
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 10 – The alpaka Programming Model

Lesson 16: Thread Hierarchy

alpaka Parallel Programming – Online Tutorial – Lesson 16: Thread Hierarchy | 2

Lesson 16: Thread Hierarchy

The “magic” Thread index

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc) const {
 using namespace alpaka;

 uint32_t threadIdx = idx::getIdx<Grid, Threads>(acc)[0];
 printf("Hello, World from alpaka thread %u!\n", threadIdx);
}

alpaka Parallel Programming – Online Tutorial – Lesson 16: Thread Hierarchy | 3

Lesson 16: Thread Hierarchy

Understanding the index

● Understanding alpaka’s Thread indices is the key to understanding alpaka!

● After this lesson, you will understand:
● How to navigate the grid
● How to form Thread Blocks (and why)
● The relations between Threads, Blocks and the Grid
● How to compute Thread indices yourself

alpaka Parallel Programming – Online Tutorial – Lesson 16: Thread Hierarchy | 4

Lesson 16: Thread Hierarchy

Threads and the Grid

● A Grid consists of all Threads executing the
same kernel

 → One Grid per Kernel execution

● Threads are distributed along one, two or
three dimensions

● Each Thread on the Grid is identified by its
unique index (gridThreadIdx)

● All Threads have access to (large but high-
latency) global memory

2D Grid

Thread (0,0) Thread (m,0)

Thread (0,n) Thread (m,n)

Thread (1,0)

Thread (1,n)

Thread (0,1) Thread (1,1) Thread (m,1)

alpaka Parallel Programming – Online Tutorial – Lesson 16: Thread Hierarchy | 5

Lesson 16: Thread Hierarchy

Thread Blocks

● Threads can be grouped into Thread Blocks

● All Blocks on the same Grid have the same size

● Each Block on the Grid is identified by its
unique index (gridBlockIdx)

● Each Thread inside a Block is identified by its
Block-local unique index (blockThreadIdx)

● Threads inside a Block have access to (small
but low-latency) shared memory

● Threads inside a Block can be synchronized

2D Grid

Block (0,0) Block (m,0)

Block (0,n) Block (m,n)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

alpaka Parallel Programming – Online Tutorial – Lesson 16: Thread Hierarchy | 6

Lesson 16: Thread Hierarchy

Obtaining the indices

● alpaka provides several API functions for obtaining indices:
● Index of Thread on the Grid: idx::getIdx<alpaka::Grid, alpaka::Threads>(acc)[dim];
● Index of Thread on a Block: idx::getIdx<alpaka::Block, alpaka::Threads>(acc)[dim];
● Index of Block on the Grid: idx::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[dim];

● You can also obtain the extents of the Grid or the Blocks:
● Number of Threads on the Grid: workdiv::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc)[dim];
● Number of Threads on a Block: workdiv::getWorkDiv<alpaka::Block, alpaka:Threads>(acc)[dim];
● Number of Blocks on the Grid: workdiv::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)[dim];

● Exercise: compute the index of a Thread on the Grid yourself using a combination of the
remaining indices and extents!

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

