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Abstract

Machine learning is changing how we design and interpret experiments in materials

science. In this work we show how unsupervised learning, combined with ab initio

random structure searching, improves our understanding of structural metastability in

multicomponent alloys. We focus on the case of Al-O-N alloys where the formation

of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxy-

gen can be seen as a general mechanism of solids where crystal symmetry is reduced

to stabilize defects. The ideal AlN wurtzite crystal structure occupation cannot be

matched due to the presence of an aliovalent hetero-element into the structure. The

traditional interpretation of the c-lattice shrinkage in sputter-deposited Al-O-N films

from X-ray diffraction (XRD) experiments suggests the existence of a solubility limit

at 8at.% oxygen content. Here we show that such naive interpretation is misleading.

We support XRD data with accurate ab initio modeling and dimensionality reduc-

tion on advanced structural descriptors to map structure-property relationships. No

signs of a possible solubility limit are found. Instead, the presence of a wide range of

non-equilibrium oxygen-rich defective structures emerging at increasing oxygen con-

tents suggests that the formation of grain boundaries is the most plausible mechanism

responsible for the lattice shrinkage measured in Al-O-N sputtered films. We further

confirm our hypothesis using positron annihilation lifetime spectroscopy.

Introduction

Nanocomposite hard coatings are an important class of materials for various applications.

Ti-Si-N, Al-Si-O,1,2 and Al-O-N3 thin films fabricated by reactive sputtering are typical

examples. Because of the wide band-gap of AlN, the last two materials are optically trans-

parent in addition to their high hardness. Their properties, such as the strain of the films,

the index of refraction and their hardness can be tuned over a wide range by changing their

chemical composition, i.e. by the amount of Si and O added.
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For Al-O-N, Harris et al. have shown that up to 0.75% O can be incorporated into

the wurtzite lattice of single crystalline materials synthesized under thermal equilibrium

conditions.4 Oxygen has a high Pauling electronegativity of χO = 3.5 as does the electron

(e−) acceptor N with χN = 3.0.5 Slack and coworkers therefore proposed that O substitutes

the N (ON) in the AlN lattice with the concurrent formation of Al vacancies (VAl).
6,7 These

are required to absorb the extra valence e− of O, having an electronic configuration 2s2p4,

compared to the replaced N with 2s2p3.

In our previous work on polycrystalline sputter deposited films of Al-Si-N, we demon-

strated that it is possible to incorporate up to 6% Si into the wurtzite lattice substituting

the Al (SiAl).
1,2 Following the arguments of Harris we concluded that the electron donor Si

replaces the Al in the AlN structure and one VAl is formed per three Si atoms added into

the AlN. An X-ray diffraction (XRD) analysis revealed a shrinking c-axis wurtzite lattice

parameter with increasing Si content for 0 to 6% Si. Beyond 6% Si content, the c-axis lattice

parameter remained constant.1,2 The XRD data and a TEM analysis suggested that up to

6% Si can be incorporated into the AlN lattice, while a SiO2 grain boundary phase formed

from the extra O surpassing the 6% Si-solubility limit. Ab initio calculations could repro-

duce the observed lattice shrinkage under the condition that one VAl was incorporated per

three SiAl substitutions, but could not address the mechanisms leading to the experimentally

observed Si-solubility limit.8

Similarly, in our most recent work, a lattice shrinkage was also observed for increasing O

contents up to 8% in sputter-deposited Al-O-N films.9 While our XRD data suggests that

up to 8% O can be incorporated into the AlN wurtzite lattice, Harris et al found that only

up to 0.75% O can be incorporated into the wurtzite lattice of single crystalline materials

synthesized under thermal equilibrium conditions.4

Hence, our previous work performed on sputter-deposited polycrystalline Al-Si-N and

Al-O-N films, the work by Harris on Al-O-N single crystals, and the arguments of Slack con-

cerning stochiometry all corroborate that the observed lattice shrinkage arises from vacancies

3



that compensate for excess e− brought into the initial crystalline structure by aliovalent sub-

stitutes. The solubility limit was found to depend strongly on the fabrication method, i.e.

is below 1% for fabrication methods involving high temperatures and up to several percent

for sputter deposition methods. This indicates that quenching during fabrication may play

an important role. Further, the increasing number of defects will finally destabilize the AlN

lattice. XRD and TEM observations indeed revealed that the AlN crystallites shrink with

increasing O content and an amorphous grain boundary phase grows in volume.

The theoretical treatment of such complex materials systems remains challenging: Large

super-cells have to be used to accommodate a sufficiently large number of foreign atoms and

the defects. Consequently, the number of microstates (distributions of the foreign atoms

and defects within the crystalline unit cell) grows exponentially which does not permit the

optimization of all microstates within Density Functional Theorey (DFT). A human-based

selection of tentatively appropriate microstates may thus lead to a misinterpretation of ex-

perimental results and may not correctly capture the mutual formation of vacancy clusters

and a possible thermodynamical destabilization of the crystallites.

Here we apply ab initio Random Structure Searching (RSS)10–12 combined with advanced

high-dimensional structural descriptors and dimensionality reduction to capture different

local and global configurational arrangements of the O substitutes and VAl. From this, the

expected c-axis parameter, the enthalpy of the super-cell and the vacancy distribution is

obtained and linked to an intuitive low-dimensional representation of the structure/property

relationships. Further, we experimentally address the thermodynamical stability of the solid

solution phase of sputtered Al-O-N films using high-temperature annealing experiments and

validate the existence and distribution of vacancies predicted by our theoretical approach by

positron annihilation lifetime spectroscopy. While the results obtained here are specific for

the Al-O-N system, the theoretical framework proposed remains general and could thus also

be applied to evaluate properties of other complex materials systems.
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Experimental and Computational Procedure

Al-O-N thin film samples were fabricated by reactive direct current magnetron sputtering

(R-DCMS) at 200 ◦C, using N2 and O2 as reactive gases. O contents between 0.4 and 59.5%

(0% O corresponding to binary AlN, 60% O to Al2O3, respectively) were obtained by the

adjustment of the O2 flow into the sputter process. The O composition was determined by

Rutherford Backscattering and refined by Elastic Recoil Detection Analysis (RBS/ERDA).

For the DC sputter deposition of films with high O contents a special gas flow setup was

implemented in the sputter chamber to avoid oxygen-poisoning of the Al targets.3 The crys-

tallinity of the films, in particular the c-axis lattice dimension, was investigated by symmetric

XRD measurements. As described in detail in our recent work,9 the Al-O-N films show a

microstructural evolution with increasing O content that is distinguished by three distinct

O concentration regimes, comparable to those found in our earlier work on the Al-Si-N sys-

tem.1,2 Al-O-N with 0− 8% O, regime (I), forms a crystalline solid solution (Al-O-Nss) with

a (002) oriented wurtzite fiber texture. Al-O-N with 8− 16% O, regime (IIa), consists of a

(002) fiber textured nanocomposite in which wurtzite crystallites are gradually encapsulated

by an amorphous Al2O3 (a-Al2O3) matrix. Al-O-N with 16− 30% O, regime (IIb), forms a

nanocomposite without uniaxial texture. At the threshold of 16% O which separates (IIa)

from (IIb), the residual film stress changes from tensile (in fiber textured nanocomposites)

to compressive (nanocomposites containing crystallites of arbitrary orientations). Al-O-N

with 30− 60% O, regime (III), consists of an X-ray amorphous solid solution.9

For the atomistic modeling of the system we concentrate on Al-O-N films containing

between 0 and 12 at% O to analyze regime I for 0 to 8% O as well as the transition to

regime IIa where a (002) fiber texture still exists, but the additional O does not increase

the solid solution concentration and forms an amorphous grain boundary phase of increasing

thickness.

As in our earlier work,8 we chose a large super-cell for our modeling work consisting of

48 units of the primitive hexagonal cell, and thus containing 192 atoms for the case of pure
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AlN with no vacancies. This large unit cell permits the incorporation of up to 12 at% O as

well as one VAl per three O to accomodate the extra valence e- arising from the substitution

of the N by an O. Hence, 3n N atoms with 1 ≤ n ≤ 21 can be replaced by O, and n VAl

have to be introduced into the super-cell for the modeling of different O contents.

The number of possible configurations for such a super cell can be calculated by a simple

combinatorial approach

Ω =

(
NN

nO

)
·
(
NAl

nV

)
, (1)

where NN is the total number of the nitrogen atoms in the lattice, NAl the number of

aluminum atoms, nO is the number of substituional O atoms and nV is the number of VAl

(which is defined as nO/3). Clearly, even for a small O concentration, a very large number

of configurations exist. For example, the number of configurations that one can trivially

generate by replacing 21 distinct N atoms with O out of the initial 96, and removing 7 Al

atoms is 9.33 1030. Eq. 1 further allows the calculation of the configurational entropy of

mixing as ∆Sconf = kB ln(Ω), a quantity which needs to be considered when analyzing the

thermodynmics stability of the system.13 DFT modeling all possible microstates is clearly

beyond to dates computational possibilities. However, from earlier work8 we learned that

properties such as the lattice dimensions (and thus also other relevant system parameters)

critically depend on the selected microstates. Thus, the selection of these must be performed

without introducing artifacts arising from an arbitrary human-based selection of geometries.

Here, we rely on RSS combined with a sparsification approach based on a state-of-the-

art14,15 global structural metric, followed by the use of dimensionality reduction16,17 to infer

non-trivial structure/property relationships as discussed in the Results and Discussion sec-

tion. In line with previous RSS works,10–12 from a large number of distinct random structures

we generate a statistically meaningful ensemble of meta-stable states through minimization

of an accurate potential energy surface (PES). The RSS begins with the ideal w-AlN lattice,

where the indices of N and of Al atoms are known and can be used to define a set of new
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configurations by simply replacing groups of N atoms with the same amount of O, remov-

ing randomly one Al every 3 O substitutions. We use the function combinations from the

Python library itertools18 to generate all the groupings of X elements from the initial

96 N atoms, with X being the number O atoms to inject in the lattice, i.e. 3 (1.57%), 6

(3.16%), 9 (4.76%), 12 (6.38%), 15 (8.02%), 18 (9.68%) and 21 (11.35%). This step results

in a large set of possible structures from which we randomly pick 100,000 configurations.

For each new structure we randomly remove one Al atom every 3 O atoms. Finally, for

each O concentration, we select ca. 150 structures being the most dissimilar within the set.

This can be achieved by having a proper measure of similarity between two structures, for

which we use the average Smooth Overlap of Atomic Potential (SOAP) global kernel,14 as

implemented in the librascal package.19 SOAP20 is a general state-of-art atom-centered,

density-based representation of the atomic environment which has been proven very powerful

for both properties prediction15,21,22 and structural classification.23,24 Extensive details on

SOAP is provided elsewhere.20,22 SOAP vectors were computed using a cutoff radius of 5 Å ,

nmax = 6 and lmax = 6. The width of the Gaussian functions was set to 0.6 Å . All other

parameters were set to their default values. Further details of the analysis of the global sim-

ilarity analysis between structures will be discussed in the following Results and Discussion

section. Having a defined a pairwise similarity measure between global structures, the most

different structures can be selected using farthest point sampling (FPS), which has been

proven to be well suited for selecting the most widely spread set of landmarks from an initial

(larger) set.16,17

For each initial microstate, the equilibrium lattice parameters were computed imposing

zero pressure onto the system and optimizing the internal coordinates until atomic forces were

lower than 0.01 eV/Å . The calculations were performed within DFT as implemented in the

CP2K code.25 We used the PBE parameterization for the generalized gradient approximation

to the exchange-correlation functional.26 Norm-conserving pseudopotentials27 were used to

describe electronic core-valence interactions.
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In addition, the enthalpy ∆Hass for the association of wurtzite AlN and sapphire Al2O3

to a solid solution of Al-O-N including VAl is calculated from DFT data at a temperature

(T) of 0 K according to the equation w-AlN + α-Al2O3 →Al-O-Nss.

Results and Discussion

Figure 1: Plots of the dependence of the c-axis lattice parameter deviation in Al-O-N from
that of AlN on O content. Experimental and theoretical results are plotted by grey open
circles and blue crosses, respectively. The orange marker in inset b) represents a DFT-
optimized structure without Al vacancies. a) Plot with a wider c − c0 parameter range to
display the increasing width of the lattice parameters found for different configurations with
increasing O content. The blue crosses show the mean of the c − c0-values obtained from
different DFT optimized Al-O-N supercell structures for a specific O concentration. b) Plot
of the same data shown in a) with a narrower c − c0 scale to highlight the good agreement
of the DFT c-axis lattice values with the experimental results for O concentrations between
0 and 8%. c) Average ∆Hass per atom as a function of the O content. Bars represent
the standard deviation in ∆Hass associated with the structural ensemble corresponding to a
specific O concentration.

Fig. 1a and b replot previous experimental data9 of the c-axis lattice dependence on

the O content in sputter deposited Al-O-N films together with corresponding data obtained

8



Figure 2: Kernel Principal Component Analysis map of the global structural similarity of
1088 distinct DFT geometry-optimised Al-O-N structures. a) The first PC (x-axis of the
map) correlates strongly with the oxygen content within the structure. Vertical stripes
correspond, from left to right, to an increased oxygen concentration per structure. Two
representative O rich environments are shown for two different O concentrations (left, 1.57%
and right, 9.68%). The vacancies, highlighted in green, grow bigger for high O concentrations.
This can be compared with panel b) where points are coloured according to ∆Hass: structures
projected on the right are less stable than those on the left. Other average structural
properties can be used as colour code for the map, which helps to link the energetics of
the structure with specific structural features. For instance, in panels c), d) and e) points
are coloured according to the minimum lq6 order parameter28 describing the local crystalline
order, the average size of voids in the structure and maximum O-O coordination, i.e. the
number O neighbors within a cutoff of 3.5 Å . Panels d) and e) show that increasing the
O concentration, O-rich environment are more likely to be found and this correlates with
both the increased void size and the stability (∆Hass) of the structure. This correlation is
captured well by the second PC (y-axis), as highlighted by the ellipses. Furthermore the
larger the O-O coordination, the shorter the O-O distance as shown in Fig. 3a. This happens
because VAl tend to be coordinated by O atoms, which can get closer to each other when at
the void surface.
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from DFT calculations: The c-axis lattice parameter shrinks linearly from 0.498 nm for pure

wurtzite AlN by about 3 pm for an O content of 8%. Beyond 8% O, no further decrease of

the lattice parameter was found. We attributed this to the formation of a solid solution of

O inside the AlN grains for up to 8% O, followed by the formation of an amorphous grain

boundary phase for Al-O-N films with higher O contents. Therefore 8% of O was identified

as the solubility limit for the Al-O-N system fabricated by sputter deposition. Making use

of the analogies between the Al-Si-N and Al-O-N systems we concluded9 that in the latter

material the observed lattice shrinkage arises from the formation of VAl.

Here we obtain DFT lattice parameter values (depicted as blue crosses in Fig. 1a and b)

from 1088 geometry-optimized structures by computing the median c-axis lattice vector at

each O concentration. The inset b in Fig. 1 shows a zoom around the expectation values to

show clearly the different linear trends of the c-axis lattice vector below and above the 8%

solubility limit. The outer box shows the same data with a larger (c− c0)-scale to emphasize

the increasing range of lattice parameters obtained for the different configurations with

increasing O concentration. The blue shaded area in Fig. 1a represents the range between

the minimum and maximum values found within each ensemble. The wide distribution of

lattice parameters at different O contents highlights the importance of using a large unit

cell and of selecting relevant subsets of configurations as discussed above, also calling for

a non trivial interpretation of the results at high oxygen content, way more complex that

the simplistic dubbing of “equilibrium solid solution”. The results in panel a and b are

complemented by Fig. 1c, which shows that the ∆Hass per atom increases increasing the

amount of O in the structure. Clearly, the solid solution has a higher energy and thus is less

favorable than pure AlN and Al2O3.

Our DFT calculations reveal that without the introduction of VAl, the lattice expands

by 0.25% when O is introduced, while it shrinks linearly with increasing O content once one

VAl every 3 O-atoms is introduced. Note that the latter is required for the compensation of

the excess electrons brought in by the O replacing the N. Indeed, when including the VAl
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DFT results are compatible with the experimental values up to an O content of 8%. For

larger O contents the results obtained from DFT deviate considerably from experimental

results. While the lattice parameter obtained from DFT continues to shrink for increasing

O contents above 8%, the experimental data shows no further decrease in the c-axis lattice

parameter. This could be attributed to the fact that our DFT calculations take into account

the formation of a Al-O-N solid solution only from the incorporation of O into a supercell of

single crystalline AlN. The experiment, however, shows a grain refinement and the formation

of an amorphous Al2O3 grain boundary phase for O content 8%. Such a grain boundary

phase and the shrinking of the grain size is thus not captured by our DFT models. Despite

the limits of DFT, insightful information can still be obtained from theoretical data by

processing the predicted structures with unsupervised machine learning methods.

Fig. 2 displays the results obtained by the combination of machine learning methods

with advanced descriptors applied to all 1088 structures obtained from DFT for O concen-

trations ranging from 0 to 11.35% calculated here. The use of agnostic, high-dimensional

descriptors and unsupervised learning allows to shed light on structure-property relation-

ships, without restrictions arising a limited number of hypotheses that tend to suffer from a

human-bias influenced by the current scientific state-of-the-art knowledge in the field. Each

point in the maps a) to g) corresponds to a single Al-O-N structure, with the maps being

2D projections obtained through the application of dimensionality reduction on the pairwise

similarity matrix of 1088 geometry-optimized Al-O-N structures. That is to say, the global

similarity matrix M is a symmetric 1088x1088 matrix where each component Mij measures

the similarity K(i, j) between the pair of structures i and j. In our case, K(i, j) is a ker-

nel, i.e. a measure of affinity between two different structures. So, if K(a, b) > K(a, c)

structures a and b are more similar than structures a and c. A kernel must be positive

semi-definite and can always be converted into a distance metric. There are many different

possibilities to define a kernel function and the suitability of a particular definition typically

depends on both the machine learning method being used and on the nature of the data

11



being anlaysed. A simple way to understand the idea of kernel similarity measure is to think

about two generic high-dimensional vectors and define the so-called cosine similarity kernel

as k(~x, ~y) = ~x · ~yT/(‖~x‖ ‖~y‖). It is trivial to see that the L2-norm projects the vectors onto

the unit sphere, with their dot product being the cosine of the angle between the points

denoted by the vectors, i.e. a number smoothly varying between one (aligned vectors) and

zero (orthogonal vectors).

Given the type of data considered here, we define K(i, j) as the average-SOAP kernel

between two distinct A-O-N optimized structures i and j, as introduced in ref. 14. The

computation of the pairwise global similarity kernel between the 1088 optimized structures

results in a 1088x1088 diagonal matrix that can be eventually interpreted as a structural map

by reducing its dimensionality to 2D using kernel principal component analysis (KPCA).29

KPCA is the non-linear form of PCA, which is a well-established technique used to emphasize

variation and bring out strong patterns within a dataset. In layman’s terms PCA is a

basis transformation to diagonalize an estimate of the covariance matrix of a given dataset.

The new coordinates in the Eigenvector basis (i.e. the orthogonal projections onto the

Eigenvectors) are called principal components (PCs). The selection of the first two PCs

generates a 2D map in which the distribution of points qualitatively reproduce the shape of

the original high-dimensional manifold. One can then use such a map to colour the points

(each point being a structure) according to a specific property, thus providing a simple tool

to correlate properties with structures.

Fig. 2a is a two-dimensional plot of the DFT configurations where the first and second

PC (x- and y-axis) capture the two strongest correlations between different super unit cell

configurations obtained by DFT for O contents between 0 and 11.35%. The color of the

points is chosen to represent the O content. Interestingly, there are seven groups of points

extending linearly along the y-axis and all points of a group show an identical color. We thus

conclude that all configurations relating to a specific O content have a strong similarity, and

that the first PCA axis (x-axis) is well correlated with the O content. Note that this finding
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is not obvious and the widening of the c-axis lattice parameter distribution with increasing

O content displayed by the shaded area in Fig. 1a could be interpreted as an increasing

dissimilarity of the high O content structures. The unbiased machine learning data analysis

approach presented here however clearly documents that all configurations with the same O

content have a pronounced similarity.

This finding can be further used to interpret the result shown in Fig. 2b, where points

are colored according to ∆Hass. The distinct color of the different groups, that according to

Fig. 2a represent different O contents is compatible with the plot of ∆Hass versus O content

displayed in Fig. 1c. Higher O contents clearly lead to higher ∆Hass-values making these

structure energetically less favorable. However, the color distributions of groups attributed

to a higher O content tend to widen along the second PCA axis (y-axis). Particularly, the

color changes in a rather step-wise fashion along the y-axis. This is particularly apparent

for O concentrations between 6.38 and 9.68%, while the color distribution along the y-axis

becomes again more uniform for the highest O content of 11.35%. We conclude that for

O concentrations between 6.38 and 9.68% two distinct types of configurations must exist,

one of them being energetically more favorable, and that a transition from a first type of

configuration at low O concentration to a second type existing at the highest O concentration

studied here occurs. We note that this spread in the properties of the configurations with

higher O content is compatible with the larger spread of the c-axis lattice parameter apparent

in Fig. 1a.

In order to measure the degree of disorder introduced by the O into the wurtzite lattice,

we calculate the crystallinity order parameter, i.e. the minimum local q6 (lq6) value for each

DFT super cell structure. The lq6 descriptor is a local order parameter designed to distinguish

ordered crystal environments from amorphous and liquid environments. Following Ref. 28

we compute, for each atom i within each structure, the quantity

qlm(i) =
1

Nb(i)

Nb(i)∑
k=1

Ylm(θik, φik) , (2)
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where the sum goes over the Nb(i) neighbors of the atom i, Ylm are spherical harmonics,

and θik and φik are the relative orientational angles between the atoms i and k. We com-

pute this quantity for all possible values of m and store them in a vector ~ql(i) with 2l + 1

components. Finally, we calculate values lql according to

lql(i) =
1

Nb(i)

Nb(i)∑
k=1

~ql(i) · ~ql(k)

|~ql(i)||~ql(k)|
. (3)

Choosing of l = 6 has been proven to be a good descriptor capable of detecting the

difference between crystalline and amorphous environments, i.e. the lower the value the

more amorphous the surrounding structure.28,30

We then use the minimum lq6 value to color the points arranged in groups in the two-

dimensional PC space. From Fig. 2c it appears that the structural disorder increases (lq6

decreases) along the first PC axis, while it varies only little along the second PC axis. This

clearly reveals that the structural disorder grows with increasing O content, and that struc-

tures with the same O content show similar decreased crystallinity. A correlation with the

two groups of ∆Hass appearing at higher O contents (see Fig. 2b) is however not found.

Here, the pairwise radial distribution functions (RDFs) displayed in Fig. 3a provide addi-

tional information. The intensities of the peaks at 3.03 Å and 4 Å in the gAlAl(r) and gNN(r)

decays and the peak widths with increasing O content gets broader, confirming the reduc-

tion of short range ordering between neighboring atoms compatible with the decreasing lq6

parameter (Fig. 2c). The same decay of the peak height (and increased peak width) is

also found for the gOO(r) and gNO(r) distributions. A small additional peak develops for

2.8 ≤ r ≤ 3Å with increasing O content, revealing a growing intensity of closely spaced O

atoms and O-N pairs. This development of a second peek in the gOO(r) and gNO(r) distribu-

tion functions strongly indicates that two distinct types of structures must exist for higher

O content corroborating the two different energy levels apparent by the two distinct colors

visible in Fig. 2b representing two ∆Hass energy levels.

The clustering of O atoms and the increased occurrence of O-N pairs at higher O contents
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Figure 3: a) Pair-specific radial distribution functions for different O contents. The broaden-
ing of the peaks in the pair-correlation functions reveals that the crystalline order decreases
with increasing O concentration. Furthermore O-O and N-O show the rise of a small peak
(black dashed arrow) at shorter distances for high-O concentrations. This can be attributed
to the increased density of O and N atoms near the voids growing in size for increased O
concentrations. The vertical arrows indicate the formation of higher densities O-O, N-O and
N-N pairs at higher oxygen contents. b) Distributions of void’s radii at varying O content.
The vertical arrows indicate that voids of larger sizes form at higher O concentrations that
further destabilize the Al-O-N lattice.

may be accompanied by a clustering of the VAl. To quantify this, we plot the void size

(computed by using the R.I.N.G.S. package31) and the O-O coordination (the maximum

O-O coordination number within a cutoff of 3.5 Å from a central O) in Fig. 2d and e,
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respectively. The comparison of Fig. 2d with Fig. 2a reveals that the void size generally

increases with the O content. Moreover, the spread of the colors for a given O content and

hence the width of the distribution of the void sizes (Fig. 3b) becomes larger at increased O

contents revealing that at higher O contents, different void sizes coexist. The same holds for

the Max(O-O)-coordination plotted in Fig. 2e. However, for the high O content structures

two distinct Max(O-O)-coordination values appear along the second PC axis (y-axis).

The machine learning approach used here clearly reveals that a higher O content leads to

the formation of vacancy and O clusters apart from a monotonous growth of the association

enthalpy ∆Hass. This is in line with other work that has been performed on Al-O-N single

crystals which showed that only about 0.5% of O could be introduced into the AlN wurtzite

lattice for AlN single crystals synthesized under conditions remaining close to the thermody-

namical equilibrium.4 In stark contrast to the latter work, the much higher O concentration

solid solutions obtained in sputtered Al-O-N films,32 may possibly arise from an entropic

stabilization process: while the growth of Al-O-N single crystals4 was performed at high

temperatures and a successive slow cool down to room temperature, the thermodynamics

occurring during sputtering is substantially different. In sputtering, highly-energetic species

bombard the film growing on the substrate. Typical energies of these species (neutrals and

ions) are in the range of several eV to a few ten eVs. Consequently the formation of the

Al-O-N unit crystallites occurs at an effective temperature that is much higher than the sub-

strate temperature (here set to 200◦ C). In addition, the species deposited onto the substrate

leading to the film growth undergo rapid quenching as their kinetic energy dissipated to the

thermal bath on a sub-second time scale.33 Consequently, a high-temperature state charac-

terized by a high (mixing) entropy could be quenched. We hypothesize that the presence

of a sufficiently high-mixing entropy could thus compensate the positive association energy,

∆Hass such that an entropy-stabilized13,34 solid solution high temperature state could have

been quenched to room temperature.

In order to test this hypothesis we designed the following annealing experiments: Al-O-N
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films with an O content of 10 % were sputter-deposited onto Al2O3 substrate. The back side

of the substrate was sputter-coated by a 200 nm film of Ta. XRD of the Al-O-N film (in

the front side) revealed a wurtzite (002) peak at 36.262◦ corresponding to a c-axis lattice

parameter of 0.496 nm. The samples were then heated to 1800◦C in vacuum by an electron

beam arising from a hot filament to the Ta-coated backside of the Al2O3 substrate. The

temperature was measured by a pyrometer. At this temperature the mixing entropy stabilizes

the solid solution provided the entropy of other phases, e.g. that arising from amorphous

grain boundaries, or voids forming in the Al-O-N crystallites remained small. After keeping

the sample for about 20 minutes at 1800◦C, the electron beam was shut off. Because of the

extreme radiation loss at this high temperature, the sample stops glowing immediately, i.e.

cools below a temperature of 1200◦C up to which Al-O-N films were found to be stable,

i.e. no atomic rearrangement did occur. We thus expect, that an entropy-stabilized solid

solution high-temperature phase would still exist after the rapid cooling process used here.

In a further experiment, the system is cooled slowly such that the thermal equilibrium is

always kept during cool-down. In this case the entropic contribution to the energy −T∆S

would become gradually smaller as the sample is cooled such that a Al-O-Nss with high O

content would no longer be energetically favorable at lower temperatures and thus would no

longer stabilize a solid-solution phase. For this, the samples were heated in an Ar flooded

oven and cooled down slowly to room T during a time ramp of 22 h.

Fig. 4 shows the XRD results obtained from the two experiments. Clearly, both diffraction

peaks have shifted from the 36.262◦ corresponding to the contracted lattice corresponding

to an O content of 10 % to about 36.1◦ corresponding to the value found for O-free AlN

films for both the rapid and slow cooling experiments. An RBS experiment revealed that

the initial O content remained constant. We thus conclude that although a sizeable mixing

entropy must exist, entropy stabilization of the high-O-content solid solution phase does

not occur, and that the O expelled from the AlN grains but still contained in the film has

been driven to the grain boundary phase. We speculate that the amorphous grain boundary
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Figure 4: 2θ-θ scans of as-grown and annealed Al-O-N films with oxygen content of around
10 at.%. After annealing, samples were either slow cooled (red) or quenched (blue). Vertical
lines and arrow indicate the shift of the peak positions after annealing.

phase and the formation of voids can be accounted for an entropy higher than the entropy

of the phase, such that the thermodynamically stable state consists of AlN grains possibly

containing very small amounts of O (below 0.5%) as found in work on single crystals and an

amorphous grain boundary phase.4

Sputtered Al-O-N films containing up to 8% of O are thus in a metastable state obtained

through the the films growth under conditions away from thermal equilibrium. Neverthe-

less, these thin films are stable up to temperatures of 1200◦ C. Even prolonged annealing

at such temperatures did not lead to an observable change of the lattice parameter. We

attribute this to the high melting point of Al2O3 which hinders the kinetics of the O in the

metastable Al-O-Nss even at higher temperatures such as 1200◦ C. Our DFT calculations

revealed that this rather stable metastable state is characterized by the formation of O- and

VAl-clusters at higher O contents accompanied by a lattice instability and amorphization

for O contents larger than 8%, compatible with the experimental observations.9 In order

to experimentally assess the dependence of the nature of the defects on the oxygen content

in our sputter-deposited Al-O-N films, variable energy positron annihilation lifetime spec-

troscopy (VEPALS) measurements were conducted on Al-O-N samples at the Mono-energetic

Positron Source (MePS) beamline at HZDR, Germany.35,36 Positrons have been implanted
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into a sample with discrete kinetic energies Ep in the range between 0.05 and 10 keV, which

allows for depth profiling from the surface down to several hundred nanometers. A mean

positron implantation depth can be approximated by a simple material density dependent

formula zmean = 36/ρ · E1.62
p , where zmean is in nanometers, ρ = 3.26 gcm−3. For the mea-

surements shown with the open and closed symbols in Fig. 5 an energy of 3.2 and 5.6 keV

providing implantation depths of about 73 and 180 nm, respectively, were used. Along their

tracks inside the Al-O-N film the positrons lose their kinetic energy due to thermalization

and after short diffusion annihilate with the electrons emitting two anti-collinear 511 keV

gamma photons that are detected and a positron lifetime spectrum N(t) is recorded. This

spectrum is then fitted by a sum of exponentials:

N(t) =
n∑

i=1

Ii
τi

exp(− t

τi
) , (4)

where τi and Ii are the positron lifetime and relative intensity of the i-th component,

respectively, and
∑n

i=1 Ii = 1. All the spectra were deconvoluted using the non-linearly

least-squared based package PALSfit fitting software37 into three or four discrete lifetime

components that are characteristic for different defect types and sizes.

In Fig. 5a) and b) the different positron annihilation lifetime components and the cor-

responding intensities are plotted as a function of oxygen content, respectively. The good

agreement of the data for implantation depths of 73 and 180 nm (displayed with open and full

symbols, respectively) indicates that the defect concentration and defect types do not depend

on the depth inside the Al-O-N film compatible with the morphology of the films mapped by

TEM in our earlier work.9 For comparison, the positron annihilation lifetimes calculated for

bulk AlN (0.158 ns),39 Al-vacancies, VAl (0.208 ns),39,40 for a single Al-vacancy arising from

three oxygen atoms replacing three nitrogen atoms, VAl(ON)3 (0.241 ns),38 a double VAlVN

(0.253-0.267 ns),38 and a VAl(VN)3 vacancy cluster (0.281 ns)38 are displayed by means of

horizontal grey lines and the hatched grey box in Fig. 5a. The lifetime component τ1 (open

and closed circles) is compatible with the existence of VAl and VAl surrounded by ON clus-
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Figure 5: a) Positron annihilation lifetime components τ1 (circles), τ2 (diamonds), τ3 (triangles),
and τ4 (stars) as a function of the O content in Al-O-N films. The calculated positron lifetimes
for single crystalline AlN, aluminum vacancies, VAl and one VAl arising from 3 O atoms replacing
N atoms, a double VAlVN (0.253-0.267 ns),38 and a VAl(VN)3 vacancy cluster (0.281 ns)38 are
highlighted by the horizontal grey lines and the hatched grey box. The open and full symbols
represent data arising from a positron implantation depth of 73 and 180 nm, respectively. b) plot of
the intensities I1 (circles), I2 (diamonds), I3 (triangles), and I4 (stars) of the lifetime components
τ1, τ2, τ3, and τ3, respectively, as a function of the O content. The wide transparent lines in panels
a) and b) are guides for the eye to highlight the evolution of the different lifetime components and
their intensities with O content.

ters. The linear rise of τ1 from about 0.188 to 0.262 ns for an oxygen concentration between

0 and 3.7 % is an indication for the formation of larger defects, e.g. divacancies. The second

lifetime component τ2 (open and close diamonds) that rises linearly from 0.4 ns to about

0.7 ns can be attributed to formation of vacancy clusters and pores with a diameter increas-

ing from about 0.45 − 0.48 nm41 for an O content increasing to 8 %. Such an increase of

the pore diameter for higher oxygen contents is compatible with our unsupervised machine

learning analysis of the DFT data, which revealed an increase of the vacancy radius from

about 2.1 Å to 2.4 Å at O concentrations increased from a few percent to about 8 % (Fig. 2d)

and the peaks at larger radii appearing in the plots displayed in Fig. 2b. The PALS results

for lower O contents must however have a different origin not captured by our DFT results

that consider only an Al-O-N supercell, but not the true textured multigrain film structure:

We attribute the existence of the second (and third) lifetime components at low O contents

to the open grain boundaries that also lead to a tensile film strain.9

The lifetime intensities shown in Fig. 5b show a significant correlated scattering of the I1

and I2 lifetime intensities. We attribute this to the local variation of defect micro-structure
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(most probably grain boundaries) for certain O concentrations, with however the major

defect types remaining unchanged. In-spite of the large correlated scattering an increase

of I1 is apparent, while I2 decreases (as highlighted by the wide red and blue trend lines,

respectively). The reduction of the intensity I2 of the second lifetime component τ2 with

increasing O concentration together with the existence of τ2 at low O concentrations high-

lights the two distinct origins that give rise to the second lifetime component: At very low

O concentrations, no large voids exist inside the Al-O-N grains, but the morphology of the

films is governed by open grain boundaries that consequently give rise to longer positron

annihilation lifetimes. At increased O contents our previous work,9 revealed that a grain

refinement occurs and an amorphous grain boundary phase forms that is gradually closing

up the open grain boundaries and consequently reduces the tensile film strain. We thus

attribute the observed reduction in I2 to a corresponding reduction of the open grain bound-

ary volume for increasing O concentrations. Interestingly for an O concentration of about

16 % O, seven out of eight I2 data points indicate a rapid drop of I2 towards zero while the

corresponding I1 data points raise to almost 100% (see blue and red trend lines in Fig. 5b).

This observation is compatible with the morphological transition occurring at an O content

of 16% established in our previous work9 which showed a transition from tensile to com-

pressive strain compatible with the absence of open grain boundaries and the formation of

a compact nanocrystalline phase. No clear interpretation is possible for the third and forth

lifetime components, even though they could represents a low concentration of local voids in

amorphous Al2O3 phase, which attract positrons.

Conclusions

Sputter-deposited Al-O-N films (and similar systems such as for example A-Si-N) fabricated

by sputter-depostion are a surprisingly complex class of materials32 with potential applica-

tions such as protective transparent coatings. In earlier work we found that the Al-O-N32
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(and also Al-Si-N films1,2) undergoes a complex structural evolution with increasing O con-

tent. At lower O (and Si contents) XRD indicated the formation of a solid solution by

integration of the O (and Si) into the AlN wurtzite lattice. In earlier theoretical work, the Si

atoms in the Al-Si-N films were reasonably distributed in the AlN wurtzite host lattice for

DFT calculations. The results confirmed the lattice contraction measured by XRD. However,

here we show that the human-choice of selecting solely super cells with nicely distributed VAl

and O atoms (or Si atoms in our earlier work) is questionable, particularly when considering

films fabricated by sputtering which is a highly off-equilibrium process. RSS is free from

human predjustice and allows for fast generation of a huge amount of configurations than

can be reduced to small set of initial candidates using FPS on a smart metric to compare

structural pairs. Accurate DFT can then be applied to obtain stable structures from the

initial set of ideal configurations. The results from DFT then need to be further interpreted

to shed light on the link between structure and properties, which is again challenging and

is performed here again without any human bias by exploiting the power on unsupervised

learning. Explaining experiments surprisingly complex, since the interpretation of the XRD

data of the Al-O-N (and similar systems, e.g. Al-Si-N) shows a linear contraction of the

lattice with an O content increased from 0 to 8%, while it remains constant for higher O

contents, making the interpretation challenging. Based on the work presented here, we sug-

gest to refrain from naming an Al-O-N system with high O contents of a few percent a

solid solution of O inside the AlN wurtzite lattice (and the same statement would apply to

many other similar materials systems). Indeed, solid solution implies that O and VAl are

well distributed inside an otherwise perfect AlN wurtzite lattice and that the material is

in a thermodynamically stable state. This is however not the case. The theoretical results

presented here revealed an increasing density of larger vacancy clusters (i.e. voids, confirmed

by PALS), with the formation of O and O-N pairs which strongly distorts the AlN lattice in

the proximity of these large defects. The large spread in the observed vertical lattice con-

stant found via DFT calculations across the large set of investigated configurations is also
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an indicator of a complex scenario that had been oversimplified in previous interpretations.

Hence, sputtered Al-O-N films with high O contents can be better understood as a

mixture of small metastable Al-O-N grains including larger scale defects such as VAl clusters

voids, surrounded by an O and N-rich phase and leading to strong local lattice distortions.

Possibly, these defect structures can accommodate further O introduced into the system such

that the lattice parameter of the metastable Al-O-N grains that shrink in size with increased

O contents would remain constant as detected by XRD. We anticipate that our findings

lay the foundations for future investigations devoted to studying the structural stability of

defective sputter-deposited materials. Indeed, recent achievements on the development of

robust machine learning-based atomistic simulation frameworks42–45 allow now for training

next-generation machine learning potentials capable of extending our theoretical model up

to millions of atoms46 while retaining ab initio accuracy. This would allow probing the

energetic of much larger supercells, with the possibility of testing the hypothesis of grain

boundaries formation.

We conclude that sputter deposited Al-O-N with O concentrations up to a few percent

are in metastable state having a high O concentration in the AlN wurtzite lattice. The incor-

poration of the O is accompanied by the formation of VAl to accommodate the extra valence

e− of O compared to N. At O concentrations of a few percent, the formation of larger and

VAl-O clusters is observed which lead to an increasing destabilization of the AlN wurtzite

lattice. Although sputter-deposited Al-O-N with high O contents in the AlN wurtzite lat-

tice are surprisingly stable up to temperatures of about 1200◦C, their thermodynamically

stable microstructure is a nanocomposite, in which (almost) O-free wurtzite AlN grains are

surrounded by amorphous Al2O3 grain boundary phase.
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(39) Tuomisto, F.; Mäki, J. M.; Chemekova, T. Y.; Makarov, Y. N.; Avdeev, O. V.;

Mokhov, E. N.; Segal, A. S.; Ramm, M. G.; Davis, S.; Huminic, G.; Helava, H.; Bick-

ermann, M.; Epelbaum, B. M. Characterization of bulk AlN crystals with positron

annihilation spectroscopy. J. Cryst. Growth 2008, 310, 3998–4001.
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