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The helical magnetorotational instability is known to work for resistive rotational flows with com-
parably steep negative or extremely steep positive shear. The corresponding lower and upper Liu
limits of the shear are continuously connected when some axial electrical current is allowed to flow
through the rotating fluid. Using a local approximation we demonstrate that the magnetohydro-
dynamic behavior of this dissipation-induced instability is intimately connected with the nonmodal
growth and the pseudospectrum of the underlying purely hydrodynamic problem.

PACS numbers: 47.32.-y, 47.35.Tv, 47.85.1-, 97.10.Gz, 95.30.Qd

The magnetorotational instability (MRI) [1] is believed
to trigger turbulence and transport of angular momen-
tum in magnetized accretion disks [2]. The typical Ke-
plerian rotation of the disks belongs to a wider class of
flows with decreasing angular velocity and increasing an-
gular momentum that are Rayleigh-stable [3], but sus-
ceptible to the standard version of MRI (SMRI), with
a vertical magnetic field B, imposed on the rotating
flow. For SMRI to operate, both the rotation period
and the Alfvén crossing time (equal to the ratio of char-
acteristic scale of the system and Alfvén velocity) have
to be shorter than the timescale for magnetic diffusion
[4]. For a disk of scale height H, this implies that both
the magnetic Reynolds number Rm = oo H%€) and the
Lundquist number S = pgo Hv4 must be larger than one
(Q is the angular velocity, po the magnetic permeability,
o the conductivity, v4 the Alfvén velocity).

These conditions are safely fulfilled in well-conducting
parts of accretion disks. The situation with SMRI is
less clear in the “dead zones” of protoplanetary disks,
in stellar interiors, and in the liquid cores of planets,
because of low magnetic Prandtl numbers Pm = v/ng
there, i.e., the ratio of viscosity v to magnetic diffusiv-
ity n = (uoo)™! [5, 6]. Moreover, in compact objects,
like stars and planets, even the condition of decreasing
angular velocity, necessary for SMRI, is not everywhere
fulfilled: a counter-example is the equator-near strip of
the solar tachocline [7], which is also the region of sunspot
activity [8].

The helical version of MRI (HMRI) is interesting both
with respect to the low-Pm problem as well as for re-
gions with positive shear. Adding an azimuthal mag-
netic field By to B, Hollerbach and Riidiger [9] had
shown that this dissipation-induced instability works also
in the inductionless limit, Pm = 0, and scales with the
Reynolds number Re = RmPm™! and the Hartmann
number Ha = Smel/Q, in contrast to SMRI that is gov-
erned by Rm and S. Soon after, Liu et al. [10] showed
that HMRI is restricted to rotational flows with negative

shear slightly steeper than the Keplerian, or extremely
steep positive shear. Specifically, their short-wavelength
analysis gave a threshold of the negative steepness of the
rotation profile Q(r), expressed by the Rossby number
Ro = 7(2Q)719Q/0r, of Ropry, = 2(1—/2) ~ —0.8284,
and a corresponding threshold of the positive shear, at
Rourr = 2(1++v/2) &~ 4.8284 (LLL and ULL refer to the
lower and upper Liu limits, respectively).

Surprisingly, the same Liu limits were later found
[11, 12] to apply also to the azimuthal MRI (AMRI) — a
non-axisymmetric ”sibling” of the axisymmetric HMRI
that prevails for large ratios of By to B, [13]. Re-
cently, the destabilization of steep positive shear pro-
files by purely azimuthal fields was demonstrated by
means of both a short-wavelength analysis [14] and a one-
dimensional stability analysis for a Taylor-Couette flow
with narrow gap [15].

By allowing axial electrical currents not only at the
axis, but also within the fluid, i.e. by enabling the radial
profile By (r) to deviate from the current-free case o 1/,
it was recently shown [12] that the LLL and the ULL are
just the endpoints of one instability curve in a plane that
is spanned by Ro and a corresponding steepness of the
azimuthal magnetic field, called magnetic Rossby num-
ber, Rb = r(2By/r)"*0(By/r)/0r. In the limit of large
Re and Ha, this curve acquires the closed form

1 (Ro + 2)?

Rb=—-
8 Ro+1

(1)
A consequence of this curve is the strictness of the lower
Liu limit Ropr;, = —0.828, which would prevent Keple-
rian profiles Rokep = —0.75 from being destabilized by
HMRI or AMRI, could be relaxed if only a small amount
of the axial current is allowed to pass through the lig-
uid. This effect is now to be investigated in a planned
liquid sodium Taylor-Couette experiment [16], which will
combine and enhance the previous experiments on HMRI
[17], AMRI [18] and the kink-type Tayler-instability [19].

Apart from these interesting achievements, the very



existence of the two Liu limits has remained an unex-
plained conundrum. This paper aims at linking these
magnetohydrodynamic features to the nonmodal dynam-
ics of perturbations in the purely hydrodynamic case.

The nonmodal approach to the stability analysis of
shear flows focuses on the finite-time dynamics of per-
turbations, accounting for transient phenomena due to
the shear-induced nonnormality of the flow [20-24], in
contrast to the canonical modal approach, which is con-
cerned with the behavior at large times. It consists in
calculating the optimal initial perturbations with a given
positive norm that lead to the maximum possible lin-
ear amplification during some finite time. In self-adjoint
problems, the perturbations that undergo the largest
amplification are essentially the most unstable normal
modes. By contrast, in non-selfadjoint shear flow prob-
lems, the normal mode eigenfunctions are nonorthogo-
nal due to the nonnormality, resulting in transient, or
nonmodal growth of perturbations, which can be sub-
stantially higher than that of the most unstable normal
mode [22, 25]. So, leaving out the effects of the nonnor-
mality can lead to an incomplete picture of the overall
dynamics (stability) of shear flows.

Our main goal is to examine the nonmodal dynamics
of HMRI in differentially rotating flows, which represent
a special class of shear flows, for which the nonnormality
inevitably plays a role. This can result in growth factors
over intermediate (dynamical/orbital) times larger than
the modal growth of HMRI. Recently, the nonmodal dy-
namics of SMRI was studied in [25, 26]; the present study
extends these investigations to the highly resistive, or
low-Pm regime, where only HMRI survives.

We start with the equations of nonideal magnetohy-
drodynamics for incompressible conductive media,

1 B2 B-VB
allJru.Vu_V(er)Jr v +vVu, (2)
ot p 210 Hop

B
%:Vx(uxB)+nV2B, (3)
V-u=0, V-B=0. (4)

where p is the constant density, p is the thermal pressure,
u is the velocity and B is the magnetic field.

An equilibrium flow represents a fluid rotating with
angular velocity Q(r) and threaded by a magnetic field,
which comprises a constant axial component By, and an
azimuthal one Byg with arbitrary radial dependence:

ug = TQ(’I“)E¢, By = Bo¢(’l“)e¢, + Bg.e..
Consider now small axisymmetric (0/9¢ = 0) perturba-
tions about the equilibrium, v’ = u — ug, p’ = p — po,
B’ = B — By. Following [10, 12, 27] we adopt a lo-
cal Wentzel-Kramers—Brillouin (WKB) approximation

in the radial direction around some fiducial radius r,
i.e., we assume perturbation lengthscales much shorter
than the characteristic lengths of radial variations of the
equilibrium quantities, and represent perturbations as
u', B’ « exp(ik,r + ik.z), with axial k, and large ra-
dial k, wavenumbers, rk, > 1. Linearizing Eqgs. (2)-(4)
about the equilibrium and normalizing time by Q~!, we
arrive at the following equations for the perturbations
(see [12, 25] for details):

dyp

9 _ A, 5

Y_ay 5)
where ¥ = (u;,uy, By, B}) is the state vector and the
evolution matrix operator A, which is independent of
time for axisymmetric perturbations, is given by (the fac-

tor (pop) '/ is absorbed in the magnetic field)
- 27 iw, —2wga?
A —2(1+Ro) —g 2wg(1+Rb)  iw,
N iw, 0 - 0
—2wgRb  iw, 2Ro -7,

with o = k,/k, k* = k2 + k2, w, = k,Bo./Q and wy =
By /rS. The Reynolds number, Re = Q/vk?, and the
magnetic Reynolds number, Rm = Q/nk? are chosen as
Re = 4000 and Rm = 0.012, to give a small magnetic
Prandtl number Pm = Rm/Re = 3 - 1075 typical for
liquid metals and protoplanetary disks [5]. The strength
of the imposed axial field is measured by the Hartmann
number Ha = w,vRe - Rm, which is fixed to Ha = 15,
close to experiments [17], and the azimuthal field by 8 =
wg/w,. HMRI is most effective for 8 ~ 1 [9, 10, 12].
We consider Rayleigh-stable rotation with Ro > —1 and
Rb < 0, since the axial current decreases with radius. It
is shown that A is nonnormal (non-selfadjoint), i.e., does
not commute with its adjoint, AT - A # A - A and the
degree of the nonnormality increases with shear (|Rol).
We quantify the nonmodal amplification in terms of
the total perturbation energy, E = 5(|u’|> + |B'|?) =
- FTF -4, where F = \/p/2-diag(a~",1,a~1,1), which
is a physically relevant norm. The maximum possible, or
optimal growth at a specific time ¢ is defined as the ratio
G(t) = maxyo) £(t)/E(0), where E(t) is the energy at ¢
and the maximization is done over all initial states (0)
with a given initial energy F(0) (e.g., Ref. [22]). The
final state at ¢ is found from the initial state at ¢ = 0 by
solving the linear Eq. (5) and can be formally written as
P(t) = K(t)-1(0), where K(t) is the propagator matrix.
Then, the maximum possible amplification G(¢) is usu-
ally calculated by the singular value decomposition of K
at t (e.g., Refs. [21-24]). The square of the largest sin-
gular value gives the value of G(t) and the corresponding
initial condition that leads to this growth (optimal per-
turbations) is given by the right singular vector. Note
again that the nonmodal approach combined with the
method of optimal perturbations is the most general way
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FIG. 1. Maximum growth G(t) vs. t at different (a)

Ro = -0.86,—0.828(LLL), —0.75(Kepler) and (b) Ro =
3,4.828(ULL), 6. Other parameters are a = 1,Rb = —1. For
each pair of Ro and Rb, the parameter g is chosen such as to
maximize the modal growth rate for given other parameters.
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FIG. 2. Maximum growth G(¢) vs. t at different Rb =

—1,-0.78,—0.6 and at fixed (a) Rokep = —0.75 and (b)
Ro = 3 both with a = 1.

of analyzing shear flow dynamics at all times, as opposed
to the modal approach, which concentrates only on the
behavior at asymptotic times and hence omits important
finite-time transient phenomena.

The modal analysis in the WKB approximation yields
an expression for the growth rate of HMRI in the relevant
limit of small Pm — 0 and small interaction parameter
(Elsasser number), Ha%?/Re < 1, but large Re — oo
[10, 12]. When maximized with respect to 8 (which is
typically around unity), this growth rate, given by Eq.
(8.30) of [12], becomes (in units of )

Ha? [ (Ro+ 2)? 1 ©)

7T " Re [8(1+Ro)Rb |’

while the real part of the eigenfrequency is equal to the
frequency of inertial waves, wiw = 2av/1 + Ro. Equation
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FIG. 3. Isolines at e = 10%2%,10%4,10%%5, ..., 103! show the
e-pseudospectra of the A matrix in the complex w-plane for
Rb = —1,a = 1 and Rokep = —0.75. The circle indicates
the complex wk corresponding to the Kreiss constant. The
gray curve shows numerical range and the dot on it is the
numerical abscissa. Four black dots represent the eigenvalues
of the normal modes.

(6) yields the stability boundary Eq. (1) which indicates
that for Rb = —1 the instability (i.e., v > 0) exists at
negative, Ro < Rorry = —0.828, and positive, Ro >
Rourr, = 4.828, shear, while at larger —1 < Rb < 0,
the stability region shrinks and the instability extends
beyond the Liu limits. As a result, the modal growth of
HMRI can also exist for the Keplerian rotation (Rokep. =
—0.75) starting from Rb = —0.781 [12].

Now we examine the nonmodal growth of HMRI ver-
sus time. Figures 1 and 2 show the maximum energy
growth G(t) at modally stable and unstable Ro and Rb
together with the growth in the modally stable nonmag-
netic case, where only the nonmodal growth is possible.
For comparison, the dotted curve in Fig. 1(a) shows the
modal growth factor of the energy vs. time, exp(27vt),
for the most unstable normal mode at Ro = —0.86 with
the corresponding growth rate v given by Eq. (6). In all
cases, the initial stage of evolution is qualitatively simi-
lar: the energy increases with time, reaches a maximum
G, and then decreases. This first nonmodal amplifica-
tion phase is followed by minor amplifications. Like in
the case of modal growth, the kinetic energy dominates
over the magnetic one also during nonmodal growth. As
a result, the duration of each amplification event is set by
inertial waves: the peak value G,, is attained at around
one quarter of the wave period, t,, & 7/2wiy, similar
to that in the nonmagnetic case, although its value is
smaller than that in the latter case. At larger times,
the optimal growth follows the behavior of the modal
solution — it increases (for Ro = —0.86,6), stays con-
stant (for the Liu limits, Ro = Ropry, Roury) or decays
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FIG. 4. (a) numerical abscissa, A, (b) Kreiss constant, K (c)
G, for HMRI at Rb = —1 as well as in the nonmagnetic case
and (d) modal growth rate v of HMRI from Eq. (6) vs. Ro
at different Rb = —1,—-0.8, —0.6 and o = 1.

(for Ro = —0.75, 3), respectively, if the flow is modally
unstable, neutral or stable; in the latter case HMRI un-
dergoes only transient amplification. This is readily un-
derstood: at large times the least stable modal solution
(with growth rate given by Eq. 6) dominates, whereas at
small and intermediate times the transient growth due
the interference of nonorthogonal eigenfunctions is im-
portant. In particular, for the Liu limits, where the
modal growth is absent, there is moderate nonmodal
growth G,,(Roprr) = 4.06, G,,,(Rourr) = 5.46. A simi-
lar evolution of axisymmetric perturbations’ energy with
time for HMRI was already found in [28], where also the
physical mechanism of HMRI was explained in terms of
an additional coupling between meridional and azimuthal
flow perturbations. Importantly, in Fig. 1, G at modally
stable and unstable Rossby numbers are comparable and
several times larger than the modal growth factors dur-
ing the same time. Indeed, at Ro = —0.86, the nonmodal
growth achieves the first peak G,, = 4.68 at t,, = 1.86,
while from the dotted curve in Fig. 1(a), which shows
the growth of the most unstable mode at the same Ro,
we see that by time t,, energy of the latter would have
grown only by a factor of exp[2y(Ro)t,,] = 1.034. This
also implies that in the Keplerian regime, where there is
no modal growth of HMRI for Rb = —1, it still exhibits
moderate nonmodal growth (red curves in Figs. la and
2a). It is seen from Fig. 2 that G, is almost insensitive
to Rb, but its effect becomes noticeable as time passes.
Decreasing the slope at a given Ro increases the opti-
mal growth and at large times renders the flow modally
unstable.

The other notions used to characterize the nonmodal
growth and its connection with the results of modal anal-

ysis are the pseudospectra and numerical range of the
nonnormal operator A [22-24]. The maximal protru-
sion of the numerical range into the upper (unstable)
half in the complex w-plane — a numerical abscissa, A —
defines the maximum growth rate at the beginning of evo-
lution (at ¢t = 0F), 2\ = maxy,g) E(t) " dE(t)/dt|;—o+.
On the other hand, the extent to which the pseudospec-
tra contours penetrate into the upper half of w-plane
determines the amount of transient amplification over
time. This is quantified by the Kreiss constant K =
MaX[m(w)>0 Im(w)|[(A +iwI) ||, where I is the unit ma-
trix and || - || denotes an appropriately defined norm
[22, 23]. It provides a lower estimate for the maxi-
mum nonmodal amplification of energy over time, i.e.,
max;so G(t) > K2 [22, 24].

Figure 3 shows the normal mode spectra of Eq. (5)
and the associated pseudospectra in w-plane at Rokep =
—0.75, where all the eigenfrequencies (black dots) are in
the lower half plane, indicating modal stability against
HMRI. The mode which is closer to the Im(w) = 0-axis
will first cross it and exhibit HMRI as Ro changes be-
yond the Liu limits, while the other two modes far in the
lower half plane are rapidly damped magnetic (SMRI)
modes. The numerical abscissa and the frequency, wg,
resulting in the Kreiss constant, lie in the upper plane,
which indicates the nonmodal amplification larger than
K? occurs over intermediate times.

Figure 4, which illustrates our central result, shows
(a) the numerical abscissa A, (b) the Kreiss constant I,
(¢) the maximum growth G,, for Rb = —1 as well as
in the nonmagnetic case and (d) the modal growth rate
~ given by Eq. (6) at Rb = —1,-0.8,—0.6 versus Ro.
The numerical abscissa, giving the initial optimal growth
rate of the energy, is equal to |Rol, i.e., to the maximum
growth rate of ideal SMRI (see Ref. [25]) despite the high
resistivity of the flow. G, increases linearly with Ro at
Ro > 0 and much steeper at Ro < 0 which can be well
approximated by oc (1+Ro0) %", For comparison, in this
plot we also show the maximum transient growth factor
for axisymmetric perturbations in the nonmagnetic case,
G = (1 4+ Ro)*#™(R) from [29]. So, although G,, in
the magnetic case is slightly smaller than that in the
nonmagnetic one, the two curves are in fact close to each
other and display nearly the same behavior with Ro, a
feature that is also shared by the Kreiss constant (b).
Note that the dependencies of G,,, el (Fig. 4c) and
of the modal growth rate v (Fig. 4d) on Ro have very
similar shapes. Remarkably, the latter, being given by
Eq. (6), can be expressed in terms of the hydrodynamic
nonmodal growth G\ = (1 4+ Ro)®"(®°) in the closed
form (for Rb = —1)

_ Ha? [(GI) +1)2 @
7T Re | 8ol

which is indeed proportional to Ggf) for larger values.



Both Liu limits are therefore connected with a cor-
responding threshold G%l)(ROLLL) = G%)(ROULL) =
5.828.

In this paper, we have investigated the nonmodal dy-
namics of HMRI due to the nonnormality of a magnetized
shear flow with large resistivity. The nonmodal growth
of HMRI is generally several times larger than its modal
growth during the dynamical time. Notably, in the case
of current-free azimuthal field, the moderate nonmodal
growth also occurs in the Keplerian regime, where the
modal HMRI is non-existent (Fig. 1). As illustrated
in Fig. 4 and quantified exactly in Eq. (7), the modal
growth rate of HMRI displays a very similar dependence
on Ro as the maximum nonmodal growth in the purely
hydrodynamic shear flow, which indicates a fundamental
connection between nonmodal dynamics and dissipation-
induced modal instabilities, such as HMRI. Both, despite
the latter being magnetically triggered, rely on hydrody-
namic means of amplification, i.e., extract energy from
the background flow mainly by Reynolds stress due to
shear /nonormality [28].

Because of the general character of linear Eq. (5)
the results obtained here can, in principle, apply to any
differentially rotating magnetized cylindrical flow sys-
tem with viscosity and resistivity threaded by helical
magnetic field. Such systems are ubiquitous, ranging
from laboratory [17, 18] to liquid cores of planets, stars
and protoplanetary disks. It is the differential rotation
(shear) that plays a pivotal role, and all these objects in-
volve this type of nonuniform motion to various extent.
MRI was already examined in the resistive liquid core
of the Earth [6] and in stars [7, 30-32] by means of the
modal approach, thereby missing out nonmodal effects.

The next step will be to generalize the nonmodal anal-
ysis to AMRI, which consists in the growth of non-
axisymmetric perturbations. Recently, it was shown in
[33] that in a hydrodynamic Taylor-Couette flow the
effects of nonnormality play an important role, result-
ing in large (~ Re?/3) transient amplification of non-
axisymmetric modes. Since the amplification in the
highly resistive regime is determined by velocity shear, it
is expected that the nonnormality will influence AMRI
too, although the dynamics is more complex compared to
that for axisymmetric HMRI due to the time-dependence
of the radial wavenumber.
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