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– Micro-Computed Tomography
– Mercury Intrusion Porosimetry
– Scanning Electron Microscopy
– Optical Microscopy
– Brunauer Emmett Teller
– Interfacial Transition Zone
– Standard Deviation
– Neutron
– Gamma
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Porosity of small intact specimens (0.15 ± 0.01 g) were characterized.

MIP: connected pores in 1D on nanoscale (quantitative / destructive)  
SEM: porosity in 2D on nano- to micro-scale (qualitative / semi-destructive) 
µ-CT: total porosity in 3D on microscale (quantitative / non-destructive)  

MIP: ● hysteresis due to deviation from capillary bundle
model ● ink-bottle effect (large pores with narrow
throats) ● smaller pores over-estimated at expense of
larger pores ● specific surface area MIP > N2/BET due
to fracking and non-equilibrated capillary pressure

Examining
radiation-induced changes in 3D:  
● shrinkage of hydration phases
● expansion of aggregates  
● tracking ASR-formation

*calculated from thickness map (spheres are mathematically fitted 
into spaces possessing grey-scale density corresponding to air)
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we are here

*calculated using cylinder and plate model
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differential volume pore-size distribution curves determined by MIPof small intact cores of concrete 
illustrating pore features on

the logarithmic scale
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