
Franz Poeschel1,4, Juncheng E⁵, William F. Godoy³, Norbert Podhorszki³, 
Scott Klasky³, Greg Eisenhauer⁶, Philip E. Davis⁷, Lipeng Wan³, Ana Gainaru³, 
Junmin Gu², Fabian Koller⁴, René Widera⁴, Michael Bussmann1,4 and Axel Huebl²,4

1

openPMD – 
Open and F.A.I.R. I/O 
for Particle-Mesh Data 
at the Exascale 

1) Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
2) Lawrence Berkeley National Laboratory (LBNL), Berkeley 94720, California, USA
3) Oak Ridge National Laboratory (ORNL), Oak Ridge 37830, Tennessee, USA
4) Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
5) European XFEL GmbH (EU XFEL), D-22869 Schenefeld, Germany
6) Georgia Institute of Technology (Georgia Tech), Atlanta 30332, Georgia, USA
7) Rutgers University (Rutgers), New Brunswick 08901, New Jersey, USA

2022 SIAM Conference 
on Parallel Processing for Scientific Computing 



openPMD – 
Open and F.A.I.R. I/O 
for Particle-Mesh Data 
at the Exascale 

Structure:
1) openPMD: Open and F.A.I.R. I/O

2) Benchmark: Asynchronous I/O

3) Benchmark: 
Loosely-coupled simulation pipeline

Acknowledgements 
This research used resources of the Oak Ridge 
Leadership Computing Facility at the Oak Ridge National 
Laboratory, which is supported by the Office of Science of 
the U.S. Department of Energy under Contract No. DE- 
AC05-00OR22725. Supported by the Exascale Computing 
Project (17-SC-20-SC), a collaborative effort of two U.S. 
Department of Energy organizations (Office of Science 
and the National Nuclear Security Administration). 
Supported by EC through Laserlab- Europe, H2020 EC-
GA 871124. Supported by the Consortium for Advanced 
Modeling of Particles Accelerators (CAMPA), funded by 
the U.S. DOE Office of Science under Contract No. DE-
AC02-05CH11231. This work was partially funded by the 
Center of Advanced Systems Understanding (CASUS), 
which is financed by Germany’s Federal Ministry of 
Education and Research (BMBF) and by the Saxon 
Ministry for Science, Culture and Tourism (SMWK) with 
tax funds on the basis of the budget approved by the 
Saxon State Parliament.



3

1) openPMD
 open and F.A.I.R. I/O

3

openPMD: Open and F.A.I.R. I/O
for Particle-Mesh Data at the Exascale



4

openPMD – self-describing scientific data

Self-describing, data format agnostic standard 
for frictionless exchange of particle-mesh data
Flagship implementation: openPMD-api:
● API in C++ and Python (upcoming: Julia)
● Describe particle-mesh data in a unified way
● Flexibly store to / read from interchangeable 

backends:
● ADIOS1/2
● HDF5
● JSON (serial only)



5

openPMD – a FAIR standard

Findable: Standardized metadata to identify the data producer

Accessible: Open standard, implementable in various formats

*currently implemented,
but not limited to

“The FAIR Guiding Principles for scientific data management and stewardship” (Mark D. Wilkinson et al.)



6

openPMD – a FAIR standard

Interoperable: 
Data exchange spans 
applications, platforms and teams

simulation

analysis

visualization

compression

Reusable: 
Rich and standardized description
for physical quantities

“The FAIR Guiding Principles for scientific data management and stewardship” (Mark D. Wilkinson et al.)



7

openPMD and ADIOS2 – open stack for scientific I/O

In blue: setup used for benchmarks in this talk



8

File-based I/O does not scale

 

 → parallel bandwidth insufficient for HPC at full scale
 → filesystem capacity insufficient for HPC at full scale

The I/O bottleneck:

“example storage requirements”: full-scale simulations, dump entire GPU memory to disk 50 times



9

Vision: Loosely coupled data processing pipeline

Focus of this talk:
Uniform scientific I/O communication layer between coupled applications

Loose coupling: Cooperate between independent applications, exchanging data
Streaming I/O between application bypasses PFS bottleneck:



10

2) Benchmark:
 Asynchronous I/O

10

openPMD: Open and F.A.I.R. I/O
for Particle-Mesh Data at the Exascale

Benchmarks based on:
“Transitioning from file-based HPC workflows to streaming data 
pipelines with openPMD and ADIOS2” (F. Poeschel et al.)



11

A simple use for streaming: Asynchronous I/O

A simple low-effort application for streaming:

● Goal: accelerate simulate-dump workflow

● Assumption: IO routines block other parts of 
the simulation

● Solution: Asynchronously launch a second 
application
(openpmd-pipe.py – compare UNIX pipes) 

 Reads from stream, writes to disk→
● Effect: Hides (not reduces!) disk IO times

No changes in the code required
 → Compare this setup (stream+file)

against regular file output (file-only)

Axel Huebl. “PIConGPU: Predictive Simulations of Laser-Particle Accelera- tors with Manycore Hardware”. PhD thesis. Technische Universität Dresden, July 2019.



12

Streaming throughput stands out at high scale

Perceived throughput:
● Defined as data written

divided by extra runtime over no I/O
● Includes aggregation 

and communication overhead
● Lower bound for precise throughput

(benchmarks at 1024 nodes done after Summit system upgrade)



13

Streaming throughput stands out at high scale

Evaluation:
● Overall reasonable scaling
● Implicit aggregation increases perceived 

BP throughput
● Streaming throughput exceeds PFS 

bandwidth (2.5TiB/s)
● Filesystem throughput limited by PFS,

creating a gap to streaming throughput

(benchmarks at 1024 nodes done after Summit system upgrade)



14

Asynchronous I/O most helpful at lower scale

Number of written IO steps in 15 minutes:

Takeaway:
● At higher scale the PFS 

performance dominates
● For higher scale: 

Need something else 
 next setup→



15

3) Benchmark:
 Loosely-coupled
 simulation pipeline

15

openPMD: Open and F.A.I.R. I/O
for Particle-Mesh Data at the Exascale

Benchmarks based on:
“Transitioning from file-based HPC workflows to streaming data 
pipelines with openPMD and ADIOS2” (F. Poeschel et al.)



16

Circumvent I/O bottleneck by loose coupling

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.

● Simulation pipeline: PIConGPU  GAPD→
GAPD: Scattering analysis

● Data description in openPMD and ADIOS 
is independent of implementation

● Use legacy, file-IO based 
implementations, but toggle a 
streaming-aware backend

● Only store the final result         
persistently



17

Circumvent I/O bottleneck by loose coupling

● Simulation pipeline: PIConGPU  GAPD→
GAPD: Scattering analysis

● Data description in openPMD and ADIOS 
is independent of implementation

● Use legacy, file-IO based 
implementations, but toggle a 
streaming-aware backend

● Only store the final result         
persistently

PIConGPU GAPD

Persistent storage

compute power:
up to 60 GB/s per node MB/s globally

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.



18

Circumvent I/O bottleneck by loose coupling

PIConGPU GAPD

Persistent storage

MB/s globally

Infiniband
RDMA

shared memory
WAN

sockets
...

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.

● Simulation pipeline: PIConGPU  GAPD→
GAPD: Scattering analysis

● Data description in openPMD and ADIOS 
is independent of implementation

● Use legacy, file-IO based 
implementations, but toggle a 
streaming-aware backend

● Only store the final result         
persistently



19

For good throughput:
Local streaming patterns, Infiniband/RDMA

Local streaming

Non-local streaming

Local streaming:
Distribute data chunks 
only within a node
(alternatively:

to neighboring nodes)

Non-local streaming:
Distribute data chunks 
globally, optimize for 
balance and alignment

Straight lines:
Infiniband/RDMA

Dashed lines:
TCP/sockets

Takeaway:
● RDMA necessary for HPC
● Reasonable scaling with 

RDMA
● SST: number of 

communication partners 
for each single instance 
decisive

● Network topology has an 
impact



20

Conclusion
● openPMD combines scientific F.A.I.R. compliance 

with performance at the Exascale
● Transition path: file-based to streaming-based 

scientific data processing pipelines
● Asynchronous I/O through loose coupling (stream+file)
● RDMA throughput at 1024 nodes:

more than 3 times PFS bandwidth
● Simulation  Analysis: → Bypass the PFS

Outlook
● Larger loosely coupled pipelines
● Use streaming for surrogate modeling of simulations:

Much more dynamic I/O patterns
● Data distribution patterns



21

Conclusion
● openPMD combines scientific F.A.I.R. compliance 

with performance at the Exascale
● Transition path: file-based to streaming-based 

scientific data processing pipelines
● Asynchronous I/O through loose coupling (stream+file)
● RDMA throughput at 1024 nodes:

more than 3 times PFS bandwidth
● Simulation  Analysis: → Bypass the PFS

Outlook
● Larger loosely coupled pipelines
● Use streaming for surrogate modeling of simulations:

Much more dynamic I/O patterns
● Data distribution patterns

21

Acknowledgements
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge 
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE- AC05-00OR22725. Supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the 
National Nuclear Security Administration). Supported by EC through Laserlab- Europe, H2020 EC-GA 
871124. Supported by the Consortium for Advanced Modeling of Particles Accelerators (CAMPA), 
funded by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. This work was 
partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by 
Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, 
Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State 
Parliament. 

https://github.com/openPMD 
Contact:
● f.poeschel@hzdr.de 
● axelhuebl@lbl.gov

https://github.com/openPMD
mailto:f.poeschel@hzdr.de
mailto:axelhuebl@lbl.gov

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

