NANONET⁺ Annual Workshop 2021 (Klingenberg, Germany)

Top-down Fabrication of Silicon Photonic Structures by Metal Assisted Chemical Etching (MACEtch)

Nagesh S. Jagtap

Nanoelectronics - Nanomaterials and Transport (FWIO-T)

Institute of Ion Beam Physics and Materials Research (FWI)

Member of the Helmholtz Association Nagesh Shamrao Jagtap | Institute FWIO-T | www.hzdr.de

NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

People Working Together

Characterization team

- M. Hollenbach
- U. Kentsch
- Dr. Y. Berencén
- PD Dr. habil. G. Astakhov

G. Schnabel

- T. Schönherr
- C. Neisser
- J. Baratech (Summer student 2021)
- Dr. C. Fowley
- Dr. Y. Georgiev
- PD Dr. habil. A. Erbe
- Dr. W. Lee (KRISS, South Korea)

"None of us is as smart as all of us!"

Quantum Technology

Quantum communication using photonic qubits

Member of the Helmholtz Association Nagesh Shamrao Jagtap | Institute FWIO-T | www.hzdr.de

DRESDEN

Why silicon?

Quantum Photonic Integrated Circuit (QPIC)

The missing link => On-chip photon source in silicon

Page 4 NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021 Member of the Helmholtz Association

Nagesh Shamrao Jagtap I Institute FWIO-TI www.hzdr.de

Single-Photon Emitters in Si

G-center:

Carbon related radiation damage

Si: 12 µm

 $SiO_2:1 \mu m$

Si: 300 µm

Defect's atomic configuration .

Si Si int. C sub. C int. 1278 nm Energy (eV 1.2 1.1 0.8 20k O-band E-band S-band C-band L-band PL intensity (arb. units) pristine Low Temp PL 15k

C irr.

Calc.

1.2

1.1

1.3

Wavelength (µm)

concen

10k

5k

carbon implantation: $1 \text{ X} 10^9 \text{ cm}^{-2}$, 5.5 keV, R_p ~ 20 nm

Silicon as a potential single photon source!

Opt. Express 28, 26111-26121 (2020)

Page 5

NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Member of the Helmholtz Association

1.5

1.6

Nagesh Shamrao Jagtap I Institute FWIO-TI www.hzdr.de

1.4

Integration of a single G-center in a photonic structure

Enhancement in PL by wave guiding

Pillar as a Photonic Structure

Designing the Pillars

COMSOL simulations

G-center at the bottom of Ø 700 nm, 1000 nm tall pillar

Member of the Helmholtz Association Nagesh Shamrao Jagtap | Institute FWIO-T | www.hzdr.de

DRESDEN concept

Fabrication Method for Pillars

Requirements:

- 1. No lattice damage
- 2. Anisotropic etching
- 3. Smooth and uniform structures

	Wet etch	Dry etch	MACEtch
Ion induced damage	None	Mild to severe	None
Directionality	Isotropic	Anisotropic	Anisotropic
Sidewall smoothness	Smooth	Not smooth	Smooth or rough

MACEtch is more suitable.

Current Opinion in Solid State and Materials Science, 16(2), 71–81 (2012)

Page 8

NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Fabrication Steps

Mechanism of MACEtch

Micromachines, 11(6) (2020)

Page 10

NANONET+ Annual Workshop 2021, HZDR - 21st Sept 2021

Applications of MACEtch

High aspect ratio (10000:1)

Nanoscale Horizons, 5(5), 869-879 (2020)

Nature Communications, 5(May), 1-7 (2014)

Nanotechnology, 29(28) (2018)

Pillars with constrictions

Nanotechnology, 29(28) (2021)

Fabricated Pillars and PL for Pristine sample

- Non uniform structures
- Gold breaks off
- Rough sidewalls
- PL shows no G-centers

MACEtch optimization Defect-free structures

Member of the Helmholtz Association Nagesh Shamrao Jagtap I Institute FWIO-T I www.hzdr.de

NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Page 12

MACEtch Optimization

Smooth and uniform pillars!

Page 13 NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Understanding MACEtch

Ratio of circumference to the pitch of the structures critical

Member of the Helmholtz Association Nagesh Shamrao Jagtap I Institute FWIO-T I www.hzdr.de

Advanced Materials, 23(2), 285-308 (2011)

Page 14

NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Understanding MACEtch

Separation between pillars = 5 μ m

Array of Ø 300 nm pillars

Array of Ø 1100 nm pillars

Slower etching for small structures far apart

Page 15 NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

Ensembles of G-centers?

Carbon implantation post fabrication: Fluence = 1X 10^{14} cm⁻², Energy = 250 keV, R_p ~ 600 nm

2D PL scan of array of Ø1100 nm pillars

Optical fingerprint of G-centre: ZPL at 1278 nm

Successful fabrication of ensemble of G-centers in pillars

 Manuscript in progress...

 Page 16

 NANONET+ Annual Workshop 2021, HZDR – 21st Sept 2021

 Nagesh Shamrao Jagtap | Institute FWIO-T | www.hzdr.de

Conclusion and Outlook

- Fabrication of defect-free pillars by MACEtch
- Ensembles of G-centers in Si using broad beam carbon implantation
- Further MACEtch optimization
- > Ensembles to Single G-centers in pillars
 - Implantation parameters
 - Focused Ion Beam

Towards Single Photon Emitters in Si...

