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Some context first
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A disclaimer

(anything presented below is the result of a long
random walk)
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until 2012 PhD on pp → Z 0 + b cross-section at
ATLAS (LHC, CERN)

2012-2019 HPC developer and Scientific Software
Engineer at Scionics/MPI CBG

since 2019 Helmholtz AI team
lead for Matter
consulting
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Helmholtz AI

one central,
five local units
each unit: research +
consulting team
since 2019 for 7+X
years
consulting team:
collaboration-as-a-
service
more details:
helmholtz.ai
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Why are we doing this?
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A common situation with simulations


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= x⃗

simulation

x⃗ = fsim(ϑ⃗)

simulations used in many domains
(physics, biology/medicine, chemistry,
epidemiology, …)
approaches to simulations vary
(mechanistic, agent based, distribution
based, …)

simulations can be computationally
challenging
here: simulations = forward process

Peter Steinbach Inverting the Beamline

mailto:p.steinbach@hzdr.de


7/41

Inversion of Simulations?
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= x⃗

simulation

x⃗ = fsim(ϑ⃗)

inversion?
ˆ⃗
ϑ = f−1

sim(x⃗)

inverse process hard to do (if at all
tried)
often, only single observables “fitted”

simulations updated based on singular
observables
considerable human tuning involved
(heuristics)
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Simulation-based inference discovered recently
(Cranmer et al, 2020, Gelman & Vehtari, 2021)
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Bayes Law

p(ϑ⃗|⃗x) =
p(⃗x|ϑ⃗) · p(ϑ⃗)∫
p(⃗x|ϑ⃗)p(ϑ⃗)dϑ⃗

likelihood p(⃗x|ϑ⃗) provided by (forward)
simulation

prior p(ϑ⃗) given by how we sample the
simulation parameters ϑ⃗

Peter Steinbach Inverting the Beamline

mailto:p.steinbach@hzdr.de


9/41

Bayes Law

p(ϑ⃗|⃗x) =

likelihood︷ ︸︸ ︷
p(⃗x|ϑ⃗) ·p(ϑ⃗)∫
p(⃗x|ϑ⃗)p(ϑ⃗)dϑ⃗

likelihood p(⃗x|ϑ⃗) provided by (forward)
simulation

prior p(ϑ⃗) given by how we sample the
simulation parameters ϑ⃗

Peter Steinbach Inverting the Beamline

mailto:p.steinbach@hzdr.de


9/41

Bayes Law

p(ϑ⃗|⃗x) =

likelihood︷ ︸︸ ︷
p(⃗x|ϑ⃗) ·

prior︷︸︸︷
p(ϑ⃗)∫

p(⃗x|ϑ⃗)p(ϑ⃗)dϑ⃗

likelihood p(⃗x|ϑ⃗) provided by (forward)
simulation

prior p(ϑ⃗) given by how we sample the
simulation parameters ϑ⃗

Peter Steinbach Inverting the Beamline

mailto:p.steinbach@hzdr.de


9/41

Bayes Law

p(ϑ⃗|⃗x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(⃗x|ϑ⃗) ·

prior︷︸︸︷
p(ϑ⃗)∫

p(⃗x|ϑ⃗)p(ϑ⃗)dϑ⃗

likelihood p(⃗x|ϑ⃗) provided by (forward)
simulation

prior p(ϑ⃗) given by how we sample the
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Bayes Law

p(ϑ⃗|⃗x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(⃗x|ϑ⃗) ·

prior︷︸︸︷
p(ϑ⃗)∫

p(⃗x|ϑ⃗)p(ϑ⃗)dϑ⃗

likelihood p(⃗x|ϑ⃗) provided by (forward)
simulation

prior p(ϑ⃗) given by how we sample the
simulation parameters ϑ⃗

Goal: predict posterior to the best of our abilities!
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Why do I care?

Scientific Question
Given a beam profile, what were the
beamline optics parameters that
likely produced it?

beamline UE112 PGM-1 at
BESSY
beam characteristics fixed at
electron storage ring outlet
forward simulations by rayUI
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Normalizing Flows and INNs
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Goal: Learn Invertible Mapping

basic assumption

f … invertible mapping X … data distribution Z … generative distribution

f : X → Z

What we get ...

f−1(z) = x̂gen

sample z from Z with pZ(z) (Z is a normal
Gaussian distribution)

“obtain” inverse transformation f−1 from
learned forward function f

Normalizing Flows are generative models!
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Change of Variables Trick, part 1/2

given a random variable X ∈ Rd and Z ∈ Rd of d dimensions
given an invertible function f : X → Z and z = f(x)

For interval β over X, there has to be β′ over Z such that∫
β

pXdx =

∫
β′

pZdz

pX(x)dx = pZ(z)dz
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Change of Variables Trick, part 2/2

pX(x)dx = pZ(z)dz

pX(x) = |dz
dx

|pZ(z)

pX(x) = |df(x)
dx

|pZ(f(x))

For d > 1 dimensions

given a random variable X ∈ Rd and
Z ∈ Rd of d dimensions

given an invertible function f : X → Z
and z = f(x)

pX(x) = |det(
df(x)

dx
)|pZ(f(x))
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Achievement: from x to z and back

from G. Papamakarios et al, “Normalizing Flows for Probabilistic Modeling and Inference”,
arXiv:1912.02762, 2019.
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Quiz!

Why are normalizing flows called normalizing flows?

They normalize x into z!
X ∈ Rd and Z ∈ Rd of d dimensions
sample z from Z with pZ(z), Z being a (multivariate) normal Gaussian distribution
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Take Aways

NFs infer exact latent-variable values z!

VAEs infers a distribution over latent-variable values
GANs do not have a latent-distribution

NFs optimize the exact log-likelihood of the data, log(pX (x))

VAEs optimize the lower bound (ELBO)
GANs learn to fool a discriminator network

requirements of invertibility and efficient Jacobian calculations restrict
model architecture
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Conditional Invertible Neural Networks
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arxiv:1907.02392, Code on github
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INNs

CC
in

u1

u2

+ v1

+ v2

outs1 t1 s2 t2

edited from arxiv:1907.02392
(inspired by arxiv:1808.04730)

Forward (f)

v1 = u1 ⊗ exp(s1(u2)) + t1(u2)

v2 = u2 ⊗ exp(s2(u1)) + t2(u1)

Backward (f−1)

u2 = (v2 − t2(v1))⊘ exp(s2(v1))

u1 = (v1 − t1(u2))⊘ exp(s1(u2))
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Conditioning

CC
in

u1

u2

+ v1

+ v2

outs1 t1 s2 t2

c

ϑ⃗ z⃗

x⃗

from arxiv:1907.02392

this does not compromise invertibility
concatenate output of conditioning network c to inputs of sj and tj, e.g.

s1(u2) → s1([u2, c(u2)])
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cINN Loss from Maximum Likelihood Optimisation

Li = Ei

[
− log(p(ϑi|xi))

]

using Ji = det( dfw
dϑ |ϑi)

with p(ϑ⃗|⃗x) = |Ji|pZ(z = fw(ϑ⃗; x⃗)) from change of variables
pz describes unit gaussian distribution, N (z|0, I) ≈ exp(||−1

2z||22)

L = Ei

[
− ||fw(ϑ⃗; cu(⃗x))||22

2
− log(Ji)

]
for complete derivation see Radev et al, 2020

(footnote: the paper starts from the Kullback-Leibler (KL) divergence,
which is equivalent to a Maximum Likelihood Optimisation)
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In Practice: Training

ϑ⃗sim =


42.
12.
1.

−0.8
2.
320



x⃗obs = (.50, .60, .67, . . . , .40, .58, .75)T


1.190
0.138
−1.111
0.423
−0.189
0.005

 = z⃗|normal
neural network

argminWL(p(ϑ⃗|x⃗)))prior p(ϑ⃗)

likelihood p(x⃗|ϑ⃗)

simulation
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In Practice: Inference

ˆ⃗
ϑsample =


42.01
11.99
1.02
−0.7
2.1
301



x⃗obs,unseen = (.55, .59, .68, . . . , .41, .57, .77)T


0.243
−0.198
0.002
1.150
0.183
−1.111

 = z⃗|normal

random

trained neural network
f̂−1(x⃗, z⃗)posterior p̂(ϑ⃗|x⃗)

Peter Steinbach Inverting the Beamline

mailto:p.steinbach@hzdr.de


25/41

Take Home Messages

(c)INNs based on normalizing flows

conditional INNs allow inversion of
ϑ⃗ ∈ Rd ⇌ x⃗ = f(ϑ⃗) ∈ Rk , (d ̸= k)
inversion sensible on latent space z ∈ Rd

promising avenue beyond/aside VAE and GANs

Quiz: What are the core assumptions for (c)INNs to work?

f : ϑ → x is invertible
generative distribution z is drawn from a normal distribution
tractable jacobian so that det(Jf) can be computed
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generative distribution z is drawn from a normal distribution
tractable jacobian so that det(Jf) can be computed
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cINNs in the wild
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My data

(forward) simulation parameters ϑ⃗ ∈ R6

knife-edge scans to quantify beam
quality at experimental station,

x⃗ ∈ R200
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cINN Inference on the validation set

cINN provides posterior
that can be sampled

extract Maximum a
posteriori estimation
(MAP) estimate by
mean/median
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cINN MAPs on the validation set

training:

30 epochs only
fixed arch: 8 layers
256 units per
dense layer

inference: 256 draws
per validation sample,
MAP by mean

good: posterior stays
within prior support

to improve: posterior
misses out for some
dimensions
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What is going on?

core assumption(s)

network f is sufficiently expressive
as Nsimulations → ∞, network allows mapping of x⃗ onto p(ϑ⃗|⃗x)
training dataset imposes the entire “truth” through implicit prior psimulation(ϑ⃗)

Let’s reconsider

goal: infer ϑ⃗|x⃗o on observation x⃗o

but: the global learned posterior may not be too informative at p(ϑ⃗|x⃗o) (as we fixed the
prior)

sequential neural density estimation
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Sequential neural density estimation
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SNPE

sequentially update prior to form a
proposal prior p̃(ϑ) (and a p̃(ϑ|⃗x))
loss function has to be adapted
cINNs can be used as conditional
density estimator
Greenberg et al, 2019:
“Learning with such ‘atomic’ proposals has
an intuitive interpretation: we are training
the network to solve multiple choice test
problems, of the format “which of these ϑ’s
generated this x?”
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sbi MAPs on the validation set

training:

>100 epochs only
fixed arch: 8 layers,
neural spine flow
Durkan et al, 2019
256 units per layer

inference: 256 draws
per validation sample,
MAP by mean

good: posterior stays
within prior support

to improve: posterior
misses out for two
dimensions (expected)

www.mackelab.org/sbi

Peter Steinbach Inverting the Beamline

http://arxiv.org/abs/1906.04032
https://www.mackelab.org/sbi
mailto:p.steinbach@hzdr.de


34/41

the real world

reproducibility, openness & team work = key!
(all results from above were from toy simulations)
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Next Steps

quality control of predictions:
sample based metrics (Naeem et al, 2020)
simulation based calibration (Talts et al, 2018)

integrating cINNs from above into SNPE
experiment with gradient based MAP estimation
uncertainties of MAPs?
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Summary
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Take Aways

normalizing flows have emerged as a learnable transformation between
distributions

they lend themselves as a central building block for conditional density
estimation
a new field of statistics, simulation-based inference, for multi-variate
n-dimensional parameter estimation is currently explored in many fields of
science (astronomy, lattice QCD, life science, …)
openness, communication and interdisciplinary work can drive all of the above

Questions? Feedback? Concerns?
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Further Reading

nice blog post with pytorch code samples
“Normalizing Flows for Probabilistic Modeling and Inference,” G. Papamakarios et al,
arXiv:1912.02762, 2019.
“Normalizing Flows: An Introduction and Review of Current Methods”, I. Kobyzev et al,
arXiv:1908.09257, 2019.
“Glow: Generative Flow with Invertible 1x1 Convolutions”, Kingma et al,
arXiv:1807.03039, 2018.
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Backup
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Converging to a loss function

pX(x) = |det(
df(x)

dx
)|pZ(f(x))

Going from one f to multiple: zn = fn ◦ · · · ◦ f1(x):

pX(x) =
n∏

i=1

|det(
dzi

dzi−1
)|pZ(f(x)) , x = z0

log(pX(x)) =
n∑

i=1

log |det(
dzi

dzi−1
)|pZ(f(x)) , x = z0
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conditioning network details

recall: outputs of conditioning network h concatenated to inputs of si and ti

feeds higher semantic features of data into INN
2 options:

train h outside of INN (only feed c̃i = h(ci) to INN)
train h jointly with INN

for image inputs:

train classification network
remove last softmax layer
use latent features as conditioning
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