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Abstract

We developed a theoretical model that estimates the bubble size from sub-millimeter orifices under variable gas flow

conditions. The model is successfully tested for orifices with diameters in the range of 0.2 mm to 1 mm under both

quasi-static and dynamic bubbling regimes. The model is able to predict the final bubble radius with an accuracy better

than 20% compared with the experimental results. Moreover, we explicitly look into the influence of the gas reservoir

volumeVc upstream of the orifice on the gas reservoir pressure Pc by simultaneously monitoring the events, i.e. changes

in the state of bubble, upstream and downstream of orifices. We found that, variations in Pc reduce as Vc increases.

Analysis of the dynamics of the dominating forces acting on a bubble show that, enlarging Vc mainly amplifies the

gas momentum force and the liquid inertia force. Hence, the bubble detachment mechanism may no longer be only

buoyancy driven.
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1. Introduction

Gas bubble dispersion is involved inmany industrial processes that deal with heat or mass transfer as well as particle

separation [1, 2, 3, 4, 5]. In such processes, efficiency strongly depends on the available gas-liquid interfacial area and

therefore the bubble size. It is often required to reduce the bubble size in order to enhance process efficiency. This is

achievable by scaling down the opening from which bubbles are generated. Accordingly, sub-millimeter orifices are5

currently of high interest in the industrial sector. Aside from the orifice size, the bubble volume depends on various

parameters [6]. Among others, the volume of the gas reservoir Vc upstream of the orifice has a decisive effect on the

bubble formation process as it defines the gas flux q through the orifice into the bubble.

The gas feed and the orifice are hydraulically connected via the gas reservoir. For a very small Vc, a high-pressure
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drop develops between the gas feed and the orifice. If the pressure drop is substantially higher than the pressure

fluctuations due to the bubble formation, q can be assumed constant. In this case events upstream of the reservoir do

not interact with the events at the other end of the reservoir, where bubbles form because of the high flow resistance.

This condition is referred to as bubbling under constant gas flow conditions CGFC. The latter can be realized by using

a long capillary between the orifice and the gas reservoir [7, 8]. On the contrary, when Vc is not negligible, q varies

during the bubble formation. This is referred to as the bubbling under variable gas flow conditions VGFC. Tadaki [9]

defined the criterion at which the transition from CGFC to VGFC occurs using the dimensionless capacitance number:

Nc =
4Vcgρl

πd2
orPor

. (1)

Here, Por is the pressure at the orifice plate. According to Tadaki [9], for Nc > 1 formation of bubbles occurs under

VGFC. In practice, most of the bubble generators operate under VGFC since maintaining such a smallVc that satisfies10

the requirement of CGFC is not feasible. A further condition can arise whenVc is substantially larger than the generated

bubble volumesVb. In this case, the pressure fluctuations due to gas flux through the orifice results in a minor change in

the gas reservoir pressure Pc. This condition is widely recognized as the bubble formation under constant gas pressure

conditions CGPC and it occurs at Nc > 9 [9].

Depending on Vc, Vb can be calculated theoretically if the volumetric gas flow rate to the reservoir Q and the15

orifice diameter dor are known. For that, several theoretical models are available, which provide information about the

bubble dynamics as well as the bubble size during the formation. These models can be broadly classified into spherical

and non-spherical models. While non-spherical models require extensive computational effort, spherical models have

shown to be accurate in a wide range of operating conditions while being less computationally expensive [10, 11, 12].

Therefore, these models remain thoroughly practical.20

A summary of available spherical models for VGFC is given in Table 1. In the table, principal attributes of each

model are provided. VGFC models are divided into two categories. In the first category, the gas pressure level in

the reservoir is assumed constant and bubbles are generated under CGPC, i.e. Nc > 9. In this case, models consider

various forces on a bubble and apply the equation of motion to calculate the bubble volume. Detailed expressions of

acting forces are provided in Table 2. Hayes et al. [13] were the first to propose a model for CGPC. In their model,

the equation of motion is derived for a bubble which, in the first stage undergoes a radial expansion and in the second

stage experiences a translational movement. Davidson and Schuler [14] approximated the volumetric gas discharge q
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through the orifice from the orifice equation:

q =
dVb

dt
= K

√
Pc −Patm −ρlgh−

4σlg

dor
+ρlgsb, (2)

where, K is an orifice constant. In Equation (2), the effects of liquid viscosity and liquid kinetic energy are ne-

glected. Moreover, the viscous drag force is also excluded from the equation of motion of the bubble. Satyanarayan

et al. [15] used the same approach and calculated the bubble volume within two stages. They calculated q from Equa-

tion (2). However, they considered a constant gas flow rate for the second stage with a value calculated at the end of

the first stage.25

In the second category of VGFC models, q and Pc are assumed variable. In this case, different approaches are

proposed to account for the change in q. While Khurana and Kumar [16] used an electrical analogy to obtain q, Swope

[17] used a modified average volumetric gas flow rate Q entering the gas reservoir. Swope [17] multiplied Q to the

ratio of the bubbling time tb over the sum of tb and the waiting time tw. Park et al. [18] applied a material balance in the

gas reservoir and the ideal gas law for an adiabatic condition to correlate Pc and Vc. Subsequently, the bubble volume30

Vb is calculated since the gas flow rate is equal to the change of Vb.

More recent VGFC models use the application of the potential flow theory to account for the liquid flow velocity

surrounding a bubble. This theoretical approach was first used by McCann and Prince [19]. They modeled the motion

of a bubble which experiences a radial expansion and translational motion through an unbounded surrounding liquid.

In this case, the velocity potential ϕ can be described as follows:

ϕ = ϕT +ϕE =
r3

b
2r2

(
dsb

dt

)
cosδ +

r2
b
r

(
drb

dt

)
. (3)

Here, r is the length of an imaginary line between a given point in the liquid and the center of the bubble, and δ is the

angle between this line and a virtual line perpendicular to the orifice plate. Subsequently, the pressure in the liquid

phase is calculated via the unsteady form of Bernoulli’s equation:

Pl

ρl
=

∂ϕ
∂ t

−
U2

l
2

−gsb +
Por

ρl
. (4)

In a similar approach, Kupferberg and Jameson [20] considered the effect of the adjacent orifice wall. To account

for the influence of the adjacent wall, the method of images from Lamb [21] is adopted in the potential function:

ϕ =
dsb

dt

[
r3

b
2r2 +

rr3
b

8s3
b
+

r6
b

16s3
br2

+
rr6

b

64s6
b
+

r9
b

128s6
br2

+ · · ·
]

cosδ+

drb

dt

[
r2

b
r
+

(
rr2

b

4s2
b
+

r5
b

8s2
br2 +

rr5
b

32s5
b
+

r8
b

64s5
br2

+ · · ·
)

cosδ
]
.

(5)
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By substituting Equation (5) into Equation (4), it is possible to calculate the liquid pressure at the bubble inter-

face. Accordingly, the bubble pressure can be calculated using a pressure jump at the interface due to the effect of

surface tension. Moreover, q is calculated using the law of conservation of mass and the first law of thermodynamics.

Eventually, a system of ordinary differential equations is solved to calculate Vb.35

McCann and Prince [19] included the effect of liquid inertia due to the bubble translational motion. They also

considered the wake effect from the preceding bubble. Kupferberg and Jameson [20] proposed a criterion for liquid

weeping into the orifice. Tsuge and Hibino [22] considered an empirical coefficient to incorporate the effect of liquid

viscosity. Dias [23] accounted for the influence of the gas kinetic energy which was neglected in the model proposed

by Kupferberg and Jameson [20]. Zhang and Tan [24] used Oseen’s modification to the potential flow theory to provide40

a more realistic prediction of the wake pressure of the preceding bubble. Later on, they proposed a model including

the effect of liquid phase cross-flow [25]. Ruzicka et al. [26] used the mass balance and the Hagen–Poiseuille equation

to calculate the gas flow rate into the bubble. Besides, they used the Rayleigh-Plesset equation to relate the change of

bubble size to the pressure change in the reservoir and the bubble.

According to Table 1, sub-millimeter orifices have not been considered in any models under VGFC. This limita-45

tion is believed to be due to Vc. According to Equation 1, Vc is directly proportional to the squared dor. Therefore, by

changing the orifice size from the millimeter range to the sub-millimeter range under VGFC,Vc has to be significantly

reduced. In this context, we provide a model based on the prior works of Kupferberg and Jameson [20] and Dias [23]

with certain modifications. The model is presented in Section 2 and later it is validated experimentally. The experi-

mental setup is presented in Section 3. Aside from the model, we had a close look at the simultaneous developments50

of pressure variations in the gas reservoir and the bubble interface at different levels of Vc. Moreover, the leverage of

various forces acting on a bubble under VGFC are discussed. These parameters, as well as the validation of the model,

are presented in Section 4.
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Table 1: Spherical models for bubble formation under variable gas flow conditions VGFC.

Reference Method dor (mm) Eö We×103 Nc Detachment criterion

Hayes et al. [13] equation of motion 0.79-6.35 0.08-2.04 1-35 4-261 exp. observation

Davidson and Schuler
[14]

orifice equation and
equation of motion

0.52,0.64 0.05-0.08 0-31 (1.6-2.5)×104 sb = rb + ror

Satyanarayan et al. [15] orifice equation and
equation of motion

0.51-4 0.04-5.29 4.1-86 293-18046 sb = rb + ror

Potter [27] force balance, equation of
motion

No validation ln = ror

Khurana and Kumar [16] force balance, equation of
motion

2.7 1.72 0.16-2.48 0.9-10 sb = rb + ror

McCann and Prince [19] Bernoulli equation, ori-
fice equation, potential
flow theory

4.76-9.52 3-12.1 0.47-136.8 2.9-150 sb = rb

Kupferberg and Jameson
[20]

force balance, orifice
equation, potential flow
theory

3.17-6.35 1.35-5.41 0.02-21.78 0.06-60 sb = rb + ror

Swope [17] orifice equation 1.345 0.24 (0.05-0.28)×10−3 3.5 analytical solution

Park et al. [18] material balance, applica-
tion of ideal gas law

1.21-3.3 0.13-7.18 0-0.09 0.09-84 ∆Pc = 4σlg/dor

Tsuge and Hibino [22] orifice equation, modi-
fied potential flow theory

1.08-2.12 0.16-0.81 0-7.47 1-75 ln = dor

Dias [23] mass and energy balance,
orifice equation, potential
flow theory

3.2 1.39 6×10−5 5 sb = 1.55rb

Zhang and Tan [24] mass and energy balance,
orifice equation, potential
flow theory

3.2-9.6 1.39-12.55 < 93 1.4-26 sb = rb

Zhang and Tan [25] mass and energy balance,
orifice equation, potential
flow theory

4.8-6.4 3.14-6.4 0.41-0.98 25-45 sb = rb +(1−0.02Ul)dor

Ruzicka et al. [26] mass balance, orifice
equation, Rayleigh-
Plesset equation, equa-
tion of motion

1.6 0.35 (0.14-1.55)×10−2 17 sb = rb +dor

Table 2: Detailed expression for the forces acting on a bubble.

Forces Expressions Direction Units

Buoyancy force FB = g(ρl −ρg)Vb −ρlghπr2
d Upward [m.N

m ]

Pressure force FP =
(

2σlg
rb

+ρggh
)

πr2
d Upward [m2. N

m2 ]

Gas momentum force FM = ρg
q2

πr2
or

Upward [ kg
m3

m
s

m2

s ]

Surface tension force FS = 2πσlgrd sinϑ Downward [N
m .m]

Drag force FD = 1
2 ρlCDAbU2

b Downward [m2. N
m2 ]

Liquid inertia force FLI =
( 11

16 ρl +ρg
)[

Vb
dUb
dt +Ub

dVb
dt

]
Downward [ kg

m3 .
m4

s2 ]
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2. Modeling

The new model solves the bubble volume in two consecutive stages: the expansion stage and the elongation stage.55

In the former stage, the bubble grows in the radial direction while it remains attached to the orifice. Hence, the axial

elevation of the bubble in this stage is due to the radial expansion. The termination of this stage occurs when the forces

acting on the bubble are at equilibrium. During the elongation stage, the bubble undergoes a translational motion while

it radially expands as well. The termination of this stage is defined based on the detachment criterion proposed by

Mohseni et al. [28]. The model bases on the following assumptions:60

• The bubble remains spherical throughout the formation process except at the bubble base, which can freely

expand on the orifice surface.

• The equilibrium contact angle remains constant throughout the formation process.

• The submergence level of the orifice is much larger than the size of the bubble and the wall effect is negligible.

• The gas phase is assumed to be ideal and obeying an adiabatic equation of state.65

• The liquid phase is assumed inviscid, irrotational and incompressible.

• The wake of the leading bubble does not affect the formation of the bubble.

A schematic of the stages of the model is illustrated in Figure 1.

Q

Pc, Vc
q

ϑ

Pb

Pl

Q

Pc, Vc
q

Pb

Pl

δ
rb(t)

Figure 1: Schematic of the expansion stage (left) and the elongation stage (right) of a bubble in the model.

Change in the reservoir pressure due to the discharge of the gas through the orifice can be expressed using the

continuity equation and the equation of state of an ideal gas. Considering a control volume CV enclosed in a control

surface CS for the gas reservoir, the continuity equation can be written as follows:

∫
CS

ρg
#„
U · n̂dS+

∫
CV

∂ρg

∂ t
dVc = 0. (6)
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Here, #„
U is fluid velocity and n̂ is the unit exterior normal to the CS. Assuming that gas enters the reservoir at the

inlet and exits from the orifice, and assuming that the density and the pressure of gas are uniformly distributed in the

reservoir at all times, Equation (6) becomes:

−ρgUiSi +ρgUorSor +
dρg

dt
Vc = 0. (7)

Here, Si and Sor are the cross-sectional area of reservoir inlet and outlet, respectively. The equation of state of a perfect

gas in the reservoir can be written as follows:

Pc =
ρgc2

γ
. (8)

Here, c is the speed of sound in the perfect gas and γ is the heat capacity ratio of the gas (γ = Cp/Cv). Since c and γ

can be assumed constant, Equation (8) can be written as follows:

dρg

dt
=

γ
c2

d p
dt

(9)

By inserting Equation (9) in Equation (7), we arrive at the following:

Pc − (Pc)t=0 =−
c2ρg

γVc
[Vb − (Vb)t=0 −Qt] . (10)

Here, t = 0 indicates the initial condition of the corresponding parameter.

A mass balance for an imaginary control volume limited by the gas reservoir cross-section Sc and the outer cross-

section of the orifice Sor yields:

Uc =Uor
Sorρor

Scρc
. (11)

It is assumed that the gas in the orifice is incompressible. For the highest gas flow rate through the smallest orifice in our

experiments, the Mach number Ma did not exceed 0.09. This is far below Ma = 0.3 beyond which the compressiblity

effects of the fluid becomes important [29]. Hence, the assumption of incompressibility of the gas in the orifice seems

to be adequate. Therefore, the gas density in the orifice ρor is equal to ρc. Moreover, assuming the flow of gas to be

isentropic, steady, and irrotational, the macroscopic energy balance for the aforementioned imaginary control volume

leads to the Bernoulli’s equation:

Pc +
1
2

ρcU2
c = Por +

1
2

ρorU2
or. (12)

The above correlation describes the relationship between the pressure in the gas reservoir Pc and the orifice Por.

Assuming that the latter is equal to the bubble pressure Pb and substituting Equation (11) in Equation (12), q can be
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calculated as follows:

q =CdSor

√√√√√ 2(Pc −Pb)

ρc

[
1−
(

Sor
Sc

)2
] . (13)

Here, Cd is the orifice discharge coefficient which accounts for the jet-contraction (vena contracta) and non-

uniformity of gas flow velocity across the orifice. The orifice discharge coefficient is calculated according to the

ratio of the orifice cross-section to the gas reservoir cross-section β and the Reynolds number of the gas flowing in the

reservoir Rec = ρgdcUc/µg as follows:

Cd = 0.5959+0.0312β 2.1 −0.184β 8 +
91.71β 2.5

Rec
. (14)

According to the experimental values, the orifice discharge coefficient usually lays within the range 0.6 and 0.6270

[30, 31].

Since the liquid flow field around the bubble is assumed to be inviscid and irrotational, the potential flow solution

can be applied. For the case in hand, the influence of the orifice wall is considered and the zero normal velocity at the

wall is satisfied. Accordingly, the wall effect can be simulated using the potential flow solution for the fluid around

two equisized spheres, which simultaneously expand and move away from each other along the same axis. This is

represented by Equation (5) given sb ≥ rb. Hence, it can only be used from the termination of the expansion stage. The

liquid pressure around the bubble can be described using the unsteady form of Bernoulli’s equation:

Pl

ρl
=

∂ϕ
∂ t

−
U2

l
2

−g(sb + r cosδ )+
Por

ρl
, (15)

where Por = Patm +ρlgh and,

U2
l =

(
∂ϕ
∂ r

)2

+

(
1
r

∂ϕ
∂δ

)2

. (16)

By using the the potential function provided in Equation (5), the liquid pressure at the bubble interface Pint at r = rb

can be calculated as follows:

Pint = Patm +ρlgh+ρl

[(
rb

d2rb

dt2

)
+

3
2

(
drb

dt

)2

−gsb +Γ1 cosδ +Γ2 cos2 δ +Γ3 sin2 δ

]
. (17)

The coefficients Γ1, Γ2, and Γ3 are provided in Appendix A. Subsequently, the bubble pressure is Pb = Pint +2σlg/rb

by considering the surface tension pressure. As mentioned earlier, it is assumed that the bubble maintains a spherical

shape. The pressure gradients travel with the speed of sound within the bubble. Hence, the bubble pressure can be

taken constant, and yet it is independent of δ . Hence, the term with cosδ in Equation (15) can be disregarded. The
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final equation for the bubble expansion stage can be obtained by substituting for Pc and Pb from Equations (10) and

modified (17) in Equation (13) as follows:

d2rb

dt2 = g
sb

rb
− 3

2rb

(
drb

dt

)2

−
c2ρg

rbγVcρl
[Vb − (Vb)t=0 −Qt]−

ρg

(
dVb
dt

)2

ρlrbC2
dS2

or
+

2σlg

rbρl

(
1

(rb)t=0
− 1

rb

)
. (18)

The system of equations is numerically solved to calculate rb, drb
dt , and time tex at the end of the expansion stage

using the standard Runge-Kutta fourth-order scheme given the following initial conditions:

(rb)t=0 =
dor

2sinϑ
, (19)

(
drb

dt

)
t=0

= 0, (20)

(Pc)t=0 = Patm +ρlgh+
2σlg

(rb)t=0
, (21)

(Pb)t=0 = Patm +ρlgh+
2σlg

(rb)t=0
. (22)

In the experimental setup, the ratio of the diameter of the orifice to the one from the gas reservoir is less than

0.03. Hence, the ratio of Sor/Sc in Equation (13) is assumed to be negligible. In the presented model, the bubble base

expansion is enabled, hence the bubble instantaneous volume can be calculated as follows:

Vb =
4
3

πr3
b −

1
3

πr3
b(1− cosϑ)2(2+ cosϑ). (23)

The expansion stage concludes when the sum of all forces on the bubble is equal to zero. This criterion is satisfied

when the integration of the liquid force on the bubble interface in the vertical direction from Equation (17) is zero and

sb = rb cosϑ :

∫ π

0
(2πPintr2 sinδ cosδ )r=rb = 0. (24)

The mathematical derivation of Equation (24) is provided in Appendix B. During the elongation stage, the bubble

acceleration is neglected. The bubble, however, has a radial expansion and translational motion. Therefore, the condi-

tion sb = rb cosϑ no longer holds and the system of equations needs to account for an additional correlation regarding
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the unknown sb. This is obtained by substituting for Pint in Equation (24) from Equation (17):

d2sb

dt2 =

[(
g−
[

3
8

(
rb

sb

)2

+
3

64

(
rb

sb

)5]d2rb

dt2

)
−

(
1
rb

[
3
8

(
rb

sb

)2

+
9
8

(
rb

sb

)5](drb

dt

)2
)
+(

1
rb

[
9

16

(
rb

sb

)4

+
9

64

(
rb

sb

)7](dsb

dt

)2
)
−

(
1
rb

[
3
2
− 9

128

(
rb

sb

)6](drb

dt

)(
dsb

dt

))]
(

1
2
+

3
16

(
rb

sb

)3

+
3

128

(
rb

sb

)6
)−1

.

(25)

Here again, the system of equations is solved using the standard Runge-Kutta fourth order method with following

initial conditions:

(rb)tel=0 = re, (26)

(
drb

dt

)
tel=0

=

(
drb

dt

)
t=tex

, (27)

(sb)tel=0 = re cosϑ , (28)

(
dsb

dt

)
tel=0

=

(
drb

dt

)
t=tex

. (29)

The elongation stage terminates using the detachment criterion proposed by Mohseni et al. [28]. This criterion relates

the non-spherical geometry of a bubble prior to the detachment to its equivalent spherical shape. The criterion is as

follows:

sb

dor
= D1

(
db

dor

)D2

+D3. (30)

Here, coefficients D1 to D3 are as follows:

D1 = 0.2453, D2 = 1.279, D3 = 1.485. (31)

3. Experimental methods

A detailed description of the experimental setup is given in Mohseni et al. [28]. Hence, only necessary information

is provided here. Table 3 provides the specifications of both phases. A bubble columnmade of acrylic glass with dimen-

sions (80×80×1000 mm3) was filled up to 800 mm with deionized water. Local bubble rising induced liquid velocity75

in the column is suppressed using three wire-mesh baffles at 100 mm above the orifice plate with 150 mm spacing be-

10



tween the baffles. Stainless-steel circular orifice plates with 0.5 mm thickness and roughness of RZ = 1±0.03 µm are

mounted on a gas reservoir. Each plate contains a single perforation in the middle. The volume of the gas reservoir is

accurately adjusted using a precision linear-stage with less than 25 µm positioning error in 100 mm displacement. The

dynamic pressure fluctuations in the gas reservoir are monitored using a sensitive microphone, model 106B52 from se-80

ries 106Bmicrophones of PCB Group, Inc. The resolution of the sensor is 1.3 µbar and a response time of 12.5 µs. The

signal of the dynamic pressure sensor was recorded synchronously to the camera by a transient data recorder, LTT24

from Labortechnik Tasler GmbH, at a sample rate of 1 MHz. Consequently, the changes in the reservoir pressure were

tracked simultaneously to the bubble growth.

Table 3: Characteristics of the continuous phase and the dispersed phase.

Medium κ ( µS
cm ) ρ ( kg

m3 ) µ ( kg
ms ) T (◦C)

Deionized water 34.1 998.2 8.9×10−4 25

Air 3×10−11 1.184 1.84×10−5 25

Table 4 provides information regarding the range of experiments. The surface tension coefficient and the apparent

contact angle were measured at 0.072 N/m and 74◦ ± 0.7, respectively. For each orifice, two gas flow rates corre-

sponding to the quasi-static bubbling regime and the dynamic bubbling regime are studied [8]. The transition from the

quasi-static regime to the dynamic regime is indicated by the critical volumetric gas flow rates Qc as follows [32]:

Qc = π
(

16
3g2

) 1
6
(

σlgdor

2ρl

) 5
6
. (32)

Accordingly, the normalized rates of Q/Qc = 0.5 and Q/Qc = 1.5 were fed to each orifice to generate bubbles85

under the quasi-static regime and the dynamic regime, respectively. The influence of Vc can be represented by the

capacitance number Nc. Previous studies defined the range 1 < Nc < 10 in which the influence of Vc should be

considered [33, 16]. However, this range is mostly validated for millimeter-sized orifices. In the current investigation,

a wide range of 0.2 ≤ Nc ≤ 50 is covered within two sets of experiments. The first set of experiments covers a

comparable range of Nc as previous investigations. Accordingly, the influenceVc on the bubble formation is studied at90

constant gas flow rates of Q/Qc = 0.5 and Q/Qc = 1.5 in a range of 0.2 < Nc < 15 for all orifices. The corresponding

measurement matrix is provided in Figure 2 (left). In the second set of experiments, the range of Nc is extended for

the orifices smaller than 0.5 mm up to Nc = 50, see Figure 2 (right). The gas flow rate for this set of measurements is

kept constant at Q/Qc = 0.5. To investigate the bubble dynamics, videometry with a back-light technique is utilized.

The processing of the images is done using a proprietary image processing algorithm developed by Ziegenhein [34].95

Detailed explanation of the optical measurement technique as well as the image processing method are explained in
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Mohseni et al. [28].

Table 4: Characteristics and operating conditions at various orifices operating under VGFC.

ID dor (µm) Q (SmL
min ) Qc (SmL

min ) Eö (×10−3) We (×103) Nc

O-200 207 9.95 , 29.8 19.9 5.770 0.22 , 1.94 0.2 · · · 50
O-300 315 14.1 , 42.3 28.2 13.32 0.11 , 1.11 0.2 · · · 50
O-400 412 17.6 , 52.8 35.3 22.82 0.08 , 0.77 0.2 · · · 50
O-500 488 20.3 , 60.9 40.6 32.01 0.07 , 0.62 0.2 · · · 50
O-600 614 24.5 , 73.6 49.0 50.30 0.05 , 0.44 0.2 · · · 15
O-700 699 27.4 , 82.2 54.8 65.59 0.04 , 0.38 0.2 · · · 15
O-800 788 30.3 , 90.8 60.5 83.31 0.04 , 0.32 0.2 · · · 15
O-900 887 33.4 , 100 66.8 105.7 0.03 , 0.28 0.2 · · · 15
O-1000 993 36.7 , 110 73.4 132.3 0.03 , 0.24 0.2 · · · 10

dor

O-200

O-1000

Figure 2: Data points for the investigations on bubble formation under VGFC, up to Nc = 15 (left) and up to Nc = 50 (right).

4. Results and discussion

4.1. Pressure variations in the gas reservoir

Pressure variations in the gas reservoir ∆Pc are explained using the exemplary orifice O-300 operating at a low gas100

flow rate Q/Qc = 0.5 with small, medium, and large values of Vc. Figure 3 shows development of ∆Pc in a small Vc

for three consecutive bubbles. In this case, after bubble detachment, the gas-liquid interface enters into the orifice.

Due to the liquid weeping, Vc reduces. The latter, along with simultaneous gas feed into the reservoir Q, results in a

sharp increase in ∆Pc up to the point (I) in Figure 3. From this point, ∆Pc linearly increases, although the gas-liquid

interface is still inside the orifice. Tracking the curvature of the bubble-cap from point (II) to point (III) suggests that,105

the radius of the bubble-cap within this period remains constant, see Figure 4. This radius is equal to the orifice radius

and it is known as the critical radius. Considering the similar trend of the pressure evolution before and after point

(II), one can assume that the critical radius is already achieved at point (I). From this point, the gas pocket is rising
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through the orifice. There is no simple explanation for the behavior of the gas-liquid interface for the period before

point (I). However, the influence of the liquid weeping and consequently the effect of the liquid inertia and the liquid110

viscosity in such a small gas reservoir is believed to be highly relevant.

(I) (II) (III)

(IV)

(I) (II) (III) (IV)

Figure 3: Pressure evolution in the gas reservoir for three consecutive cycles (left) and the first cycle only (right) of bubble formation from O-300
at Q/Qc = 0.5 with Vc = 0.003 cm3 and Nc = 0.5.

0.5 mm

t=66 mst=65 mst=63 mst=61 ms

Figure 4: Evolution of the bubble-cap prior to the spontaneous growth, t = 61 ms and t = 66 ms refer to the points (II) and (III) in Figure 3,
respectively.

By increasing Vc, the range of ∆Pc reduces. The value of ∆Pc in the case of the bubble in Figure 5 is 0.15 kPa,

compared to 0.65 kPa in the case of the bubble in Figure 3. Liquid weeping also occurs in this case, although no sharp

increase in ∆Pc can be observed after the departure of the leading bubble. In comparison to the case with smaller Vc,

the duration of the formation cycle is almost half and ∆Pc decreases linearly during the gas discharge to the bubble.115
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(I) (II) (III) (IV)

(I)

(II)

(III)

(IV)

Figure 5: Pressure evolution in the gas reservoir for three consecutive cycles (left) and the first cycle only (right) of bubble formation from O-300
at Q/Qc = 0.5 with Vc = 11.8 cm3 and Nc = 15.

By further increasing Vc, ∆Pc decreases even more. In this case, the volumetric gas discharge into the bubble q

becomes so high that it causes a change in the bubbling regime. However, even with a new bubbling regime, the

maximum ∆Pc remains lower than for smaller reservoirs. As it can be seen in Figure 6, ∆Pc drops quickly in the

course of spontaneous bubble formation. The first bubble is generated within less than 10 ms, Figure 6 point (II).

Subsequently, the secondary bubble grows and reaches out to the leading bubble. The growth of the secondary bubble120

is believed to be due to the high gas kinetic energy during the discharge process, re-establishment of a spherical gas

pocket after the bubble detachment, and the influence of the wake of the leading bubble by establishing a low-pressure

area above the secondary bubble.

(I) (II) (III) (IV)

(II)

(I)

(III)

(IV)

Figure 6: Pressure evolution in the gas reservoir for three consecutive cycles (left) and the first cycle only (right) of bubble formation from O-300
at Q/Qc = 0.5 with Vc = 15.77 cm3 and Nc = 20.

Figure 7 shows the trend of maximum pressure variations in the reservoir ∆Pc,max with regard to Vc and therefore

Nc. In this figure, ∆Pc,max is normalized using the capillary pressure of the orifice Pcap = 4σlg/dor. According to125
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Equation 22 and for a similar experimental conditions, the minimum required Pc for formation of bubbles from various

orifices depends only on Pcap and consequently dor. Hence, ∆Pc,max/Pcap in Figure 7 not only indicates the trend of

maximum pressure variations but also its portion with regard to dor. In general, ∆Pc,max reduces as Nc increases. By

increasing Nc, ∆Pc,max initially remains constant or slightly increases and reaches to a maximum. From this point

onward, the influence of Vc becomes important. For O-200, the maximum ∆Pc,max is only about 20% of Pcap and the130

influence ofVc can be seen even with the smallest reservoirs. However, Nc≥ 20, ∆Pc,max seems to be independent ofNc

forO-200. In the case ofO-300, ∆Pc,max initially increases, which is due to the increase in the size of generated bubbles,

and then it gradually reduces to about Nc = 11. At this point, ∆Pc,max increases again which is due to the change in the

regime of bubbling from single bubbling to double bubbling. For orifices larger than O-300, the magnitude of ∆Pc,max

due to the bubble formation increases. Moreover, the trend of the evolution of ∆Pc,max by increasing Nc becomes135

similar among the orifices. However, the local maximums of ∆Pc,max occurs at slightly different Nc.

Above observations suggest that, for sub-millimeter orifices the range of Nc within which the influence of Vc on

bubble formation should be considered, varies with the orifice size. In other words, VGFC can be achieved in different

ranges of Nc for sub-millimeter orifices. This is in contrary to observations from millimeter orifices where the lowest

and the highest limits of VGFC reported to be Nc = 1 and Nc = 10, respectively [9, 18]. Moreover, ∆Pc,max is directly140

related to the size of the orifice dor, the rate of volumetric gas flow Q, the size of the gas reservoirVc, and consequently

the diameter of bubbles db generated from the orifice. Hence, to interpret the behavior of ∆Pc,max, the influence of

these parameters should be considered simultaneously.
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Figure 7: Pressure variation in the gas reservoir due to bubble formation at Q/Qc = 0.5 at various capacitance numbers.

4.2. Forces acting on a bubble

Figure 8 illustrates the typical evolution of the acting forces on the bubble during the formation from O-1000 and145

O-600 at Q/Qc = 0.5. The magnitude of individual forces is calculated from the expressions provided in Table 2. In

the calculation of forces, the influence of the dynamic apparent contact angle ϑ and the bubble base expansion are

included. In the case of orifices in Figure 8, the dominant forces are respectively the buoyancy force FB and the liquid

inertia force FLI in upward and downward directions. Moreover, depending on the size of the gas reservoir Vc, the

gas momentum force FM and the surface tension force FS can be relatively important. For the bubble generators with150

a small Vc corresponding to Nc = 0.2, FS remains important throughout the formation of the bubble, except shortly

after the beginning of the formation. As the bubble starts to expand, the apparent contact angle temporarily reduces

to nearly zero. Hence, the magnitude of FS reduces accordingly. By increasing Vc, the duration in which the apparent

contact angle ϑ is negligible prolongs toward the later stage of the formation. Hence, the contribution of FS on the

formation process becomes less important. The magnitude of FLI increases withVc. It is previously explained that one155

of the circumstances of increasingVc is the generation of larger bubbles. This increase in the bubble volume is a result

of the excessive q, which in turn amplifies FM and consequently enhances FLI . The latter is related to the velocity and

acceleration of the bubble, see Table 2. For the given range of orifices and gas flow rates, the influence of the drag
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force FD is negligible. Similarly, the influence of the pressure force FP is insignificant except at the very beginning of

the formation process.160

O-1000

Nc=0.2 Nc=4 Nc=10

O-600

Nc=0.2 Nc=4 Nc=15

Figure 8: Typical evolution of forces acting on a growing bubble for O-1000 and O-600 at Q/Qc = 0.5 with various gas reservoir sizes (legend:
◦FB ◃FP ⋄FM �FS △FD OFLI ).

By reducing dor, the influence of the gas kinetic energy becomes more important. Hence, FM acts effectively and

pushes the bubble in the axial direction. On the contrary, the FLI resists this bubble elongation and becomes the only

dominant downward force during the formation. As it can be seen in Figure 9, both FLI and FM grow in magnitude

as Nc increases. On the upward direction and by increasing Nc or reducing dor, FM takes over FB and becomes the

dominant upward force. Moreover, by reducing dor, the influence of FP becomes stronger as a result of the formation of165

smaller bubbles. Similar to the larger orifices, the contribution of FD is negligible regardless of the size of the orifice.
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O-400

Nc=0.2 Nc=4 Nc=15

O-200

Nc=0.2 Nc=4 Nc=15

Figure 9: Evolution of forces acting on a growing bubble for O-400 and O-200 at Q/Qc = 0.5 with various gas reservoir sizes (legend: ◦FB ◃FP
⋄FM �FS △FD OFLI ).

4.3. Model validation

The presented model solves the bubble volume from a spherical submerged orifice with a diameter in the range of

0.2 < dor < 1 mm in the range of 0.5 ≤ Q/Qc ≤ 1.5 under VGFC. The model is limited to the prediction of the bubble

size that is resulted from a single detachment from the orifice. As Vc can alter the bubbling regime, the limit of the170

presented model, is in the range of 1 ≤ Nc ≤ 10. Figure 10 compares the solution of the model with the experimental

data from various orifices and volumetric gas flow rates. As it can be seen, the increasing trend of rb/ror with Nc

from the model agrees with experimental results. Moreover, the agreement remains consistent when the normalized

gas flow rate Q/Qc is tripled.
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Figure 10: Comparison between the solution of the model (dashed-lines) and experimental data (scattered points) for various orifices at
Q/Qc ≤ 0.5 (left) and 0.5 ≤ Q/Qc ≤ 1.5 (right).

Themodel predicts the final bubble radius with an accuracy better than 20% comparedwith the experimental results.175

Figure 11 reports on the deviation of the solution of the model from experimental data. Accordingly, Figure 11 (left)

compares the cumulative data from all the studied orifices in the range of the model validation, 0.5 ≤ Q/Qc ≤ 1.5.

Figure 11 (right) depicts the averaged relative error and standard deviation calculated based on the solution of the

model and experimental data.

Figure 11: Parity plot of the model prediction and experimental bubble radius (left), and deviation between the model predictions and experimental
data for different orifice sizes (right).
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5. Conclusion180

We studied the formation of bubbles from sub-millimeter orifices submerged in deionized water under VGFC.

Accordingly, we conducted a study on influential parameters, namely the orifice diameter dor, the volume of the gas

reservoir Vc, and pressure attributes in the reservoir Pc. Moreover, we developed a theoretical model that accurately

estimates the bubble size from sub-millimeter orifices under VGFC. A summary of the main findings is as follows:

• For sub-millimeter orifices and during the formation of a bubble, enlarging Vc results in formation of larger185

bubbles. In this case, as Vc increases, q progressively increases during the formation process.

• The range of variation of the dynamic pressure in the gas reservoir due to the bubble formation reduces as Vc

increases.

• Analysis of various forces acting on a bubble during its formation indicates a decisive influence of Vc on the

arrangement of dominant forces on the bubble. Increasing Vc enhances q, which in turn amplifies the gas mo-190

mentum force and the liquid inertia force. For dor < 0.4 mm, however, q is dominated by dor and it is less

influenced by Vc.

• The presented model predicts the detachment bubble volume from a sub-millimeter submerged orifice under

VGFC. Compared to the earlier models, the model includes the influence of the apparent contact angle and the

expansion of the bubble base. Moreover, the model uses a new detachment criterion which correlates the non-195

spherical bubble shape from the experiments to the spherical bubble volumes calculated from the theoretical

model. Incorporating these parameters yields an accurate estimation of the bubble volume within the validation

range of the present study.

Clearly,Vc has a substantial effect on the bubble size from single sub-millimeter orifices. For the future works, it is

suggested to characterize the effect of this parameter in the case of adjacent orifices that are hydraulically connected via200

the same reservoir. Moreover, the effect of the gas pressure fluctuation on the bubble formation worth investigating.
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Appendix A. Coefficients in Equation (17)

The detailed description of the coefficients in Equation (17) are given below. As the distance of the bubble’s center

of mass to the orifice plate is equal or more than the bubble radius, the terms smaller than r7
b/s7

b are neglected.

Γ1 = rb
d2rb

dt2

[
3 r2

b

8 s2
b
+

3 r5
b

64 s5
b

]
+ rb

d2sb

dt2

[
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+
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b
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+
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+
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Appendix B. Termination of the expansion stage

Mathematical derivation of Equation (24) is provided here. By substitutingPint in Equation (24) using Equation (17)210

and expanding the integral, Equation (24) can be written as follows:

∫ π

0
2πr2

b sinδ cosδ
[

patm +ρlgh+ρl

[(
rb

d2rb

dt2

)
+

3
2

(
drb

dt

)2

−gsb

]]
dδ+∫ π

0
2πr2

bΓ1ρl sinδ cos2 δdδ +
∫ π

0
2πr2

bΓ2ρl sinδ cos3 δdδ +
∫ π

0
2πr2

bΓ3ρl sin3 δ cosδdδ = 0.

(B.1)

In the above equation, only the second term on the left hand side of the equation has a non-zero value equal to 2
3 . Hence,

to satisfy Equation (B.1), Γ1 has to be zero. Moreover, at the end of the expansion stage sb = rb cosϑ , dsb
dt = drb

dt cosϑ ,

and d2sb
dt2 = d2rb

dt2 cosϑ . Hence, the condition for termination of the expansion stage is expressed as follows:

(Γ1)r=rb
=rb

d2rb

dt2

[(
3
8

cos2 ϑ +
3

64
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(B.2)
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Nomenclature

Dimensionless groups

Ma Mach number, (=U/c)

Nc capacitance number, (= 4Vcρl/πd2
orPor)215

Rec gas Reynolds number in the reservoir, (= ρgdcUc/µg)

Latin symbols

A bubble surface area, m2

Ab cross-sectional area of bubble, m2

c sound velocity, m
s220

Cd orifice discharge coefficient

CD drag coefficient

CP heat capacity at constant pressure

CV heat capacity at constant volume

db bubble diameter, m225

dc gas reservoir diameter, m

dor orifice diameter, m

d32 Sauter mean diameter, m

f bubble formation frequency, 1
s

F force, N230

f ∗ quasi-static bubble formation frequency, 1
s

g gravitational acceleration, m2

s

h submergence depth, m

K orifice constant

ln length of the bubble neck, m235

Patm atmospheric pressure, Pa
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Pb pressure inside a bubble, Pa

Pc pressure in gas reservoir, Pa

Pcap capillary pressure, Pa

Pcrt critical pressure in gas reservoir, Pa240

Pint pressure at the bubble interface, Pa

Pl pressure in liquid phase, Pa

Por pressure at the orifice plate, Pa

q volumetric gas flow rate through orifice, m3

s

Q volumetric gas flow rate into the gas reservoir, m3

s245

Qc critical volumetric gas flow rate, m3

s

rb bubble radius, m

rd bubble base radius, m

re bubble radius at the end of radial expansion stage, m

ror orifice radius, m250

RZ arithmetic average roughness, m

S cross-sectional area, m2

sb distance from bubble’s center of mass to the orifice plate, m

Sc cross-sectional area of gas reservoir, m2

Si cross-sectional area of gas reservoir inlet, m2
255

Sor cross-sectional area of orifice, m2

t time, s

tb bubbling time, s

td bubbling detachment time, s

tex time of the expansion stage, s260

tel time of the elongation stage, s

tw waiting time, s
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T absolute temperature, ◦K

U gas velocity, m
s

Ub bubble rising velocity, m
s265

Uc average gas bulk velocity in the reservoir, m
s

Ui average gas velocity entering the reservoir, m
s

Ul liquid velocity, m
s

Uor average gas velocity through orifice, m
s

Vb bubble volume, m3
270

Vc volume of gas reservoir, m3

Greek symbols

β ratio of the orifice cross-section to reservoir cross-section

γ specific heat ratio

δ angle in Figure 1, ◦275

θ contact angle, ◦

κ electrical conductivity, S
m

µl liquid dynamic viscosity, Pa.s

µg gas dynamic viscosity, Pa.s

ρc gas density in the reservoir, kg
m3280

ρl density of liquid, kg
m3

ρg density of gas, kg
m3

ρor density of gas through orifice, kg
m3

σlg liquid-gas surface tension, N
m

ϕ potential function, m2

s285

ϕE potential function of expanding bubble, m2

s

ϕT potential function of translating bubble, m2

s
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