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Bubbly flow simulation with particle-center-averaged Euler-Euler

model: Fixed polydispersity and bubble deformation

Hongmei Lyu*, Dirk Lucas, Roland Rzehak, Fabian Schlegel

Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328
Dresden

Abstract

Bubble size and deformation are important factors for the closure models required in
Euler-Euler simulations of bubbly flows. To properly simulate polydisperse bubbly flows
where the bubble size spectrum may cover a range of several millimeters, several velocity
groups with different sizes have to be considered. To this end, the theory for the particle-
center-averaged Euler-Euler model is generalized for the simulation with multiple bubble
velocity groups. Furthermore, bubble deformation effects have been included in appropriate
bubble force models. The particle-center-averaged Euler-Euler model provides additional
freedom to consider the bubble shape during the conversion between the bubble number
density and the gas volume fraction. Therefore, the theory is also generalized to consider
an oblate ellipsoidal bubble shape in simulations. A bubbly pipe flow is used to validate the
theory and to demonstrate the improvements of the proposed generalizations.

Keywords: fixed polydispersity, bubble deformation, particle-center-averaging method,
Euler-Euler model

1. Introduction

In gas-liquid bubbly flows, a spatial point in the fluid domain can be occupied by gas
and liquid consecutively. Modeling the local instantaneous characteristic is challenging be-
cause of the discontinuity of the fluid properties (e.g. density) across the phase interface,
the quantity fluctuations induced by turbulence, and interface motion (Ishii and Hibiki,
2011). Fortunately, detailed flow information, which does not influence the mean flow, is
rarely needed for the design of some industrial facilities and processes (Drew, 1983; Ishii and
Hibiki, 2011). The fundamental information for the mean fluid motion and properties can
be obtained by applying a proper averaging method to the local instantaneous conservation
equations to average the small length scales at the phase interface and some fluctuations.
This is the motivation for developing an Euler-Euler framework that treats two-phase flow
as interpenetrating continua.

After averaging, a set of conservation equations for mass, momentum, and energy is
established for each phase. The interfacial interactions and turbulence are represented by
closure models, for example, the momentum interactions and Reynolds stresses in momentum
equations. With the Euler-Euler model, it is possible to simulate disperse bubbly flow for
industrial-scale and complex problems with an affordable computational cost (Drew and
Passman, 1998; Ishii and Hibiki, 2011).

The closure models for the interfacial momentum interactions and the bubble-induced
turbulence depend on the bubble size. This is particularly important for the shear-lift force,
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which pushes small bubbles (with a diameter smaller than 5-6 mm) to the wall, while it drives
the large ones to the channel center in case of upward pipe flows (Hessenkemper et al., 2021;
Lucas and Tomiyama, 2011; Tomiyama et al., 2002). For monodisperse Euler-Euler simula-
tion, an averaged bubble diameter is used for all the bubbles in the system. This is adequate
for flows where the bubbles in the system have a narrow size distribution. For polydisperse
bubbly flows, the bubble size spectrum may cover a range of several millimeters. To prop-
erly simulate such flows, the bubble size should not be represented by an averaged bubble
diameter. Typically, bubble coalescence and breakup also play a role in such flows, however,
reliable models for these phenomena are not yet available (Liao et al., 2015). Therefore
as an intermediate step, the present contribution does not involve bubble coalescence and
breakup, but focuses on simulations with fixed polydispersity. Herein, fixed polydispersity
means that the bubble size distribution is assumed to be unchanged throughout the flow.

Bubble deformation is another factor that influences the simulated gas volume fraction
distribution. In a clean air-water system, a bubble with an equivalent diameter smaller than
1.3mm can keep a spherical shape due to the surface tension effects (Jeong and Park, 2015).
When the equivalent diameter becomes larger, the bubble shape may turn into an ellipsoid
or a spherical cap, depending on the bubble Reynolds number and the bubble size (Grace
et al., 1976). For the standard Euler-Euler model, the bubble size and shape influence the
distribution of the gas volume fraction by changing the effects of closure models (Hessenkem-
per et al., 2021). For the particle-center-averaged Euler-Euler model developed by Lyu et al.
(2022), the bubble size and shape can also be considered in the conversion between bubble
number density and gas volume fraction. Hence, the bubble shape directly affects the gas
volume fraction distribution.

This work further develops the particle-center-averaged Euler-Euler model (Lyu et al.,
2022, 2020) for fixed polydisperse simulations. Moreover, bubble deformation is consid-
ered in simulations by anisotropic diffusion to convert between bubble number density and
gas volume fraction. This Euler-Euler approach is implemented based on the solver multi-
phaseEulerFoam in the OpenFOAM Foundation release (The OpenFOAM Foundation Ltd.,
2021). To validate the approach, a comparison is made between the simulation results and
the experimental data for bubbly pipe flows. The remaining part of this paper is organized as
follows: Section 2 summarizes the theory of the particle-center-averaged Euler-Euler model.
Besides stating the conservation equations and the method for quantity conversions, the
way to consider an oblate ellipsoidal bubble shape in the particle-center-averaged Euler-
Euler model by an anisotropic diffusion is introduced and verified. Section 3 describes the
experiment from which the measurement data were obtained. The corresponding simulation
setups are also introduced. Section 4 presents the comparison between the experimental
data and the simulation results. Comparison is made between monodisperse and fixed poly-
disperse simulations with a varying number of bubble velocity groups as well as bubbles of
a spherical and an oblate ellipsoidal shape. The conclusions for the present work are given
in Section 5.

2. Particle-center-averaged Euler-Euler model

2.1. Conservation equations

In this study, both phases are taken as incompressible Newtonian fluids. A feature of
the particle-center-averaged Euler-Euler model is that the phase-averaging method and the
particle-center-averaging method (PCAM) are used to average the solution variables for
the continuous and the disperse phase, respectively. The disperse bubbles with a fixed size
distribution are divided into one or multiple velocity groups. The simulation with one bubble
velocity group is called a monodisperse simulation. For the simulation with multiple bubble
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velocity groups, each velocity group has its representative bubble diameter and separate
continuity and momentum equations are solved. Hence, each bubble velocity group acts like
an independent disperse phase and this simulation is called a fixed polydisperse simulation.

The continuity and momentum equations for the disperse phase in Lyu et al. (2022) and
Prosperetti (1998) are generalized by assigning an individual bubble number density to each
bubble velocity group. As a result, the continuity equation for each bubble velocity group
states

∂(βdiρdi)

∂t
+∇ · (βdiρdi ⟨udi⟩) = 0. (1)

Herein, i = 1, · · · , Ng, i is the index of the bubble velocity groups, Ng is their number, and
the subscript d denotes the disperse phase. In Eq. (1), ρ is the density, t is the physical time,
u is the velocity and the notation “< · >” indicates the particle-center-averaging. Besides,
βdi is the gas volume fraction projecting all the bubble volume to the bubble centers for the
bubble velocity group i. It is calculated by

βdi = ndiVBi, (2)

where n is the bubble number density and VBi is the representative bubble volume of the
bubble velocity group i. The gas volume fraction of the bubble velocity group i is denoted
as αdi and the conversion from βdi to αdi will be introduced in Subsection 2.2. The total gas
volume fraction is calculated by

αd =

Ng∑
i=1

αdi. (3)

The disperse phase velocity is calculated by

⟨ud⟩ =
Ng∑
i=1

αdi

αd

⟨udi⟩ . (4)

For the continuous phase, the continuity equation is

∂(αcρc)

∂t
+∇ · (αcρcuc) = 0, (5)

where αc is the liquid volume fraction, the overbar “ · ” indicates the phase-averaging, and
the subscript c denotes the continuous phase. The volume fractions for both phases fulfill

αd + αc = 1. (6)

The particle-center-averaged momentum equation for each bubble velocity group reads

∂(βdiρdi ⟨udi⟩)
∂t

+∇ · (βdiρdi ⟨udi⟩ ⟨udi⟩)

= −βdi∇pc + βdi∇ · Sc +∇ · (βdi ⟨Tdi⟩) + ⟨fdi⟩+ βdiρdig.
(7)

Herein, p, S, T, f , and g are the pressure, the viscous stress tensor, the Reynolds stress ten-
sor, the force per unit volume, and the acceleration of gravity, respectively. The momentum
equation for the continuous phase states

∂(αcρcuc)

∂t
+∇ · (αcρc uc uc)

= −αc∇pc + αc∇ · Sc +∇ · (αcTc) + f c + αcρcg .
(8)
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2.2. Quantity conversions

As shown in Subsection 2.1, the solution variables for the disperse and the continuous
phase are particle-center-averaged and phase-averaged quantities, respectively. During the
solution process, a way to convert these quantities is required. In this study, the transforma-
tion from particle-center-averaged to phase-averaged quantities in three-dimensional space
is established by the following Gaussian convolution:

Φ(x, τ) =

∫
Ω

⟨Φ⟩ (x0)
1

(4πCdiffτ)
3
2

exp

[
−(x− x0)

2

4Cdiffτ

]
dx0, (9)

where Φ denotes the quantity for conversion, x and x0 are spatial coordinate vectors, and
Ω is the fluid domain, while τ and Cdiff are the diffusion pseudo-time and the diffusion
coefficient, respectively.

In this way, the conversion between βdi and αdi is realized by

αdi(x, τ) =

∫
Ω

βdi (x0)
1

(4πCdiffτ)
3
2

exp

[
−(x− x0)

2

4Cdiffτ

]
dx0. (10)

Similarly, the force for the disperse phase is transferred to the force for the continuous phase
with

f c(x, τ) = −
Ng∑
i=1

∫
Ω

⟨fdi⟩ (x0)
1

(4πCdiffτ)
3
2

exp

[
−(x− x0)

2

4Cdiffτ

]
dx0. (11)

The phase-averaged gas velocity is also calculated from the particle-center-averaged gas
velocity by

udi(x, τ) =
1

αdi(x, τ)

∫
Ω

βdi (x0) ⟨udi⟩ (x0)
1

(4πCdiffτ)
3
2

exp

[
−(x− x0)

2

4Cdiffτ

]
dx0. (12)

Implementing these Gaussian convolutions directly in OpenFOAM code which is based
on unstructured grids is difficult and can be computationally costly. As an alternative,
this study realizes the Gaussian convolutions of Eq. (9) by solving the following diffusion
equation:

∂Φ

∂τ
−∇ · (Cdiff∇Φ) = 0, (13)

with an initial condition of Φ (x0, 0) = ⟨Φ⟩ (x0). Sun and Xiao (2015) illustrated that
solving Eq. (13) together with the initial condition is equivalent to using the Gaussian
convolution. In this study, the diffusion coefficient Cdiff is set to 1m2 s−1 for the spherical
bubbles. An optimized value for τ , which is 0.03356 d2B/Cdiff , is determined by Lyu et al.
(2022). Herein, dB is the bubble diameter. Hence, the optimized τ for the bubble velocity
group i is 0.03356 d2Bi/Cdiff , where dBi is the representative bubble diameter for the velocity
group.

2.3. Treatment of bubble deformation

Use of a scalar diffusion coefficient Cdiff in Eq. (13) implies that the diffusion is isotropic,
which is suitable for spherical bubbles. For a deformed bubble, the diffusion of the bubble
volume from the bubble’s center of mass should be anisotropic, so the diffusion coefficient
becomes a tensor Cdiff . In the following, the relation between the bubble shape and the
diffusion tensor will be established.
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After the bubble volume being diffused from the bubble’s center-of-mass location (x = 0)
for certain time τ , the gas volume fraction distribution a can be expressed as (Basser, 1995)

αd(x, τ) =
VB√

|Cdiff |(4πτ)3
exp

(
−xTCdiff

−1x

4τ

)
. (14)

The isosurface of αd(x, τ) forms a sphere for isotropic diffusion, which is called diffusion
sphere. In comparison, it can be an ellipsoid for anisotropic diffusion, which is called diffusion
ellipsoid. If the axes of the diffusion ellipsoid are aligned with the axes of the laboratory
frame of reference (x, y, z), only the diagonal components of Cdiff are non-zero. Hence, the
isosurface is expressed by (Basser, 1995)

x2

Cdiff, xxτ
+

y2

Cdiff, yyτ
+

z2

Cdiff, zzτ
= 1. (15)

The diffusion ellipsoid should have a similar shape, the same orientation and center location
as the oblate ellipsoidal bubble. Therefore, if we assume the minor axis of the diffusion
ellipsoid along the main flow direction (z axis), we obtain

Cdiff, xx = Cdiff, yy, (16)

and
Cdiff, xx = χ2Cdiff, zz. (17)

Herein, χ is the aspect ratio. The model for χ proposed by Ziegenhein and Lucas (2019) is
employed in this study. It has the following form:

χ = 1 + 0.65Eo0.35, (18)

where Eo is the Eötvös number, which is defined by

Eo =
∆ρ|g|d2B

σ
. (19)

Herein, ∆ρ = ρc − ρd and σ is the surface tension coefficient.
The volume of the diffusion ellipsoid for the oblate ellipsoidal bubble should be the same

as the diffusion sphere for the spherical bubble. Consequently, we have

Cdiff, xxCdiff, yyCdiff, zz = 1 m6 s−3. (20)

Based on Eqs. (16), (17), and (20), we derive the components of the diffusion tensor for the

oblate ellipsoidal bubbles as: Cdiff, xx = Cdiff, yy = χ
2
3 m2 s−1 and Cdiff, zz = χ− 4

3 m2 s−1.
In the present study, the computational domain in the simulations of bubbly pipe flows for

validation is a narrow sector of the test-section pipe because the flow in the location where the
simulation results are compared with the experimental data is regarded as circumferentially
symmetric. A quasi-two-dimensional mesh is used for the computational domain. Therefore,
the diffusion only appears in the radial (x axis) and the axial (z axis) direction, which is
two-dimensional. In this condition, Eq. (14) is changed to be (Painter and Hillen, 2013)

αd(x, τ) =
d2B

16τ
√
|Cdiff |

exp

(
−xTCdiff

−1x

4τ

)
. (21)

The equation for the isoline of αd(x, τ) is

x2

Cdiff, xxτ
+

z2

Cdiff, zzτ
= 1. (22)
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(a) Spherical shape. (b) Oblate ellipsoidal shape.

Figure 1: Gas volume fraction distribution simulated with different bubble shapes.

The isoline forms a circle for isotropic diffusion or forms an ellipse for anisotropic diffusion,
which are named diffusion circle and diffusion ellipse, respectively. For the diffusion ellipse,
the aspect ratio should equal χ. Therefore, the relation between Cdiff, xx and Cdiff, zz still fits
Eq. (17).

The area of the diffusion circle and the diffusion ellipse should be the same. Consequently,
we obtain

Cdiff, xxCdiff, zz = 1 m4 s−2. (23)

Basing on Eqs. (17) and (23), we have Cdiff, xx = χ m2 s−1 and Cdiff, zz = χ−1 m2 s−1. Equa-
tion (23), which is the second constraint used to calculate the diffusion tensor for a two-
dimensional case, is different from that for a three-dimensional case (Eq. (20)). Therefore,
when applying the theory, the diffusion tensor should be chosen according to the simulation
geometry.

A simplified two-dimensional test case is used to verify the method of bubble deformation
treatment. The fluid domain is a square with a size of 0.02m× 0.02m. In the simulation,
both air and water are at rest. Only the process of diffusing the bubble volume from the
bubbles’ centers of mass was simulated. The bubble diameter is 10mm. The number of cells
is 81× 81, and the cell spacing is uniform. The initial value for βd in the center cell is 1,
and it is 0 in the other cells. Figure 1 gives the gas volume fraction distributions and the
isolines simulated with different bubble shapes. For the spherical bubble shape, each isoline
forms a circle. In comparison, for the oblate ellipsoidal bubble shape, each isoline forms an
ellipse. The orientation of the ellipse is as expected. Furthermore, the area of the ellipse
is close to that of the corresponding circle. These results prove that the method of bubble
deformation treatment works as expected.

2.4. Modeling of bubble forces and turbulence

In the Euler-Euler model, the momentum interactions between the disperse and the
continuous phase are usually assumed to be represented by a linear combination of several
bubble forces (Ishii and Hibiki, 2011). In this study, the selected closure models for the
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Table 1: HZDR baseline model for bubbly flow simulations.

Force and turbulence Selected model

Drag force Ishii and Zuber (1979)
Shear-lift force Hessenkemper et al. (2021) with cosine wall damping
Turbulent dispersion force Burns et al. (2004)
Wall-lift force Hosokawa et al. (2002)
Virtual mass force Constant coefficient, CVM = 0.5 (Auton et al., 1988)
Shear-induced turbulence k − ω SST (Menter, 2009)
Bubble-induced turbulence Ma et al. (2017)

standard Euler-Euler simulations are based on the Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) baseline model shown in Table 1 (Hänsch et al., 2021; Rzehak et al., 2017). For
the Euler-Euler model based on PCAM, besides the HZDR baseline model, a wall-contact
force is required to avoid the bubbles’ centers of mass coming non-physically close to the
wall. Hence, the wall-contact force model proposed by Lucas et al. (2007) is changed for
bubbles with an oblate ellipsoidal shape by Lyu et al. (2022) and the resulting wall-contact
force model reads

〈
fWC

di

〉
= −πdBiσndi

{
− 1

L̃2
+

3L̃

2G

[(
4
√
G

3
+

L̃3

√
G

)
arctanh

√
G− 1

]}
nw. (24)

Herein, L̃ = 2L/dBi and G = 1− L̃3. Besides, L is the distance between the bubble’s center
of mass and the wall, and nw is the unit wall-normal vector pointing into the fluid.

Due to the small spatial scales of the disperse phase in bubbly flows, it is sufficient to
consider only the turbulence of the continuous phase (Rzehak et al., 2017) and the SST
model of Menter (2009) is an appropriate choice. The effects of bubble-induced turbulence
are considered as additional source terms in the turbulence model (Ma et al., 2017).

3. Experimental condition and simulation setup

3.1. Description of the experiment

The experimental data obtained from the measurement test loop (MTLoop) facility (Lu-
cas et al., 2005; Prasser et al., 2003) are employed for the validation. In the experiment, a
co-current air-water flow in a vertical pipe with an inner diameter of 51.2mm and a height
of 3.5m was investigated. Water with a temperature of 303.15K was supplied to the test
section by a circulation pump, while pressurized air was injected into the test section by
distributed nozzles at the bottom of the test section. The bubble characteristics, including
local gas volume fraction, bubble size, and axial bubble velocity, were obtained at several
axial heights by wire-mesh sensors with two measurement planes. The data obtained at an
axial height of 3.03m will be compared with the simulation results. The parameters for the
selected cases are listed in Table 2. These cases are chosen because they have a relatively low
gas volume fraction, which is suitable for simulations with fixed polydispersity. The analysis
of fixed polydispersity is based on cases MT40, MT42 and MT86, while cases MT20, MT42,
MT64 and MT86 are employed in the study of bubble deformation.

Figure 2 shows the bubble size distributions at different axial levels obtained in the
experiment for cases MT40, MT42, and MT86. The bubble size near the inlet is small
and it increases downstream due to bubble coalescence and the decrease of local pressure.
Meanwhile, the bubble size spectrum downstream covers a larger range than that at the inlet.
For case MT86, the bubble size distribution at level z = 3.03m is regarded as fully-developed
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Table 2: Parameters for the selected cases (J : superficial velocity).

Name Jc [m s−1] Jd [m s−1] αd% [-] dB [mm]

MT20 1.611 0.004 0.23 3.48
MT40 0.641 0.0096 1.09 5.06
MT42 1.611 0.0096 0.53 3.89
MT64 1.611 0.0235 1.25 4.40
MT86 1.611 0.0574 2.86 4.99

because it matches the distribution at level z = 2.53m. Unfortunately, the measurement
bubble size distributions for cases MT40 and MT42 at level z = 2.53m are not available. For
both cases, the profiles for the bubble size distributions at levels z = 3.03m and z = 1.53m
have a similar shape and their difference is not significant. Therefore, it is speculated that
the bubble size distributions at level z = 3.03m for both cases are close to fully-developed.
Consequently, it is reasonable to fix the bubble size distribution for simulations with the
measurement data at level z = 3.03m.

3.2. Simulation setup

For case MT20, almost all the bubbles have a diameter smaller than 5.2 mm. In this
size range, the shear-lift force has the same direction (pointing to the wall). Hence, only one
bubble velocity group is used in the simulations. For case MT64, the monodisperse simulation
results are almost the same as those using four bubble velocity groups. Therefore, only the
monodisperse results are shown here. For the other cases, both monodisperse simulations
and fixed polydisperse simulations with a varying number of bubble velocity groups are
performed. The bubble sizes for the monodisperse simulations are found in Table 2. The
setup for the fixed polydisperse simulations is discussed below.

The computational domain for the steady-state simulations is a small sector of the test
section pipe with a center angle of 1◦ (Fig. 3). The radius (25.6mm) of the rotationally
symmetric domain is the same as the test section pipe. The axial length is 3.5m, which
is beyond the measurement location at z = 3.03m. This avoids a possible influence of the
outlet boundary on the simulation results at the measurement location. The simulation
results at z = 3.03m are fully-developed. The boundary condition at the pipe wall is a slip
boundary for the disperse phase velocity, but a no-slip boundary for the continuous phase
velocity.

For monodisperse simulations, at the inlet, by assuming a vanishing relative velocity
between the disperse and the continuous phase, the axial velocities are calculated by

ud = uc = Jd + Jc. (25)

The lateral velocity components at the inlet are assumed to be zero. The inlet gas volume
fraction is computed by

αd =
Jd

Jd + Jc
. (26)

For the Euler-Euler simulations based on PCAM, at the inlet, the particle-center-averaged
velocity is assumed to be the same as the corresponding phase-averaged velocity. In addition,
at the inlet, the following relation is assumed:

βd = αd. (27)

For fixed polydisperse simulations, bubbles are divided into two to four velocity groups.
The critical diameter for the shear-lift coefficient to change its sign (about 5.2mm) is used
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(a) MT40. (b) MT42.

(c) MT86.

Figure 2: Measurement bubble size distribution at different axial heights (Level z = 0m: the axial location
of gas injection).

Figure 3: Computational domain and boundary settings in simulations.
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Table 3: Parameters for fixed polydisperse simulations.

Name
dB1

[mm]
dB2

[mm]
dB3

[mm]
dB4

[mm]
fv1%
[-]

fv2%
[-]

fv3%
[-]

fv4%
[-]

2 velocity groups

MT40 4.77 5.60 - - 61.7 38.3 - -
MT42 3.85 5.52 - - 96.1 3.9 - -
MT86 4.43 5.87 - - 54.0 46.0 - -

3 velocity groups

MT42 2.55 4.00 5.52 - 6.9 89.2 3.9 -

4 velocity groups

MT40 2.63 4.78 5.60 7.13 0.2 61.5 38.2 0.1
MT86 2.64 4.47 5.82 7.33 0.6 53.4 44.2 1.8

as a boundary in the division of the velocity groups to allow bubbles to move in various
directions. For the simulations using two bubble velocity groups, the bubble size ranges are
0mm < dB ≤ 5.2mm and dB > 5.2mm. If four bubble velocity groups are used, the bubble
size ranges are 0mm < dB ≤ 3.0mm, 3.0mm < dB ≤ 5.2mm, 5.2mm < dB ≤ 7.0mm and
dB > 7.0mm. For the simulations using three bubble velocity groups, the last two bubble
size ranges are merged.

The measurement bubble size distribution at level z = 3.03m is used to calculate the
parameters of the disperse phase required in the simulation setup. For the selected cases, the
calculated volumetric flow rate fraction (fvi) and representative bubble diameter for each
bubble velocity group (dBi) are listed in Table 3. At the inlet, the cross-sectional distributions
of velocities and volume fractions are also assumed to be uniform. The inlet axial velocity
of each bubble velocity group is assumed to be the same as the inlet axial velocity of the
disperse phase for monodisperse simulations calculated by Eq. (25). The inlet gas volume
fraction of the bubble velocity group i is calculated by

αdi = fviαd. (28)

Herein, αd is calculated by Eq. (26).
The computational domain is divided into computational cells by a quasi-two-dimensional

mesh with one layer of cells in the circumferential direction. The numbers of cells in the
radial and axial directions are 50 and 800, respectively. The cell spacing is uniform in both
directions. The simulation results with this mesh resolution are mesh-independent (Lyu,
2022).

The conservation equations and the diffusion equations for the quantity conversions are
discretized by a cell-centered finite volume method. Linear interpolation is used to calculate
the quantities in the cell face center from the cell center values. For the discretization of the
convection term, a flux-limiter is used to make the simulations stable. A first-order Euler
implicit scheme is used for temporal discretization. For the discretization of the Laplacian
term, linear interpolation is also used to compute the surface normal gradient in the cell
face.

4. Comparison between simulation results and experimental data

4.1. Effects of fixed polydispersity

The gas volume fraction simulated with the standard Euler-Euler model and the Euler-
Euler model based on PCAM using different numbers of bubble velocity groups are shown
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(a) MT40, standard Euler-Euler model. (b) MT40, Euler-Euler model based on PCAM.

(c) MT42, standard Euler-Euler model. (d) MT42, Euler-Euler model based on PCAM.

(e) MT86, standard Euler-Euler model. (f) MT86, Euler-Euler model based on PCAM.

Figure 4: Sensitivity of bubble velocity groups.
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in Fig. 4 in comparison with the experimental data. Herein, r is the radial coordinate and
R is the pipe radius. The monodisperse simulation results are labeled by “1 group”.

For case MT40, the gas volume fraction profiles simulated with both Euler-Euler models
using one bubble velocity group are wall-peaking, but the peaks are located further away
from the wall than the peak in the experimental data. Besides, the small central peak in
the experimental data is not reproduced in the simulations. This reason is that using one
bubble velocity group with a fixed bubble size cannot reproduce the bubble movements in
the experiment in which the bubbles have different sizes and move in different directions.
After allowing the bubbles to move in different directions in the simulations by using two
bubble velocity groups, the simulated gas volume fraction profiles have a wall peak that
is located closer to the experimental data and a central peak that is over-predicted. After
using PCAM, the over-prediction of the central peak is slightly alleviated.

For both Euler-Euler models, the gas volume fraction of case MT40 simulated using
four bubble velocity groups is almost the same as that simulated with two bubble velocity
groups. The deviation between the simulation results with four bubble velocity groups and
the experimental data is still obvious. This may result from insufficiencies in the lateral force
models used in the simulations and the measurement uncertainty in the experimental data.

For case MT42, the gas volume fraction peaks simulated with the standard Euler-Euler
model are over-predicted. The reason is that the shear-lift and the wall-lift force are functions
of the local gas volume fraction. Hence, they drive the gas to the peak without considering
the bubble spatial extension when the bubble diameter is larger than the computational cell
spacing. After using PCAM in the Euler-Euler model, the over-estimation of the gas volume
fraction peak is alleviated.

For both Euler-Euler models, the gas volume fraction of case MT42 simulated with two
bubble velocity groups matches that simulated with one bubble velocity group. After using
three bubble velocity groups, the peak of the gas volume fraction profile simulated with
the standard Euler-Euler model becomes lower and slightly wider. In comparison, for the
Euler-Euler model based on PCAM, the gas volume fraction simulated with three bubble
velocity groups is close to that simulated with one or two bubble velocity groups.

The difference in the simulation results of both Euler-Euler models also comes from the
bubble forces. When increasing the number of bubble velocity groups from two to three,
the bubble velocity group with a representative diameter of 3.85mm and a gas volumetric
flow rate fraction of 96.1% is divided into two bubble velocity groups. One of them has a
representative diameter of 2.55mm and a gas volumetric flow rate fraction of 6.9%. The
other has a representative diameter of 4.00mm and a gas volumetric flow rate fraction of
89.2%. Hence, the majority of the bubbles experience a lower shear-lift force after using three
bubble velocity groups because the shear-lift force coefficient decreases with the increasing
bubble size (Fig. 5). Hence, the over-prediction of the gas volume fraction peak for the
standard Euler-Euler model also decreases. For the Euler-Euler model based on PCAM, the
bubble forces are functions of the bubble number density, which avoids the over-prediction of
gas volume fraction caused by the inconsistency of bubble force models. Consequently, the
simulated gas volume fractions are less sensitive to the number of bubble velocity groups.

For case MT86, the gas volume fractions simulated with both Euler-Euler models using
one bubble velocity group are higher than the measurement data except for the region near
the wall. After using two bubble velocity groups, bubbles can move in different directions,
so more gas is transported to the near-wall region and the pipe-center region. The peak of
the gas volume fraction comes closer to the wall than the peak simulated with one bubble
velocity group. The peak is over-predicted by the standard Euler-Euler model. This is
because the bubble diameter in the simulation using one bubble velocity group is 4.99mm,
which is close to the critical bubble diameter (about 5.2mm) for the shear-lift coefficient to
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Figure 5: Shear-lift coefficient (CL) dependency on bubble diameter in air-water system for the model of
Hessenkemper et al. (2021).

change its sign (Fig. 5). Therefore, the shear-lift force is relatively small. After dividing the
bubbles into two velocity groups, one of the groups has a representative diameter of 4.43mm
and a gas volumetric flow rate fraction of 54.0%. The other group has a representative
diameter of 5.87mm. Consequently, the division decreases the diameter of the bubbles that
form the wall peak. As a result, the shear-lift force of the bubbles increases, which leads to a
more significant over-prediction of the gas volume fraction peak for the standard Euler-Euler
model.

After using PCAM in the Euler-Euler simulation, the over-prediction is alleviated and
the simulated gas volume fraction peak agrees well with the peak in the experimental data.
For both Euler-Euler models, the gas volume fractions simulated with four bubble velocity
groups are approximately the same as those simulated with two bubble velocity groups.

4.2. Effects of bubble deformation

In the Euler-Euler model based on PCAM, bubble deformation can be considered in
the conversions between phase-averaged and particle-center-averaged quantities. In Subsec-
tion 4.1, the bubble shape is assumed to be spherical. A way to consider an oblate ellipsoidal
bubble shape in quantity conversions has been described and verified in Subsection 2.3. In
this subsection, the bubble shape effects on the simulation results of the Euler-Euler model
based on PCAM are presented and analyzed.

Figure 6 gives the comparison of the measurement data and the gas volume fractions
for monodisperse simulations with different bubble shapes. The peak of the gas volume
fraction profiles simulated with the oblate ellipsoidal bubble shape is lower and wider than
that simulated with the spherical bubble shape. The reason is that the oblate ellipsoidal
bubble has a larger extension in the radial direction than the spherical bubble.

As a result, for all cases, the over-prediction of the gas volume fraction peak is allevi-
ated after considering the oblate ellipsoidal bubble shape in the simulations. In the results
simulated with the spherical bubble shape, the peak ratio (αsim

d,max/α
exp
d,max) of the gas volume

fraction profile is about 2.12, 1.99, and 1.55 for cases MT20, MT42, and MT64, respectively.
Herein, αsim

d,max and αexp
d,max are the maximum gas volume fraction in the simulation results and

the experimental data, respectively. By contrast, the ratio decreases to be around 1.59, 1.59,
and 1.30 for the profile simulated with the oblate ellipsoidal bubble shape. Near the wall
with 0.92 < r/R < 1, the gas volume fractions simulated with the oblate ellipsoidal bubble
shape are higher than those simulated with the spherical bubble shape, which contributes
to a better agreement between the simulation results and the experimental data.
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(a) MT20. (b) MT42.

(c) MT64.

Figure 6: Gas volume fraction for monodisperse simulation with different bubble shapes.

The bubble shape effects on the axial gas velocity for the same simulations are shown in
Fig. 7. The gas velocities simulated with both bubble shapes are approximately the same.
The reason is that the effects of bubble deformation have been included in the drag force
model used in the simulations for both bubble shapes. The simulated gas velocities for both
bubble shapes agree well with the measurement data.

Figure 8 shows the gas volume fractions simulated with 4 bubble velocity groups and
different bubble shapes in comparison with the experimental data. Herein, the results for
case MT86 are presented. The results for cases MT42 and MT64 (not shown here) have a
similar trend as case MT86. For case MT86, the peak of the total gas volume fraction profile
simulated with the oblate ellipsoidal bubble shape is slightly lower than that simulated with
the spherical bubble shape, but both of them are close to the peak in the experimental
data. Near the wall with 0.92 < r/R < 1, the total gas volume fraction simulated with
the oblate ellipsoidal bubble shape is higher than that simulated with the spherical bubble
shape. The difference in the simulated gas volume fractions originates from the results of the
second bubble velocity group, which has a bubble size range of 3mm < dB ≤ 5.2mm. For
this bubble velocity group, the peak ratio of the gas volume fraction profiles is 1.36 for the
spherical bubble shape. By contrast, the ratio decreases to 1.18 for the gas volume fraction
simulated with the oblate ellipsoidal bubble shape. This proves that the over-prediction of
the gas volume fraction peak near the wall is alleviated by considering the oblate ellipsoidal
bubble shape in the simulations.
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(a) MT20. (b) MT42.

(c) MT64.

Figure 7: Axial gas velocity for monodisperse simulation with different bubble shapes.

(a) Total gas volume fraction. (b) Gas volume fraction of the 2nd bubble velocity group.

Figure 8: Gas volume fraction for case MT86 simulated with 4 bubble velocity groups and different bubble
shapes.
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5. Conclusion

For bubbly flow simulations with the Euler-Euler model, the small scales are not resolved.
The interfacial momentum interactions and turbulence are represented by the closure models.
Bubble size and shape are two important factors for the closure models. Assuming a constant
bubble size for all the bubbles in simulations is not proper for polydisperse bubbly flows where
the bubble size spectrum covers a wide range, especially when the bubble size spectrum
crosses the critical bubble diameter of the shear-lift force changing its sign. An alternative
way is to divide the bubbles in the system into different velocity groups and each velocity
group has its size and velocity. In this way, the bubbles of different velocity groups can move
in different directions.

This study has further developed and validated the particle-center-averaged Euler-Euler
model for fixed polydisperse simulations. A comparison has been made for experimental data
of bubbly pipe flows and the results simulated with the particle-center-averaged Euler-Euler
model and the standard Euler-Euler model. The gas volume fraction simulated with the
standard Euler-Euler model is more sensitive to the number of the bubble velocity groups
than the particle-center-averaged Euler-Euler model. Moreover, for the standard Euler-
Euler simulation, over-prediction of the gas volume fraction peak, which does not exist in a
monodisperse simulation, can appear in a fixed polydisperse simulation.

The reason for these phenomena is that for the standard Euler-Euler model, the over-
prediction is caused by the bubble force and the magnitude of the bubble forces changes after
changing the number of bubble velocity groups. The bubble forces are functions of the local
gas volume fraction. Hence, the forces can transport the gas to the peak without considering
the bubble spatial extension when the bubble diameter is larger than the computational cell
spacing. This leads to the over-prediction of the gas volume fraction peak. After changing
the bubble forces to be functions of the bubble number density with the particle-center-
averaging method, the over-prediction of the gas volume fraction peak is alleviated. The
validation results of the particle-center-averaged Euler-Euler model also prove that assigning
an individual bubble number density to each bubble velocity group works well for fixed
polydisperse simulations and improves the predictions of the numerical simulation.

In the standard Euler-Euler model, the bubble deformation cannot directly influence the
gas volume fraction distribution. It works by changing the effects of the closure models. As
an advantage, in the particle-center-averaged Euler-Euler model, bubble deformation can
directly influence the calculated gas volume fraction because it can be considered in the
conversion between the bubble number density and the gas volume fraction. Based on this
freedom, this study has introduced an anisotropic diffusion to consider the oblate ellipsoidal
bubble shape in simulations. The bubble shape effects on the simulation results of bubbly
flows in a vertical pipe have been investigated. The comparison between the simulation
results and the measurement data illustrates that considering the oblate ellipsoidal bubble
shape in simulations can alleviate the over-prediction of the gas volume fraction peak near
the wall.

In the future, the particle-center-averaged Euler-Euler model can be coupled with the
population balance model to consider the bubble coalescence and breakup for polydisperse
bubbly flow simulations. Besides, the effects of zig-zag or spiral bubble movement on the
gas volume fraction distribution can be investigated with the particle-center-averaged Euler-
Euler model since the bubble influence region can be adjusted based on the bubble trajec-
tories.
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7. Nomenclature

Symbols

Symbol Description Unit

Cdiff diffusion coefficient m2 s−1

Cdiff diffusion tensor m2 s−1

Cdiff, ij (i, j = x, y, z) diffusion tensor component m2 s−1

dB bubble diameter m

dBi
representative bubble diameter for the bubble velocity
group i

m

Eo Eötvös number -
f force per unit volume Nm−3

fvi volumetric flow rate fraction of the bubble velocity group i -
g acceleration of gravity m s−2

J superficial velocity m s−1

L distance between bubble center and wall m
n number density of bubble centers m−3

nw unit wall-normal vector pointing into the fluid -
Ng the number of the bubble velocity groups -
p pressure Nm−2

R pipe radius m
r radial coordinate m
S viscous stress tensor Nm−2

T Reynolds stress tensor Nm−2

t physical time s
u velocity vector m s−1

u axial velocity component m s−1

VBi
representative bubble volume for the bubble velocity
group i

m3

Ve volume of a diffusion ellipsoid m3

Vs volume of a diffusion sphere m3

x, y, z spatial coordinates m
x , x0 spatial coordinate vector m
α volume fraction -

βdi
gas volume fraction projecting all bubble volume to the
bubble centers for the bubble velocity group i

-

ρ density kgm−3

∆ρ density difference between continuous and disperse phase kgm−3

σ surface tension coefficient Nm−1

τ diffusion pseudo-time s
Φ quantity -
χ aspect ratio of the oblate ellipsoidal bubble -
Ω fluid domain m3
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Symbols

Symbol Description Unit

· phase-average -
< · > particle-center-average -
·̃ dimensionless -

Subscripts

Subscript Description

c continuous
d disperse
i bubble velocity group i
max maximum

Superscripts

Superscript Description

WC wall-contact force
sim simulation
exp experiment
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