

Goals of the project

Deep neural networks are goto candidate for image segmentation

- Exploit symmetry in the data using group convolution operations[1]
 - Reduction in data dependency¹

- Design & develop equivariant neural networks for image segmentation using e2cnn² - compared to conventional network
- Investigation of synthetic and real-world datasets

¹ Limans et.al, Sample Efficient Semantic Segmentation using Rotation Equivariant Convolutional Networks, ICML, 2020

² https://quva-lab.github.io/e2cnn/

Experimental design

Synthetic dataset

- Gaussian based images 500 images
- Polygonal objects having different symmetry
- Task of semantic segmentation
- Metric of choice dice score

Circle, ellipse & triangle

Experimental design

- U-net model architecture[2]
- The groups considered for the study
 - \triangleright cyclic group C_N group of $(2\pi/N)$ rotations
 - \rightarrow dihedral groups $D_N C_N + and reflections$
 - \triangleright The value of N 2,3,4,6,8
- 5-fold cross validation uncertainty bands
- Dependency on data 10% 100% split for training

N	filters	Parameters (in millions)
2	40	7.45
3	39-40	7.42
4	40	8.12
6	39-40	7.85
8	40	8.01
U-net	32	7.85

Circular objects

- The conv. Unet performs better for both 25% & 50% dataset
- The eq. Net scales with the U-net performance for 75% & 100% datasets

Circular & ellipse objects

- C_2 , C_3 , C_4 scale well between 10% 50% datasets
- C₈ shows the best performance for 100% dataset
- The overall performance of the Eq.net increased in comparison to only circular objects

Circular, ellipse & triangle objects

- Beyond 25% split in dataset Eq.net dominates
- In comparison to 1 or 2 objects, the performance of Eq.net scales better than U-net

Circular, ellipse & triangle objects – S/N ratio

- Object intensity at 0.5 std. of the background
- A discernable difference in performance was noted

Summary & Future outlook

- Designed equivariant U-net for image segmentation
- Varied degree of symmetrical objects detected well by Eq.net
- Analyze the layers & study on data different scenarios

Thank You! Questions and feedback are welcome!

References

- 1. Taco S. Cohen, Max Welling, "Group Equivariant convolution networks", arXiv preprint arXiv: 1602.07576, 2016.
- 2. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015
- 3. Maurice Weiler and Gabriele Cesa, "General E(2)-Equivariant Steerable CNNs", NeurIPS 2019.
- Limans et.al, Sample Efficient Semantic Segmentation using Rotation Equivariant Convolutional Networks, ICML,
 2020

Extra slides

Extra slides

