
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 20: Thread Parallelism in alpaka

Lesson 23: Computing π – Part I

alpaka Parallel Programming – Online Tutorial – Lesson 23: Computing π – Part I | 2

Lesson 23: Computing π – Part I

Computing π

● Focus of the next four lessons

● Good example for Thread parallelism

● Introduces parameter passing and memory management

● Initial algorithm: Find points in a circle

alpaka Parallel Programming – Online Tutorial – Lesson 23: Computing π – Part I | 3

Lesson 23: Computing π – Part I

Points in a circle

● Task: Given a circle quarter with the radius r
and a set of n randomly scattered points, find
all points inside the circle quarter

● Approach:
● Create a Grid with n Threads
● Each Thread evaluates a single point

r

r

r

alpaka Parallel Programming – Online Tutorial – Lesson 23: Computing π – Part I | 4

Lesson 23: Computing π – Part I

Algorithm

● Using Pythagoras’ theorem, the distance d
from a point to the origin can be calculated:

● If d ≤ r, return true, otherwise false

d=√ x2
+ y 2

r

y
x

alpaka Parallel Programming – Online Tutorial – Lesson 23: Computing π – Part I | 5

Lesson 23: Computing π – Part I

Kernel requirements

● For the computation we need:

● The point coordinates:
struct Points {
 float * x;
 float * y;
 bool * inside;
};

● The radius: float r;

● How do we pass these to the kernel?

alpaka Parallel Programming – Online Tutorial – Lesson 23: Computing π – Part I | 6

Lesson 23: Computing π – Part I

Passing parameters

● alpaka kernels accept three different parameter types:

● The accelerator: Acc const & acc (required)
● Pointers to memory buffers of any data type: float * bufferA, MyDataType * bufferB
● Scalar values of trivially copyable types: float scalar, struct Composed { int a; float b; };

● Signature of the PixelFinderKernel’s operator():
template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, // required
 Points points, // this struct contains memory buffers
 float r // this is a scalar
) const

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

