

F.A.I.R. Scientific I/O at the Exascale

Franz Poeschel | Axel Huebl CASUS | LBNL

EuroNNAc Special Topics Workshop 2022 Image: PIC simulation computed by PIConGPU 2nd prize Helmholtz Imaging Best Scientific Image Contest 2022

Heterogeneity through Standardized Data

Particle accelerators are complex:

- need to span different time and length scales
- particle accelerator modeling requires multiple codes, collaborating in a data processing pipeline
- bridge heterogeneous models by standardization of data

Axel Huebl et al. "openPMD: A meta data standard for particle and mesh based data". 2015. doi: 10.5281/zenodo.591699. url: https://openPMD.org

Heterogeneity through Standardized Data

Particle accelerators are complex:

Axel Huebl et al. "openPMD: A meta data standard for particle and mesh based data". 2015. doi: 10.5281/zenodo.591699. url: https://openPMD.org

Findable: Standardized metadata to identify the data producer

string	/author	attr	= "franz"	
string	/software	attr	= "PIConGPU"	
string	/softwareVersion	attr	= "0.5.0 - dev"	

"The FAIR Guiding Principles for scientific data management and stewardship" (Mark D. Wilkinson et al.)

openPMD – a FAIR standard

Interoperable:

Data exchange spans applications, platforms and teams

Reusable:

Rich and standardized description for physical quantities

Name	Value
axisLabels	[b'z' b'y' b'x']
dataOrder	b'C'
fieldSmoothing	b'none'
geometry	b'cartesian'
gridGlobalOffset	[0. 0. 0.]
gridSpacing	[4.252342 1.0630856 4.252342]
gridUnitSI	4.1671151662e-08
position	[0. 0. 0.]
timeOffset	0.0
unitDimension	[-3. 0. 1. 1. 0. 0. 0.]
unitSI	15399437.98944343

"The FAIR Guiding Principles for scientific data management and stewardship" (Mark D. Wilkinson et al.)

openPMD powered Projects and Users

Documents:

 openPMD standard (1.0.0, 1.0.1, 1.1.0) the underlying file markup and definition A Huebl et al., doi: 10.5281/zenodo.33624

Scientific Simulations:

• PIConGPU (HZDR)

electro-dynamic particle-in-cell code maintainers: R Widera, S Bastrakov, A Debus et al.

• WarpX (LBNL, LLNL)

electro-dynamic/static particle-in-cell code maintainers: JL Vay, D Grote, R Lehe, A Huebl et al.

• **FBPIC** (LBNL, DESY)

spectral, fourier-bessel particle-in-cell code maintainers: R Lehe, M Kirchen et al.

• **SimEx Platform** (EUCALL, European XFEL) *simulation of advanced photon experiments* maintainer: C Fortmann-Grote

Language Binding:

- **openPMD-api** (HZDR, CASUS, LBNL) *reference API for openPMD data handling* maintainers: A Huebl, J Gu, F Poeschel et al.
- Wake-T (DESY) fast particle-tracking code for plasma-based accelerators maintainer: A Ferran Pousa
- HiPACE++ (DESY, LBNL)
 3D GPU-capable quasi-static PIC code for plasma accel.
 maintainers: M Thevenet, S Diederichs, A Huebl
- **Bmad** (Cornell) *library for charged-particle dynamics simulations* maintainers: D Sagan et al.
- and more...

openPMD powered Projects and Users

Documents:

 openPMD standard (1.0.0, 1.0.1, 1.1.0) the underlying file markup and definition A Huebl et al., doi: 10.5281/zenodo.33624

Tools and converters:

- **file validators** (HZDR, LBNL) development scripts maintainer: A Huebl, R Lehe
- **XDMF creation** (TU Dresden, HZDR) *xml meta file creation for (serial) reading in VTK* maintainer: HZDR
- **HDF Compass** (third party + HZDR: ADIOS implementation) *viewer for HDF5 files and related formats*

maintainer: HDF Group (HZDR: contribution)

Data processing and visualization:

- **openPMD-viewer** (LBNL, DESY) *high-level python API & interactive jupyter notebook GUI* maintainer: R Lehe
- VisualPIC (DESY)

post-processing and visualization for particle-in-cell data maintainer: A Ferran Pousa

• **postpic** (IOQ Jena)

post-processing and visualization for particle-in-cell data maintainer: S Kuschel

- **yt project** (third party + HZDR: reader implementation) *framework for parallel analysis and visualization* maintainer: the yt team (HZDR: contribution)
- Vislt (LLNL) parallel post-processing and 3D visualization maintainer: LLNL (NERSC: contribution)
- **ParaView** (Kitware) *analysis and visualization* maintainers: Kitware (reader plugin by B Geveci and A Huebl)

Extensions: e.g. ED-PIC

Emittance \rightarrow particle push, field solver, shape

Image CC-BY 3.0: R. Lehe et al., RRSTAB 16, 021301 (2013), DOI:10.1103/PhysRevSTAB.16.021301

 ► Consider the second secon	
electrons (63328, 4) Group size = 5 Number of attributes = 6 currentDeposition = Esirke longName = My first electro particleInterpolation = Trilir particlePush = Boris particleShape = 3.0 particleSmoothing = none	pov in species near

openPMD-api – I/O for Scientific Compute Workflows

pick and configure backend at runtime without recompiling

import openpmd_api as io

#	pick	ba	ackend	by	filename	extension	
s	eries	=	io Ser	ries	("simOutr	out h5"	io Access create)

001100		10.201102(21.0040940.000 ;	10.11000000.010100000,
series	=	<pre>io.Series("simOutput.bp",</pre>	<pre>io.Access.create)</pre>
series	=	<pre>io.Series("simOutput.sst",</pre>	<pre>io.Access.create)</pre>
series	=	<pre>io.Series("simOutput.json",</pre>	io.Access.create)

openPMD-api

Software Stack

planned / open for contributions

open

Packaging	Spack	con	da-forge	Hom	nebrew	Python .whl
Frontend	C++17		Python3 +numpy un			Julia der development
Middleware		C++17 library				
I/O Libraries parallel / serial	HDF5	ADIOS	51 AD	IOS2	JSON	TOML
Platforms	Linux/U	nix	0	SX		Windows

Compute Performance Outpaces Storage Performance

Titan Summit Frontier Grow	th Factor
Peak Performance:27Pflop/s200Pflop/s1.6Eflop/s	~60
FS Throughput: 1 TiByte/s 2.5 TiByte/s 5~10 TiByte/s	5~10
FS Capacity: 27 PiByte 250 PiByte 500~1000 PiByte	18~37

→ parallel bandwidth insufficient for HPC at full scale
 → filesystem capacity insufficient for HPC at full scale

Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2022. doi: 10.1007/978-3-030-96498-6_6.

Compute Performance Outpaces Storage Performance

					A MDZ		
		Titan		Summit		Frontier	Growth Factor
Peak Performance:	27	Pflop/s	200	Pflop/s	1.6	Eflop/s	~60
FS Throughput:	1	TiByte/s	2.5	TiByte/s	5~10	TiByte/s	5~10
FS Capacity:	27	PiByte	250	PiByte	500~1000	PiByte	18~37

Why does this concern us?

- Heterogeneous data processing pipelines traditionally have large I/O usage
- Scalable alternative: Streaming

Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2022. doi: 10.1007/978-3-030-96498-6_6.

Break through Filesystem Bandwidth with Streaming

Memory-bound simulations reach the I/O system limits at a fraction of full scale

- Summit FS bandwidth (2.5TiByte/s) reached at 512 nodes (~11% of system size)
- Streaming workflows unaffected by filesystem bandwidth, use Infiniband hardware to scale beyond it

Summit: Reproducible Performance via Streaming

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration). Supported by EC through Laserlab-Europe, H2020 EC-GA 871124. Supported by the Consortium for Advanced Modeling of Particles Accelerators (CAMPA), funded by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany's Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.

First Steps

→ head to https://github.com/openPMD/

	Open Standard for Particle-Mesh Data Files								
FIND	A https://www.openPMD.org ☐ axelhuebl@lbl.gov								
📮 Repositorie	es 17 💮 Packages 🔗 Pa	eople 50 A Teams 5 III Projects							
Pinned reposito	pries								
📮 openPMD-	-standard	Given projects	openPMD-viewer						
Open Stands Files	ard for Particle-Mesh Data	Overview on Projects around openPMD	Python visualization tools for openPMD files						
☆ 41 얗 17		☆ 4	🔴 Jupyter Notebook 🛛 🕁 35 🛭 😵 26						
📮 openPMD-	-api	📮 openPMD-visit-plugin	openPMD-example-datasets						
C++ & Python API for Scientific I/O		* Plugin allowing VisIt to read openPMD files	11 HDF5 Example Files						
● C++ ☆ 55 양 30		●C ☆8 ¥3	🔵 Python 🔥 5 😵 1						

...and of course https://openpmd-api.readthedocs.io/