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Structure:
1) openPMD: Open and F.A.I.R. I/O

2) Benchmark: Asynchronous I/O

3) Benchmark: 
Loosely-coupled simulation pipeline
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openPMD – self-describing scientific data

Self-describing, data format agnostic standard 
for frictionless exchange of particle-mesh data
Flagship implementation: openPMD-api:
● API in C++ and Python (upcoming: Julia)
● Describe particle-mesh data in a unified way
● Flexibly store to / read from interchangeable 

backends:
● ADIOS1/2
● HDF5
● JSON (serial only)
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openPMD – a FAIR standard

Findable: Standardized metadata to identify the data producer

Accessible: Open standard, implementable in various formats

*currently implemented,
but not limited to

“The FAIR Guiding Principles for scientific data management and stewardship” (Mark D. Wilkinson et al.)
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openPMD – a FAIR standard

Interoperable: 
Data exchange spans 
applications, platforms and teams

simulation

analysis

visualization

compression

Reusable: 
Rich and standardized description
for physical quantities

“The FAIR Guiding Principles for scientific data management and stewardship” (Mark D. Wilkinson et al.)
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openPMD and ADIOS2 – open stack for scientific I/O

In blue: setup used for benchmarks in this talk



8

File-based I/O does not scale

 

 → parallel bandwidth insufficient for HPC at full scale
 → filesystem capacity insufficient for HPC at full scale

The I/O bottleneck:

“example storage requirements”: full-scale simulations, dump entire GPU memory to disk 50 times
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Vision: Loosely coupled data processing pipeline

Focus of this talk:
Uniform scientific I/O communication layer between coupled applications

Loose coupling: Cooperate between independent applications, exchanging data
Streaming I/O between application bypasses PFS bottleneck:
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2) Benchmark:
 Asynchronous I/O
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openPMD: Open and F.A.I.R. I/O
for Particle-Mesh Data at the Exascale

Benchmarks based on:
“Transitioning from file-based HPC workflows to streaming data 
pipelines with openPMD and ADIOS2” (F. Poeschel et al.)



11

A simple use for streaming: Asynchronous I/O

A simple low-effort application for streaming:

● Goal: accelerate simulate-dump workflow

● Assumption: IO routines block other parts of 
the simulation

● Solution: Asynchronously launch a second 
application
(openpmd-pipe.py – compare UNIX pipes) 

 Reads from stream, writes to disk→
● Effect: Hides (not reduces!) disk IO times

No changes in the code required
 → Compare this setup (stream+file)

against regular file output (file-only)

Axel Huebl. “PIConGPU: Predictive Simulations of Laser-Particle Accelera- tors with Manycore Hardware”. PhD thesis. Technische Universität Dresden, July 2019.
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Streaming throughput stands out at high scale

Perceived throughput:
● Defined as data written

divided by extra runtime over no I/O
● Includes aggregation 

and communication overhead
● Lower bound for precise throughput

(benchmarks at 1024 nodes done after Summit system upgrade)
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Streaming throughput stands out at high scale

Evaluation:
● Overall reasonable scaling
● Implicit aggregation increases perceived 

BP throughput
● Streaming throughput exceeds PFS 

bandwidth (2.5TiB/s)
● Filesystem throughput limited by PFS,

creating a gap to streaming throughput

(benchmarks at 1024 nodes done after Summit system upgrade)
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Asynchronous I/O most helpful at lower scale

Number of written IO steps in 15 minutes:

Takeaway:
● At higher scale the PFS 

performance dominates
● For higher scale: 

Need something else 
 next setup→
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3) Benchmark:
 Loosely-coupled
 simulation pipeline
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openPMD: Open and F.A.I.R. I/O
for Particle-Mesh Data at the Exascale

Benchmarks based on:
“Transitioning from file-based HPC workflows to streaming data 
pipelines with openPMD and ADIOS2” (F. Poeschel et al.)
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Circumvent I/O bottleneck by loose coupling

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.

● Simulation pipeline: PIConGPU  GAPD→
GAPD: Scattering analysis

● Data description in openPMD and ADIOS 
is independent of implementation

● Use legacy, file-IO based 
implementations, but toggle a 
streaming-aware backend

● Only store the final result         
persistently
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PIConGPU GAPD

Persistent storage

compute power:
up to 60 GB/s per node MB/s globally

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.
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Circumvent I/O bottleneck by loose coupling

PIConGPU GAPD

Persistent storage

MB/s globally

Infiniband
RDMA

shared memory
WAN

sockets
...

J. C. E, L. Wang, S. Chen, Y. Y. Zhang and S. N. Luo. “GAPD: a GPU- accelerated atom-based polychromatic diffraction simulation code”. In: Journal of Synchrotron Radiation 25.2 (Mar. 2018), pp. 604–611.

● Simulation pipeline: PIConGPU  GAPD→
GAPD: Scattering analysis

● Data description in openPMD and ADIOS 
is independent of implementation

● Use legacy, file-IO based 
implementations, but toggle a 
streaming-aware backend

● Only store the final result         
persistently
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For good throughput:
Local streaming patterns, Infiniband/RDMA

Local streaming

Non-local streaming

Local streaming:
Distribute data chunks 
only within a node
(alternatively:

to neighboring nodes)

Non-local streaming:
Distribute data chunks 
globally, optimize for 
balance and alignment

Straight lines:
Infiniband/RDMA

Dashed lines:
TCP/sockets

Takeaway:
● RDMA necessary for HPC
● Reasonable scaling with 

RDMA
● SST: number of 

communication partners 
for each single instance 
decisive

● Network topology has an 
impact
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Conclusion
● openPMD combines scientific F.A.I.R. compliance 

with performance at the Exascale
● Transition path: file-based to streaming-based 

scientific data processing pipelines
● Asynchronous I/O through loose coupling (stream+file)
● RDMA throughput at 1024 nodes:

more than 3 times PFS bandwidth
● Simulation  Analysis: → Bypass the PFS

Outlook
● Larger loosely coupled pipelines
● Use streaming for surrogate modeling of simulations:

Much more dynamic I/O patterns
● Data distribution patterns
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