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Abstract

There has been considerable discussion in recent years concerning whether a

log-law exists for wall-bounded, turbulent bubbly flows. Previous studies have

argued for the existence of such a log-law, with a modified von Kármán constant,

and this is used in various modelling studies. We provide a critique of this idea,

and present several theoretical reasons why a log-law need not be expected

in general for wall-bounded, turbulent bubbly flows. We then demonstrate

using recent data from interface-resolving Direct Numerical Simulations that

when the bubbles make a significant contribution to the channel flow dynamics,

the mean flow profile of the fluid can deviate significantly from the log-law

behaviour that approximately holds for the single-phase case. The departures

are not surprising and the basic reason for them is simple, namely that for

bubbly flows, the mean flow is affected by a number of additional dynamical

parameters, such as the void fraction, that do not play a role for the single-phase

case. As a result, the inner/outer asymptotic regimes that form the basis of the

derivation of the log-law for single-phase flow do not exist in general for bubbly

turbulent flows. Nevertheless, we do find that for some cases, the bubbles do

not cause significant departures from the unladen log-law behaviour. Moreover,

we show that if departures occur these cannot be understood simply in terms
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of the averaged void fraction, but that more subtle effects such as the bubble

Reynolds number and the competition between the wall-induced turbulence and

the bubble-induced turbulence must play a role.

Keywords: bubbly flow, log-law, wall-bounded turbulent flows

1. Introduction

In engineering calculations of wall-bounded turbulent liquid flows containing

bubbles [1], a quantity of key interest is the mean liquid velocity u, where u is the

instantaneous liquid velocity field, and the overbar denotes statistical averaging.

This quantity is often determined using an Euler-Euler (EE), Reynolds-averaged5

framework with the Reynolds stresses appearing in the equation for u. In most

cases these are modelled with a two-equation eddy viscosity closure [2, 3], so

that the main unknowns are the mean velocity u, the mean pressure p, the

average void fraction α, and the two quantities describing the properties of the

turbulent liquid, k and ε or ω, for example. In the present study we focus on10

fully developed bubbly flow along a vertical wall.

Compared to the single-phase flow, the presence of bubbles has the following

main effects in this framework. First, the mixture density is altered, so that the

momentum transport via advection is altered. With the fully developed parallel

flows considered below this can be neglected. Second, due to the gravity force15

depending on the mixture density, i. e. the void fraction, a driving term addi-

tional to the pressure gradient occurs – favourable or unfavourable, depending

on the direction of the flow. The distribution of the void fraction in wall-normal

direction depends on the detailed properties of the dispersed bubbles, such as

deformability [4], as well as the turbulent flow of the continuous phase, related20

to the Reynolds number, for example [5]. Near-wall peaks of the void fraction

can be observed, as well as near-wall depletion [6, 7], but also relatively uniform

distribution [8].

The third effect is that bubbles due to their relative velocity with respect

to the liquid generate turbulent kinetic energy (TKE) in the continuous phase
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Figure 1: Instantaneous configuration of bubbles rising in a turbulent channel flow at Reτ =

127 from DNS. The flow structures are coloured according to iso-values of the so-called λ2

criterion. Figure is adopted from [9] for a case with small spherical bubbles.

[10], see e.g. the instantaneous flow structure in Figure 1 colored by isovalues

of the so-called λ2 criterion in Direct Numerical Simulation (DNS) of [9]. If

the bubbles provide the dominant source of TKE, then often referred to as

the bubble-induced turbulence (BIT) regime, the success of two-equation eddy

viscosity models depends, to a large extent, upon the modelling of the so-called

interfacial term, Sk, that appears in the TKE equation [11, 12]. This term

represents the interfacial energy transfer between the bubbles and the liquid in

the TKE equation for the liquid phase derived by [13]

Dφk

Dt
= Pk +Dk + εk−

1

ρ
p′u′iniI +

1

ρ
τ ′iju

′
injI︸ ︷︷ ︸

Sk

, (1)

where k is the TKE, and φ an indicator function for the liquid phase. The shear

production term Pk, the transport term Dk, and the dissipation term εk have25

the same form as those in the corresponding single-phase flow equations, e.g. in

[14]. The term Sk is an additional source term, with p′, u′i, τ
′
ij the fluctuating

pressure, i-th fluctuating velocity component, and stress tensor at the liquid

side of the phase boundary, respectively, and ρ is the liquid density, assumed to

be constant here, throughout. Furthermore, ni is the unit normal vector on the30
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phase boundary that is directed toward the gas phase, and I is the interfacial

area concentration with ∂φ/∂xi = −Ini.

Despite the fact that two-equation eddy viscosity models are able to predict

the TKE and the dissipation quite well, the approach suffers from substantial

uncertainties concerning the eddy viscosity concept used in the Boussinesq hy-35

pothesis when applied to turbulent bubbly flows, as discussed in [15, 16]. To

account for the effect of the bubbles on the eddy viscosity expression used in the

equation for u, some authors have tried to simply vary the model constant that

appears in the closures [17], while others have tried introducing additional terms

to mimic the effects of the bubbles on the turbulent eddy viscosity [18]. Such40

approaches are similar in spirit to low-Reynolds-number (LRN) eddy viscosity

models that have been applied in single-phase flow, where damping functions

are introduced for Cµ and additional terms are introduced into the turbulent

transport equations. The difference is that in the bubble-laden context, the

modifications made are to account for the effect of the bubbles on the eddy45

viscosity, rather than to account for near wall effects as in LRN models.

While an eddy-viscosity, Reynolds-averaged model may be used to predict

u in wall-bounded flows down to the boundary, it is common for bubbly flows,

just as for single-phase flows, to use wall-functions near the wall to reduce

computational expense [19, 20, 21, 22, 23, 24]. However, the wall-functions used50

are based on those derived for single-phase flows. For example, it is assumed

that in wall-bounded bubbly turbulent flows, a log-law region exists for the

mean velocity, and that the bubbles simply modify the parameters in the law

[25]. Such an approach may be valid for the regime |Sk| � |Pk|. However, it

is not at all clear that it should apply to the BIT regime where |Sk| ∼ |Pk|55

or even |Sk| � |Pk|. Moreover, it should be noted that [25] tested their wall-

function model for pipe flows where the background turbulence was strong, and

the effects of the bubbles on the flow were relatively weak. Therefore, it is not

clear whether the proposed bubble-modified wall-function models can be used

with confidence in the BIT regime.60

In practice, Sk is hard to measure directly. In experiments, Sk has been
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evaluated as the difference between Pk and εk using a simplified version of eq.(1)

consisting solely of production, dissipation and interfacial terms [26]. Moreover,

even in DNS studies Sk is typically estimated in a similar, indirect manner.

For instance, du Cluzeau et al. [9] computed Sk as the residual in the transport65

equation for the Reynolds stresses. As a consequence, accurately comparing |Sk|

with |Pk| so as to understand the energetics of the flow may be difficult. In view

of this, to allow a simpler comparison across different levels of turbulence and

bubble volume fractions, Rensen et al. [27] introduced the so-called ‘bubblance’

parameter, b = αu2r/u
′
0, where ur is the mean relative velocity between the two70

phases, and u′0 is the vertical velocity fluctuation produced by the background

turbulence in the absence of the bubbles. This is similar to the suggestion of [28]

who used the ratio of the bubble-induced kinetic energy to the kinetic energy

of the flow in the absence of the bubbles. When b � 1, the turbulence of

the carrier phase is predominately produced by the motion of bubbles, whereas75

when b � 1, the turbulence is predominately produced by the mean shear in

the flow.

The goal of the present paper is to consider the bubble-modified wall-function

approach and in particular, to consider the theoretical validity of the assumption

of a log-law for wall-bounded, bubbly turbulent flows in Sections 2 and 3. DNS80

data from previous studies is used to explore this issue.

2. Classical ansatz for deriving the log-law in single-phase flow

The log-law is widely considered to describe well many single-phase, wall

bounded turbulent flows [29, 30]. As discussed in the introduction, previous

studies have assumed that the log-law also applies for bubbly, wall-bounded85

turbulent flows. We now consider the validity of this assumption.

For simplicity, we consider the canonical case of a pressure-driven vertical

turbulent plane-channel flow laden with bubbles, defined by the bulk Reynolds

number Reb ≡ Ub2h/ν, where Ub is the bulk velocity (i.e. the streamwise

velocity averaged over the entire domain), h the half channel height, and ν the90
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liquid kinematic viscosity.

In the single-phase limit, the classical theory for the mean velocity profile

is based on the argument that the flow can be divided into two asymptotically

defined regions, an inner region and an outer region [33]. The inner region is a

region where the mean streamwise velocity in inner scales, u+ ≡ u/uτ , can be

expressed as a function of the inner-scaled distance from the wall, y+ ≡ yuτ/ν,

namely,

u+ = fui(y
+) , (2)

where uτ ≡
√
τw/ρ is the friction velocity, τw the wall shear stress, ρ the liquid

density, and the subscript ‘ui’ denotes that the function reflects u/uτ in the inner

region. In contrast, the outer region is where the outer-scaled mean velocity,

(uc − u)/uτ , is expressed as a function of the outer-scaled distance,

uc − u
uτ

= fuo

(
y

h

)
, (3)

where uc is the mean centreline velocity, and the subscript ‘uo’ denotes that

the function addresses the outer region. Defining an overlap region as a region

where the inner and outer layers match, one finds that the velocity profile in

the overlap region exhibits a logarithmic behaviour (see e.g. [34] or [14] for a

detailed derivation), with an inner-scaled formulation

u+ =
1

κ
ln y+ +B , (4)

and with outer-scaled formulation

uc − u
uτ

= − 1

κ
ln

(
y

h

)
+B1 . (5)

Here, the von Kármán constant κ is believed to be universal [35, 30] and the

additive constants B and B1 are flow dependent [36]. The results in Figure

2(a) illustrate the accuracy of this log-law when compared with data from the

Princeton Superpipe experiment [31].95

3. Is there a log-law for bubbly channel flows?
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(a)

(b)

Figure 2: (a) Experimental data of the nondimensional mean streamwise velocity u+ in a

single-phase pipe flow with friction Reynolds number Reτ = 98000 [31] compared to the log-

law (4). (b) Velocity distributions in bubbly pipe flows for various flow conditions (in the

legend: U for upward flow, D for downward flow) compared to the log-law (Figure adopted

from [32]).
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3.1. Previous approach: correction function for von Karman constant

We now discuss whether a log-law may also be expected to hold for bubbly

turbulent channel flows. [37] were among the first to propose a log-law for the

near-wall region of bubbly flow with the same structure as eq. (4)

u+ =
1

κ∗
ln y+ +B∗ , (6)

which involves a modified von Kármán constant κ∗ ≡ κ/γ. (Note that [37]

actually presented (6) in a slightly different, but equivalent form). Here, γ is a

correction function that depends upon certain bubble parameters

γ ≡

√
1−

(
gdp
u2τ

)
(αp − αE) , (7)

where αp and αE denote the near wall peak (maximum) and the free stream

averaged void fraction, respectively, while dp is the bubble diameter, and g is

the gravitational acceleration. The additive constant B∗ in (6) also is a function100

of γ.

A number of more recent studies, such as [38, 39, 40, 32] proposed differing

specifications for κ∗ and B∗, while still assuming the basic log-law formulation

to hold (6). Table 1 in [41] lists some of the various expressions.

While several sets of experimental data have been used to support the va-105

lidity of (6) for bubbly turbulent channel flow, it should be noted that almost

all of these correspond to flows with high background turbulence produced by

shear, and relatively little production due to the bubbles [42, 37, 43]. In partic-

ular, the levels of TKE measured in the bubble laden and the unladen cases are

similar in these studies. In such a regime, it is not surprising that (6) may work110

well since the log-law is known to describe single-phase turbulent channel flows

well. Moreover, results such as those in Figure 2(b) provide limited evidence

for a log-law in bubbly turbulent channel flow, since the logarithmic fit only

holds over five or six measurement points at best (see also [40] for results from

a horizontal bubbly turbulent channel flow). Therefore, compared to the evi-115

dence of log-law in the single-phase case (see e.g. Figure 2a), the evidence that
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has been proposed for a log-law in the bubbly turbulent channel flow context

is much weaker. In addition to the limited evidence for the validity of (6) for

bubbly turbulent channel flow, we now point out a number of theoretical issues

that seem to invalidate the idea of a log-law for the BIT regime.120

3.2. Theoretical reasons why a log-law is not expected for bubbly channel flows

3.2.1. Dimensional analysis

Let us consider a fully developed single-phase channel flow, for which the

mean velocity of the flow is determined by ν, h, and the mean streamwise pres-

sure gradient dp/dx. In this case, the wall-normal gradient of the streamwise

velocity is given by dimensional analysis [14] as

du

dy
=
uτ
y
f
(y
h
, y+

)
, (8)

where f is supposed to be a universal, non-dimensional function. As stated ear-

lier, the log-law can be derived by matching the inner layer asymptotic behaviour

f(y/h, y+) ∼ fui(y
+) to the outer layer asymptotic behaviour, f(y/h, y+) ∼125

fuo(y/h). The crucial point, however, is that there is no reason to expect (8) to

hold for bubbly turbulent channel flow. Indeed, for that case, u should depend

not only on ν, h, dp/dx, but also upon bubble parameters such as the bubble

diameter dp, the local void fraction α, and the density ratio between the bubbles

and fluid ρp/ρl (the subscript ‘l ’ denotes the liquid phase and ‘p’ denotes the gas130

phase). This is because for the bubbly channel flow case, the transport equation

governing u will include a term describing the momentum coupling between the

bubbles and the liquid. As such, the very concept of inner and outer layers no

longer makes sense, and the properties of u will now depend not only upon how

pressure gradient and viscous forces compete in the liquid, but also how each135

of these competes with the local force due to momentum coupling between the

bubbles and liquid flow.

3.2.2. Argument against log-law in form of eq. (6)

A point related to this is that it seems physically reasonable to expect that

the effect of the bubbles on the flow will vary with y, a feature that is not
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captured by the bubble-modified log-law in (6). In particular, consider the

following argument: since the eddies in the flow grow in size as y increases

away from the wall, then for Re � 1, while close to the wall we may have

`(y) = O(dp), far from the wall we may observe `(y)� dp, where `(y) describes

a characteristic size of an eddy at distance y from the wall. When ` � dp, the

eddy is so large compared to the bubble, and its typical timescale so long, that

the bubble will behave almost like a tracer particle relative to the eddy, implying

that the eddy will only be weakly affected by the bubbles it contains (based on

typical properties of the eddies; of course there may be infrequent occasions

where the energy in the eddy is small enough to be significantly affected by

the bubble). By contrast, we would expect that for `(y) = O(dp) the bubbles

are large enough to strongly affect the eddies in which they are contained. In

view of this argument, one would expect that with increasing distance from the

wall the effect of the bubbles on the flow would be diminished, and that in the

asymptotic limit `(y)/dp → ∞, the flow will locally asymptote to single-phase

flow behavior. If then one wishes to modify the von Kármán constant with

κ∗ ≡ κ/γ, then γ ought to be a function of y, so that

lim
`(y)/dp→∞

κ∗ → κ, (9)

is satisfied. However, if γ (and therefore κ∗) are functions of y, then (6) no longer

generates a log-law for u. Consequently, (6) is fundamentally inconsistent with140

the idea that in a high Reynolds number flow, the effect of the bubbles on the

flow should diminish with distance from the wall.

The argument above only considers the properties of a single bubble, and

so mainly applies when the void fraction is not too large. If the void fraction

is large, then even at locations where ` � dp, the accumulated effect of all the145

bubbles may be significant enough such that the eddy is affected by the bubbles.

Therefore, κ∗ must depend not merely on y, but on α(y). A related point is

that in general, BIT in a wall-bounded flow may not posses the outer region

that occurs for single-phase flow. The reason is that for BIT, viscous effects are

not confined to the very near wall region, but may be significant everywhere in150
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the flow due to viscous stresses generated at the bubble surfaces.

3.2.3. location of umax

Finally, for single-phase flows, the maximum mean velocity umax ≡ max[u]

occurs at the center of the channel, with u a monotonically increasing function

of y for 0 ≤ y ≤ h. Clearly, the log-law is consistent with this monotonic155

behavior in the region for which it is valid. However, for bubbly turbulent

flows, u depends upon the bubble void fraction, and since the bubbles may be

strongly inhomogeneously distributed in the channel, umax need not be located

at y = h, but could be located anywhere in the range 0 < y ≤ h. As a result,

u may vary non-monotonically with y for 0 ≤ y ≤ h, inconsistent with a log-160

law. Some evidence for this non-monotonic behavior may be seen in Case Sb in

Figure 12(b) of [9] and the case with αt = 10% in Figure 3 of [44].

4. Evidence from DNS that the log-law can fail for bubbly flows

Having presented arguments for why a log-law need not be expected for bub-

bly turbulent channel flows, we now turn to consider data from an interface-165

resolved DNS of such a flow. The DNS data are from [5] and [44], in which

bubble-resolving DNS were conducted with many bubbles at varied Eötvös num-

ber, Eo = ∆ρgdp/σ, where σ is the surface tension.

The DNSs were carried out for flow in two rectangular channels, with peri-

odicity in the streamwise (x) and spanwise (z) directions. For upward flows, the170

size of the domains are Lx×Ly×Lz = 2hπ×2h×hπ, where h is the half channel

height. These are three cases (S180, D180, D180g8 ) adopted from [5], who used

the code TrioCFD based on front-tracking method for two-phase flows. For two

downward flows cases, the computational domain is Lx×Ly ×Lz = 4hπ× 2h×

4/3hπ (Cases 25p, 5p in [44] based on Volume of Fluid method). These DNS175

data were obtained for five monodisperse cases (S180, D180, D180g8, 25p, 5p)

with friction Reynolds number Reτ = huτ/ν ≈ 180. A detailed account of the

setup and the DNS methodology are provided in the original papers [5, 44]. For

comparison, data from a single-phase (unladen) simulation with the same value

11



Parameter SP180 S180 D180 D180g8 25p 5p

Np – 42 42 42 320 64

αtot – 3% 3% 3% 2.5% 0.5%

dp/h – 0.3 0.3 0.3 0.25 0.25

ρl/ρp – 10 10 10 20 20

µl/µp – 1 1 1 20 20

d+p – 54 54 54 46 46

Reτ 180 180 180 180 ≈ 180 ≈ 180

Rep – 90 140 600 90 ∼ 160 160

Eo – 0.45 3.6 3.6 0.67 0.67

Table 1: Parameters of the cases used for the present study according to [5] and [44]. ρ and µ

represent the density and the molecular dynamic viscosity, respectively. SP180 stands for the

single-phase case with Reτ = 180, based on the results of [45]. In the bubble laden cases of

[5] (S180, D180, D180g8 ), the label S is used for the cases with spherical bubbles (S180 ) and

the label D for the cases with deformable bubbles (D180, D180g8 ). Cases S180 and D180

refer to the cases with low gravity conditions, g = 0.1, while D180g8 is a case with increased

gravity, g = 0.8. Cases 25p and 5p are from [44]. Furthermore, Np is the number of bubbles,

αtot is the ratio of the total gas volume to the channel volume, dp the bubble diameter, and

d+p = dp/(ν/uτ ), which is the ratio of the bubble diameter to the wall unit. The values of

Reτ , the friction Reynolds number, and Rep, the bubble Reynolds number based on dp and

the relative velocity, are results of the simulations.
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(a)

(b)

Figure 3: Assessment of logarithmic behaviour of the mean liquid velocity in bubble-laden

flows (a) Velocity profile in wall units; (b) Log-law indicator function β defined in (10). The

horizontal line is at β = 1/κ with κ = 0.4.

13



of Reτ [45] is also indicated, labelled SP180. Table 1 provides an overview of180

the parameters for the cases discussed here.

Figure 3(a) shows the mean velocity profile for all bubbly flow cases con-

sidered in Table 1, compared to the single-phase case, SP180. At this friction

Reynolds number, the unladen case exhibits a short, but discernible approx-

imate log layer. The results also show that some of the bubble-laden cases

deviate significantly from the classical log-law, while other cases are closer to it.

To examine this more carefully, in Figure 3(b) we plot

β ≡ y+ ∂u
+

∂y+
, (10)

the log-law indicator function, which, in a log layer, will have a constant value

equal to 1/κ. With this more sensitive measure, it is clear that the mean

velocity profiles for the cases S180, 25p, and 5p are not even approximately

constant for any significant range of y+ (the unladen case is also not exactly185

constant at this Reynolds number, but its variations from a constant value are

clearly much smaller than for the bubble cases cases S180, 25p, and 5p). Cases

that appeared close to a log-law in Figure 3(a), like Case 5p, are therefore

shown to be significantly different from a log-law when analysed using the more

sensitive measure β. For cases D180 and D180g, the curves for β are affected by190

statistical noise, but it appears that both cases behave similarly to the unladen

case and that β may converge towards an approximately constant value between

y+ ≈ 50 and y+ ≈ 110, indicating an approximate logarithmic behaviour in this

region.

To explain why the mean flow profile is sometimes reasonably close to a log-195

law for the bubble-laden cases and at other times is far away, it is tempting to

try to explain this simply in terms of the averaged void fraction α. Indeed, when

α→ 0, the unladen behaviour is recovered, possibly suggesting that in regions of

the flow where α is sufficiently small, the bubble-laden channel flow may behave

like the unladen case. The DNS results for α are shown in Figure 4. Note200

that even though most of their parameters are identical, the gas distribution of

case S180 is very different from case D180. The main difference between these

14



Figure 4: Profile of the averaged gas void fraction.

cases is due to their significantly different Eötvös numbers. For case S180, the

bubbles are pushed towards the wall due to the lift force acting on them, and

as a result the bubbles accumulate near the wall. However, the Eötvös number205

is considerably larger for case D180 which leads to a reversal of the direction

of the lift force so that the bubbles no longer accumulate near the wall [5]. As

discussed earlier, over the region 50 < y+ < 110, cases D180 and D180g8 are

relatively close to the unladen case that has an approximate log-law, whereas

cases S180, 25p, and 5p are significantly different from the unladen case. Yet,210

the results for α in Figure 4 show that over the same region 50 < y+ < 110,

α is considerably larger for cases D180 and D180g8 than it is for cases S180,

25p, and 5p. As a result, the idea that the departures from the log-law for the

bubble-laden cases can be understood simply in terms of α is incorrect and overly

simplistic. At present, we do not have a better explanation, except that perhaps215

in some cases, the effect of the void fraction is counteracted by other effects due

to the bubbles, such that the mean flow profile remains relatively close to the

unladen case. However, there may be some deeper underlying reason, and this

must be explored in future work.

These observations are consistent with other DNS data for such flows [46,220

6, 47], where the bubbles play a pivotal role in the wall-bounded flows. The

experimental work of [32] claims to observe an approximate log-law for bubble-
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(a)

(b)

Figure 5: Profiles of the fractional contributions of the viscous and Reynolds stresses to the

total stress of the continuous phase. (a) Single-phase channel flow; (b) three cases of bubbly

channel flow.

laden turbulence, just as we observe for some of the present cases. In their

experiments the reason the log-law was observed to approximately hold may

be that in their flow the bubbles played a minor role in the flow dynamics, i.e.225

the dominant effect driving the flow was shear-driven turbulence, rather than

bubble-induced turbulence.

In single-phase flow, different layers in the near-wall region are defined on

the basis of y+, which plays the role of a local Reynolds number, and therefore

can be used as a measure of the relative importance of viscous and inertial forces230

at a given location in the flow. Figure 5(a) shows the fractional contributions

of the viscous and Reynolds stresses to the total stress in the near-wall region

16



of single-phase channel flows with different Reτ . When they are plotted against

y+, the profiles for these four Reynolds numbers almost collapse (DNS data for

Reτ = 180, Reτ = 1000, and Reτ = 5200 are based on the results of [45]; the235

data of Reτ = 590 are from [48]). The viscous contribution drops from 100% at

the wall (y+ = 0) to 50% at y+ = 12 and is less than 10% by y+ = 50. However,

this behaviour is not observed for the bubbly flows considered here, as shown

in Figure 5(b). In some bubble-laden cases (see D180g8 ), the Reynolds stress

can increase much faster with increasing y+ than for the single-phase case, such240

that the position where the Reynolds and viscous stress contributions are equal

occurs below y+ = 10. This difference is due to the presence of the interfacial

momentum coupling term between the bubbles and the liquid that plays a key

dynamic role, even very close to the wall.

The results in Figure 5(b) also show that in contrast to the single-phase245

case, for bubbly turbulent channel flows, the curves do not collapse (even ap-

proximately) when plotted as a function of y+. This indicates that the wall

unit δν = ν/uτ no longer represents the dynamically relevant length scale near

the wall when the channel flow contains bubbles. This is a manifestation of the

point made earlier, namely, that for bubbly turbulent channel flows, the mean250

flow is not only determined by ν, h, dp/dx, but also by bubble parameters such

as the bubble diameter dp, the local void fraction α, and the density ratio ρl/ρp.

A simple lengthscale based on this larger set of dynamical relevant parameters

is not, however, apparent.

These results illustrate the profound effect that the bubbles can have on the255

turbulent flow, and why, as a consequence, a log-law need not be anticipated

for the bubble-laden channel flow case. Indeed, as we have shown, it does not

occur when the bubbles play a strong role in the flow dynamics.

Finally, we remind the reader that the evidence provided in the present

section is based on a relatively low Reynolds number bubbly turbulent channel260

DNS. This is a limitation compared to log-law investigations in single-phase

flows, where systematic investigations have been performed over a large range of

high Reynolds number flows [30]. However, DNS data of bubbly flows with high
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Reτ are not currently available, which is mainly due to the grid requirements

for interface-revolved DNS of multiphase flows, as discussed in [49]. It would be265

important in future work to explore the issue of the log-law for bubbly turbulent

channel flows at high Reτ when such data becomes available, in order to more

thoroughly explore this topic.

5. Conclusions

We have presented theoretical arguments and evaluated results from interface-270

resolving DNS of bubbly turbulent channel flows demonstrating that in general,

a log-law does not hold for the mean liquid velocity in the presence of the bub-

bles, except in regimes where the bubbles play a minor role in the flow dynamics.

These departures from the log-law, that approximately hold for single-phase

flow, are not surprising, even though several previous studies claimed that a275

log-law should hold for wall-bounded turbulent bubbly flows. The basic reason

for the departures is simply that for bubbly flows, the mean flow is affected by a

number of additional dynamical parameters, such as the void fraction, that are

absent in the single-phase case. As a result, the inner/outer asymptotic regimes

that form the basis of the derivation of the log-law for single-phase flow do not280

exist in general for bubbly turbulent flows. Nevertheless, we do find that for

some cases, the bubbles do not cause significant departures from the log-law

behaviour. However, we show that the departures cannot be understood simply

in terms of the void fraction, but that more subtle effects must be playing a

role.285

From a modelling perspective, the importance of these results is that they

show that using log-law based wall-functions in calculations of the mean liquid

velocity for turbulent bubbly flows could lead to significant errors in the near

wall region. To derive the equivalent of a log-law result for bubble-laden tur-

bulent channel flow would involve replacing the inner/outer asymptotic regions290

used in single phase flow with some other asymptotic regions, and matching their

behaviour to obtain the mean liquid flow profile. How to define these asymp-
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totic regions is, however, at present unclear. The other approach is to build

new eddy viscosity models for bubble-laden turbulent channel flow specifically

designed for the near-wall region. We are currently working on this challenging295

area of modelling.

Finally, we note that one possible way that a log-law could emerge for wall-

bounded bubbly flows is in a situation where the bubble parameters are such

that all the bubbles are trapped in the very near wall region. In such a case,

the bubbles would effectively produce a rough wall boundary condition on the300

flow, and so a log-law could still emerge for sufficiently high Reynolds numbers

with the location of the log region modified to account for the roughness height,

similar to what is done for single-phase turbulence in the presence of rough walls

[50].
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simulation-based Reynolds-averaged closure for bubble-induced turbulence,

Phys. Rev. Fluids 2 (2017) 034301.

[13] I. Kataoka, A. Serizawa, Basic equations of turbulence in gas-liquid two-

phase flow, Int. J. Multiphase Flow 15 (1989) 843–855.

[14] S. B. Pope, Turbulent Flows, 1st Edition, Cambridge University Press,350

2000.

[15] T. Ma, D. Lucas, A. D. Bragg, Explicit algebraic relation for calculating

reynolds normal stresses in flows dominated by bubble-induced turbulence,

Phys. Rev. Fluids 5 (2020) 084305.
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model for bubble-induced turbulence to bubbly flows in containers and380

vertical pipes, Chem. Eng. Sci. 202 (2019) 55–69.

[25] A. A. Troshko, Y. A. Hassan, Law of the wall for two-phase turbulent

boundary layers, International journal of heat and mass transfer 44 (4)

(2001) 871–875.

[26] J. Lelouvetel, T. Tanaka, Y. Sato, K. Hishida, Transport mechanisms of385

the turbulent energy cascade in upward/downward bubbly flows, J. Fluid

Mech. 741 (2014) 514–542.

[27] J. Rensen, S. Luther, D. Lohse, The effect of bubbles on developed turbu-

lence, J. Fluid Mech. 538 (2005) 153–187.

[28] M. Lance, J. Bataille, Turbulence in the liquid phase of a uniform bubbly390

air-water flow, J. Fluid Mech. 222 (1991) 95–118.

[29] A. J. Smits, B. J. McKeon, I. Marusic, High–reynolds number wall turbu-

lence, Annu. Rev. Fluid Mech. 43 (2011).

[30] I. Marusic, J. P. Monty, M. Hultmark, A. J. Smits, On the logarithmic

region in wall turbulence, Journal of Fluid Mechanics 716 (2013).395

[31] M. Hultmark, M. Vallikivi, S. C. C. Bailey, A. J. Smits, Turbulent pipe

flow at extreme reynolds numbers, Phys. Rev. Lett. 108 (9) (2012) 094501.

22



[32] C. Colin, J. Fabre, A. Kamp, Turbulent bubbly flow in pipe under gravity

and microgravity conditions, J. Fluid Mech. 711 (2012) 469–515.

[33] C. B. Millikan, A critical discussion of turbulent flow in channels and cir-400

cular tubes, in: Proc. 5th Int. Congress on Applied Mechanics (Cambridge,

MA, 1938), Wiley, 1939, pp. 386–392.

[34] H. Tennekes, J. L. Lumley, A first course in turbulence, MIT press, 1972.

[35] E.-S. Zanoun, F. Durst, H. Nagib, Evaluating the law of the wall in two-

dimensional fully developed turbulent channel flows, Physics of Fluids405

15 (10) (2003) 3079–3089.

[36] I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smits,

K. R. Sreenivasan, Wall-bounded turbulent flows at high reynolds numbers:

recent advances and key issues, Phys. Fluids 22 (6) (2010) 065103.

[37] J. Marie, E. Moursali, S. Tran-Cong, Similarity law and turbulence in-410

tensity profiles in a bubbly boundary layer at low void fractions, Int. J.

Multiphase Flow 23 (2) (1997) 227–247.

[38] C. Gabillet, C. Colin, J. Fabre, Experimental study of bubble injection in

a turbulent boundary layer, Int. J. Multiphase Flow 28 (4) (2002) 553–578.
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