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Lesson 02: Portable Heterogeneous Parallel Programming

alpaka enables portability!

● Idea: Write algorithms once…
● … independently of target architecture
● … independently of available programming models

● Decision on target platform made during compilation 
● Choosing another platform just requires another compilation pass

● alpaka defines an abstract programming model

● alpaka utilizes C++14 to support many architectures
● CUDA, HIP, OpenMP, TBB, …
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Lesson 02: Portable Heterogeneous Parallel Programming

alpaka enables full utilization of heterogeneous systems!

● Algorithms are generally independent of chosen target architecture
auto const taskCpu = alpaka::kernel::createTaskKernel<AccCpu>(workDivCpu, kernel, …);      
auto const taskGpu = alpaka::kernel::createTaskKernel<AccGpu>(workDivGpu, kernel, …);     

● Optimization for specific architecture is still possible
template <typename TAcc>                                      // general case             
void someComputationIntensiveFunction(TAcc const & acc) { … };                             
                                                                                          
template <>                                                   // specialization for AccGpu
void someComputationIntensiveFunction<AccGpu>(AccGpu const & acc) { … };                   
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Lesson 02: Portable Heterogeneous Parallel Programming

How parallelism is achieved, Part I: The grid, a digital frontier

● alpaka is ideal for data-parallel algorithms
 → execute the same algorithm on different data elements

● alpaka kernel: sequence of commands forming the algorithm on a per-element level

● alpaka thread: execution of a kernel for a single data element

● threads are executed in parallel and are independent of each other

● alpaka grid: n-dimensional grid of all threads executing a specific kernel
● each thread is assigned a unique index on the grid
● threads on the grid are able to communicate through high-latency global memory
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Lesson 02: Portable Heterogeneous Parallel Programming

How parallelism is achieved, Part II: Blocks on the grid

● Grids are divided into independent blocks of equal size

● Each thread is assigned to exactly one block

● Each thread is assigned an unique index on the block

● All threads inside a block are executed in parallel

● All threads inside a single block can be synchronized
 → no synchronization on the grid level!

● All threads inside a block can communicate through low-latency shared memory 
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Lesson 02: Portable Heterogeneous Parallel Programming

Summary

● alpaka is ideal for data-parallel algorithms

● Algorithms are written per data element (kernel)

● data parallelism achieved through a hierarchy of independent threads and blocks on a grid

● All threads can communicate through high-latency global memory

● Threads inside a block can be synchronized

● Threads inside a block can communicate through low-latency shared memory
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