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TEllKROS:...zlIr Meeresinsel Kypros, wo Apollo/1mir befaM
ZlI wohnen lind dem Ort den Namen Salamis zu
geben, der alten Heimat gedenkend...

HELENA: Nicht ich, mein Abbild war es, das nach Troja kam.

BOTE: Was sagst du? Für eine Wolke kämpften wir umsonst U/1S ab?

(EllRIPIOES, HELENA 148-150;582;706)

"AufPlatres schläf..;t du nicht vor Nachtigallen."

Schüchterne Naelltigall im Atem der Blätter,
dll schenkst Musik lind Waldesjrische allen
in Leib lind Seele Zwiegespaltenen,
die wissen, dass sie nie heimkommen.
Oll blinde Stimme, rührst im nächtlichen Erinnern
GelJärden, Schritte - Küsse wagte ich nicht sagen,
lind den bitteren Stllrm der zornigen Sklavin auf··

"Auf Platres schläfst du nicht POr Nachtigallen."

Was ist denn Platres? Wer kennt diese Insel?
Ich hatte so dahin gelebt,
aufeinmalnelle Orte, neue Narreteien
des Menselien und der Götter hörend.

Mein Geschick, das sich
Z:wiseTlen Aias' Schwerttod
lind einer nellen Salamis al1spielte,
hat mich hierher gebracht, in diese Bucht.

Der Mond
stieg aus dem Meer gleich Aphrodite.
Er schob sich vor den Bogenschützen, jetzt zieht er voran,
das Her::. des Skorpions Zlt finden und er verändert alles.

Wo ist die Wallrheit?
Auch ich war Bogenschütze einst, im Krieg:
mdll Scllicksal: eines Menschen, der sein Ziel verfehlte.
Du Dichtcr-Naelttigall,

in einer solelIen Nacht am Strand des Proteus lauschten dir
die Sklavinnen aus Sparta und wehklagten laut.
Eille von ihnen war - wer sagte es - He/ena!
Wir hattm sie jahrelmlg im Skamandertal verfolgt,
nil/I war sie da, am Rand da Wüste;
ich legte lIleine Hmld aufsie, sie sprach mieTI an:



"Es ist nicht wahr, es ist nicht wahr", riefsie.
"Ich bin nicht in das Schiff mit dem qllartzblallen Bug gestiegen,
ich habe nie den Boden Trojas, dieser Mäll1/Crstadt, betreten.

Mit dem tiefen Schnürleib, Sonne in den Haaren,
und dieser Gestalt
Schatten und Lächeln überall
an Schultern Schenkeln Knien,
lebendige Haut - und die Augen
mit den üppigen Lidern,
da stand sie nun am Ufer eines Deltas.

Und in Troja?
Nichts in Troja - ein Trugbild.
So wollten es die Götter.
Mit einem Schatten schlief Paris wie mit einem Lebewesen;
und wir zerfleischten uns zehn Jahre langfür Helena.

Schweres Leid ist über Griechenland gekommen.
So viele Leichen wurden
ins Meer geworfen, von der Erde verschlungen
so viele Seelen wie Weizen
von Mahlsteinen zerrieben.
Und die Flüsse haben ihren Schlamm mit Blut gesättigt
für einen Leinenbausch für ein Gewölk,
einen Falter-Fliigelschlag eine Schwanenfeder,
für ein bloßes Kleid, für eine Helena.
Und mein Bruder?

Nachtigall, Nachtigall, Nachtigall
Was ist Gott? Was ist nicht Gott? Was ist dazwischen?

"Auf Platres schläfst du nicht vor Nachtigallen."

Weinender Vogel,

Hier auf Zypern, meerumschlungen,
das mich, so wurde mir versproschen, an meine Heimat errinem sollte.
hab ich geankert, ganz allein mit dieser Sage
- wenn es denn eine Sage ist,
wenn es denn stimmt, dass nun die Menscflen nimmermehr
den alten Götter-Täuschungen verfallen,

wenn es stimmt,
dass heutzutage so ein Teukros,
ein Aias oder Priamos, so eine Hekabe,
so ein niemand, der vorzeiten

7
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den Fil/ss gesehell hat, al/s dem Gebeine ragten,
nicht schicksallll~t} den Botcn lal/schen ml/SS,
die kommen, I/m ZI/ sageIl
dass so viel Leid, so viel Leben
so abgrzllldth:fdahingesl/nken ist
für ein bhif]es Kleid fiir eine Helcnll.

HELENA, Giorgos Seferis (Nobelpreis für Literatur 1963)
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Abstract

The HADES spectrometer is a high resolution detector installed at the SIS/GSI,
Darmstadt. It was primarily designed for studying dielectron decay channels of
vector mesons. However, its high accuracy capabilities make it an attractive tool for
investigating other rare probes at these beam energies, like strange baryons. Devel
opment and investigation of Multiwire Drift Chambers for high spatial resolution
have been provided. One of the early experimental runs of HADES was analyzed
and the A hyperon signal was successfully reconstructed for the first time in C+C
collisions at 2 AGeV beam kinetic energy. The total A production cross section is
contrasted with expectations from simulations and compared with measurements
of the A yield in heavier systems at the same energy. In addition, the result is con
sidered in the context of strangeness balance and the relative strangeness content of
the reaction products is determined.

Beim HADES-Spektrometer handelt es sich um ein hochauflösendes Spektrom
eter, welches am SIS an der GSI, Darmstadt installiert wurde. Es wurde in er
ster Linie zur Untersuchung von dielektronischen Zerfällen von Vektormesonen en
twickelt. Seine hohe Genauigkeit macht es jedoch bei diesen Energien auch zur
Untersuchung anderer seltener Sonden wie z. B. seltsamer Baryonen attraktiv. In
dieser Arbeit wird die Entwicklung und Untersuchung von Vieldrahtdriftkammern
mit hoher Ortsauflösung vorgestellt und eines der frühen Experimente von HADES
analysiert. Dabei wird das A Hyperon Signal zum ersten Mal für C+C StöBe bei
einer Energie von 2 AGeV erfolgreich rekonstruiert. Der experimentell ermith.'lte to
tale Wirkungsquerschnitt für die Erzeugung von A Hyperonen wird dem Ergebnis
von Simulationen gegenübergestellt und mit Messungen der A-Ausbeute in schw
ereren Systemen bei derselben Energie verglichen. Darüber hinaus wird das Ergeb
nis im Kontext der Erhaltung der Quantenzahl der Seltsamkeit diskutiert und der
relative Gehalt seltsamer Quarks in den Reaktionsprodukten bestimmt.



1 Introduction

A major topic of contemporary fundamental physics research is the study of
the first moments of the universe after the Big Bang, the processes and the environ
ment that determined the context for the creation of matter with the characteristics
observed today. Valuable information has been collected through astrophysical ob
servations over the past decades (see e. g. [Mao91, Fei04, PieOS, Vau04]). But in order
to acquire a more elaborate picture, it is of great importance to comprehend the dy
namics of astrophysical objects [Web06a, Web06b, WebOl] and to obtain insight into
the chain of processes that gave the structure and objects of the cosmos their current
shape.

For this purpose, the matter conditions at the outburst of the universe need to
be reproduced in the controlled environment of a scientific laboratory. The means to
create such hot and/or dense nuclear matter is to use heavy-ion collisions induced
by accelerators of different projectiles and kinetic energies, covering thus a wide
range of temperatures T and densities p. The collision systems and the energies are
selected in such a way that the achieved states correspond, e. g. to the conditions of
a certain stage in the evolution of the matter creation after Big Bang or represent the
state of matter inside astar.

Key questions related to this sort of investigations have been the existence of
new phases of nuclear matter, the description of the latter with an equation of state
(EOS), as weIl as the appearance of in-medium effects that manifest in the change of
hadron properties in a strongly interacting environment. The answers to the above
questions will set under test the predictions of the fundamental theory of strong
interactions, quantum chromodynamics (QCD).

QCD attempts to describe nuc1ear matter as the interaction of quarks through
the exchange of colour force carriers called gluons. It leads to the conclusion that
isolated single free quarks or gluons cannot be observed. Quarks and gluons ap
pear only in colourless hadronic bound states, such as baryons and mesons. This
expectation is enclosed in the notion "confinement". The situation changes at very
high densities and temperatures (p ~ 5po* or T ~ 170 MeV), where one expects the
transition of nuclear matter to the quark-gluon plasma, astate at which quarks and
gluons become deconfined.

The various states of matter that can be accessed with proper selection of colli
sion system and energy are schematically illustrated in Fig. 1.1. The baryonic chem
ical potential PB is a measure of the antimatter-matter balance and is related to the

*Po = 0.17 fm-3 is the saturation density of symmetrie nuclear matter.
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density p; the lower it is, the more antimatter is produeed. The eross-hatehed area
indicates where the transition from eonfined to deeonfined strongly interacting mat
ter is expeeted, with the dashed eurve representing a possible phase border line. At
SISt energies, i. e. from a few hundred MeV until2 AGeV for heavy ions, the ehern
ical and thermal freeze-out eurves merge [BraOO]. The eorresponding matter state
is clearly within the eonfinement region. In this energy regime, the aehieved states
of strongly interacting matter eonsist of nucleons, which are excited into baryonic
resonanee states (e. g. /). and N*) to a substantial fraction, along with aeeompanying
meson production, mainly pions. The eorresponding region in the phase diagram is
therefore often referred to as region of hadronic resonanee matter. The importanee
of studying hadronic matter is evident, as it is the final state before freeze-out of
resonanee matter and any possibly produeed quark-gluon plasma state.
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baryonlc chemlcal potential J.LB [GeV]

>'Gl2!iO
~
I-
Gl
~200

!
8-
E '50.e

50

r" "rt''''''

hadrongas

quark-gluon
plasma

\
\

neutroit Stars

Figure 1.1: Schematic phase-diagram
of strongly interacting matter on the
T - flB plane. Depicted are lines of
chemical and thermal (kinetic) freeze
out [Bra02j within the framework ofa
statistical model, together with corre
sponding results from various collision
energies available at existing acceIer
ators [Bra95, Bra96, Bra98, Bra99,
Bra02]. The chemical freeze-out pa
rameters are deduced from hadron
yields, while the thermal freeze-out pa
rameters result from analysis of trans
verse momentum spectra. The cross
hatched area indicates the region of the
onset ofdeconjinement and chiral sym
metry restoration.

An important eharacteristic of strongly interacting matter is the equation of
state [Stö86]. In case of an achieved equilibrium during a heavy-ion collision, the
system can be described by a relation between three thermodynamic variables like
energy E, temperature T and density p. One way to sketch such a dependence is
depicted in Fig. 1.2. In the centre-of-mass system of the reaction there is a certain
amount of internaI energy available Ecm . This amount of energy can be split in
two components, athermal one Eth that is used for thermal excitations and particle
production, and apart Ec that is needed to compress the system:

E(p, T) = Eth(p, T) + Ec(p, T = 0) + Eo, (1.1)

where the eompression eomponent is defined at zero temperature and Eo is the
ground state energy. From Fig. 1.2 it is becoming obvious that the shape of the curve

tSchwer-Ionen Synchrotron
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determines how much energy is used for compressing the nuc1ei and how much is
transformed to partic1e production. The amount of energy required to compress the

60

-16
-20

-----------t- ---

Ecm

3
Compresslon

[p/RJ]

Figure 1.2: Schematic illustration oJ
the equation oJ state Jor T = O. .In
a collision with available energy Ecm,

the curve shows how this amount can
be distributed to thermal and compres
sion components. The figure is taken
from [Mer04].

(1.2)

system is determined by the incompressibility Koo and is defined as

2 [d2E
cJKoo = 9Po -d2 .

P P=Po

Far Koo ~ 200 MeV the EOS is called soft, while for values around 380 MeV it is
called stiff. A soft or stiff EOS can have a different impact on a neutron star, deter
mining its mass and thus the way of its astrophysical evolution [Aic85}.

Another feature related to the phase diagram of Fig. 1.1 is the so-ealled sponta
neous breaking of ehiral symmetry in the ground state [RapOO}. This resuIts in a non
vanishing scalar quark condensate, (qij) =I 0, in the hadron gas region, while in the
QGP region (qq) = O. Lattice QCD calculations predict indeed a partial restoration
of chiral symmetry with increasing density Pand temperature T (see Fig. 1.3). With
such a scenario valid, the effective masses of the quarks are reduced to their current
masses, i. e. in the order of a few MeV for II and d quarks and around 150 MeV fm
the s quark. This makes the production of quark-antiquark pairs energetically mon'
favourable.

A change in the value of the quark condensate is also thought to indirectly
affect the hadron properties [GeI68}. Similar effeets have been predicted fm vector
mesons whose effective masses in the medium can be described by scaling laws. A
change in the effective mass affects the production and propagation of particles in
hot and dense nuc1ear matter. Such consequences of chiral symmetry restoration an'
summarized under the concept of in-medium effects, a term which, howevcr, has a
much broader scope.
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Figure 1.3: Dependence of the quark
condensate (qq) on temperature T
and nuclear matter density p accord
ing to the calculations in [Zsc02], in
agreement with previous predictions
from [Lut92]. The plot is quantita-

0.0 tively correct for small T, p and should
be understood as aqualitative guidance
at larger values ofT and p.

Various experimental approaches have been applied in order to probe such
phenomena. One way is to study vector meson decays into pairs of leptons, as the
decay products do not interact strongly with the hadronic environment. Another
way is to study strangeness production. It is less probable for strange mesons to
be reabsorbed in nuclear matter in comparison with the antistrange or non-strange
particles. The strong interaction conserves strangeness, which means that the pro
duction of an s quark is always associated with that of an S. At SIS energies this is
not very likely to happen because strange particles are rather rare. In this energy
regime strange particles are mostly produced in sub- or near threshold reactions
where in-medium effects have a pronounced effect on the particle yields. Such ef
fects have been documented so far for kaons [För03, MenOO, CroOO, WisOO, Dev02].
Moreover, the comparison of K+ under threshold production at light and heavy col
lision systems has provided evidence for a soft nuclear EOS [StuOl].

Apart from strange mesons, strange baryons (hyperons) produced in heavy
ion collisions need to be studied as well, in order to have a complete picture of the
strangeness production. Of additional interest are phase space distributions, com
monly parameterized by inverse slope parameters, the strange-antistrange particle
ratios, as well as the Wroblewski factor A.s [Wro85], which is a common way of com
paring strangeness yields and enhancement across different systems.

In this thesis the focus is on the A(1116) production in C+C collisions at 2 AGeV
beam kinetic energy. A hyperons are very important for the physics of neutron
stars. The s quark is likely to playa significant role for the composition of neutron
star matter, since several potential building blocks of such matter contain strange
quarks as one of their constituents. At the densities that exist in the interior of neu
tron stars, the neutron chemical potential easily exceeds the mass of the A, so that
neutrons would be replaced with A hyperons, accompanied with smaller popula
tions of :r. and multi-strange baryons 8. According to predictions, this can already
take place for densities of just ""' 2po and the total hyperon population may be as
large as 20% [Gle85]. A modification of the strange matter properties due to the
higher density would lead to alterations of masses, radii, cooling behaviour and
surface composition of neutron stars, and mayeven give rise to new classes of com-
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pact stars, such as strange stars and strange dwarfs. In the same context, there exist
theoretical studies predicting in-medium modifications of A Uin94, Yag02] but with
out offering directly measurable observables for experimentalists so far.

A hyperons are produced together with a K+ or a J<Ü because of strangeness
conservation in strong interactions. In the free nuc1eon-nuc1eon reaction the pro
cess NN.....-+KAN needs a kinetic beam energy of around 1.6 GeV for a fixed target
experiment. Nevertheless, in a heavy-ion reaction it is still possible to produce par
tic1es at energies below threshold, either because the effective mass of the partic1e in
the medium has changed and/or because collective effects are at work. A particles
decay weakly at a timescale of about 10-10 s, almost twelve orders of magnitude
larger than the timescale of a hadron or heavy-ion reaction itself. This means they
decay out of the fireball with their products not being influenced by hadronic inter
actions. As a consequence, a possible in-medium modification of their mass cannot
be accessed in this way. Only their total production yield may reflect the existence
of such a possibility and/or the impact of collective effects. To address all these phe
nomena, there is need to study hyperons at a variety of beam energies from light to
heavy collisions systems.

Many of the A properties have been extensively studied, particularly in high
energy heavy-ion reactions [Lam02, Sim05, Tak05, Van05, Alt06]. Elementary proton
proton reactions have also been investigated [Kow04, Sew99], elose to the produc
tion threshold up to higher energies. However, in the regime of medium energies,
the available database can still be completed. Heavy systems have been covered
by the FOPI collaboration [Lop04, Mer05], as well as the EOS collaboration [Chu02,
Pin02], while lighter systems have so far been addressed by experiments performed
at JINR in Dubna [Gas85, Ani84] and Bevalac [Har81].

Now with the High Acceptance DiElectron Spectrometer (HADES) the oppor
tunity is given to get an insight into the light system of C+c. The available high
resolution tracking can serve for the reconstruction of rare probes like the A hyper
ons and lead to the first measurement of the total production cross section for the
specific system and energy. Apart from the physics motivation though, the analy
sis of such achallenging probe can contribute valuable experience to the dilepton
reconstruction methods, as the data under study belong to the first physics runs of
the HADES experiment.

In the next chapter the reader is guided through the HADES spectrometer, with
a more elaborate presentation of parts of the hardware, their properties and charac
teristics in chapter 3. Chapter 4 is dedicated to the A analysis techniques in simula
tion and their application on the experimental data. The thesis concludes with the
results of this effort in chapter 5, comparisons with other experiments and discus
sion of the result.



2 The HADES Spectrometer

2.1 Aim and Requirements

The HADES spectrometer at GSI, Darmstadt, is designed for electron-positron pair
spectroscopy at incident beam energies up to 2 AGeV for heavy ions, and up to
4 GeV for protons. These energies together with a proper choice of the collision
system allow access to a certain region of the nuclear matter phase diagram (see
Fig. 1.1) ranging from ground state matter density po up to 3po, and temperatures T
upto 100 MeV

The dielectron pairs produced by the decay of vector mesons or other processes
are used for the construction of the invariant mass spectrum, allowing a direct ac
cess to the vector mesons spectral function. Fig. 2.1 depicts some of the processes
that lead to dielectron production. All four processes include the production of an
intermediate virtual photon [*, which decays into the dielectrons that are measured.

nudear medium

11"+11"- annihilation

bremsstrahlung

e

.0. - Dalit:; decuy

I] ".

1/- DI/fit: ,[r,.uy

Figure 2.1: Schematic illustration ofafew processes ofdielectroll production.

According to the Vector Dominance Model (VDM), the virtual photon couples
directly to the vector mesons. This is particularly important for the pion annihila-
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tion process n+n- --t p --t 1'* --t e+e-. Therefore, a change of the properties of
the p meson becomes directly accessible through the e+e" pair. Similar considera
tions hold for the wand <p mesons which are, however, produced in other processes.
While such pure s channel processes refer directly to the strength ("massl!) distribu
tion of the original p, wand <p mesons, the other processes depicted in Fig. 2.1 cause
broad continuum distributions of the resulting e+e- pairs, constituting background.

Considering the case of the p decay, p --t e+e-, the knowledge of the four
momenta of e+ and e- provides the possibility to calculate the original p mass. The
invariant mass müw of a e+e- pair is defined as

müw = VP11(e+ + r)Pll (e+ + e-) ~ 2VPec..pe~ sin(a:/2), (2.1)

where Pli (e+ + e-) = pll (e+) + pli (e-) is the four-vector for the e+e- pair, pe± =
IPe± land a: is the opening angle between the two three-momentum vectors, Pe'.
The last relation emerges when the e± masses are neglected, which is justified for
energies above some hundred MeV. So, in order to determine the invariant mass
of the dielectrons, the momenta Pe= of the electrons and positrons, as weIl as their
opening angle a: are required, both of which are measured in a common reference
frame, i. e. the laboratory system.

Generally, a dielectron invariant mass spectrum consists of a smooth back
ground, with several peaks sitting on it. As an illustrative example, we depkt model
calculations from the HADES proposal [proOl] (see Fig. 2.2). The first steps of the
HADES operation have been exactly devoted in identifying the contributions from
p, wand <p decays [Ebe05, Prz06].

For the identification of the different mesons in the mass spectra the relative
e+e- mass resolution !:lminv I minv must be optimized. Especially in the mass region
of p and w (700-800 MeV), !:lminvlminv must be appropriate to resolve the resonance
width of w, i. e. it should be approximately 1%. Some characteristic features of light
vector mesons are listed in Tab. 2.1.

meson mass width lifetime T e+e-

(MeVIc2) (MeVIc2) (fm/c) branching ratios

p 768 152 1.3 4.4 x 10-5

w 782 8.43 23.4 7.2 x 10-5

<p 1019 4.43 44.4 3.1 x 10-4

Table 2.1: Characteristic quantities ofZight vector mesons.

In order to solve the puzzling results of the first generation experiments posed
by DLS [P0r97], the resolution and statistical significance must be substantially im
proved. The resulting requirements of the HADES spectrometer are:

<t> targe geometrical acceptance
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Figure 2.2: Example oJ simulated invariant mass spectrum oJ e+e- pairs Jor the reaction
C+C at Ekin =2 AGeV Various individual contributions are separately depicted. A total
yield (squares and solid histogram) oJ approximately 180,000 pairs is expected Jor 2.109

semi-central collisions (~ 40 % oJ the total cross section). In the p/ w mass region about
180 counts are expected. The picture is taken from [pro01].

To detect the maximum number of dielectrons a large geometrical acceptance
is necessary. This is realized via the concept of neady fuIl azimuthai cover
age with rotational symmetry. The spectrometer covers around 801X) of the az
imuthal angle and 15° - 85° of the polar angles. This results to a geometrical
acceptance of around 40% for e+e- pairs.

t:> Count rate stability

The vector mesons p, wand lfJ decay into dielectrons with branching ratios
with an order of magnitude 10-4 (see Tab. 2.1). In order to detect such pairs
with good statistics, a high reaction rate is required. As a consequence, the
HADES spectrometer should be able to handle beam intensities up to lOH Hz,
with corresponding requirements on the detectors and the data acquisition.

t:> Mass resolution

As mentioned above, the relative mass resolution should be !J.mim,( 1111/11' ~ 1%,
so as to be able to detect possible modifications in the piu.

'
region.

t:> Track resolution
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Electron-positron pairs are not only created by the decay of vector mesons but
also by many other processes. Pairs could even stern from an electron and a
positron from different conversion processes, e. g. a positron from an external
conversion and an electron from a 7[0 Dalitz decay, or a positron from a 7[0

Dalitz decay and an electron from Compton scattering of a ,quantum. In
order to suppress this combinatoric leptonic background, it is necessary to re
construct all the trajectories of dielectrons. This requires a high track resolution
of the detector system, in combination with the use of a low material quantity
to diminish the scattering and the secondary reactions of the e+e- pairs.

t::> Dedicated lepton trigger

As the dielectron decays of vector mesons are rare, an efficient trigger is manda
tory for the selection of those events that contain leptons. For this purpose, a
three-level trigger is developed and applied, enriching the sampie of data with
the events of interest (see section 2.8.3).

2.2 General Overview of the HADES Setup

A schematic view of the spectrometer is depicted in Fig. 2.3. From left to right visible
are the Ring Imaging Cherenkov counter (RICH), the inner two planes of Multiwire
Drift Chambers (MDC), the superconducting magnet coils, the outer two planes of
MDC, the Time of Flight walls (TOF) and finally the Pre-Shower detector. The setup
is divided into six identical sectors surrounding the beam axis.

(a) (b)

Figure 2.3: Three- (a) and two-dimensional (h) view of the HADES spectrometer. The
distance between the target and the TOF walls is around 2 m.
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The TOF walls are primarily used for event selection according to the charged
particle multiplicity in every reaction. They also serve partide identification pur
poses and in combination with the magnet and the MDC, the track reconstruction
takes place and the momentum calculation is performed. The RICH and the Pre
Shower detectors are used for the lepton identification, the Pre-Shower only for the
forward angles. They also contribute to the lepton track reconstruction by deliver
ing position information. In the coming sections a more elaborate description of the
sub-detector units is presented following the sequence particles traverse the HADES
setup with.

2.3 The Start and Veto Detectors

The start signal for the measurement of an event in HADES is generated by the Start
and Veto detectors. The latter are two identical octagonally shaped poly-crystalline
diamond counters, placed 75 cm downstream and 75 cm upstream of the target (see
Fig. 2.4). Their thickness is 100 1lm [Ber01], in order to keep the multiple scattering
effect and the secondary reactions rate low. Thanks to the fast rise time and the small

Jl
W~Beam-r..:.. .... Target

;.~i
Figure 2.4: The position ofthe Start and Veto detectors with respect to the target.

pulse width, their time resolution is about 50 ps, allowing for primary rates up to
108 Hz. The two detectors work in anti-coincidence mode, i. e. in case both of them
give a signal, the event is vetoed. Thus, events in which there was no interaction of
the projectile with the target are rejected.

2.4 The Ring Imaging Cherenkov Detector

Cherenkov detectors serve for particle identification purposes on the basis of the
particle velocity. Around the trajectory of a particle crossing a diell'ctric medium a
time-dependent electric field is generated. This leads to a variable polarization in
the neighbourhood of the partide. If the velocity of the partiell' is faster than that
of light in the same medium, the produced wavefronts will constructively overlap
with an opening angle 9c around the trajectory, which is connl'cted to the refraction
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(2.2)

index of the medium llrej and the particle velocity ß (normalized to the velocity of
light c) with the relation [Che37]

iNcos8c = --ß' ß= 1- 2'
llrej r

where r is the Lorentz factor. For each material there is a threshold velocity ßthr(rthr)

which the particle has to exceed in order to produce Cherenkov light. This is de
duced from the inequality cos8c :::; 1 :::::} nrejß ~ 1 :::::} ßthr = l/nrej· In the SIS energy
regime, electrons and positrons emitted in nuclear collisions have velocities ß ~ 1,
while hadrons have ß< 0.95. The radiator gas C4H10 was chosen to have a refraction
index of nrej = 1.00151 giving rthr ~ 18.2, i. e. rlepton ~ rthr and rhadron :::; rtlzr- The
Cherenkov effect can therefore be used to distinguish leptons from hadrons and to
obtain a trigger signal for events containing e+e- pairs. Thus, the detedor is hadron
blind [Zei99].

A schematic view of the RICH is shown in Fig. 2.5. The leptons produced on the
target travel through the radiator gas and are the only particles to emit Cherenkov
radiation. The photons reflected on the spherical mirror will cross the VUV trans
parent CaF2 window and hit a two-dimensional photon detector forming a ring.
The light collected this way allows to determine the emission angle of the leptons
using the coordinates of the ring.

radiator
(C4F10)

Figure 2.5: Schematic view 0/ the RICH detector [Böh99].

2.5 The Tracking System

2.5.1 The Multiwire Drift Chambers

For the accurate reconstruction of the charged particle tracks the use of position
sensitive detectors is imperative. Additionally, a strong magnetic field is required
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for bending high momentum tracks and being able to reconstruct the momentum
of the particles. The motion of a particle in a magnetic field Bis governed by the
Lorentz force, F= qv X B, from which follows

ßPt = Jdp = JFdt = Jq(vx B)dt = -qJB X ds, (2.3)

where ßPt is the momentum transfer defined to be perpendicular to p, qis the charge
of the particle and ds is tangential to its trajectory. Knowing the magnetic field B,
ßPt and the deflection angle of the track, it is possible to calculate the momentum of
the particle.

The HADES tracking system consists of four MDC planes (I-IV), two before
and two behind the field area of the superconducting toroid (see Fig. 2.6). Each
chamber plane is composed of six trapezoidal modules and has the shape of a frus
tum. A module covers 60° of azimuthai angle and each four modules of the MDC
I to IV form a sector. Module sizes range from 88 cm x 80 cm to 280 cm x 230 cm
(heightx larger baseline).

0.18- ...'" ...,

C.O'\'I

..

(a) (b)

Figure 2.6: (a) Schematic view of a charged particle path. Knowing the strength of the
magnetic field in space it is possible to reconstruct the momentum of the particle using the

--7 ~

inner and outer segments AB and CD [LipOO]. (b) A transversal cut of the magnetic field
map at ep = 0 (along the middle ofa sector). The numbers label the 1.mlue of tlle magnetic
field in Tesla along the dashed and dotted fines.

Achamber module is composed out of six drift celllayers. The cell sizes vary
from 5 x 5 mm2 to 14 x 10 mm2 from MOC I to IV to achieve a constant granu
larity. The cells are formed by interspersed sense and field wires and cathode wire
planes. The total number of drift cells is approximately 27,000 (for the complctc
setup). Chapter 3 is dedicated to a more detailed description of the third layer of
MIX: modules.
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2.5.2 The Superconducting Magnet

In order to achieve the strong magnetic field required for high momentum resolu
tion with the largest radiation length and smallest size possible, a superconducting
magnet is necessary. The HADES superconducting toroid consists of six coils in
separate vacuum chambers [Bre99]. The coil cases are aligned with the frames of
the drift chambers and all other segmented detectors to reduce dead space in the
spectrometer (see Fig. 2.6). It is cooled with liquid He and the strength of the field
it produces is 3.7 T inside the coil cases, 2.4 T nearby and 0.8 T in the centre of a
sector.

2.6 The Time of Flight Walls

The scintillation TOF walls [TOFOO, God02], installed behind the tracking system,
provide fast determination of the charged partiele multiplicity per event used for
event centrality selection. Moreover, they measure the time of flight of each de
tected partiele for the facilitation of lepton separation from heavier products. In the
HADES spectrometer this detector ensemble comprises two parts: the TOFino de
tector covering polar angles from 18° to 45° (also called system 0) and the TOF wall
from 45° to 88° (system 1).

TOFino consists of six identical sectors installed right before the Pre-Shower
detectors. Each sector is made of four plastic scintillator stripes and is read out only
from one side. This, in addition with the low granularity, reduces the time resolution
of the detector to 400 ps. For the C+C system at 2 A GeV, 20% of the collisions induce
a double hit in the TOFino region. For those events the time of flight measurement
for one of the two particles is lost. For studies of heavier systems the TOFino detec
tor is going to be replaced by Resistive Plate Chambers (RPC) [Fon01, Dia03], which
fulfil the requirements for a high multiplicity environment.

The TOF wall is also made of six sectors in hexagonal geometry, each one con
stituted by thirteen cases containing eight scintillating bars. Each bar is read out at
both ends by means of fast photomultipliers. In combination with the higher gran
ularity, the time resolution of TOF is 100-150 ps (corresponding to spatial resolution
of 1.5-2.3 cm). Both detectors are illustrated in Fig. 2.7.

2.7 The Pre-Shower Detector

Below the angle of 45° the discrimination of electrons becomes less efficient due
to the presence of fast pions. For this reason the information about characteristic
electromagnetic showers caused by leptons in heavy material is used. The HADES
Pre-Shower detectors [ShoOO, Ba104] consist of two lead converters inserted between
three wire chambers with pad readout (see Fig. 2.8). Shower recognition is per
formed by comparing the number of particles measured before and after the lead
converters. In the case of hadrons this ratio is elose to 1, while for leptons it is larger
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Figure 2.7: (a) View of the scintillator of the TOF detector. (b) View ofthe the scintillator of
the TOFino detector.
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Figure 2.8: View of the Pre-Shower detector with its lead converters and the readout pad
planes.

than 1. Particle hits are identified via charge produced in ionization processes in
the wire chambers working in the self-quenching streamer (SQS) mode. The main
advantage of the SQS mode is that the induced charge is nearly independent of the
particle's specific energy loss. Therefore, low energy protons do not produce large
signals in the post converter chambers with their significant energy 1055 and finally
are not misidentified as electromagnetic showers. The Pre-Shower detector together
with the TOFino and TOF walls form the Multiplicity and Electron Trigger Array
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(META).

2.8 The HADES Trigger Concept

2 Tbe HADES Spectrometer

The reason for the existence of the HADES trigger system is the identification of
dielectron events. Hs main task is the on-line selection of events that contain an e+e
pair. There are three trigger levels which contribute to the above discrimination.

2.8.1 First Level Trigger (LVL1)

The first level trigger involves a fast hardware selection of central collisions, which
takes place in less than 100 ns, employing the multiplicity information fram the
META detector. When the multiplicity exceeds a certain threshold, the collision is
considered to be sufficiently central. For a beam intensity of 108 Hz and a target
interaction probability of 1%, the final rate the data acquisition has to deal with is
106 Hz. The centrality selection via the LVLl trigger can decrease the primary event
rate up to a factor of 10, which leads to trigger rates of 105 Hz.

2.8.2 Second Level Trigger (LVL2)

The second level trigger reduces the number of accepted events without changing
the primary rate. Its purpose is to enrich the recorded events with leptons. A fast
identification of e+e- tracks « 10 Jls) takes place in parallel with the readout of
the detector data. The realization of the second level trigger takes place via Image

6"1"'" "'" " ep

t. Detectors
end

Readout

Figure 2.9: Schematic illustration of the second level trigger functions.

Processing Units (IPU) installed on the RICH [Leh99, LehOO], the TOF [LinOl] and
the Pre-Shower detectors [PetOO]. As a first step, a ring position derived from fired
RICH pads, a signal from the Pre-Shower and a time information from the TOF
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are recorded (see Fig. 2.9). As a second step, a Matching Unit (MV) correlates the
corresponding coordinates taking into account the deflection of the particIe in the
magnetic field. The third step is to combine the identified lepton candidates with
opposite charge and calculate the invariant mass with use of a table, which defines
the relation between the deflection angle of the particIe and its momentum. Ac
cepted are only pairs that He within a specific range of invariant masses. The reduc
tion factor for the second level trigger is 100, leading to a rate of 103 Hz. Detailed
descriptions, as weIl as first results can be found in [TraOl, Leh03, Toi03, Toi04].

2.8.3 Third Level Trigger (LVL3)

The third level trigger correlates the identified tracks by RICH and META with the
corresponding MIX signals. Provided they are within a certain angle window, the
trigger decision is positive. So far the third level trigger works off-line and is em
ulated by software. The data reduction is by a factor of 10 which leaves us usually
with rates of 102 Hz.



3 The Multiwire Drift Chambers

The MDC modules are sensitive and delicate detectors and therefore their oper
ation and maintenance demand that some work be dedicated to the study of certain
aspects of their properties. In this chapter an introduction to the MDC operation
principles is presented along with some interesting details of the manufacturing
procedure, operational experience, as well as the tactics followed for their repair.

3.1 Principles of MDC Operation

A drift chamber is a gaseous detector that allows the determination of spatial coor
dinates along trajectories of particles which traverse its active volume, resulting in
excitation and ionization of the atoms of the medium. Of all possible interactions
only the electromagnetic one is generally used as a basis for detection, being many
orders of magnitude more probable than strong or weak interactions [Sau77].

On the passage of the partic1e a discrete number of primary ionizing collisions
takes place, which liberate electron-ion pairs in the medium. The electrons ejected
are accelerated by the field towards the anodes and can have enough energy (larger
than the ionization potential of the medium) to further ionize, producing secondary
electron-ion pairs; the SUffi of the two contributions is called total ionization. The
total number of electron-ion pairs can be expressed by nT = öE/Wi, where öE is the
total energy loss in the gas volume considered and Wi is the effective average energy
to produce one pair. An expression for the average energy loss per unit length due
to Coulomb interactions has been obtained by Bethe and Bloch in the framework of
relativistic quantum mechanics [Sau77]

(3.1)

where N is the Avogadro number, m and e denote the electron mass and charge,
Z, A, and p stand for the atomic number, the mass and the density of the medium
respectively, I is its effective ionizing potential, z is the charge and ß the velocity
of the projectile. The quantity EM represents the maximum energy transfer allowed
in each interaction. Inspection of the above formula shows that the differential en
ergy 1055 depends only on the projectile velocity ß and not on its mass. After a
fast decrease dominated by the ß-2 term, the energy 1055 reaches a constant value
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Figure 3.1: Energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon,
aluminum, tin and lead for muons, pions and protons, as a function of ß,. The energy
loss does not depend on the mass of the ionizing particle but on its velocity. After a rapid
decrease, the energy loss reaches astable region around ß rv 0.97 (ß, rv 4.1) and then starts
rising again for larger values ofß(relativistic rise) [PDGj.

around ß :::::: 0.97 and eventually slowly increases for ß ----+ 1leading to the relativis
tic rise (see Fig. 3.1). As described above, along the particle trajectory the formation
of localized groups of electrons, called clusters, takes place. In typical drift cham
ber gases they consist of 1-3 electrons. In the HADES drift chambers, the usual gas
mixture used consists of 60% helium and 40% isobutane. In pure He the number of
electron-ion pairs created per unit length is n(He) = 7.8, while for isobutane it is
n(iC4HlO) = 195. That gives a total number of electron-ion pairs per unit length for
the gas mixture equal to n(He - iC4HlO) = 0.6n(He) + 0.4n(iC4H IO) = 83. The ma
jority of the pairs are produced by isobutane and not by the main gas of the mixture.
The criteria for the selection of the gas components are explained in seetion 3.3.

3.2 Gas Amplification

The read-out of the drift chambers [Wüs05] results in time information which corre
sponds to the drift time of the primary electrons from the location of their creation to
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the dosest sense (anode) wire. The arrival of these electrons determines the begin
ning of the signal. The behaviour of the drift velocity depends on the drift properties
of ions and electrons in the gas medium of the chamber.

In most of the region where the charges are produced by the primary interac
tion processes, the electric Held only makes electrons drift towards the sense wires
and positive ions towards the negative electrodes. But very dose to the anode, nor
ma11y at a few wire radii, the Held gets strong enough for charge multiplication to
start. A typical drop-like avalanche develops with a11 electrons in the front and ions
behind (see Fig. 3.2).

Figure 3.2: Time development ofan avalanche in a gaseous counter [Sau77]. A single pri
mary electron proceeds towards the anode, in regions ofincreasinglyhighfields, experiencing
ionizing collisions; due to the lateral diffusion, a drop-like avalanche develops surrounding
the wire. Electrons are collected during a very short time (1 ns or so) and a cloud ofpositive
ions is left, slowly migrating towards the cathode.

If A is the mean free path of an electron until the next ionization event, the
inverse quantity, IX = 1/A, gives the probability of such an event per unit length.
The value IX is ca11ed Townsend coefHcient and is a function of location. If n is the
number of electrons, we have the creation of dn = nlX(x)dx new electrons per unit
length dx. Thus, the multiplication factor M is given by integration as

M = ~ = exp(l'Z lX(x)dx) , (3.2)
no '1

where no is the initial number of electrons. The multiplication factor cannot be ar
bitrarily increased. Secondary processes, like photon emission inducing the gener
ation of avalanches spread over the gas volume, and space-charge deformation of
the electric Held (which is strongly increased near the front of the avalanche), even
tua11y result in a spark breakdown. A phenomenological limit for multiplication
before breakdown is given by the Raether condition

IXX'" 20 (3.3)

or M '" loB; the statistical distribution of the energy of electrons and therefore of M
in general does not allow one to operate above '" 106 if one wants to avoid break
downs. In the case of the HADES drift chambers, the factor M is around 2-3.105.
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3.3 Choice of the Gas Filling

3 The Multiwire Drift Chambers

Since avalanche multiplication occurs in all gases, theoretically any gas or gas mix
ture can be used in a drift chamber. In most cases, however, the specific experimen
tal requirements - many times conflicting - restrict the choice to several families of
compounds. Some of these requirements are low working voltage, high gain opera
tion, high rate capabilities and long detector life time.

Avalanche multiplication occurs in noble gases at much lower fields than in
complex molecules; this is a consequence of the many non-ionizing energy dissipa
tion modes available in polyatomic molecules. Therefore, the convenience of op
eration suggests the use of a noble gas as the main component. Addition of other
components slightly increases the threshold voltage.

Polyatomic molecules have a very different behaviour, especially when they
contain more than four atoms. The large amount of non-radiative excited states (ro
tational and vibrational) allows the absorption of photons in a wide energy range.
This is a common property of most organic compounds in the hydrocarbon and
a1cohol families. The molecules dissipate the excess energy either by elastic colli
sions or by dissociation into simpler radicals. Even small amounts of a polyatomic
quencher added to a noble gas changes completely the operation of a counter be
cause of the lower ionization potential. Good photon absorption and suppression of
the secondary emission allows gains in excess of 106 to be obtained before discharge.

3.4 Drift Velocity

As mentioned before, a drift chamber offers the possibility of measuring the electron
drift time to get information about the spatial coordinates of an ionizing event. In
its basic form, a single-cell drift chamber consists of a region of moderate electric
field, followed by a proportional counter. Suitable field shaping electrodes, wires or
strips, allow one to obtain the desired electrical configuration. Electrons produced
at time to by the incoming charged particle migrate along the electric field lines with
velocity u and reach the high field region approximately 1 rnrn from the anode wire
where avalanche multiplication starts at a time tl. The coordinate of the track, with
respect to the anode wire, is therefore given by

t1

X = Judt,
to

(3.4)

which reduces to x = (tl - to)u for a constant drift velocity u. It is obviously
very convenient to have a linear space-time relationship and this can be obtained in
Structures with uniform electric field.

If a large surface of detection is required, a multi-cell structure can be used. In
this case, the region of the anode wire becomes necessarily part of the active volume.
So, it is not possible to obtain a constant drift field everywhere across the cell, as the



3.5 Construction of the HADES third .MDC Plane 39

low field region between the anode wires would result in a strong non-linearity of
the space-time relationship, especially fOT large wire spacings. A modification of
the structure allows the elimination of low field regions between the anodes. In
the HADES drift chambers the anode wires are alternated with five times thicker
field-shaping cathode wires (called field wires) that reinforce the electric field in the
critical region, sharpening at the same time the transition from one cell to another
(see Fig. 3.3).
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Figure 3.3: Potential distribution in an MDC drift cello The calculation has been perjormed
with Opera [OpeOl], a commercial program for e1ectromagnetic design. The colour code
corresponds to the potential gradient. The three peaks represent the anode wires which are
grounded (zero potential). The two outer peaks have higher potential due to boundary effects,
as the outer drift cells are not fully included in the simulation. The valleys surrounding the
three peaks are caused by the presence offield and cathode wires (-2000 V).

3.5 Construction of the HADES third MDC Plane

The drift chambers constructed in Forschungszentrum Rossendorf form the second
largest tracking plane of the spectrometer. Since they comprise the third plane, the
abbreviation MIX: III is used from now on. They consist of six modules with an
active area of roughly 2.2 m2 and a drift ceIl size of 8 x 12 mm2• Each module
has six drift layers, i. e. six anodes and seven cathodes, consisting of wires glued
on Stesalit© frames [Bou94J. The anode layers contain altemately sense wires (gold
coated W, 0 = 20 pm) and Held wires (Al, 0 = 100 pm) with a distance of 6 mm
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from each other. The wires of the anode layers have Hve different orientations (see
Fig. 3.4), whereas the wires of the cathode layers (Al, 0 = 80 llm) always have the
same orientation (+90°) with a distance of 3 mm from each other.

Figure 3.4: Schematic view of the anode frames inside achamber module.

The wire planes are prepared by using an automatie winding machine, which
has a high positioning precision (primarily ± 2 pm). This allows to wind sense
and Held wires on one frame. However, due to the big diameter of the Held wires
and their intrinsic tension, they roll away from their initial position. To correct this
displacement for the case of anode layers, four combs have been installed at the
two ends of the frame of the winding machine. These combs improve the accuracy,
which reaches the value of ± 10 pm. To avoid any further dislocations a mechanical
tension force is applied during the winding process (0.5 N for the sense wires, 1.5 N
for the Held wires and 1.0 N for the cathodes). This tension force also compensates
for the deformation (sagitta) of the wires due to gravitational and electrostatic forces.
The wires are placed and glued with an isolating glue (Araldite® AW106) on the
Stesalit frames. The process takes place in two stages because of the large size of the
module. A special table, markers on the frames and cameras ensure that the wires
are accurately placed, at the right distances (see Fig. 3.5) and on the same plane.

For the Held and cathode wires an additional conductive glue containing silver
is used for the formation of the galvanic contact. The sense wires are soldered from
one side on a printed circuit connector, whose other side leads the invoked electric
signal to the readout electronics via Hex print cables (FPC). The whole construction
is sealed with two mylar foils from both sides of the chamber.
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Figure 3.5: The measured position accuracy ofthe cathode wires ofcathode plane 2, module
1 is within the acceptable value of± 100 flm.

3.6 Mechanical Tension Force Measurements

Before the layers are mounted together, the stretching force of every wire (especially
for the anode layers) has to be measured with a tension meter. A current pulse is
fed into the wire under test, connected electrically to the instrument, deflecting it
from its quiescent position perpendicularly to a dipolar magnetic field (the deflect
ing force is produced by the interaction of the magnetic field of the current pulse
with the magnet). The wire begins vibrating as a stretched string. Under the in
fluence of the constant magnetic field, electric current is induced in the vibrating
wire. The electric signal is amplified to a level necessary to drive the monostable
multivibrator of the instrument at the suitable moment, providing another deflect
ing pulse. By appropriate regulation of the driving and deflecting signal, the wire
starts vibrating continuously with nearly constant frequency.*

In the case of a stretched wire with homogeneous cross section and density,
with a diameter negligible compared to its length, and vibrating with an amplitude
negligibly small in comparison to the longitudinal dimensions, the stretch F (in N)
can be determined from the period T of the fundamental frequency as

2 2 7T
F = 100L d PgT2' (3.5)

where L is the length of the wire in mm, d its diameter in firn, p the density in
g/cm3, T the measured period in ms and g the gravitational acceleration of earth
(9.81 m/s2). Applying the above method, one obtains the results of the measure
ments shown in Figs. 3.6 and 3.7t .

*The development of various wire chambers since the early 1970s and the task of manufacturing
reliable, long-lived and high-quality instruments motivated many different approaches to measur
ing wire tensions. Usually, more indirect methods are employed in which the wire is first forced
to vibrate, stimulated by the Lorentz or the Coulomb force, and then these vibrations are used to
determine the tension force. A more detailed description of the available methods can be fouod
in [Bor78, Cav75, SteBO, Bur73, Car88, Dur95].

tMeasurements performed at the FZ Rossendorf detector laboratory.
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Figure 3.6: Measured wire tension force offield (Al, 0 =100 J-lm) and anode wires (W,
o =20 Fm) in a zero degree frame ofmodule 3.
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Figure 3.7: Measured wire tension force for cathode frame 2 ofmodule 1 (Al, 0 =80 Fm).

Although the wires are wound with a well defined constant tension force, the
measurement shows that this is not longer the case, when they are fixed on the
frames. The stretching force of the wires concomitantly causes adeformation of the
Stesalit frames. The result is that the measured tension follows this deformation,
as seen in the simulation of Fig. 3.8*. The fluctuation is more evident for aluminum
wires due to their smaller elasticity. The ca1culation was performed for a frame fixed
on the table with four bolts in the middle of every side.

For one cathode layer the wire tension force was measured twice; first, when
the frame was placed on the special table where the wires are glued. In this case,

*Figure provided by Manfred Sobiella.
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Figure 3.8: Simulations of the expected deformation in mm of Stesalit frames caused by
the wire tension force (performed by Manfred Sobiella). On the left side a cathode layer is
depicted, while on the right the deformation ofa 0° anode layer is shown. The orientation of
the wires determines the deformed shape ofthe frames.

apart from the four bolts, 29 additional holders along the sides of the detector were
preventing the deformation. The measurement was repeated after the holders were
removed and the plane was lying only with the support of the four bolts. The results
are illustrated in Fig. 3.9. A variation of the tension in the order of 20% is not critical
for the sagitta.
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Figure 3.9: Tension force ofcathode wires ofcathode layer 2 of module 1. The upper curve
is for the frame fixed with all the holders and the lower one for the one fixed with only four
bolts.
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3.7 Wire Displacements due to Gravitational and
Electrostatic Forces

So far the wires are considered on the Stesalit frames without taking into account the
behaviour of the tension under working conditions. Apart from the gravitational
forces which are always present, the wires are also subject to electrostatic forces that
tend to displace them, when high voltage is applied. The combined effect of these
forces with the restoring mechanical tension results in an elastic deformation of the

wire.
The wire deflection from the nominal position can be estimated by solving the

differential equation which describes its equilibrium state. Such a calculation can be
performed with the program Garfield [GarOO]. The differential equation describing
the shape y(x) of a wire (x runs along its length) subject to an external force f(x)
can be derived by making the following assumptions:

<t> the wire deflection is small compared to the length of the wire,

<t> the wire elongation is in the elastic range of Hooke's law.

If the wire is stretched under tension fand has a shape y(x), the force Ft acting
tangentially on an infinitesimal part of the wire between x and dx is given by:

(3.6)

Ftdx is the force that tends to restore the wire back to its nominal position and
balances any external applied force. The gravitational and electrostatic forces per
unit length acting on the wire are

FB = gpeT,
FE = AE,

(3.7)

(3.9)

y 2 dC
FE = 2 dy' (3.8)

where Y is the potential of the wire and dCIdy the variation of its capacitance per
unit length due to displacement. It can be shown [Blu93] that

FE '" y
2

47f€o _
- 2 [aln(alr)]2y - ky,

where p is the density of the wire, eT its cross section, A is the charge per unit length
and E the electric field generated by the surrounding electrodes. If the field is con
stant, it creates a constant force per unit length, similar to the gravitational one. For
a wire placed in a position of electrostatic equilibrium, a small deviation from this
position generates a force acting on the wire tending to displace it. This force has
theform

I----
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where r is the radius of the wire, a the typical distance of the wire from the other
electrodes and cO the permeability. Thus, the equation describing the equilibrium
position of the wire is

d2y
Tdx2 = -ky - gpcr = f(x), (3.10)

with boundary conditions y(O) = y(L) = O. For k = 0 we can study separately the
effect of gravity. In this case the sagitta of the wire is

L2gpcr
Sg = y(L/2) = -_

8T
(3.11)

and is inversely proportional to the mechanical tension f. If T is increased, the effect
is reduced but it cannot be arbitrarily increased, since non-elastic deformations take
place. The total sagitta of the wire under the combined effect of electrostatic and
gravitational forces is

(3.12)S = y(L/2) = 8sgT ( 1 -1) = Sg ~ (_1_ -1)
L2k cosVk/ f (L/2) q cosq

withq = Vk/f(L/2). Plottingthefunctionf(q) = (2/q2)(1/cosq-1) (see Fig. 3.10),
it becomes clear that the electrostatic forces amplify the sagitta produced by the
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Figure 3.10: Amplificationfactor ofthe gravitational sagitta, owing to electrostaticalforces.

(3.13)

gravitational forces. When q approaches rr/2 the amplification factor diverges and
the position of the wire is no longer stable. From Eq. (3.9) the stability condition

4rr€o V2 L2
q2 = [aln(a/r)j2 2T"4 ::s; 1
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can be deduced. Using this inequality, it is possible to calculate the critical tension
Tc, below which the wires oscillate under working_conditions. Choosing, for exam
pIe, a =4 mm, L =2 m and V =2000 V, we get the Tc values depicted in Tab. 3.1. For
shorter wires the critical tension is lower.

wire I radius (pm) I Tc (N) I strung T (N) I material]

sense 10 0.31 0.5 W

cathode 40 0.65 1.0 Al

field 50 0.72 1.5 Al

Table 3.1: Critical tension valuesJor different wires oJMDC III.

3.8 Numerical Calculation of Wire Sagittas

Whether the solution of the differential Eq. (3.10) is exact or not depends on the
shape of J(x). If it is chosen to have a linear or second order dependence from
y(x), simple analytic solutions can still be found. For higher order terms though,
numerkal methods are needed to compute the wire shape. Such a method may
consist of the following steps:

rD select the sampie points and compute the sagitta and its first derivative for the
linear force,

rD prepare an interpolation table of the force for various shifts,

rD use the 5th order Runge-Kutta-Nyström stepping method for calculating a so
lution between the sampling points,

rD perform the Newton-Raphson zero search to minimize the difference between
the solution on the left and the right side of the sampling points, as well as the
difference between the first derivatives at the same points (see Figs. 3.11 and
3.12).
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Figure 3.11: Scheme of extrapolation of the solution using a stepping method between the
sampling points.

y !

: '-~,
""'_-',-.---- AI"

,--

~...-~
: lc-~---------.-\ AI'

~

STEP3

Figure 3.12: Scheme ofthe zero search of /).fand /).f'.

3.9 Examination of the Wire Deflections for the
MDC 111

Following the above we attempted to calculate the sagittas for the wires of MIX III
as a function of their tension, without varying the potential applied on field and
cathodes. The wires might lose tension by creeping out of the Araldite glue on the
Stesalit frame. In case a wire is loose enough to affect the resolution of the chamber
- this applies to sense wires - it is possible to make corrections by knowing the size
of the deflection along the wire.

The calculation was performed for aseries of tension values between the strung
and the critical one and for different layers and chamber orientations. The results
for operational high voltage Vcathode =Vfield =-2000 V are depicted in Figs. 3.13,3.14
and 3.15. The plots show that sense and field wires of the 0° layer are subject to
the highest deflection from the nominal position. The situation is better for indined
layers and chambers. Nevertheless, for a loss of 20% in tension the sagitta never
exceeds the resolution of the modules (100 flm), e. g. for 0.4 N the sagitta of 0° layer
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Figure 3.13: Deflection oJsense wires as ajunction oJtheir tension. For the nominal tension
oJ0.5 N, the calculated sagitta isJar below the resolution oJ the chambers.
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Figure 3.14: Deflection oJfield wires as ajunction oJtheir tension. As in Fig. 3.13, the nom
inal tension assures that the deflection is not oJgreat importance and does not dramatically
influence the resolution oJ the detector.
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Figure 3.15: Deflection ofcathode wires as afunction of their tension.
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Of specific interest in this section are observations of contamination of filament
growth in one of the chambers that has been used in-beam. The module worked
successfully for three weeks during data taking in November 2001 (C+C at 2 AGeV
and average intensity of about 106 particles per spill), as weIl as during the later
spring cosmics run for a few days. As a first sign of malfunction, the operating high
voltage could not be applied, indicating a short-circuit to ground involving the first
anode and first cathode layer.

An in-situ measurement lead to the following observations:

<:> a low value of resistivity between the first field and the first cathode layer,

<:> one anode wire that - via its low impedance preamplifier - connected the
whole cathode plane to ground. Disconnecting this specific wire from the
readout electronics lead the current in the chamber back to normal values.

A thorough investigation of both problems required the opening of the chamber.
Concerning the contact of the two layers, a loose wire in the first cathode layer was
found to be responsible. This wire had slipped out of the glue having a sagitta large
enough to approach the neighboring anode layer (the distance between two layers
is 4 mm). The tension measured was 0.14 N, far below the nominal value (l N)
and the critical one (0.65 N). While operating the chamber with high voltage, the
electric field increases the displacement of the cathode wire, reducing its distance to
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Figure 3.16: Photo ofafilament taken with microscope. The straight black Une is apart of
an anode wire with a diameter of20 11m.

the anode layer. As a result, two neighbouring layers made contact and the short
circuit appeared.

Moreover and independent of the cathode wire, white filaments were found to
have spread over the surface of the first anode layer. Their diameter varied from 2
to 50 11m and their length could be as large as 12 cm, growing across 20 wires. One
of them was strong enough to keep the aforementioned anode wire (observation
2) dislocated and connected to its neighboring field wire. A typical photograph of
such a filament, taken with a microscope, is shown in Fig. 3.16. For the investigation
steps that were taken to clarify the reasons for these symptoms, see the dedicated
publication [Kan04].

The loose cathode wire was eventuaHy replaced. Apart from that, the anode
wire that had been found to be displaced by the filaments, showed no tension loss
after removing the filaments. These two wires have no geometrical overlap and are
far from each other. It is difficult to estimate the extent to which the anode wire
was contributing to the short-circuit in addition to the cathode wire. No data on the
conductivity of the filament could be coHected, as the sampie was exhausted after
the spectroscopical investigation. A possible connection between the cathode layer
and this wire has not been observed when inspecting the interior of the chamber.

Infrared spectra suggested that one possible source of the filaments might have
been cellulose containing tissue material used in the production process, although
the spectra do not fuHy match. In particular, silicon traces are problematic to explain.
Silicon is a component in the material of the frames, as weH as in the glue used to
hold the wires. A possible scenario could be that some leftover of the tissue was
contaminated with silicon of either source and slipped into the active area of the
module. Such a mixture has low conductivity but while operating the chamber,
it can be modified by local discharges. The process of carbonization can increase
the surface conductivity of organic substances in plasma and arc up to 15 orders of
magnitude and reach values of about 1 0./cm [Odz98]. This could partiaHy explain
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the difference between the filament and the tissue spectrallines. It is very unlikely
though, that these structures are dose related aging phenomena. The aging tests
performed, as weIl as the absence of such filaments in several other modules that
had to be opened, supports this claim [Gar98]. Moreover, none of these symptoms
can be related to the natural tension reduction of the wires over time.

After the removal of the filaments, the replacement of the loose wire and the
careful cleaning of the detector components, the module could be normally operated
under beam conditions and the regular operation of the HADES experiment could
beresumed.



4 Reconstruction of A Hyperons

The stable operation of the drift chambers is an important prerequisite for a
smooth data acquisition and a subsequent successful physics analysis. In this chap
ter the A hyperon reconstruction using HADES data is presented. The data taking
under investigation took place in November 2002 and during its four weeks, ap
proximately 240.106 events were collected. However, the final amount of usable
events was reduced to 160.106, as only files with high magnetic field (magnet cur
rent =2500 A) and proper detector calibration were included in the analysis.

The system under investigation is C+C at a kinetic beam energy of 2 AGev:
The carbon target consists of two segments at a distance of 20 mm, whose diameter
and thickness are 3 mm and their density 2.15 g/cm3. A double target enables a
high interaction probability (around 5%) by reducing the absorption of the reaction
products in the material and the multiple scattering. The beam intensity varied
between 1-2.106 particles per spill.

The experiment was conducted with a mixed first level trigger (LVLI) requir
ing at least four charged particles per event on the TOF and TOFino walls for 85%
of the events, and two charged particles in 15% of the events. In this way, more cen
tral collisions are selected, which correspond to about 70% of the geometrical cross
section.

The second level trigger (LVL2) required at least one lepton candidate in the
event and the recording of the data was done in such a way that from the total statis
tics, 56% were LVL1 events and 44% were LVL2 events. Moreover, a certain fraction
of LVL1 events, the so-called downscaled events, were recorded regardless of the
LVL2 trigger decision for trigger control and normalization purposes. In November
2002 the downscaling factor was 10, meaning that every 10th event was recorded
without taking the LVL2 trigger decision into consideration. Since leptons were of
no interest for this analysis, the information from the RICH and the Pre-Shower
detectors was not used.

4.1 Properties of A Hyperons

A baryons are strange particles with a uds constituent quark content. Some of their
basic properties are summarized in Tab. 4.1. Oue to strangeness conservation in
strong interaction processes a A is always created together with another strange
particle containing an 5 quark, like K+ or K.Ü. Such an example for an elementary
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p+p reaction is depicted in Fig. 4.1.

4 Reconstruction ofA Hyperons

mass mA = 1115.683 ± 0.006 MeV

meanlife y = (2.632 ± 0.020) x 10 10 S

decay length cy= 7.89 cm

baryon charge B=+1

strangeness S =-1

Coulomb charge Q=O

A --+ p7C BR = (63.9 ± 0.5)%

A --+ nno BR = (35.8 ± 0.5)%

Table 4.1: Main properties of A hyperons [PDG1.
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Figure 4.1: (a) Feynman diagram for A production in a p+p reaction. The total strangeness
is conserved, therefore the A production is always associated with the creation of an s con
taining particle, in the depicted example a K+. (b) The decay A --+ pn- with a branching
ratio of 64%.

The large branching ratios give good confidence that the particle can be found
in the amount of available experimental data. Moreover, the weak decay with the
long life time of the order of 10-10 sensures that A survives long enough to create
a secondary vertex outside the target area and in front of the inner tracking system,
facilitating in this way the rejection of the background contributions.

4.2 Detector Acceptance and Resolution

Since HADES can only register signals of charged particles, the foeus is on the decay
A --+ pn- with a branching ratio of 64%. At the time of the experiment under study
the spectrometer setup was the foHowing (see Fig. 4.2):

r::> two sectors fuHy equipped with MOC modules offering high momentum res
olution,
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G> two sectors equipped with one outer MDC offering middle resolution,

G> two sectors only with inner modules offering low resolution.

55

'y

~

x

c:J high resolution (2-4%)

.. middle resolution (5-7%)

c:J low resolution (9-10%)

Figure 4.2: Enumeration ojthe HADES sectors with corresponding momentum resolution.

The A reconstruction is done via its invariant mass

minv = J(Ep + En-)2 - ('PP + Pn-)2· (4.1)

The variables that contribute to the equation are the momenta of the decay products
p and TC and the opening angle of their direction vectors at the decay vertex. So, the
parameters that set the constraints of the analysis are the detector acceptance of the
p7C pairs, the momentum and the angular resolution, defining the mass resolution,
as well as the primary and secondary vertex reconstruction, providing the tools for
background rejection.

The A has a long lifetime and a narrow width. Moreover, there is no other
known physics process that can lead to the creation of a correlated p7C pair outside
the target area (1\ is broad and decays strongly inside the fireball). The A signal
in the invariant mass spectrum should then appear as a sharp peak sitting on a
smooth background attributed to uncorrelated p7C combinations. Although an off
vertex particle analysis with the low resolution sectors is feasible (see J<Ü results in
[Zum05]), our interest is to employ the high resolution abilities of the spectrometer
in order to increase the purity, which is very important for weak signals. For this
reason, the two low resolution sectors (1 and 4) together with one of the medium
resolution ones (5)t are excluded from the current analysis of the present work.

Reducing the full setup to three sectors, the HADES geometrical acceptance
for the A decay products decreases from 22% to 7%. Within this acceptance, the
transverse momentum vs. rapidity (Pt VS. y) distributions for p and lf- give an idea
about the phase space coverage of the spectrometer (see Fig. 4.3). The theoretical
model used as event generator is UrQMD* (see Appendix A.2). Some of the A par
ticles are emitted with an angle below 15° but still can be seen by the detector, as the
decay products hit one of sectors 0, 2, 3. The distribution of these p and lf- hits in

tIn the analyzed experiment sector 5 had two drift layers switched off due to malfunction symp
toms.

'Ultra relativistic Quantum Molecular Dynamics



56 4 Reconstruction ofA Hyperons

I "" in the HADES acceptance (sectors 023) I

1.5l!o.5

200

600

400

y

600

200

800

400

'i)12OO~==~==:=!--""""'~"""""'''''-----

~
~ 1000

c:

85

500

1000

1-1=pr:::otOf1=8i=r
n th:=e7:H~AD~E~Sa~c~cep~ta~nce~(sect~o"'~02~3)~I~_

'i)2500 !="
4000 ;;;

3500 i2000
3000 0.-'

2500 1500

2000

1500

1000

500

y

I A in the HADES acceptence (sectons 023) 1
'i)2500 24

~
22

~2000 85 20

c: 18
18

1500 14
12

1000 10
8

500
6
4
2

2 3 l!o.5 1.5 2 2.5
0

Y Y

Figure 4.3: Transverse momentum vs. rapidity (Pt-Y) distributions Jor p, 7e and A in 4rr
acquired with UrQMD (left column) and inside the HADES acceptance (right column).
The red lines set the polar angle limits oJ the spectrometer between 15° and 85°. The yellow
bar on the left represents the midrapidity region. In the bottom right pad some oJ the A
particles emitted with an angle lower than 15° still can be seen by the detector, as their decay
products hit sectors 0, 2 or 3. The opposite situtation is more usual to happen; a A vector
emitted within the geometrical acceptance with one or two decay products being outside.

sectors 0, 2,3 is depicted in Fig. 4.4. Most of the combinations end up in the same
sector, which explains why the opening angle distribution does not extend beyond
100° (right pad of Fig. 4.4).

The momentum resolution in simulations für the two particle species is de
picted in Fig. 4.5. The two-dimensional plots point out that the particle momenta
are underestimated in the reconstruction procedure - in particular protons - as there
is no energy loss correction applied in the target, the RICH radiator and the RICH
carbon shelL As a consequence, the momentum resolution worsens at low values

-
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Figure 4.4: Hit distribution oJreconstructed p and TC tracks comingfrom a A decay (Zeft).
Opening angle distribution Jor the same pairs (right). The unit oJthe y-axis is counts [a.u.].

(see Fig. 4.5(c)) but at higher momenta it remains stable at the region populated by
the decay products (around 2-3% for JC and 2-5% for p). Multiple scattering for
protons is also important for momenta lower than 300 MeV Multiple scattering is of
statistical nature, therefore it smears the momentum resolution, an effect that can
not be corrected. In average it enlarges the opening angle of a pair, leading to small
systematie errers in the reconstructed A mass.

The position resolution of the primary and secondary vertiees of the A is ex
pected to influence the analysis the most, especially since there is no vertex detector
involved in the analysis. The primary vertex is calculated with tracks from all sec
tors, fer events that contain at least one p and one 7C. The calculation is repeated as
many times as there are p7C combinations. To exc1ude autocorrelation effects, the
p7C pair of interest is exc1uded every time from the sample of tracks used for the
vertex estimate. Tukey weights [San03] are applied to all tracks, in order to reduce
the impact of outliers *, either because of scattering er because they originate from
aAdecay.

The A secondary vertex distributions along the x and the y axes are broad and
asymmetrie. Along the z coordinate the two targets are no longer visible in the
reconstructed data. Plotting the distribution of the decay points taken direct1y from
HGeant [Gea04] without applying Hydra [Hyd04], the HADES analysis software
package, we conc1ude that this is not a bias of the reconstruction algorithm but it is
rather related to the geometrieal acceptance of the A in the laboratory system (see
Fig.4.6).

*Particle tracks that lie far from the target.
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Figure 4.6: Seeondary vertex distributions of A deeays in HGeant and Hydra. The asym
metrie shapes in x and y do not appear after the reeonstruetion but already at the HGeant
level. The seeond target looks more pronouneed beeause it is superimposed on the distribu
tion of the first one (rightmost pad). The histograms are normalized to the same integral
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4.3 Particle Identification

There have been various tracking algorithms developed and used in the HADES
analysis software for the track reconstruction [San03, Rus06]; the method employed
for the following results is the Runge-Kutta numerical solution of the equation of
motion for a charged particle whose trajectory traverses the HADES toroidal mag
netic field [Abr64, Bug81, Sad06]. From the curvature of the track it is possible to cal
culate the particle momentum p, as explained in section 2.5.1. Knowing the length
of the flight path and having measured the time of flight, the ca1culation of the parti
cle velocity ßfollows. Plotting ßas a function of p allows the identification of p and
rC. This is done by means of a graphical cut, adjusted differently for every sector
and system (see Fig. 4.7).
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Figure 4.7: Distribution oJvelocity ßvs. momentum multiplied with the particle charge in
real dataJor different sectors and systems (TOF: system1, TOFino: systemO). The white lines
indicate the applied graphical cut Jor the identification oJ p and rC (positive and negative
momenta, respectively). The early stage oJ the analysis is kept general, that is why sector 5
(low resolution) is still included in the graphical cut.

To get some confidence about this graphical cut, it is useful to ca1culate its effi-
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cieney CgrCut. The latter ean be defined as

(4.2)
C _ N (graphically identified with correct ID)

grCut - N (with correct I D in simulation) ,

where N denotes the number of particles identified in simulation under the eondi
tions stated in the braekets. The result is presented in Fig. 4.8. The efficieney for Je
is above 90% and for p above 95% for the range of interesting momenta, values that
do not bias the further analysis.
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Figure 4.8: Graphical cut efficiency for JC and p (black squares). The average values are
above 90% for JC and above 95% for protons in the region where the momenta of the decay
products lie, depicted by red histograms with arbitrary scaling.

4.4 Particle Correlations and Signal Enhancement

Onee p and TC are identified, the next step is to eorrelate them into pairs and ea1cu
late the invariant mass of every combination (see Eq. (4.1)). Such an invariant mass
distribution is depicted in Fig. 4.9, with the low limit being the sum of the p and TC

masses. The masses of the particles are taken from the Particle Data Group book
let and not from the reeonstructed mass distribution, excluding this way the effect
of the time of flight ealibration and flight path determination on the particle mass
ealculation.

Comparing the momentum (see Fig. 4.10) and the opening angle distributions
(see Fig. 4.11) for simulated and experimental data, the steeper shape in the latter
ease ean be attributed to the JC momentum differenee. However, the displayed
speetra are not conclusive, as they are not corrected for effideney. Figs. 4.10 and
4.11 are only meant to give a hint about the different shapes of the invariant mass
distributions at the early stage of the analysis.

In the smooth invariant mass distribution the A signal is buried under a huge
eombinatorie background. In order to disentangle it, aseries of conditions or "cuts"
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Figure 4.10: Momentum distributions oJ all p and 7C in the events Jor simulation and
experiment (not efficiency corrected). The unit oJ the y-axis is counts [a.u.].

have to be applied to the data. Several variables can be used to enhance the signal of
an off-vertex decay, either on the pair properties or on the individual tracks; among
themare:

J:;) the distance of the secondary vertex (A decay point) from the primary vertex,
Iwsv - wpvl,

J:;) the distance d between the p and 7C tracks at the secondary vertex,

J:;) the distance s of the sum momentum vector from the primary vertex,

------------------------------
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Figure 4.11: Opening angle distributionJor p7C pairs in simulation and experiment with
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as wen as single p and 7C track properties, like X2 values from the MDC track
segment fits or the Runge-Kutta momentum reconstruction. A visualization of the
pair variables in three dimensions is attempted in Fig. 4.12. Their way of calculating
is explained in Appendices Band C.

(a) Distance between secondary and primary (b) Distance d between p and Tf- tracks.
vertex.

r

(e) Distance s 0/ a sum momentum vector from OIe
target.

Figure 4.12: Variables usedJor A signal enhancement.
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4.5 Signal-to-Background Studies

A systematic study of the signal-to-background ratio as a function of the aforemen
tioned variables can suggest the right values of the cuts for the experimental data.
A secondary vertices can extend up to several centimeters away from the creation
point (see Fig. 4.13). A large fraction of A decays at the target and in its vidnity, lead
ing to a signal that is almost impossible to reconstruct because of the large amount
of co-produced uncorrelated p7C pairs from other physical sourees. To fadlitate
the analysis, it is necessary to move far from the primary vertex and reconstruct
particles that originate from off-vertex decays.
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Figure 4.13: The black distribution represents the A decay points along the x, y and z axes.
Along the z axis (beam direction) the two targets can be seen. In red colour depicted are the
A secondary vertices, which have been reconstructed by the HGeant hit points at the MDC
detectors. This is the optimal primary vertex resolution, as there is no reconstruction accu
racy involved. Multiple scattering is responsible for the poor resolution of the two targets.
The units of the y-axes are counts [a.u.].

The signal-to-background ratio SIB as a function of the off-vertex distance is
shown in Fig. 4.14. The statistics sample used is 34.106 simulated events, containing
the decay products of 3329 A particles. These p and Je have hit sectors 0, 2 or 3,
have both inner and outer MIX:: segments fitted (X~eg > 0) and the Runge-Kutta
method has calculated amomenturn for the tracks (XkK > 0).

For coarse steps of 10 mm the effidency of this condition is calculated and de
picted in Tab. 4.2. Studies of the distance projection on cylindrical coordinates rand
z are also presented, so that the most sensitive variable can be selected. From the
values of S/B, it seems that the z coordinate (see rightmost column of Tab. 4.1(c))
has increased the significance of the signal more than the others. In order to keep
the effidency reasonably high (43.7%) and to let space for additional conditions, the
value Zsv - Zpv > 30 rnrn* is selected as a starting point.

This condition alone is not suffident to make the signal emerge clearly from
the background. An additional helpful quantity is the distance d between the p and

*PV stands for primary vertex and SV for secondary vertex.
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- 3329 100.0 -
10 2971 89.2 0.80

20 2515 75.5 1.15

30 2120 63.7 1.35

40 1795 53.9 1.43

50 1527 45.9 1.43

60 1314 39.5 1.40

(a) S/B ratio for the distance between primary and secondary vertex.

Ilwsv - wpvl [rnm] I # A Icut effidency (%) IS/B (xl0-2
) I

(b) S/B ratio for the distance projection on the r coordinate.

I rSV - rpV [rnm] I # A Icut effidency (%) IS/B (xl0-2
) I

- 3329 100.0 -

10 2571 77.2 1.00

20 1894 56.9 1.23

30 1416 42.5 1.21

40 1088 32.7 1.13

50 861 25.9 1.04

60 676 20.3 0.90

(c) S/B ratio for the distance projection on the z coordinate.

IZSV - zpV [mm] I # A Icut efficiency(%) I5/B (X 10";'2) I
- 3329 100.0 -
10 2208 66.3 1.97

20 1796 53.9 3.04

30 1454 43.7 3.85

40 1188 35.7 4.34

50 961 28.9 4.33

60 775 23.3 4.22

Table 4.2: S/B ratio and corresponding efficiencyfor the off-vertex distance. The projection
on the z axis seems to be the most sensitive variable for the A signal enhancement.

7e tracks before the magnet. Keeping the condition Zsv - ZPV > 30 mm, the same
study like before is repeated, this time reducing the variable d in steps of 10 mm (see
Fig. 4.15 and Tab. 4.3). The A signal has started poking out of the background.

Keeping d < 12 mm and Zsv - Zpv > 30 rnm, the next study concems the dis
tance s of the sum momentum vector from the primary vertex. In case of a A decay
the sum vector of p and TC should originate from the vicinity of the target. The
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Figure 4.15: Invariant mass distribution and S/B ratio as afunction oJ the p7C distance d
with the condition Zsv - Zpv > 30 mm. As d decreases, the signal increases with respect to
the background, since uncorrelated p7C pairs with large distance between them are rejected.

60 1439 43.2 4.07

50 1436 43.1 4.13

40 1432 43.0 4.22

30 1419 42.6 4.37

20 1373 41.2 4.70

10 1168 35.1 5.63

Idistanced[mm] I #A Icutefficiency(%) IS/B(xl0-2) I

Table 4.3: S/B ratio and corresponding efficiencyJor the p7C distance d with the condition
Zsv - Zpv > 30 mm.

reduction of this value should increase the significance of the A signal. However,
Fig. 4.16 and Tab. 4.4 show a rather flat tendency. This variable is inappropriate and
insensitive for this analysis; a very loose upper value of s < 150 mrn is selected.

,...',' e' ~ 'C"."', .. ':, .f~ •

180 1246 37.4 5.35

150 1229 36.9 5.43

120 1189 35.7 5.43

90 1116 33.5 5.45

60 942 28.3 5.48

30 592 17.8 5.40

Table 4.4: S/B ratio and corresponding efficiencyJor the impact parameter 5 with the condi
tions d < 12 mm and zsv - Zpv > 30 mm.
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Iinvariant mass distribution (SIM) I
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Figure 4.16: Invariant mass distribution and S/B ratio as afunction of impact parameter s
with the conditions d < 12 mm and Zsv - ZPv > 30 mm.

The reason for this behaviour is explained in Fig. 4.17. In the left pad, after the
off-vertex condition is applied (marked in red), the distribution of the p7C distance
d still has a low average value, while the distribution of the impact parameter s is a
lot flatter. Consequently, the reduction of s does not bring the desirable result on the
S/B ratio.

E 50 r::----r---::":':'ll:;--II..--....--:;---:-------:---:

5 45
'tl

-40 ·20 0 20 40 60 80 100
z"v [mm]

15

10

5

o
-40 -20 0 20 40 60 80 100

zsv [mm]

-

Figure 4.17: Correlation ofoff-vertex distance cut along the z coordinate with the parame
ters d and s. Only pairs ofA decay products are included in the figures.

To further increase the S/B ratio, it is useful to demonstrate the effect of various
X2 solelyon the single p and TC tracks. A certain upper limit should be applied
to these values, in order to discard badly reconstructed trajectories. Keeping the
previous cuts at the selected values, the S/B ratio is once again displayed for three
X2 values, independently from each other: the inner MIX segment X2, the outer
MIX segment X2 and finally the XiK (see Figs. 4.18,4.19,4.20 and Tabs. 4.5, 4.6, 4.7)
from the Runge-Kutta momentum reconstruction. Finally, a combination of these
conditions is chosen for the further improvement of the signal quality.
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4.5 Signal-to-Background Studies

Figure 4.18: Invariant mass distribution and S/B ratio as afunction oJ inner segment X2

with the conditions s < 150 mm, d < 12 mm and Zsv - ZPv > 30 mm.

I inner segment X2~ cut effidency (%) IS/B (x 10-2) I
120 970 29.1 6.10

100 970 29.1 6.10

80 970 29.1 6.10

60 966 29.0 6.08

40 947 28.4 6.12

20 877 26.3 6.15

Table 4.5: S/B ratioJor the inner segment X;eg with the conditions s < 150 mm, d < 12 mm
and zsv - Zpv > 30 mm.

I invariant mau diatribution (SIM) I
2500,-------------,
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Figure 4.19: Invariant mass distribution and S/B ratio as afunction oJ outer segment X2

with the conditions s < 150 mm, d < 12 mm and Zsv - ZPV > 30 mm.

In all three cases, the S/B ratio and the effideney are only slightly influenced
by the reduction of the X2 variables. The final selection of the simulation cuts in the
present analysis is:
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120 970 29.1 6.10

100 970 29.1 6.11

80 965 29.0 6.12

60 958 28.8 6.11

40 943 28.3 6.15

20 859 25.8 6.06

Iouter segment X2~ eut effideney (%) IS/B (x 10-2) I

Table 4.6: S/B ratio for the outer segment X~eg with the conditions s < 150 mm, d < 12 mm
and Zsv - Zpv > 30 mm.
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Figure 4.20: Invariant mass distribution and S/B ratio as ajunction ofX~K with the condi
tions s < 150 mm, d < 12 mm and Zsv - Zpv > 30 mm.

120 713 21.4 7.28

100 683 20.5 7.32

80 649 19.5 7.36

60 606 18.2 7.48

40 542 16.3 7.66

20 444 13.3 8.24

Table 4.7: S/B ratio and corresponding efficiency for X~K with the conditions s < 150 mm,
d < 12 mm and zsv - ZPv > 30 mm.

<t> zsv - Zpv > 30 rnrn,

at> d< 12 rnrn,

<t> s < 150 mm,
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Figure 4.21: Simulated invariant mass distribution after application oj cuts. The back
ground from uncorrelated p7C pairs is the cross-hatched area. On the right pad, the pure A
signal is plotted andfitted with a Gaussian.

<D inner X~eg > 0* and < 50

<D outer X~eg > 0 and < 50,

<D X~K > 0 and < 50.

The simulated invariant mass distribution clearly reveals the A peak (see Fig. 4.21),
which means that the cuts are now appropriate to be applied on the real data.

4.6 The A Signal in Real Oata

Following the steps of the previous analysis of simulated events, the p7C invari
ant mass is calculated for experimental data. The statistics comprise about 131.106

events (LVL1 and LVL2) and the graphical cuts for the p, TC identification remain
like in simulation. The black distribution of Fig. 4.22 is the invariant mass distri
bution with the conditions on the inner and outer segment X~eg > 0 and X~K > 0,
while the green curve includes the simulation enhancement cuts. In contrast to the
simulation, the peak in the real data is present but not pronounced enough. This
is expected, since the cutting power of the enhancement conditions in experiment
differs from simulation. This means that the cuts for the A reconstruction need to
be adapted in real data, in order to suppress the background more effectively.

The set of cuts that finally leads to the extraction of the signal are summarized
in Tab. 4.8 and their effect on the experimental data is presented in Fig. 4.23. On
the left panel the invariant mass distribution is not smooth any more but allows a

*A X2 value cannot be negative by definition. In the Hydra analysis framework, we set X~rg =-1
as a flag to indicate that the corresponding MIX: segment has not been successfully fitted.
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I invariant mass distribution (EXP)
.103

Figure 4.22: Experimental in
variant mass distribution without
(black) and with the enhancement
cuts (green). The lower histogram
has its corresponding axis on the
right. The A peak is visible.

I simulation experiment Ivariable

ZSZl - ZPZI [mm] >30 >40
d[mm] <12 < 12
s [mm] < 150 < 150

. 2 > Oand<50 > Oand <40Inner XseQ

outer X;e~ > Oand<50 > Oand <40

X~K > Oand<50 > Oand <40

160

::=:: 140

~ 120 -w/o cuts
Q)

::2 100 -'- with cuts
>::::'
~ 80
E
::e 60z
"0 40 I

20'
O.-k.~J'" I", I",!",!", I",

1060 1080 1100 1120 1140 1160 1180 1200
minv [MeV/c~

Table 4.8: Summary of enhancement conditions applied in simulation and experimental
data.

clear A peak to be seen. The background on the two sides of the peak is fitted with a
third order polynomial function and then subtracted from the total distribution. The
result appears on the right panel of Fig. 4.23. The signal is fitted with a Gaussian,
in order to estimate the number of particles. The integral of the fit within a 2uGauss
limit gives

INA = (1117 ± 124(stat.) ± 27(syst.)) AI. (4.3)

The statistical error is estimated by dividing the value of the signal with its signifi
cance (5 :=:::i 9), while the systematic error is the result of alternative fitting fundions
and fitting limits for the background description.
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Figure 4.23: Extraction of the experimental signal. On the left the A signal is poking out
of the background. The background is fitted with a third order polynomial function (green
line). After its subtraction from the total distribution, the net A contribution is depicted
on the right pad of the picture. The peak is fitted with a Gaussian function (blue), whose
integral estimates the number ofparticles. The width ofthe peak is somewhat larger than the
one in simulated data, as expected (see Fig. 4.21).
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5.1 Data Corrections

Aim of this analysis is the determination of the production eross seetion for A hy
perons. The number of A extraeted from the data is not suffident (see page 72) to
allow further studies of phase spaee distributions, sueh as transverse momentum or
rapidity distributions. The total production eross section fTA ean be estimated from
the equation

fTA = MA . fTgeom(C+C)' (5.1)

where M A is the A multiplidty(yield) and fTgeom(C+C) the geometrical eross seetion
of the reaction. The latter ean be ealculated as

er - 7[,2 (A1/3 +A1/3)2 - 7[(1 2fm)2 (121/ 3 + 121/3)2 - 948 mbgeom(C+C) - 0 P T - . -, (5.2)

(5.3)

with Ap and AT being the atomic number of the projectile and the target (for C+C
Ap = AT = 12) and,o the nucleon radius. M A ean be dedueed by knowing the
total number of particles N~t produeed in a set of events Nevents by

N tot
M A = A.

Nevents

What needs to be estimated then is N~t. Aseries of correetions are neeessary to
compensate for all the faetors that eventually altered this number at the different
stages of the analysis. These correction factors are:

~ geometrical aeeeptanee,

~ reeonstruetion effideney of the traeking algorithm,

~ graphical eut identifieation effideney,

~ geometrical cut effideney for the signal enhaneement,

~ branehing ratio of the A deeay,

~ lepton trigger effideney,

~ centrality trigger (minimum bias).
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5.2 Geometrical Acceptance and Total
Reconstruction Efficiency

Because the number of A hyperons found in the data sampie is small, the usual
technique of correction with two-dimensional (Pt, y) matrices is not attempted here.
Instead, the correction is one-dimensional, i. e. an average multiplication factor. One
way for the determination of this factor is to extract it from simulation. To make the
process less time consuming, 106 A were created with the HADES event genera
tor Pluto [Plu04]. The parameters selection for this simulation was based on recent
FOPI results from A1+AI analysis at 1.93 AGeV [Kot06]. The inverse slope param
eter T (temperature) of this experiment for A is T = (90 ± 5) MeV. Since the C+C
system is lighter, an educated guess for the A temperature in this system could be
80 MeV. There is no available systematic study for the dependence of temperature
as a function of system size for lighter systems at medium energies nor is there a
reliable scaling relation.

These 106 A hyperons are embedded in 106 UrQMD events, from which the
intrinsic A have been removed. The outcome is an enriched file with 1 AI (UrQMD
event) and a realistic track density environment as background description. These
events are fully processed with HGeant and Hydra. Furthermore, the graphical cut
and the enhancement conditions discussed in section 4.5 are applied. At the end, the
number of reconstructed A divided by the input number of the 106 embedded ones
gives the total reconstruction effidency correction for the spedfied enhancement
cuts, inc1uding also the geometrical acceptance and the branching ratio correction.
A detailed overview of how the different analysis stages influence the number of
reconstructed A is presented in Tab. 5.1. In the same table two more temperatures

!=100MeVIT=80MeVT=60MeVanalysis stage

geometry (5.01 ± 0.03)% (6.41 ± 0.03)% (7.49 ± 0.03)%

rL'construction (.32.Ni ~L 1l.32)"" (J-tH-l .~•. 0.29)"" (3(1.01 "::-. 0.27)""

enhancement cuts (3.97 ± 0.11)% (4.33 ± 0.10)% (4.54 ± 0.10)%

graphical cut (88.14 ± 2.63)% (88.67 ± 2.24)% (88.68 ± 2.02)%

total effidency ([tot) (0.1122 ± 0.0033)% (0.1573 ± 0.0040)% (0.1927 ± 0.0044)%

Table 5.1: Geometrical acceptance and efficiencies at different stages ofthe analysis for three
different temperatures T. The total efficiency includes all the previous steps (except the gray
shaded Une), plus the branching ratio of the A decay into p7C (63.8%). Only sectors 0,2,3
are inc1uded.

T = 60 MeV and T = 100 MeV are considered for deducing systematic errors on
the acceptance, arising from the assumed T of the simulated fireball. A variation
in temperature of the order of 20 MeV can lead to a 20% difference in geometrical
acceptance with consequences for the total effidency.

Starting with 106 A hyperons, 63.9% of them decay into a p7C pair (see Tab. 4.1).
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...

From these pairs 6.41% cross all the detectors of the setup in HGeant, i. e. both p and
7C leave hits on all four MDC modules in the same sector, as weIl as on the META
detectors. Of the pairs within the geometrical acceptance, 34.84% are reconstructed
by the tracking software, meaning that the algorithm found hits from p and TC

tracks in all involved MDC and TOF detectors in the respective sector, it managed
to fit the MDC hits into track segments (X;eg > 0) and the segments into track candi
dates, and amomenturn value is attributed to them by the Runge-Kutta procedure
(X~K > 0). When the enhancement cuts are applied, this reconstruction effidency
drops to 4.33%. FinaIly, the graphical cut effidency is estimated after applying the
enhancement conditions. The analysis is run twice, once using the true partic1e ID
from HGeant for the p7C identification and a second time using the graphical cut
ID. Dividing the number of A from the two methods, the graphical cut effidency
turns out to be around 88%.

The total reconstruction effidency used for the correction of the data in the
current analysis is

IEtat = (0.1573 ± 0.0040)%1, (5.4)

a small value determined on one hand by the restricted geometrical acceptance of
the p7C pairs in three sectors and on the other hand by the limited reconstruction
effidency of secondary vertices away from the targets, imposed by the need of strict
cuts.

An explanation can be offered in the cylindrical coordinate representation of
the laboratory system. The distribution of the z coordinate of the p and TC tracks
(inner segment) is broader for those particles that originate from a A decay, com
pared to the primary ones (see Figs. 5.1,5.2). In most of the A hyperon decays, the

x103

- I<' fram target
140

120

100

- p fram target

- p fram A decays

30000

25000

2ODOO - lt" fram A decays

80

60

40

20 ~~kot..-'""-_I!f:i.Ju........c..L.......2:bo.;;;;:llll_.J............Io-..l
-100 -80 -80 -40 -20 0 20 40 60 80 100

z[mm]

15000

10000

5000

oL&...-~:::...u.-~--~~=:::o:d
-100 -80 -60 -40 -20 0 20 40 80 80 100

z[mm]

Figure 5.1: Distribution ofthe z coordinatefor pand 7C tracks (units in counts la.u.]). The
ones comingfrom a A decay smear out the distribution in a way that is depicted in Fig. 5.2.

largest part of momentum is transferred to the proton, which keeps roughly the di
rection of its parent. The effect is a lot stronger in the 7C case, as the momentum
transfer from the A is usually smaller. The TC track loses memory of the initial di
rection of the A vector and as a consequence, the two targets are smeared out in the
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z distribution. The tracking algorithm used in this analysis is focused on the recon
struction of e+e- pairs that originate from vector meson decays inside the fireball
and uses the target position information in the segment fits. This means that it has
the ability to reconstruct tracks within a certain region around the two targets.

r

---
z

Figure 5.2: Reconstruction difference along the z axis for particles with and without A
parent. One of the decay particles might lose memory of the initial direction of the A vector
and in the cylindrical coordinates it looks as if it comes far from the target.

The tracking efficiency worsens elose and further than the border of the region
with consequences for the reconstruction ability of the two partieles. The folding of
these two distributions is reflected on the A efficiency.

5.3 Reconstruction Efficiency in Experiment

The enhancement cuts in simulation have been adjusted in such a way that they
reject the same percentage of pairs as in the experimental data (see Tab. 5.2). The

I variable

zsv - z v [mm]

distance d [mm]

impact parameter s [mm]
. 2
mner Xse

2outer Xse

>27

<9.5

<105

>Oand <31

>Oand<30

>Oand <24

>40

< 12

< 150

> Oand <40

> oand <40

>Oand <40

Table 5.2: Adjusted simulation cuts for the experimental data correction.

correction of the experimental data is based on the assumption that the reconstruc
tion effidency is the same as in simulation. In order to study a possible discrepancy
and quantify the effect, 106 A partieles are processed with HGeant and their decay
products are embedded in experimental raw (list mode) data. A special analysis
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within aeeeptanee 28743 ± 170 22349 ± 150

reeonstructed 11139 ± 106 3415 ± 58

is applied, in which only the Start and the MDC detectors are included in the re
eonstruction. The information from the META deteetor is absent, as wen as the
momentum ealculation. In parallel, the same proeedure of analysis is followed for
simulation and at the end the two A reeonstruetion efficiencies are compared (see
Tab. 5.3), after having applied the off-vertex euts from Tab. 5.2. The starting value

I # A (off-vertex) I simulation I experiment I

'---_e_ffi_·e_ie_n_ey,,--_I (38.8 ± 0.4)% I (15.3 ± 0.3)% I

Table 5.3: Comparison of tracking efficiencies between simulation and experiment.

for the A particles within the HADES aeeeptanee differs for the two eases (28743
vs.22349), as some events have been skipped during the merging of the simulated
A deeay products with the real tracks due to drift time inconsistendes. This is not
a drawback, sinee the method provides an effideney eorrection of the experimental
data relatively to the simulation. At this analysis level, the reeonstruction effideney
für deeays far from target is 39% and 15% for simulation and experiment respec
tively. The relative effidency ereI is the ratio of the two figures

Ierel = (39.4 ± 2.8)% I (5.5)

meaning that in the experiment, it is possible to reeonstruct in average 40% of the A
particles with displaced deeays, eompared to the simulation.

200 250
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15010050200 250
Zsy'Zpy [mm]
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I reconstruclion efficiency I I ratio EXPISIM I
0.6r--------------,
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Figure 5.3: Comparison ofreconstruction efficiencies between simulation and experiment.

It seems that the track density differs between simulated and real data, in par
tieular in the vidnity of the targets. Background from seeondary particles created at
objects belonging to the setup and not being inc1uded in the simulation might result
to the effidendes of Fig. 5.3. However, further studies are required with the embed
ding of real tracks in the full HADES setup and a more extended analysis including
the META detector.
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5.4 Trigger Efficiency

The next step is to determine the effect of the trigger conditions on the data. Plot
ting the experimental invariant mass distribution for events with and without the
LVL2 trigger flag, the numbers of A in the two cases differ by about 5%, taking into
account that the LVL2 trigger concerns 44% of the events. Thus, the impact of the
lepton trigger on the data is of minor importance.

The focus will be on correcting for the multiplicity condition (LVLI trigger).
The multiplicity trigger is c10sely related to the selection of small impact parameters
which characterize central collisions, in contrast to the more peripheral ones that
result to a lower partic1e multiplicity. For a small system like C+C, it is difficult to
define what a central collision is, however, a multiplicity of equal or higher than 4
(M ~ 4) on the TOF walls has been applied to 85% of the events. The rest 15%
has been registered with the condition M ~ 2, which imposes almost no bias to the
data.

The effect of the LVLI trigger can be estimated with simulation using a mul
tiplicity filter emulation. A fraction of the statistics (6.105 UrQMD events, filtered
with HGeant) is analyzed with Hydra with the two different conditions, M ~ 4 and
M ~ 2, and the number of A hyperons is counted. The effect is presented in Tab. 5.4
together with the result of exc1uding the filter. Indeed, the effect of the M ~ 2 con-

M>4Ino condition I -
#A 2965 2620 2882

efficiency - f4l;..VLl = (88.4 ± 1.7)% f27-.VL1 = (97.2 ± 1.8)%

#events 600000 332237 476884

Table 5.4: LVLl trigger effect on the number ofreconstructed A.

(5.6)

dition is negligible. The reduction of the A number for M ~ 4 is relatively small
too, as A particles are mainly produced in central collisions. Far the application of
these correction factors to the data, their validity in 4n has to be assumed.

The total number of A hyperons produced in 131.106 real events would then be

A NA (0.85 0.15)
Ntot = &tot· &reI f4XVL1 + f 2xVL1 .

The quantities in this relation are known:

t:t> NA = 1117 ± 124(stat.) ± 27(syst.),

t:t> &tot = (0.1573 ± 0.0040)%,

t:t> &rel = (39.4 ± 2.8)%,

<:> f4~VL1 = (88.4 ± 1.7)%,
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r;> 12ÄVLl = (97.2 ± 1.8)%.

Inserting them in Eq. (5.6), the total number of A is

N~t = 2011120 ± 238016.

5.5 Minimum Bias Normalization

81

(5.7)

(5.9)

From Tab. 5.4 it is evident that the total number of events is reduced with the mul
tiplicity condition by a factor f. What is known in the experiment though, is the
number of LVLI events Nf.Ye*ls, i. e. the events that passed the trigger. Since there is
no available measurement of the incoming beam particles, the ca1culation of Nevents
requires information from another particle whose multiplicity is known for the spe
cific system and energy, e. g. n+ [Mou06, Ave03]. Let the total number of events be
equal to

Nevents = Nf.Ye*ls .1 . (5.8)

Like for M A , the multiplicity M n + can be written as

M Nn + N;YLl
( 0.85 0.15 )

n-c- = N t = NLVLl .1 14LVLl + 12LVLl .even 5 events n" n-"

The LVLI multiplicity M LVLl = NLVL1/NLVLl as wen as the minimum bias multi-n+ n+ events'
plicity M n + are known:

r;> M;':U = 1.15 ± 0.12(stat.) ± 0.12(syst.),

r;> M n + = 0.79 ± 0.09(stat.) ± 0.08(syst.).

The factors 14;':-Ll and 12;-r.:.-Ll are deduced from simulation like for the A particles
using the same number of events as before (6.105 events) and then counting the n+
(see Tab. 5.5).

806987 696226 773265
I

efficiency 14S':-Ll = (86.3 ± 0.1)% 12SV.L1 = (95.8 ± 0.1)%

Table 5.5: LVLl trigger effect on n+ as deduced from simulation.

From Eq. (5.9), the factor 1 is estimated to be

1 = 1.66 ± 0.22(stat.) ± 0.21(syst.) . (5.10)

Now an the quantities needed for the calculation of the A cross section are in hand.
It should be noted here that the A coming from r.o decays (r.o -+ A'"Y, branching ratio
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100%) are experimentally indistinguishable from the primary ones. From Eqs. (5.1),
(5.3) and (5.8), we calculate the minimum bias A + .r.0 multiplicity to be

MA+~O = 0.0092 ± 0.0012(stat.)~g:gg~(syst.)

and the production cross seetion

IlTA+~O = ( 8.7 ± 1.1(stat.)~U(syst.) ) mb I·

(5.11)

(5.12)

(5.13)

s

The systematie errors come from the different inverse slope parameter assump
tions (see seetion 5.2). The latter influence the total reconstruction efficiency. The
correction of Erel is not affected, as the systematic errors are canceled out both in the
simulation effidency and the experimental one.

5.6 Discussion

5.6.1 Particle Ratios and Relative Strangeness Content

Particle ratios are thought to deliver information about the degree of chemieal equi
libration in heavy-ion collisions. In Tab. 5.6 a comparison between the measured
strange particle multiplicities and the predieted ones by UrQMD is given. Charged
.r. hyperons cannot be measured with the HADES setup, as their decay products con
tain neutral particles. Thus, for estimating their multiplidty M ~± the strangeness
balance can be employed:

Ng = Ns =?

M K+ + MKO = MA+~O +M~± + M K- + MKO =?

M~± = M K+ + MKO - MA+~O - M K- - M KO ,

where N g and Ns are the numbers of produced particles containing an sand an
s quark respectively. The multiplidty for K+ for the same system and energy is
M K + = 0.0053 ± 0.0005 [Lau99]*. Olle to the isospin symmetrie system one can
assumethat

M K+ = MKo, M K- = MKO . (5.14)

The K- and KO have a very small contribution to the strangeness balance (lTK- =
(0.19 ± 0.06) mb [Lau99D, as they are produced below threshold at these collision
energies. The same is valid for multi-strange baryons like 2, and 0, whieh are
very rare at these energies and theirJ:ields can be neglected. Finally we estimate
M~± = 0.0010 ± 0.0014(stat.)~g:gg17(syst.). The error is dominated by the large
M I\+~O uncertainty.

*HADES has measured the K+ production cross section as well [Sad06] and the result

O'K- = (5.9 ± 1.1(stat.) ~g(syst.}) mbisinverygoodagreementwiththeKaoSmeasurement.
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ratio IUrQMD (Vl.3l] measurement
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MK"/MAH,,O 0.72 0.58 ± 0.09(stat.):~g:~i(syst.)

MA+I:o/M(n) 0.0059 0.0114 ± 0.0016(stat.)~g:8ö~(syst.)

MI:±/MA+I:O 0.40 0.13 ± 0.16(stat.)~g:g~(syst.)*

Table 5.6: Comparison of particle ratios between UrQMD and experiment Jor C+C at
2 AGeV and minimum bias collisions. M (n) is the average pion multiplicity and equals
0.81 ± 0.04(stat.) ± 0.04(syst.). The statistical errors from UrQMD are below 1% and
therefore not displayed. The yield marked with the asterisk is not the result oJa direct mea
surement but an estimate of the L,± multiplicity employing the strangeness balance.

From Tab. 5.6 it becomes c1ear that the UrQMD predictions differ from the
measured values, with most pronounced the discrepancy in the strange baryon ra
tio MI:±/MA+I:0' A similar observation comes from the Ni+Ni FOPI results at
1.93 AGeV [Mer04, Her04], where the strangeness balance seems to be satisfied with
the need of only a relatively small number of L,± hyperons. This could point either
to a reduced L,± yield (compared to the theoretical model predictions) or the possi
bility that these charged particles are absorbed in the medium and converted into
neutralones.

Having all yields of strange particles available, it is possible to estimate the
Wr6blewski factor As for C+C at 2 AGeV: This factor is defined as [Cle02]

_ 2 (S.5)
As = (uu) + (dd) , (5.15)

where the quantities in angular brackets refer to the number of newly created pri
mary valence quark-antiquark pairs, i. e. all quarks that were present in the target
and projectile are exc1uded. The Wr6blewski factor is determined at the moment
of chemical freeze-out from hadrons and especially hadron resonances before they
decay. This ratio is not an easily measurable observable, unless all resonances are
reconstructed from the final-state partic1es. This is possible, since HADES provides
a complete picture of the hadronic production [Mou06, Tlu06]. The components of
Eq. (5.15) can be analytically written as follows [Wro85]:

(S.5) - M K+ +MKO = MA+I:0 + MI:= + M K +M KO ,

(uu) + (dd; = M rr+ + M rr- + M rrü .
(5.16)

In the strangeness term there are also 11 and<p mesons contributing but their yields at
2 AGeV are minor, as can be seen in Fig. 5.5, and therefore they can be neglected in
the As estimate. For the same reason the denominator of Eq. (5.15) contains only the
pion contribution, as the production of baryon-antibaryon pairs has a higher energy
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threshold. The multiplicities of Eq. (5.16) are known:

MK~ = MKo = 0.0053 ± 0.0005,

M K- = M KO = 0.00020 ± 0.00006,

MA+~o = 0.0092 ± 0.0012(stat.)~g:gg~(syst.),

M~= = 0.0010 ± 0.0015(stat.)~g:gg~(syst.), (5.17)

M n + = 0.79 ± 0.08(stat.) ± 0.08(syst.),

M n- = 0.82 ± 0.08(stat.) ± 0.08(syst.),
1

Mno = 2(Mn+ + M n-) = 0.81 ± 0.06(stat.) ± 0.06(syst.).

Inserting the above values in Eqs. (5.16) and (5.15), we estimate the Wr6blewski
factor for C+C at 2 AGeV to be equal to

A.s = 0.0087 ± 0.0016(stat.)~g:gg~i(syst.) . (5.18)

Other existing A.svalues measured by several experiments [Bec01] are compiled in
Fig. 5.4 as a function of the available centre-of-mass energy VB and are displayed
together with the HADES result. The attempt to parameterize this dependence with

• C+C@SIS
• Au+Au@SIS
• Au+Au@AGS
• Si+Au@AGS
• Pb+Pb@SPS
• S+S@SPS

S+Ag@SPS
• Au+Au @ RHIC
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Figure 5.4: The Wr6blewski factor A.s as afunction of VB. The symbols represent a compila
tion ofthe available measured data taken from [Bec01]. The HADES point is from Eq. (5.18).
The dashed Une has been calculated using the freeze-out values of the temperature and the
baryon chemical potential with a thermo-statistical model [Cle02].

a statistical model [Cle02] is represented by the dashed Une, exhibiting a maximum
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around 7-8 Gev. The interpretation of this maximum is a topic of debate, see for
example [Cle02, Gaz04].

The total As distribution is the sum of the partial contributions of strange mesons,
strange baryons and the hidden strangeness from 1] and 1> (see Fig. 5.5). Nevertheless,

0.7
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Figure 5.5: Contributions to the
Wr6blewski factor (solid line) coming
from strange baryons (dotted line),
strange mesons (dashed line) and hidden
strangeness (dash-dotted line). The figure
is taken from [Cle02].
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it is important to disentangle the partial contributions of As, in order to find out
whether the source of the maximum in the distribution is attributed to the strange
mesons or the strange baryons, or it is related to the non-strange particles yield be
haviour as a function of J5. In Fig. 5.6, such a individual contribution for the strange
baryons is depicted.
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Figure 5.6: The (A +1:.0)/ (7T) ratioas afunction of.;s. The data points arefrom HADES
(see Tab. 5.6) and [Gaz04, Afa02, Ant04, Ahl98, Alb02, Kla03J. The dashed fine is a predic
tion ofa statistical model [Whe].
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-

The shape ofthe (A +:rP) / (rr) ratio indeed exhibits a maximum and resembles
the prediction of the statistieal modeL Moreover, it has been shown that similar
ratios with multi-strange particles, like 3- / rr+ and 0- / rr+, exhibit their maxima
at higherJS [Cle05]. The existence of the maximum designates the transition from
baryon-rieh to meson-rieh produced matter. How rapid this transition can be is
a matter of theoretieal debate at the moment. Assisting towards the direction of
resolving this, the future facilities at GSI will allow a finer step in beam energies at
the region of maximum baryon density.

5.6.2 Centrality Dependence

In Fig. 5.7 several measurements of the A + '2:.0 multiplicity at 2 AGeV from var
ious reactions and centrality selections are depieted together with measurements
for K+. As these partieies are produced together, they are expected to demonstrate
similar yield behaviour - at least for light collision systems where the A absorp
tion via strangeness exchange processes like rrY -+ K- Nt should not play an im
portant role. The measured multiplicities M have been normalized to the mean
number of participating nucleons <Apart>. For central collisions the latter has been
estimated by calculating the geometrical overlap of the colliding nuclei for an up
per limit of the impact parameter bmax . For minimum bias measurements, <Apart>
equals (AT+Ap)/4.

The MA+:r.O measurements from left to right are taken from: the current thesis
(see Eq. (5.11)), [Jus98], [Her04] and [Chu99], while the M K+ ones are from [Lau99],
[MenOO] and [AhlOO). In [AhlOO], as only the midrapidity dN / dy value is pro
vided, in order to extract the total K+ yield, a rapidity distribution with dN / dy =
0.381 ± 0.015 and CTgauss = 0.43 ± 0.05 (FWHM ~ 1 [MenOO)) was integrated.

Overlaid in the same figure, the dashed lines correspond to BUU calculations
[Bar06, Bar03] (see Appendix A.2) for the same particles, performed for C+C, Cu+Cu,
Xe+Xe and Au+Au collisions for various centrality selections. This BUU model uses
amomenturn and density dependent mean field in whieh the baryons are propa
gated. Strange baryons feel only 2/3 of the baryon field and their production pro
cesses are treated perturbatively. The EO contribution to the A content is 1/3, in
contrast with 1/4 in UrQMD. Indeed the behaviour of the two lines is compara
ble and the neutral hyperon yield is higher than the K+ yield, as required by the
strangeness balance in an isospin symmetrie system*.

However, this alleged yield tendency is not reflected in the measured data. The
A measurements differ from K+ in the sense that they seem to exhibit a rather flat
distribution or a slightly increasing tendency as a function of <Apart>, if the large
errors of the two first points are taken into account. A possible absorption effect of
the hyperons would be reflected to an enhanced K- yield, however such a scenario
is not supported by the experimental results [För03, MenOO]. It is obvious that in

ty stands for hyperon.
"The production threshold for E is higher than the A one, since Eisheavier.
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Figure 5.7: Measured multiplicities M normalized to the mean number oJ participants
<Apart> as a junction oj <Apart> Jor A + r,o (Jull symbols) and K+ (empty symbols) at
kinetic beam energy 2 AGe11. The dashed lines are BUU calculationsfrom H.-W. Barz. The
data points are cited in the text.

order to resolve the puzzle and complete the picture of strangeness production, the
charged :E± yields need to be measured.



88 5 The A Cross Section

5.6.3 Beam Energy Dependence

Plotting the A + 1:.0 yield normalized to <Apart> as a function of kinetic beam en
ergy, we get an impression of the A + 1:.0 excitation function. Such a data com
pilation for elementary p+p and heavy-ion reactions appears in Fig. 5.8. The pro
ton data come from [Gaz96] and the references therein. The A+A data are taken
from [Ani84, Her04, Jus98, Pin02, Ant04] and the current thesis. The yields per par-

I

10-1 ... ...
""

.L i

* Ar+KCI
\':] Ni+Ni
D.. Ni+Cu -:• C+C
e Au+Au
... Pb+Pb

p+p .,

HADES

~ 1

le
l.~

=;
'-

e
e",

e'::T

10 100

Tbeam [AGeV]

Figure 5.8: A + 1:.0 multiplicity per mean number oJ participant <Apart> Jor p+p and
A+A collisions as afunction ofkinetic beam energy. For compiling the Pb+Pb data lAnt041
from the NA49 collaboration the A multiplicity has been divided with the mean number oJ
wounded nucleons <Nw> as described in the publication. Note that not all existing mea
surements are included in the figure, especially at high energies.

ticipating nuc1eon are larger in A+A collisions than in p+p collisions for all beam
energies. Similar behaviour is observed for the excitation function of K+ [Sen99].
The difference between A+A and p+p data can be attributed to the increase of ef
fective beam energy in A+A collisions, i. e. the available energy in a nuc1eon pair is
higher than in the free p+p reaction. What also becomes evident is the lack of mea
surements between 10 and 40 AGeV. This is the beam energy gap that the future GSI
project FAIR is going to cover.
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The results of the current thesis concern two fronts. Hardwarewise, the con
ditions under which the third plane of HADES drift chambers operate are studied.
Malfunction symptoms, like high voltage trips in one of them led to investigations
concerning the operational stability that relates to the wire tension inside the mod
ules. The wire deflections were simulated under various orientations and gravity
vectors with the outcome of this study leading to the conclusion that such symp
toms could not have been caused by tension loss. During the examination of the
interior of the module white filaments were discovered being spun across large ar
eas of an anode layer. X-ray and infrared spectroscopy methods implied that cellu
lose containing tissue material might have been the origin of these structures. It is
unlikely, though, that the creation of such filaments is related to aging effects. This
claim is supported not only by the aging tests performed on the modules but also
by the absence of similar symptoms in other chambers.

On the other hand, the HADES experiment has had aseries of physics runs
with a variety of beam projectiles and energies over the last years. The data col
lected for the study of the C+C system at the beam kinetic energy of 2 AGeV were
analyzed and the signal of the A hyperons was successfully reconstructed for the
first time at this system and energy. The possibility to use the existing analysis
software, originally developed for the reconstruction of the e+e- decays of vector
mesons, was investigated and its use for the spedfic purpose of studying the A pro
duction turns out to be suffident. However, the restricted geometrical acceptance in
which high resolution tracking took place at the spedfic run, together with the small
reconstruction effidency of the algorithm for the A probe, imposed by the strict ge
ometrical conditions applied for the signal reconstruction, make this investigation
fairly CPU time-consuming.

Due to the low reconstructed statistics, it is not yet possible to extract infor
mation on phase space distributions. Instead, the total production cross section is
estimated by multiplying the A yield with the geometrical cross section of the reac
tion and is found to be

(TA+LO = ( 8.7 ± 1.1(stat.)!f:~(syst.) ) mb.

Strange particle ratios are compared with the predicted ones from UrQMD. The
yields of strange baryons are not properly described by the model, an observation
that is in agreement with findings from other experiments. Particularly puzzling is
the fact that a :E± yield, a lot smaller than what the theoretical models predict, is
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sufficient to satisfy the strangeness balance. Moreover, the A production yield as
a function of the mean number of participating nuc1eons <Apart> hints to hyperon
absorption with increasing <Apart> but the question remains why this absorption
is not accompanied by a corresponding increase of the K- yield. Thus, further in
vestigations are necessary, both in the theoretical and the experimental front. An
opportunity to do so are the upcoming experiments planned for HADES. The de
tector setup is now complete and the replacement of the TOFino walls with RPC
detectors will allow runs with heavier nuc1ei and better resolution in the low polar

angles.



Appendix A Models for the
Description of
Heavy-ion Collisions

The theoretical models used nowadays to study intermediate-energy and rel
ativistic heavy-ion collisions can be roughly divided into two groups: macroscopic
models based on nuclear fluid dynamics and microscopic models based on kinetic
transport theory. Macroscopic models describe the nuclear interactions by using
hydrodynamic equations and assume local equilibrium. These models are mainly
applicable for central collisions of heavy nuclei where the system has many degrees
of freedom and the mean free path of the nucleons is short compared to the spatial
dimension and gradients of the system. The great advantage of these models is that
basic nuclear matter features, e. g. EOS supplemented by dissipative effects (viscos
ity, thermoconductivity), are used directly as input. However, relativistic heavy-ion
collisions involve many quantum and non-equilibrium effects, particle production,
fragment formation etc., and a more detailed description of these phenomena in can
be obtained by microscopic dynamics.

A microscopic dynamics description of heavy-ion collisions is usually based
on transport theory. Here the propagation of individual particles is simulated. The
main ingredients in this description are the cross seetions, the two-body poten
tials and the decay widths. Since the particles propagate in hot and dense matter,
their properties might change significantly. Consequently, properties like effective
masses, effective momenta, in-medium cross seetions and decay widths should be
calculated for the actual local situation in which the particle propagates. Further
more, heavy-ion collisions demonstrate different features at different energies. At
low energies, because of Pauli blocking of two body-collisions, a suitable approach
is the mean-field theory, such as the time-dependent Hartree-Fock theory. At higher
energies, the reaction dynamics at the initial stage is mainly govemed by two-body
collisions and particle production becomes increasingly important. For this pur
pose, various models have been developed which address specific features of se
lected energies. Some of these models of relevance for SIS energies are described
below.
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A.1 BUU-type models

At energies in the 1 AGeV range and for the expansion stage of relativistic heavy-ion
collisions, the effects of mean-field, two-body collisions and the Pauli principle are
important and needed to be inc1uded. This leads to the use of the so-called Vlasov
Uehling-Uhlenbeck (VUU) or Boltzmann-Uehling-Uhlenbeck (BUU) equation

which govems the time evolution of the one-body distribution function fiCr, p, t)
in phase space. Icol is the collision integral which accounts for changes in fi due
to two-partic1e collisions. At incident energies of 1-2 AGeV the colliding system
contains not only nuc1eons but also 7T, fJ, K and /). partic1es, as well as higher baryon
resonances (N(1440), N(1520), N(1535)). Also strange baryons like A(1116), A(1405)
and L. are of importance for studying strangeness degrees of freedom. Therefore,
distribution functions fand evolution equations need to be introduced for each
type of particles and their coupling as weIL

The BUU equation is usually solved by the test-partic1e method. Here the con
tinuous one-body distribution function f at t = 0 is represented by an ensemble of
m· (Ap + At) point-like partic1es, where A p and At denote the number of nuc1eons
contained in the projectile and the target, respectively. The left part of the BUU equa
tion can be regarded as the transport equation for a distribution of classical particles
whose propagation in the mean-field is given by Hamilton's equations of motion:

-'> a(H)
Pi=-~,

uri
-'> a(H)
ri = api ' (A.2)

2 1
where (H) = L 1!.L + - L ~j'

i 2mi 2 iij

The two-body collisions (the right part of the equation or the Uehling-Uhlenbeck
part) are treated by Monte-Carlo procedures. BUU type models succeeded in the de
scription of several one-body observables and collective flow and particle produc
tion. However, phenomena like fragment formation and two-particle correlations in
relativistic heavy-ion collisions cannot be calculated in the framework of BUU type
models, since they are intimately connected to many-body correlations of particles
and fluctuations.

A.2 QMD models

To salve these problems one considers N-particle correlations and N-particle distri
butions explicitly. This can be done within an approach, which is called Quantum
Molecular Dynamics (QMD) [Bas98]. In the QMD model each partic1e i is repre-
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(A.3)

(A.4)

sented by a Gaussian wave packet in both space and momentum. From these pack
ets the total N-particle distribution function results by superposition

N

/(" p, t) = I:.!i(ff, Pi, t).

The centre of momentum of each Gaussian .!i(ff, Pi, t) is propagated under the in
fluence of a potential according to the classical Hamiltonian equations of motion.
Hard nucleon-nucleon collisions are included in QMD models by employing a col
lision term. Two particles collide if their minimum distance d in their centre of mass
frame fulfils the requirement

d ~ da = J(T~t ,
where the cross section is assumed to be the free cross section of the regarded col
lision type (N-N, N-A, N-n,...). In addition, the Pauli blocking of particles is taken
into account by checking the phase space densities in the final states of a two-body
collision. Meson creation and absorption can be treated via resonance processes or
inelastic 2 +--+ 3 collisions; rescattering can happen at every hadron species.

Isospin can be treated explicitly leading to the so-called Isospin Quantum Mole
cular Dynamics (IQMD) model. Also, relativistic effects are expected to become im
portant in heavy-ion collisions at high energies. In the usual microscopic transport
models like BUU and QMD, the kinematics is already relativistic but the interac
tions are usually treated non-relativistically, which breaks the Lorentz covariance.
The frame dependence of the transport model has been addressed in the Relativistic
Quantum Molecular Dynamics (RQMD) and Ultra relativistic Quantum Molecular
Dynamics (UrQMD) models by the use of Hamiltonian dynamics constrained by
Poincare invariance. The meson-exchange nature of nucleon-nucleon interactions,
by which the nucleon mean-field potential can be separated into different Lorentz
components (e.g. scalar and vector potentials) has been induded in the Relativistic
BUU approach (RBUU) and Hadron String Dynamics (HSD) approach.



Appendix B Calculation of
Distance between two
Trajectories

We first consider two trajectories represented by straight infinite lines ..cl, ..c2
(see Fig. B.I):

..cl : P(s) = Po + S(Pl - Po) = Po + sil,

..c2: Q(t) = Qo + t(Ql - Qo) = Qo + tV.
(B.I)

Let w(s, t) = P(s) - Q(t) be a vector between points on the two lines. We want
to find the w(s, t) that has a minimum length for all sand t. In any n-dimensional

>

Figure B.I: Distance vector Wc between two lines.

space, the two lines..cl and..c2 are dosest at unique points P(sc) and Q(tc) forwhich
w(sc, tc) attains its minimum length. Also, if ..cl and ..c2 are not parallel, then the line
segment P(sc) Q(tc) joining the dosest points is uniquely perpendicular to both lines
at the same time. No other segment between ..cl and ..c2 has this property. That is,
the vector Wc = w(sc, tc) is uniquely perpendicular to the line direction vectors il
and V, and this is equivalent to it satisfying the two equations:

il· Wc = 0,

v· Wc = O.
(B.2)
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We can solve these two equations by substituting

(B.3)

where 'lÜo - Po - Qo, into each one to get two simultaneous linear equations:

(-+ -+) (-+ -+)t -+-+u· u Sc - u· v c = -u· Wo,

(-+ -+) (-+ -+) --> -->V . U Sc - v· v tc = -v . Wo.

Then, letting

a = fi· fi, b = 11· V,

c = 71· v, d = ü· Wo and e

we solve for Sc and tc as:

(BA)

(B.5)

be-cd
Sc = -ac---b-=-2 and

ae-bd
tc = b2ac -

(B.6)

whenever the denominator ac - b2 is nonzero. Note that

(B.7)

is always nonnegative. When ac - b2 = 0, the two equations are dependant, the
two lines are parallel and the distance between the lines is constant. We can solve for
this parallel distance of separation by fixing the value of one parameter and using
either equation to solve for the other. Selecting Sc = 0, we get tc = d/b = e/c.

Having solved for Sc and tc, we have the points P(sc) and Q(tc) where the two
lines.cl and.c2 are dosest. Then the distance between them is given by:

In the A analysis, the two lines are the p and TC tracks. Combinations of par
allellines are rejected. The secondary vertex sv is defined as the middle point of wc,

called the point of dosest approach (PCA) and it is calculated as:

(B.9)



Consider a partic1e trajectory represented by a straight line in three-dimensional
space with position vector ä and direction vector vand let jJ be the position vector
of an arbitrary point in space. We want to compute the distance from the point jJ to
the line. Let us caU ethe angle between vand jJ - ä. Fig. Cl illustrates the situation.
Thus, the formula for the distance is given by

Appendix C Calculation of
Distance from a Point
to a Trajectory

~ ~

" Ip -alsin8" ,,/" /'~/

o

In the A analysis, the point 0 is the primary vertex and the line is the sum momen
turn vector of a p7C combination.

Figure Cl: Distancefrom a point 0 to a Une.

l(jJ - ä) x vi
5 = IVI (Cl)
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