
www.casus.science

alpaka Parallel Programming – Online Tutorial
Recap

alpaka Parallel Programming – Online Tutorial – Recap | 2

Recap

Lecture 00

alpaka Parallel Programming – Online Tutorial – Recap | 3

Recap // Lecture 00

● alpaka is a C++ header-only library

● Abstraction library for parallel programming

● Single-source style

● Supports different back-ends for CPU and
GPU programming

● Supports many modern compilers

● Supports different ecosystems

● Portable across operating systems

User

CPU

alpaka

GPU

alpaka Parallel Programming – Online Tutorial – Recap | 4

Recap // Lecture 00

● GitHub organization:
https://www.github.com/alpaka-group

● GitHub project:
https://www.github.com/alpaka-group/alpaka

● Workshop slides:
https://www.github.com/alpaka-group/alpaka-workshop-slides

● Workshop examples:
https://www.github.com/alpaka-group/alpaka-workshop-examples

● Literature DOIs:
10.1007/978-3-319-67630-2_36
10.1109/IPDPSW.2016.50
10.5281/zenodo.49768

https://www.github.com/alpaka-group
https://www.github.com/alpaka-group/alpaka
https://www.github.com/alpaka-group/alpaka-workshop-slides
https://www.github.com/alpaka-group/alpaka-workshop-examples
https://dx.doi.org/10.1007/978-3-319-67630-2_36
https://dx.doi.org/10.1109/IPDPSW.2016.50
https://dx.doi.org/10.5281/zenodo.49768

alpaka Parallel Programming – Online Tutorial – Recap | 5

Recap // Lecture 00

● Write algorithms once, run them everywhere!

● Decision on target platform made at compile time

● General case: Kernels are hardware-agnostic

● Special case: Kernels can be specialized for a concrete device / back-end

● Data parallelism achieved through a hierarchy of parallel threads

alpaka Parallel Programming – Online Tutorial – Recap | 6

Recap // Lecture 00

● Workflow based on git and CMake 3.15+

● No core dependencies beside Boost
● Depending on your back-end, additional dependencies may be required

● alpaka examples and test cases part of the source tree

● alpaka can be installed to a location of your choice

alpaka Parallel Programming – Online Tutorial – Recap | 7

Recap

Lecture 10

alpaka Parallel Programming – Online Tutorial – Recap | 8

Recap // Lecture 10

● helloWorld example

● alpaka spawns user-defined number of threads

● Threads may run in parallel

● Order of execution (and access to shared resources) unspecified

● alpaka Threads execute Kernels

● Threads are mapped to cores

● A set of cores is called Device

● Devices are attached to one Host

alpaka Parallel Programming – Online Tutorial – Recap | 9

Recap // Lecture 10

● Kernel contains the algorithm

● Written on a per-data-element basis

● Kernels are functors (executable C++
struct / class)

● operator() must be annotated with
ALPAKA_FN_ACC

● operator() must return void

● operator() must be const

● A Thread applies a Kernel to a data
element

struct HelloWorldKernel {

 template <typename Acc>
 ALPAKA_FN_ACC void operator()(Acc const & acc) const {

 using namespace alpaka;

 uint32_t threadIdx = idx::getIdx<Grid, Threads>(acc)[0];

 printf("Hello, World from alpaka thread %u!\n", threadIdx);
 }
};

alpaka Parallel Programming – Online Tutorial – Recap | 10

Recap // Lecture 10

● Number of Threads needs to fit the problem size

● Rule of thumb: One Thread per element, more Threads than cores

● Don’t launch too many Threads! Shared resources are scarce!

● All Threads form the Grid

● Grid is divided into Blocks of equal size

● Blocks have access to low-latency shared memory and Thread synchronization

● Grids and Blocks can be 1D, 2D or 3D

● alpaka API enables Grid navigation

alpaka Parallel Programming – Online Tutorial – Recap | 11

Recap

Lecture 20

alpaka Parallel Programming – Online Tutorial – Recap | 12

Recap // Lecture 20

● n-D work division
● API functions for obtaining indices and extents
● Index calculation
● Beware of reversed index ordering!

● Computing π
● Kernels accept three kinds of parameters: the accelerator, pointers to Device memory and and scalar values

of trivially copyable types
● Buffer iteration can be done through loops, Thread parallelism or a combination of both
● alpaka Accelerator provides math functions
● Rule of thumb: Launch one Thread per element, but this is not always ideal
● Number of threads: blocksPerGrid * threadsPerBlock

alpaka Parallel Programming – Online Tutorial – Recap | 13

Recap // Lecture 20

● n-D Grid consists of all Threads

● Each Thread has a unique Grid index
(accessible through alpaka’s API)

● Threads are grouped into blocks of equal size

● Each thread has a unique Block-local index

● Threads inside Blocks have access to shared
memory and Block-wide synchronization

2D Grid

Block (0,0) Block (m,0)

Block (0,n) Block (m,n)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

alpaka Parallel Programming – Online Tutorial – Recap | 14

Recap

Lecture 30

alpaka Parallel Programming – Online Tutorial – Recap | 15

Recap // Lecture 30

● Changing the Accelerator is easy
using Acc = /* Accelerator of your choice */;

● Work division may need adaption for new hardware type!

● Alpaka comes with a set of predefined Accelerators for CPUs and GPUs

● Hardware- and platform-specific details are abstracted away by the Accelerator

● Inside Kernel: Thread state, access to alpaka’s device-side API

● On Host: Meta-parameter for choosing correct physical devices and dependent types

alpaka Parallel Programming – Online Tutorial – Recap | 16

Recap // Lecture 30

● alpaka Devices represent physical devices

● Dependent on programmer’s Accelerator choice
 → only compatible Devices are detected by alpaka

● Devices enable physical device management and information

● Queues are used for communication between Host and Device

● They provide management for Device-side operations (Kernels, memory operations)

● Queues can be blocking or non-blocking

● Queues have different means of synchronization

alpaka Parallel Programming – Online Tutorial – Recap | 17

Recap // Lecture 30

● Union of Accelerator, Device and Kernel is
called Platform

● Portability is achieved through the Platform
concept

● Do not make assumptions about the Device
type in the Kernel! That is the Accelerator’s
job.

● Know your Device type on the host and adapt
the work division!

● By using multiple Accelerators at once, you
can fully utilize heterogeneous systems

Write once, scale everywhere!

Accelerator Device

Kernel

Platform

is part of is part o
f

is
 p

ar
t o

f

is not

is not is
no

t

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

