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Abstract6

Recently, the strongly inhomogeneous current density occuring near a microelectrode was identified as driving

a thermocapillary electrolyte flow near gas bubbles growing during electrolysis [1]. The present paper

is investigating this effect in more detail under various operating conditions. Furthermore, by simplified

modeling, the question is answered of whether this effect is also of importance at large planar electrodes.

The direction of the thermocapillary force on the bubble is found to change from retarding to advancing the

bubble release when the size of the electrode is increased. Conclusions are drawn on how the thermocapillary

effect at planar electrodes depends on the electrode coverage and the bubble departure size, also considering

industrially relevant values of the current density.

Keywords: hydrogen evolution, electrolysis, thermocapillarity, Marangoni force, microelectrode,7

macroelectrode8

1. Introduction9

Interfaces between media of different phases are ubiquitous in nature and play an important role in many10

physico-chemical systems. If liquids are involved, capillary effects often influence the system behavior [2].11

The surface tension for a given liquid-gas pair is known to depend on physical properties of the interface,12

namely the temperature, chemical composition and electric potential in the presence of interfacial charge [3].13

Thus, interfacial gradients of these physical properties cause the surface tension to vary along the interface.14

As a result, due to unbalanced forces at the interface, fluid elements there experience a net shear stress and15

move towards interface regions of higher interfacial tension. The resulting capillary flow is commonly called16

Marangoni flow [4]. This Marangoni effect is known to occur in many systems of scientific and technological17

importance. For example, thermo-capillarity is the mechanism which drives the well-known Bénard cells18

([5–7] and references therein), a phenomenon occurring in many engineering heat transfer applications.19

In liquid-liquid extraction processes, soluto-capillary flows may significantly change the mass transfer rate20

∗Corresponding author: g.mutschke@hzdr.de

Preprint submitted to Electrochimica Acta May 7, 2020



[8]. Furthermore, Marangoni flow exists at sessile evaporating droplets due to the interfacial temperature21

gradient caused by a nonuniform rate of evaporation [9]. This influences the well-known coffee-ring-like22

structures [10], and may thus affect patterned deposition [11] and particle self-assembly [12].23

In 1959, Young et al. [13] demonstrated the profound effect which Marangoni flow can have on air bubbles24

in liquids by applying a positive temperature gradient in the direction of gravity to suspend them against25

buoyancy. The temperature gradient induced a surface tension gradient along the bubble interface and26

thus exerted a thermocapillary stress on the interface, which caused the bubble to experience a force against27

buoyancy. At a sufficiently steep temperature gradient, the thermocapillary force can be as large as buoyancy.28

Later, with the advent of space research, bubble actuation in micro-gravity by means of thermocapillarity29

attracted much interest [14, 15]. Experiments conducted in the space shuttle in orbit showed that by applying30

a temperature gradient of the order of 1 K/mm, a bubble migration speed of ∼1mm/s could be achieved31

for a bubble of millimeter size [16]. McGrew et al. [17] speculated that Marangoni convection might have a32

significant contribution to heat transfer in nucleate boiling, as the observed flow structure around a pendant33

air bubble heated from above was found to be similar to that of a vapor bubble during boiling. Later, in34

nucleate boiling experiments conducted under microgravity conditions, the heat transfer rate obtained by35

Straub was similar to that obtained under normal gravity conditions [18], which lent further credence to the36

importance of Marangoni flow around the bubbles. Further experiments and numerical simulations [19–21]37

established the significant importance of thermocapillarity-driven flow in the subcooled boiling regime and38

showed that the resulting Marangoni force acting on the bubble slowed down their detachment from the39

boiling surface [22].40

It has long been hypothesised that the Marangoni effect also influences the dynamics of bubbles grown41

electrochemically on electrodes [23, 24]. Definitive experimental evidence of the Marangoni effect was first42

provided by Yang et al. [25], who performed a detailed investigation of the interfacial flow around hydrogen43

bubbles grown on a Platinum microelectrode. Then, by simultaneously measuring the electrolyte velocity44

and temperature and correlating the results with the numerical solution obtained when considering only ther-45

mocapillarity, Massing et al. [1] were able to show that the Marangoni flow observed is primarily attributed46

to the thermocapillary effect caused by the temperature gradient along the bubble interface. Interestingly,47

for strong local boiling at microheaters, the thermocapillary flow found near the gas bubble qualitatively48

matches the flow structure near the electrogenerated gas bubble at a microelectrode [1], though due to strong49

laser heating the maximum flow velocity is about 10 times higher [26].50

As gas bubbles are generated in many electrochemical processes such as plating, refining of metal or51

the chloralkali process [27–29], a better understanding of the dynamics of electrogenerated bubbles and52

associated thermo-fluidic phenomena is of great technological and scientific interest. This is particularly53

relevant for H2 production through water electrolysis, as the bubble evolution rate directly influences both54

the system throughput and the process efficiency [30], which may be of increasing importance for next-55
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generation green energy storage and mobility applications [31–33].56

As bubbles attached to the electrode surface disturb a homogeneous surface reaction rate, reduce the57

active reaction area and increase the electrical resistance of the cell, the speedy removal of generated bubbles58

from the electrode surface is highly desirable with respect to both deposit quality and electrical efficiency.59

The instant of bubble departure and the departing diameter is determined by the equilibrium of forces acting60

on the bubble [34]. However, the often-used Fritz equation [35] does not provide an accurate prediction of61

the departure diameter [36]. For the special case of oxygen bubbles grown photocatalytically on TiO262

nanorods where a temperature gradient is caused by light irradiation, Chen et al. have recently shown that63

the inclusion of both thermocapillary and solutal Marangoni forces in the force balance of the bubble could64

considerably improve the estimate of the bubble departure [37]. However, beside the aforementioned study65

by Massing et al. [1], where a retarding influence of the thermocapillary effect on the bubble departure was66

found, no systematic study has been carried out for electrogenerated bubbles.67

For studying bubble evolution during electrolysis, microscale electrodes have been widely used, as the68

nucleation area is limited, and single bubble growth can be more easily observed compared to the spatially69

random nucleation occuring at large planar electrodes [38–41]. The recent work which was the first to70

confirm the existence of thermocapillary flow around electrogenerated bubbles [1] was also carried out at71

microelectrodes. However, there remains a need for more detailed investigations of this phenomenon. In72

particular, the question has not yet been addressed of whether this effect is also of importance at the larger73

electrodes, which are more relevant to industrial applications. Therefore, in this study we perform detailed74

numerical simulations and analyses of the thermocapillary effect at electrogenerated bubbles on electrodes75

of varying size. Different operating conditions are investigated, and the important qualitative differences76

found between microelectrodes and macroelectrodes will be emphasized.77

2. Simulation setup78

Microelectrode. To study the thermocapillary effect around a hydrogen bubble at a microelectrode of vary-79

ing size, our simulation setup closely follows the methodology used by Massing et al. [1]. A cylindrical80

electrochemical cell with a radius Rc = 5 mm and a height Rh = 5 mm is considered. It is filled with an81

aqueous solution of 1 M H2SO4. The computational domain is sketched in Figure 1a. At the bottom of82

the cell, a bubble with a radius Rb = 560 µm sits on a Pt microelectrode (radius Re), which works as the83

cathode. The contact angle between the bubble and electrode is θc = 4.2◦ [1]. It should be noted here that84

the bubble radius is much smaller than the size of the cell. The Pt microelectrode is embedded in a glass85

bottom. The top of the cell is completely covered by a counter-electrode made of platinum. The electrodes86

and the glass bottom have a height of 5 mm each. The inclusion of the glass bottom and both electrode87

domains is important for an accurate calculation of the temperature field in the electrolyte due to non-zero88
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Figure 1: Computational domain (not to scale). a) microelectrode, b) macroelectrode.

and non-uniform heat flux through these domains.89

We follow Massing et al. [1] and consider a bubble of fixed size to resemble a late stage of the bubble90

growth cycle. As shown in Figure 1, we utilize the rotational symmetry of the cell and hence perform91

axisymmetrical simulations. The leftmost edge in Figure 1 is the axis of symmetry. The following equations92

to be solved describe the spatial and temporal distribution of the electric potential (φ), velocity (u) and93

temperature (T ) in the electrolyte:94

∇2φ = 0 (1)
95

∇ · u = 0 (2)
96

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u (3)

97

ρCp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T +

|j|2

σ
(4)

Here, the primary current density j = −σ∇φ is obtained by solving Eq. (1), where σ denotes the electrical98

conductivity of the electrolyte, which is assumed to be constant. The electrolyte velocity is obtained by99

solving the incompressible Navier-Stokes equation (3) complemented by the incompressibility constraint (2),100
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where p, ρ and µ denote the pressure field and the material properties of density and viscosity. Thermal101

and solutal buoyancy effects may safely be neglected, as discussed in [1]. The electrolyte temperature is102

obtained by solving Equation (4), where Cp and k denote the material properties of the specific heat capacity103

and thermal conductivity. The latter term denotes Joule heating due to electric current passing through the104

electrolyte. It should be noted here that this term may be neglected in the electrodes, where the electrical105

conductivity σ is several orders of magnitude larger than in the electrolyte. Therefore, in all other domains106

(both electrodes, glass bottom and gas bubble), only heat diffusion is solved:107

ρCp
∂T

∂t
= k∇2T (5)

Here, convective heat transport in the gas bubble may safely be neglected, as discussed in [1].108

The boundary conditions applied to these equations are as follows: for Equation (1), the electrode109

surfaces exposed to electrolyte are kept at a fixed potential, i.e. φ = 0 for the working electrode and φ = φ0110

for the counter electrode. The outer boundary at Rc is electrically insulating, i.e. ∂φ
∂n = 0, where n is the111

normal unit vector. For Equation (3), a shear stress balance is applied at the electrolyte–bubble interface,112

i.e. τH = τM , where the hydrodynamic shear stress is given by τH = µ
(
∇u + (∇u)

T
)
.n, and the thermal113

Marangoni stress is given by114

τM =
∂γ

∂T
.∇sT (6)

Here, γ denotes the interfacial tension, which is assumed to depend on the temperature only, and115

∇s ≡ ∇ − (∇.n)n denotes the gradient along the surface of the interface. As the temperature field is116

solved in all domains by Eqns. (4) and (5), boundary conditions are required only at the outermost surfaces.117

The top and the bottom of the computational domain are kept at an ambient temperature Tamb = 20◦ C,118

while at the outer surface at Rc far from the bubble an adiabatic condition ∂T
∂n = 0 is applied. Finally, at the119

symmetry axis at r = 0, a zero radial gradient condition is applied on all variables, i.e. ∂
∂r (φ,u, T ) = 0. The120

temperature coefficient of the surface tension at the gas-liquid interface is taken to be ∂γ/∂T = −1.6 · 10−4
121

N/m· K [1]. The value of the surface tension γ does not appear directly in our model as the bubble is122

assumed to be of fixed shape and size. All other material properties are assumed to be constant over the123

electric potential and temperature range solved for and are shown in Tables 1 and 2.124

All equations are solved using the FEM-based simulation software COMSOL 5.4. The initial conditions125

applied are zero potential, electrolyte at rest and ambient temperature. As discussed extensively in [1],126

a time integration period of one second was chosen at which nearly stationary and realistic values of the127

temperature and velocity distribution and the resulting Marangoni force may be expected. To study the128

effect of the size of the working microelectrode, Re is varied while Rb is kept constant. We introduce a129
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Electrolyte

µ = 10−3 Pa·s

σ = 40 S/m

ρ = 103 kg/m3

Cp = 4.182 kJ/kg·K

k = 0.58 W/m·K

Table 1: Material properties of the electrolyte for Equations 3 and 4

Material ρ(kg/m3) Cp(kJ/kg·K) k(W/m·K)

Platinum 21450 0.13 72

Glass 2201 1.052 1.38

Hydrogen 0.09 14.32 0.186

Table 2: Material properties for Equation 5

non-dimensional length parameter as the ratio of the bubble radius and the microelectrode radius,130

α =
Rb
Re

(7)

As we are here primarily interested in studying how the increasing size of the microelectrode affects the131

behavior in the vicinity of the gas bubble, unless otherwise mentioned, the radius of the microelectrode is132

varied from 50 µm to 400 µm such that Re < Rb, i.e. α > 1.133

Macroelectrode. To study the thermocapillary effect on a large, flat electrode where multiple gas bubbles134

are growing simultaneously, we take a simplified approach as follows: we first zoom into a small part of the135

electrode in order to focus only on a single bubble. A cylindrical domain around this bubble is considered,136

where the radial extension Rc of the domain is half the distance to the next neighboring bubble. We137

assume that the cell with large electrodes is essentially composed of this periodically repeating domain.138

Though there are time shifts between the evolution cycles of neighboring bubbles, our simplified approach139

therefore assumes that all bubbles develop synchronously and also ignores possible coalescence phenomena140

of neighboring bubbles during growth. A further approximation consists in neglecting azimuthal variations141

of potential, temperature and velocity which might arise from the finite number of neighboring bubbles142

sitting at unknown azimuthal positions. This approach treats neighboring effects in an approximate manner143

averaged over the azimuthal direction and allows the problem to be simulated axisymmetrically. We can144

therefore make use of the axisymmetric computational domain shown in Figure 1b, which is similar to the145

one used previously for the microelectrode shown in Figure 1a, and which only needs minor modifications:146

at the bottom of the cell, the outer glass part is removed, and the electrode is now enlarged over the full147

radial extent of the cell Rc. At the outer radial boundary, the conditions of electrical insulation for the148
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potential and an adiabatic condition for the temperature remain unchanged, but in the case of the velocity,149

vertical slip is applied. The governing equations to be solved for remain as before. In order to quantify the150

ratio between the bubble size and the size of the cell, we introduce151

Θ =

(
Rb
Rc

)2

(8)

In the framework of our approach, this ratio describes the bubble coverage of the electrode which is defined152

as the ratio of the bubble area projected on the electrode and the electrode surface area. We can later simply153

change the bubble coverage of the electrode (which is known to depend on e.g. the mean current density),154

for example by varying the radial extension of the cell while retaining a fixed bubble size.155

3. Results and Discussion156

3.1. Microelectrode157

3.1.1. General overview158

It is evident from Equation 4 that the electrolyte is heated because of the electric current passing through159

the cell. This causes a temperature gradient along the bubble interface which gives rise to Marangoni160

flow. Therefore, the current distribution near the interface strongly influences the temperature and flow161

distribution in the electrolyte. Figure 2(a) shows numerically obtained current lines near the interface for162

α = 11.2. As the gas bubble is electrically insulating, current must pass around it to converge at the163

microelectrode. Therefore, as the entire cell current must squeeze through a narrow wedge-like region at164

the bubble foot, the local current density there is very high. In addition, the presence of the bubble makes165

the outer region of the electrode more accessible to the electric current. This causes an inhomogeneous166

distribution of the current density over the electrode surface wetted by the electrolyte, as shown in Figure 2(b)167

for different microelectrode sizes. Here, the cell voltage was kept constant at φ0 = 4.5 V, and the radial168

position on the microelectrode is presented normalized by the electrode radius, i.e. r∗ = r/Re. As the169

current density is shown on a logarithmic scale, it clearly can be seen that it varies quite strongly over the170

radial electrode position and is largest at the electrode periphery. The smaller the microelectrode becomes,171

the stronger the radial variation of the current density and also its maximum value at the electrode periphery.172

As the rate of heat generation scales with the current density squared (|j|2), the electrolyte experiences173

strong heating near the periphery of the electrode. Figure 3 shows a zoomed view of the distribution of the174

temperature rise (∆T = T − Tamb) in the vicinity of the outer electrode edge for Re = 200µm (α = 2.8). It175

can be seen that the temperature maximum occurs just above the microelectrode periphery at r∗ = 1. As176

the surface tension of the bubble interface decreases with increasing temperature, the electrolyte is pulled177

towards colder parts of the interface, thus establishing an interfacial flow away from the point of maximum178

temperature. As this bidirectional interfacial flow must be replenished from the bulk, a double-vortex179
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Figure 2: (a) Current lines near the bubble interface as obtained from a simulation for φ0 = 4.5 V and α = 11.2. (b) Distribution

of the magnitude of the current density (|j|) on microelectrodes of different size versus the radial position on the wetted part

of the electrode normalized with the electrode radius (r∗ = r/Re). φ0 = 4.5 V. |j| is shown in log scale.

structure is created, as shown for the first time in Figure 3. As will be elaborated in the following, this180

double-vortex structure is a characteristic feature of the thermocapillary flow driven at the interface of an181

electrogenerated bubble. In the case of microelectrodes, for geometric reasons, the temperature hotspot182

appears above the electrode periphery, thus confining the left vortex, and the thermocapillary effect is183

dominated by the large right vortex. The small size of the left vortex explains, why it was not observed184

during earlier work at microelectrodes [1].185

3.1.2. Interfacial temperature and velocity profile186

We now discuss the interfacial temperature and velocity profiles at electrodes of different sizes Re while187

the cell voltage is kept constant at φ0 = 4.5 V. It is to be noted here that, at constant voltage, the electrical188

resistance of the cell decreases and hence the cell current increases when the microelectrode is enlarged. The189

obtained profiles of the temperature increment ∆T and tangential velocity (ut = u · t) along the bubble190

interface are shown in Figure 4, with the definition of the angular position θ based on Figure 1. Starting191

from the point of contact between the bubble and electrode (θc = 4.2◦), an initial temperature increment192

is seen in all cases. The smaller the microelectrode is, i.e. the larger α is, the steeper the increase in193
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Figure 3: Color contours of the temperature distribution (∆T = T −Tamb) and related electrolyte flow pattern (black: velocity

vectors) near the temperature hotspot for a microelectrode of Re = 200µm (α = 2.8) at potential φ0 = 4.5 V. The radial

coordinate is r∗ = r/Re.

temperature becomes. At the same time, the angle θm at which the maximum temperature increase ∆Tm194

is observed reduces. This behavior can qualitatively be understood from the discussion on the temperature195

hotspot in the section above: this was found to be located approximately above r∗ = 1. Therefore, when the196

microelectrode grows in size, θm also increases. A more detailed discussion on θm is given in Section 3.1.3.197

Moving further along the interface away from θm, ∆T gradually decreases towards the bubble north pole at198

θ = 180◦. This general trend in the interfacial temperature profile is seen for all cathode sizes investigated.199

It is also to be noted here that the variation of ∆Tm with α is not monotonic. This is because increasing200

Re while keeping φ0 constant increases the cell current. Thus the total heat generation in the cell increases,201

which tends to increase the peak interfacial temperature. As the electrode gets bigger, more heat is carried202

away by the Pt microelectrode. Greater heat advection from the hotspot by the electrolyte (cf. Figure 4(b))203

also contributes similarly. These effects tend to reduce ∆Tm. As a result of the combined action of greater204

heat generation and higher heat transfer, ∆Tm varies non-monotonically with Re and thus α. Hence we can205

see from Figure 4(a) that ∆Tm first increases and then decreases to an almost constant value with a larger206

electrode i.e. smaller α.207

The non-uniform interfacial temperature profile causes thermocapillary stress as shown in Equation 6.208

Because of the stress balance at the interface, τM = τH ∼ ∂ut

∂θ , where ut denotes the tangential velocity209

at the interface, a Marangoni flow is driven, as already mentioned in Section 3.1.1. The interfacial flow210

profiles for different microelectrode sizes are shown in Figure 4(b) and can be understood by applying the211

following sequence of reasoning: According to Equation 6, when the negative temperature coefficient of the212

surface tension of the electrolyte mentioned in Section 2 is taken into account, positive or negative slopes213
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of the temperature profile cause negative or positive thermocapillary stress, respectively. Hence, because of214

the stress balance, the tangential velocity of the Marangoni flow becomes negative or positive, respectively.215

Consequently, as the flow is purely driven by thermocapillarity, the temperature hotspot separates a region216

of negative tangential velocity at small angles from a region of positive tangential velocity at larger angles.217

At the temperature hotspot θm itself, the tangential velocity must vanish, i.e. ut = 0. In Figure 4 and later218

also in Figure 5, an exemple of this is emphasized for the case α = 5.6 by a vertical black line . The two219

regions of velocity of opposite sign are the interfacial parts of the two counter-rotating vortices already seen220

in Figure 3. As the microelectrode increases in size, the region of negative velocity also increases, yielding221

a larger vortex above the microelectrode. At the same time, the extremum positions of maximum negative222

and positive interfacial velocity are both shifted towards larger angles. During this process, the maximum223

negative velocity decreases monotonically in amplitude, with the initially growing maximum velocity later224

seeming to level out near a value of about 15 cm/s for α ∼ 1. However, the total kinetic energy at the225

interface reaches a maximum at the largest microelectrode size, a straightforward example of the above226

argument of maximum heat generation at smallest α.227

The interfacial temperature distribution at the bubble is determined by the interplay between the gener-228

ation of heat and the diffusion and advection of heat. For the case of a constant cell voltage (φ0) considered229

above, all these quantities vary with varying electrode size (α). In order to partly decouple these effects, in230

the following we study the case of a constant electric cell power which mainly (apart from kinetic losses)231

determines the generation of heat by Joule dissipation. The total electric power of the cell is given by232

P = φ0Ic, where Ic is the cell current, which in the simulations was determined by integrating the normal233

current density over the counter-electrode surface (Ic =
∫
jndA). In the following, the electrical power is234

kept constant at P = 13.4 mW and α is varied. This power value chosen is the same as the constant cell235

voltage case at α = 11.2, i.e. for the smallest electrode. Hence, the constant cell potential and constant236

cell power cases are identical for α = 11.2. This way, a major remaining factor determining ∆T (θ) along237

the bubble interface is the heat carried by the Pt microlelectrode, which increases with decreasing α. The238

simulation results are shown in Figure 5. The interfacial temperature profile still maintains the character-239

istics seen in Figure 4(a). However, because the heat generation is kept constant and the heat carried away240

from the electrolyte increases along with the electrode size, ∆Tm decreases monotonically with decreasing241

α, as seen in Figure 5(a). Accordingly, the extrema of maximum negative and positive interfacial velocity242

eventually decrease monotonically with decreasing α, as seen in Figure 5(b). The same holds for the total243

kinetic energy at the interface.244

3.1.3. Position of the temperature hotspot245

As mentioned in Section 3.1.2, the reversal of the direction of interfacial flow coincides with the location246

of the temperature maximum ∆Tm at the angular position θm. It can be further seen in Figure 3 that247
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Figure 4: Constant cell voltage case: interfacial temperature (a) and tangential velocity (b) profile as a function of angular

position for different electrode sizes expressed by α = Rb/Re

for α = 2.8 the position of ∆Tm coincides with the upward projection of the microelectrode’s outer edge248

(r∗ = 1) onto the bubble interface, as shown in Figure 1. Therefore, we intend to study ∆Tm closer to see249

whether this geometrical interpretation also holds true for other microelectrode sizes. The angular position250

of the projection of the microelectrode’s outer edge (r∗ = 1) on the bubble interface is given as251

θe = sin−1(Re/Rb) = sin−1(1/α) . (9)

Figure 6 displays the angular position of the interfacial temperature maximum θm versus the inverse relative252

electrode size α = Rb/Re as obtained from simulations for the cases of constant cell voltage (Figure 4a) and253

of constant cell power (Figure 5a) in comparison with the values θe obtained from the geometrical approach254

by Equation 9. At small relative electrode size, i.e. at large α, the simulation results for both cases perfectly255

match with the geometrical relation from Equation 9, which provides a very accurate estimate of the location256

of the temperature maximum at the interface. As the microelectrode increases in size, only small differences257
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Figure 5: Constant cell electric power (P = 13.4 mW) case: interfacial temperature (a) and velocity (b) profile as a function

of the angular position for different electrode sizes expressed by α = Rb/Re

are seen between the two simulation cases, besides an overall good match being maintained with Equation 9.258

Eventually, at α = 1.2, both cases seem to deviate from the analytical curve and deliver smaller angular259

positions of the temperature hotspot than Equation 9. This is caused by the fact that as the microelectrode260

increases in size, as seen from Figure 2, the non-uniformity of the current density, i.e. the ratio of the peak261

value at the electrode edge in comparison to the mean value, decreases. Therefore, as α approaches unity,262

inner parts of the electrode surface also contribute to the generation of the temperature hotspot, which leads263

to the observed slight shift in the position of the temperature maximum towards smaller angular positions.264

In summary, the geometrically estimated angular position θe of the temperature maximum θm based on the265

inhomogeneous distribution of the current density at the microelectrode provides a useful estimation of the266

position of the temperature maximum θm and the resulting interfacial flow characteristics at the bubble267

interface at the microelectrode without the need to perform detailed simulations or experimentation. We268

would also like to point out here that Equation 9 is only valid for Re ≤ Rb, which coincides with the range269
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Figure 6: Angular position of the interfacial temperature maximum (θm) versus α = Rb/Re at fixed Rb = 560µm for the

cases of constant cell voltage (red circles) and of constant cell power (blue squares). The dashed curve denotes the geometrical

relation from Equation 9.

of studies for the microelectrode case presented here.270

3.1.4. Marangoni force271

Figure 7: Marangoni force acting on the bubble, shown as normalized by the buoyancy force (F ∗
M = FM/FB), at different

values of α = Rb/Re. The x−axis is shown in logarithmic scale to emphasize the behavior at low α. In the case of constant

cell voltage, φ0 = 4.5 V. In the case of constant cell power, P = 13.4 mW.

We now focus on investigating the resulting thermocapillary force on the bubble at different microelec-272

trode sizes. As already mentioned in the introduction, the moment of bubble detachement is determined273

by the equilibrium of forces acting on the bubble. Therefore, a comprehensive treatment of all the forces274

acting on a bubble is of importance. A number of different forces may act on the bubble depending on275
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the predominant physical conditions i.e. growth rate, imposed flow condition, orientation relative to gravity,276

etc. [34] The relevant static forces acting on an electrogenerated bubble are in general the buoyancy force,277

surface tension force, contact pressure force and hydrodynamic force originating from the flow of the elec-278

trolyte [42, 43]. Recently it was shown that beside the thermocapillary force [1], an electrostatic force may279

also play an important role [44].280

The thermocapillary force on the bubble is a hydrodynamical force by nature and results from the281

interfacial flow around the bubble driven by temperature gradients. In the following, we will denote the282

force as the Marangoni force, which can be calculated by integrating the Marangoni shear stress over the283

bubble interface (Σ),284

FM = −
∫

Σ

τMdA. (10)

Here, dA denotes the related surface differential. Because of the axial symmetry around the bubble, the above285

integration results in a force which is acting parallel to the z−axis, i.e. vertically upwards or downwards,286

thus influencing the moment of detachment. In the following, we consider the Marangoni force FM in relation287

to the buoyancy force FB = gV∆ρ where g, V and ∆ρ denote the gravitational acceleration, the bubble288

volume and the density difference between the electrolyte and gas, respectively. Thus, we introduce289

F ∗
M =

FM
FB

(11)

where positive values of F ∗
M imply a Marangoni force acting in the direction of buoyancy.290

Figure 7 shows the dependence of F ∗
M on the inverse relative electrode size (α) at a constant cell voltage291

and constant cell electric power. Note that the differential local Marangoni force experienced by any part292

of the interface is opposite to the direction of local interfacial velocity. According to the velocity profiles293

shown in Figure 4(b) and 5(b), the lower part of the bubble (θ < θm) experiences a net Marangoni force in294

the upward direction and the upper part of the bubble experiences a net Marangoni force in the downward295

direction. As for the microelectrode, the extent of the flow vortex to the left of temperature hotspot is296

smaller than that to the right of the temperature hotspot. The integration of Equation 10 gives a net FM297

in the downward direction, hence F ∗
M is negative at large α. For the potentiostatic case, as with decreasing298

α, the mean current density and thus the heat generation in the electrolyte grows, F ∗
M also increases in299

magnitude. When decreasing α further, the growing contribution from the left vortex becomes more and300

more important, and F ∗
M starts to decrease in magnitude near α ∼ 1. We further see that at α ∼ 1, due301

to very strong heating, the Marangoni force has reached a magnitude of roughly 55% of buoyancy, which302

corresponds to a very large mean current density value of 34.8 A/cm2.303

As the electrode size is increased while keeping the total heat generation constant, the temperature304

nonuniformity along the interface reduces and the contribution from the two vortices becomes comparable.305

Thus, F ∗
M decreases with decreasing α, becoming approximately zero at α ∼ 1.306
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3.2. Macroelectrode307
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Figure 8: Sketch depicting the qualitative differences in current distribution, position of temperature hotspot (red circle) and

resulting thermocapillary flow pattern when the size of the electrode is increased from micro (left) to macro (right). The flow

inside the gas bubble and the movement of the interface are not shown.

So far we have presented a detailed characterization of the thermocapillary effect on gas bubbles growing308

at microelectrodes of different sizes. As larger electrodes are prevalent in industrial processes, an in-depth309

understanding of similar phenomena at macroelectrodes is of technological importance. An attempt is made310

here to gain an understanding of this kind for the first time. With respect to the modeling, we follow311

the simple approach described in detail in Section 2, based on considering single bubble phenomena, and312

originating from the previous study of microelectrodes after accounting for differences in length scales and313

boundary conditions.314

Figure 8 schematically displays important qualitative differences of the thermocapillary effect when the size315

of the electrode is increased from micro (left) to macro (right) with respect to the bubble size. For the316

sake of simplicity, at the macroelectrode only a small part of the electrode is shown, above which a single317

bubble evolves. Looking at the distribution of the current density, shown by red dotted lines, important318

differences become obvious. At the microelectrode, as discussed before, the current has to squeeze through319

a narrow region at the bubble foot, and large current densities occur above the electrode, with a maximum320

near its outer edge. In the center of the figure, the intermediate case of a large microelectrode is shown,321

where, as discussed before, the temperature hotspot has already moved upward slightly towards a larger322

value of θ. At the macroelectrode, however, the situation is changed, as the main geometrical obstacle for323

a uniform current flow is now the bubble itself and not the electrode. Here, the current has to pass the324

narrower equatorial space between neighboring bubbles. Hence, the maximum of the current density appears325

at the bubble’s equator. As the position of the temperature hotspot correlates directly with the location of326

the maximum current density, the temperature maximum moves from the bubble foot towards the bubble327

equator when the size of the electrode is increased from micro to macro.328

The thermocapillary flow patterns driven at the bubble interface from hot towards cold regions are sketched329

in the right half of the subfigures for all three cases. In line with the changing position of the temperature330

hotspot, the size and the position of the two counter-rotating vortices driven by thermocapillary stress331
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change accordingly. At the microelectrode, a dominating large vortex brings electrolyte upward along the332

interface, and the small vortex above the electrode does not contribute much to the thermocapillary effect.333

This small vortex grows in size when the size of the microelectrode is increased and starts contributing to334

the Marangoni force on the bubble, as already discussed in the previous section. At the macroelectrode,335

eventually, two counter-rotating vortices of almost equal size are therefore expected which advect electrolyte336

away from the temperature hotspot at the equator. The ramifications of these qualitative changes are337

investigated quantitatively in the following.338

3.2.1. Temperature and velocity distribution339

We now study in detail the temperature and velocity distribution near a gas bubble of constant size340

(Rb = 560µm) at different values of the bubble coverage Θ of the macroelectrode. In the following, a341

potential difference of φ0 = 1V is applied between the electrodes. We note that, e.g. for a bubble coverage342

of Θ = 0.87, an average current density of 4.9 kA/m2 is obtained, which is close to typical values of 1–3343

kA/m2 in related industrial applications [30]. Figure 9(a) shows the temperature distribution in and around

Figure 9: (φ0 = 1 V and Θ = 0.87) (a) Temperature contours and field lines of the electrical current density. Temperature

is maximum at the location of maximum current density near bubble equator. (b) Contours of the electrolyte flow velocity

distribution along with velocity streamlines. The electrolyte at the bubble interface flows away from the equator towards both

poles.

344

the gas bubble at a bubble coverage of Θ = 0.87. As can be seen from the current lines in the electrolyte, the345

electric current must pass around the gas bubble and hence is highly concentrated in the narrow inter-bubble346

region near the bubble equator, where the largest current density occurs, in agreement with the expectations347

formulated in the previous section. The temperature maximum also occurs at the same spot, as can be seen348

from the temperature distribution.349
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Figure 9(b) shows the velocity distribution and the streamlines in the electrolyte. The thermocapillary350

flow is driven away from the temperature hotspot, and the electrolyte flows away from the equator towards351

either pole. This gives rise to two vortices in the northern and southern hemisphere of the bubble and causes352

two interfacial velocity maxima, visible as the red regions in Figure 9(b). It is also to be noted here that the353

vortices are not fully symmetric with respect to the equatorial plane. The lower vortex is constrained by354

the electrode surface, the bubble interface and the outer boundary of the domain, whereas the upper vortex355

extends upward above the top of the bubble.

Figure 10: Interfacial (a) temperature and (b) velocity distribution as a function of θ as defined in Figure 1 for different

electrode coverage Θ at φ0 = 1 V. The vertical dashed line marks θ = 90◦.

356

Next we study in detail the influence of the bubble coverage on the interfacial temperature and flow357

profiles. Rc is varied from 0.6 mm to 1 mm, yielding a range of Θ from 0.87 to 0.31, which, according358

to earlier work, provides a realistic range of gas coverage values [45]. Figure 10(a) shows the interfacial359

temperature profile as a function of the angular position θ. The occurrence of a temperature maximum360

close to the bubble equator (θm ∼ 90◦) is clearly visible in all cases. The temperature maximum also361

increases with increasing bubble coverage, as the electric current lines are more densely placed in the inter-362

bubble space, causing larger local Joule heating. Figure 10(b) shows the related interfacial velocity profile.363
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Similarly to the microelectrode case discussed in Section 3.1.2, the tangential velocity ut vanishes at the364

position of the temperature maximum at θm. According to the slopes of opposite sign in the temperature365

profile left and right of θm, interfacial flow in the southern or northern hemisphere is directed downward366

and upward, respectively, as also shown in Figure 10(b). In this figure, the value of zero tangential velocity367

ut = 0 and the angular position of the equator θ = 90◦ are additionally marked by lines to allow the more368

accurate identification of the location of the flow reversal (θm) in relation to the bubble equator. As can369

be seen, the temperature hotspot is slightly shifted above the equator at smaller bubble coverage values.370

Furthermore, it is to be noted that the magnitude of the velocity minimum in the southern hemisphere371

is larger than the magnitude of the velocity maximum in the northern hemisphere in general. The latter372

can easily be explained. As the metal electrode at the bottom is a good conductor of heat compared to373

the electrolyte, the related downward heat flux tends to increase the temperature gradient in the southern374

hemisphere, leading to a larger velocity magnitude. This larger velocity magnitude also causes enhanced375

advection of heat at the interface, which leads to a shift in the temperature hotspot above the equator.376

As increasing the bubble coverage narrows the gap between the bubble equator and domain boundary, the377

temperature hotspot at the equator increases, and the relative influence of cooling and advection reduces.378

This is also seen in the two extrema of the velocity profiles, which grow closer to each other in terms of379

magnitude.380

3.2.2. Marangoni force on the bubble381

It is well known from measurements on large planar electrodes that the bubble evolution characteristics382

depend on the operating current density [45, 46]. At a higher current density, more nucleation sites are383

activated at the electrode, and thus the bubble coverage increases. Increasing the average current density384

also reduces the departure diameter and causes early detachment from the electrode surface [47]. In order385

to discuss the possible influence of thermocapillary effects on these phenomena, we carried out parametric386

studies to elaborate the influence of varying bubble coverage and bubble size on the Marangoni force under387

different operating conditions. The results are shown in Figure 11.388

Constant bubble radius. In Figure 11(a) the Marangoni force normalized with the buoyancy force F ∗
M (as389

defined in Section 3.1.4) is shown versus the bubble coverage of the electrode Θ for a gas bubble of fixed390

size (Rb = 560µm) at a constant cell voltage of φ0 = 1V . It should be noted first that unlike the case of391

the microelectrode considered earlier, the Marangoni force is directed upwards, thus advancing the bubble392

departure. The Marangoni force F ∗
M is found to amount to about 2% of the buoyancy force in the range of393

parameters considered and increases almost linearly with the bubble coverage Θ.394

As the Marangoni force (FM ) results from the integration of the interfacial temperature gradient along395

the interface (see Equation 10), the slight asymmetry of the interfacial temperature profile with respect to396

the equator seen in Figure 10(a) gives rise to a remaining nonzero force FM . As the temperature gradient397
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Figure 11: Marangoni force normalized with buoyancy force F ∗
M versus (a) bubble coverage Θ at a constant bubble radius

Rb = 560µm and cell voltage φ0 = 1 V and versus (b) bubble radius Rb at a constant bubble coverage Θ = 0.87 and mean cell

current density j̄ = 4.9 kA/m2.

‘

is negative in the region below the equator and larger in magnitude than the positive gradient above the398

equator, eventually an upward Marangoni force appears. The almost linear increase in the Marangoni force399

as the bubble coverage increases is related to the strong temperature increase of the hotspot near the equator400

in conjunction with the heatflux through the electrode, thus retaining a steep temperature profile below the401

equator.402

Constant bubble coverage. In order to extend our study to include smaller gas bubble departure sizes,403

Figure 11(b) summarizes the Marangoni force F ∗
M obtained for different bubble radii Rb at a constant404

bubble coverage of Θ = 0.87 and at mean cell current density of j̄ = 4.9 kA/m2. We would like to point out405

here that smaller bubbles have shorter residence times [47]. This was taken into account by adapting the406

integration time in the simulations accordingly. The simulation details are summarized in Table 3. Starting407
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out from an integration time of 1 s at Rb = 560µm in accordance with the constant bubble radius case408

considered earlier, the integration time is then linearly decreased along with the bubble size such that for a409

bubble of 200 µm radius it matches the bubble lifetime of about 0.4 s reported in [48]. Please also note that410

for smaller bubbles the contact angle between the bubble and electrode was slightly increased. As can be411

seen in Figure 11(b), the Marangoni force F ∗
M strongly increases when the size of the bubble reduces. This412

behavior is mainly caused by the corresponding variation in the buoyancy force, which scales with the cube413

of the bubble size. For a small bubble of Rb = 50µm, the Marangoni force is found to amount to about 20%414

of the buoyancy force.

Rb (µm) θc Integration Time (s)

50 14.1◦ 0.15

100 9.9◦ 0.23

200 7.0◦ 0.4

300 5.7◦ 0.57

400 5.0◦ 0.73

560 4.2◦ 1.0

Table 3: Bubble radius, contact angle and integration time in the simulation

415

4. Conclusions416

In this study we characterized in detail the thermocapillary flow around electrogenerated bubbles at417

electrodes of different sizes, ranging from microelectrodes to large planar electrodes. At microelectrodes, a418

detailed analysis of the current density and temperature profiles revealed a clear correlation between the419

position of the temperature hotspot at the bubble interface and the upward projection of the outer edge420

of the microelectrode. As a result, a double vortex structure of the thermocapillary flow was unveiled421

which was overlooked previously [1] because the lower vortex is small at the microelectrodes. This double422

vortex structure is also found at larger electrodes. Increasing the electrode size changes the position of the423

temperature hotspot, thus increasing the size of the lower vortex and affecting the amplitude and also the424

direction of the Marangoni force.425

At large planar electrodes, multiple bubbles grow simultaneously at random nucleation sites where the426

electrical current must pass through the inter-bubble space. The simplified approach we take in order to427

gather initial results assumes that the bubbles grow synchronously at a given uniform nucleation density,428

meaning that a single bubble can only be considered in the simulations. As a result, the maximum current429

density and thus the temperature hotspot are located close to the equatorial inter-bubble region, and a430

nearly symmetric double vortex structure is generated near the bubble interface. However, mainly because431
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of the cooling effect of the metal electrode, the interfacial flow of the lower vortex is stronger than that of432

the upper vortex. Consequently, an upward Marangoni force acts on the bubble, assisting its release, which433

is the opposite of what is found at the microelectrodes. This clearly helps explain why larger bubbles can434

be grown on macroelectrodes compared to microelectrodes. At a constant cell voltage, the Marangoni force435

is found to grow as the bubble coverage of the electrode increases due to higher temperatures occurring in436

the smaller inter-bubble gaps. For a fixed current density and related large bubble coverage, the force on437

the bubble is found to get larger when the bubble size is reduced, reaching about 20% of the buoyancy force438

at Θ = 0.87, j̄ = 4.9 kA/m2.439

We note here that the quantitative results obtained for the macroelectrode are based on the assumption of440

uniform bubble distribution, i.e. simultaneous in-phase bubble evolution, and that azimuthal dependencies441

of quantities originating from neighboring bubbles growing at certain angular positions have so far been442

neglected. The Marangoni force values obtained for reasonable integration times in our model may further443

depend on the specific value of the contact angle and neglect more complex aspects such as microbubbles444

partly covering the cathode. It should also be noted that our results for all electrode sizes naturally depend445

in quantity on the details of the thermal boundary conditions of the cell. This especially holds true for446

the metal electrode where the bubble grows, which takes heat out of the electrolyte and thereby shapes the447

thermocapillary effect. Nevertheless, as this is a common feature, we believe the qualitative findings of the448

thermocapillary effect are valid in general.449

In summary, the thermocapillary effect is found to be important for the dynamics of bubbles generated450

at electrodes under various conditions. A proper inclusion of this effect in future studies may lead to451

an improved understanding of the instant of the bubble departure and the departure diameter. Finally,452

appropriate temperature management of the electrodes may be a useful means of improving the efficiency453

of electrolyzers.454

Acknowledgement455

We gratefully acknowledge fruitful discussions with Xuegeng Yang. This project is supported by German456

Aerospace Center (DLR) with funds provided by the Federal Ministry for Economics Affairs and Energy457

(BMWi) due to an enactment of the German Bundestag under grant no. DLR 50WM1758 (project MADA-458

GAS).459

References460

References461

[1] J. Massing, G. Mutschke, D. Baczyzmalski, S. S. Hossain, X. Yang, K. Eckert, C. Cierpka, Thermocapillary convection dur-462

ing hydrogen evolution at microelectrodes, Electrochimica Acta 297 (2019) 929–940. doi:10.1016/j.electacta.2018.11.187.463

21



[2] V. Levich, V. Krylov, Surface-tension-driven phenomena, Annual Review of Fluid Mechanics 1 (1) (1969) 293–316.464

doi:10.1146/annurev.fl.01.010169.001453.465

[3] A. W. Adamson, Gast, Physical Chemistry of Surfaces, Wiley-Interscience, 1967.466

[4] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Vol. 7, Cambridge467

University Press, 2007.468

[5] J. Pearson, On convection cells induced by surface tension, Journal of fluid mechanics 4 (5) (1958) 489–500.469

[6] D. Nield, Surface tension and buoyancy effects in cellular convection, Journal of Fluid Mechanics 19 (3) (1964) 341–352.470

[7] K. Eckert, M. Bestehorn, A. Thess, Square cells in surface-tension-driven bénard convection: experiment and theory,471

Journal of Fluid Mechanics 356 (1998) 155–197.472
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[12] Á. G. Maŕın, H. Gelderblom, A. Susarrey-Arce, A. Van Houselt, L. Lefferts, J. G. Gardeniers, D. Lohse, J. H. Snoeijer,479

Building microscopic soccer balls with evaporating colloidal fakir drops, Proceedings of the National Academy of Sciences480

109 (41) (2012) 16455–16458.481

[13] N. Young, J. Goldstein, M. J. Block, The motion of bubbles in a vertical temperature gradient, Journal of Fluid Mechanics482

6 (3) (1959) 350–356. doi:10.1017/S0022112059000684.483

[14] R. Balasubramaniam, R. S. Subramanian, The migration of a drop in a uniform temperature gradient at large marangoni484

numbers, Physics of Fluids 12 (4) (2000) 733–743.485

[15] R. Balasubramaniam, R. Subramaniam, Thermocapillary bubble migration—thermal boundary layers for large marangoni486

numbers, International journal of multiphase flow 22 (3) (1996) 593–612.487

[16] R. Balasubramaniam, C. E. Lacy, G. Woniak, R. S. Subramanian, Thermocapillary migration of bubbles and drops at488

moderate values of the marangoni number in reduced gravity, Physics of Fluids 8 (4) (1996) 872–880.489

[17] J. L. McGrew, F. L. Bamford, T. R. Rehm, Marangoni flow: an additional mechanism in boiling heat transfer, Science490

153 (3740) (1966) 1106–1107.491

[18] J. Straub, The role of surface tension for two-phase heat and mass transfer in the absence of gravity, Experimental Thermal492

and Fluid Science 9 (3) (1994) 253–273.493

[19] S. Petrovic, T. Robinson, R. L. Judd, Marangoni heat transfer in subcooled nucleate pool boiling, International Journal494

of Heat and Mass Transfer 47 (23) (2004) 5115–5128.495

[20] V. K. Dhir, G. R. Warrier, E. Aktinol, D. Chao, J. Eggers, W. Sheredy, W. Booth, Nucleate pool boiling experiments496

(npbx) on the international space station, Microgravity Science and Technology 24 (5) (2012) 307–325.497

[21] J. Straub, J. Betz, R. Marek, Enhancement of heat transfer by thermocapillary convection around bubbles-a numerical498

study, Numerical Heat Transfer 25 (5) (1994) 501–518.499

[22] R. Marek, J. Straub, The origin of thermocapillary convection in subcooled nucleate pool boiling, International Journal500

of Heat and Mass Transfer 44 (3) (2001) 619–632.501

[23] S. Lubetkin, The fundamentals of bubble evolution, Chemical Society Reviews 24 (4) (1995) 243–250.502

[24] S. Lubetkin, The motion of electrolytic gas bubbles near electrodes, Electrochimica Acta 48 (4) (2002) 357–375.503

doi:10.1016/S0013-4686(02)00682-5.504

[25] X. Yang, D. Baczyzmalski, C. Cierpka, G. Mutschke, K. Eckert, Marangoni convection at electrogenerated hydrogen505

bubbles, Physical Chemistry Chemical Physics 20 (2018) 11542–11548. doi:10.1039/C8CP01050A.506

22



[26] F. Li, R. Gonzalez-Avila, D. Nguyen, C.-D. Ohl, Oscillate boiling from microheaters, Phys. Rev. Fluids 2 (2017) 014007.507

[27] W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, J. Je, H. Lin, A. Groso, G. Margaritondo, Electrochemistry: building on508

bubbles in metal electrodeposition, Nature 417 (6885) (2002) 139.509

[28] J. Jorne, J. F. Louvar, Gas-diverting electrodes in the chlor-alkali membrane cell, Journal of The Electrochemical Society510

127 (2) (1980) 298–303.511

[29] J. C. Puippe, R. Acosta, R. Von Gutfeld, Investigation of laser-enhanced electroplating mechanisms, Journal of the512

Electrochemical Society 128 (12) (1981) 2539–2545.513

[30] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in514

energy and combustion science 36 (3) (2010) 307–326.515
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