minimization procedure. Such a parametrization

serves as a guideline in choosing the form of the effective kernels (13)-(14).

αs(p
2) = p2

5∑

i=1

Aie
−aip

2

. (A1)

The minimization procedure converged to a set of parameters listed in Table II, which provide

a fit of lattice QCD data presented in Fig. 5.

TABLE II: The parameters Ai and ai (in [(GeV/c)−2]) for the effective parametrizations, Eq. (A1),

of the lattice QCD results [52].

1 2 3 4 5

Ai 4.546 0.840 0.146 2.472 6.87

ai 1.804 0.636 0.196 3.45 4.51
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