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1 Introduction

Turbulence dispersion is a phenomenon of practical importance in many multiphase
flow systems. It has a strong effect on the distribution of the dispersed phase Espe-
cially in bubbly flows in a vertical pipe, turbulent dispersion of bubbles has a strong ef-
fect on the radial profile of the gas concentration and its development along the stream.
Physically, this phenomenon is a result of interactions between individual particles of
the dispersed phase and the continuous phase turbulence eddies. In a Lagrangian
simulation, a particle-eddy interaction sub-model can be introduced and the effect of
turbulence dispersion is automatically accounted for during particle tracking. Never-
theless, tracking of particle-turbulence interaction is extremely expensive for the small
time steps required. For this reason, the Lagrangian method is restricted to small-scale
dilute flow problems. In contrast, the Eulerian approach based on the continuum mod-
eling of the dispersed phase is more efficient for densely laden flows. In the Eulerian
frame, the effect of turbulence dispersion appears as a turbulent diffusion term in the
scalar transport equations and the so-called turbulent dispersion force in the momen-
tum equations. The further vanishes if the Favré (mass-weighted) averaged velocity is
adopted for the transport equation system. The latter is actually the total account of the
turbulence effect on the interfacial forces. In many cases, only the fluctuating effect of
the drag force is important (Loth, 2001; Behzadi et al., 2001). Therefore, many models
available in the literature (Gosman et al., 1992; Lopez de Bertodano, 1998; Drew, 2001)
only consider the drag contribution except for that of Behzadi et al. (2001). In a recent
work (Burns et al., 2004) we developed the FAD (Favré Averaged Drag) model in the
multi-fluid modeling framework. Applying the double averaging procedure to the drag
force and adopting the Favré averaged velocity, the following expression was obtained
for the turbulent dispersion force

Fp
TD = −Ff

TD = C

(
α

′
fu

′
f

αf
− α′

pu
′
f

αp

)
(1)

where α′ and u
′ represent the fluctuating component of the volume fraction and the

velocity field, respectively. The index f denotes the continuous phase and p the corre-
sponding dispersed phase. We also carried out model validations based on the exper-
imental database of the radial distribution of the gas concentration in fully developed
upward gas-liquid flows in a vertical pipe (Prasser et al., 2003).Good agreements were
observed between the numerical results and the measurement data (Shi et al., 2004;
Frank et al., 2004). Based on the above work, the FAD model has now been imple-
mented as the default model choice in the Eulerian multiphase flow package of the
commercial code CFX5.7.

Nevertheless, the physical meaning of the turbulent dispersion force has not been
made straightforward in the previous derivation in the Eulerian framework. The validity
of the double averaging operation was also not justified. In this work, we provide a
new derivation starting from the two-way coupled Lagrangian formulation to overcome
these two shortcomings. The derivation not only bridges the two approaches, but also
provides a theoretical foundation for applying the FAD model to the Lagrangian solver,
which will significantly increase the computational efficiency. Furthermore, the previous
validations (Shi et al., 2004; Frank et al., 2004) were limited to mono-disperse bubbly
flows with a wall peak of the gas concentration. Here we extend the investigation to
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bubbly flows with a core gas peak, in the transition region between wall peak and
core peak, and in the finely dispersed flow regime using poly-dispersed models. The
intension is to examine the applicability of the FAD model in combination with other
interfacial force closures under various complex flow conditions.

2 A new mathematical derivation

For simplicity, the derivation is shown for a mono-dispersed flow with spherical parti-
cles. Here and in the following text the term particle is referred to as a single unit of the
dispersed phase including solid particles, droplets or bubbles, while the term fluid to
the continuous carrier phase. The following formulation can be applied to Lagrangian
particle tracking,

xn+1
p = xnp + Vn

pδt (2)

Vn+1
p −Vn

p

δt
=

(
3

4

ρf
ρp

CD
dp
|Vp −Vf |

)n
(Vn+1

p −Vn+1
f )

+
1

ρpδV
Fother (3)

where xp and Vp respectively denote the position and the velocity of the particle, δt
the length of the time step, and n, n + 1 the index of the time step. The first term on
the right hand side of eq. (3) corresponds to the drag force per unit particle mass. The
other forces are included in Fother. Other quantities are, ρf and ρp material density of
the continuum and disperse, respectively, CD the drag coefficient, dp and δV the diam-
eter and volume of the particle, and Vf the fluid velocity experienced by the particle.
Except for in a DNS, this velocity needs to be constructed based on the velocity field
Uf obtained in the Eulerian frame and a fluctuating component vf from a particle-eddy
interaction (statistic) model, namely

Vn+1
f =Uf (xn+1

p , t) + vn+1
f (4)

2.1 Ensemble Average in the Eulerian-Lagrangian Frame

The instant local interfacial momentum exchange can be calculated from the ensemble
average of the interfacial forces over each computational grid cell. Considering a com-
putational grid cell with a volume 4V which encloses or intersects n(tj) particles at a
time instant tj of the Lagrangian calculation and assuming that only the drag contribu-
tion is essential, the momentum source per unit volume on the carrier phase is

FD(tj) =
1

4V

n(tj)∑
i=1

3

4
ρf
Ci
D

dp
|Vi

p −Vi
f |(Vi

p −Vi
f )δV (5)

In order to express eq. (10) in terms of the Eulerian variables, we introduce Favre
(mass-weighted) averaged variables for the particle ensemble,

Φ(tj) =

∑n(tj)
i=1 ρp Φiδ V∑n(tj)
i=1 ρp δV

=
1

4V

∑n(tj)
i=1 ΦiδV

αp(tj)
(6)
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where Φi represents the Lagrangian quantity related to the i-th particle while Φ(tj) is a
field variable resulting from the ensemble average, and αp is the volume fraction of the
dispersed phase defined as

αp(tj) =
1

4V

n(tj)∑
i=1

δV =
n(tj) δV

4V (7)

Introducing Up to represent the particle velocity field and utilizing eq. (4), eq. (5)
can be formulated as follows,

FD(tj) = αp(tj)fD(tj) , where

fD(tj) =
3

4
ρf
CD
dp
|Up −Uf |(Up −Uf ) (8)

where the drag coefficient CD is a field variable in the sense of statistics.

2.2 Reynolds Averaging in the Eulerian Frame

The particle-eddy interaction model requires the Lagrangian time step δt to be much
smaller than the characteristic turbulence eddy life time, τe, and the time for a particle
to travel over the mean eddy length (`e), τi = `e/|Up −Uf |. For isotropic turbulent flow,
τe, `e and the turbulence velocity scale ue can be estimated as follows

τe =
`e
ue

= CL
kf
εf

, `e = C3/4
µ

k
3/2
f

εf
, ue =

√
2kf
3

(9)

where kf is the fluid turbulence kinetic energy and εf the corresponding dissipation
rate. Cµ ≈ 0.09 is an empirical constant, which results in CL ≈ 0.20. Nevertheless,
different empirical values were reported or applied in the literature, e.g, 0.27 in Loth
(2001) or about 0.41 in Gosman et al. (1992).

On the other hand, the Eulerian time step is usually larger than τe and τi, and con-
sists of a number of Lagrangian time steps, say TE = 2N δt. Therefore, the momentum
source for the Eulerian calculation is equal to the Reynold average of eq. (5) over TE,

FD =
1

4V
1

TE

N∑
j=−N

n(tj)∑
i=1

3

4
ρf
Ci
D

dp
|Vi

p −Vi
f |(Vi

p −Vi
f )δV δt (10)

2.3 The Turbulent Dispersion Force Model

With reference to eq. (8), we could express the Reynolds averaged drag force (10) as
follows

FD = αpfD + α′pf
′
D (11)

where f
′
D is the fluctuating component of fD given in eq. (8) and α′p the fluctuating

component of αp. Thereby, we obtain a mean drag force term αpfD and a turbulent
dispersion force term α′pf

′
D in terms of the Reynolds averaged variables.
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In order to simplify the the multi-fluid model equations it is advantageous to adopt
the Favré averaged velocity as defined below

Ũk =
ρkαkUk

ρkαk
= Uk +

α
′
ku

′
k

αk
(12)

, where k is the phase indicator. Decomposing the instant velocity into various mean
and fluctuating components

Uk = Ũk + u
′′

k = Uk + u
′

k (13)

we have the following relationships

Ũk = Uk − u
′′
k, u

′′

k = u
′

k − u
′′
k, u

′′
k = −α

′
ku

′
k

αk
(14)

Obviously, α′
ku

′′
k = 0. That leads to a continuity equation without a turbulent diffusion

term,

∂

∂t
(ρkαk) +∇ · (ρkαkŨk) = 0 (15)

Applying eqs. (13) and (14) to eq. (11), we can obtain the mean drag in terms of the
Favré averaged velocities and the turbulent dispersion force

FD ≈
3

4
ρf
CD

dp︸ ︷︷ ︸
D

| (Up −Uf ) | αp (Up −Uf )

= Dαp|Up −Uf |
(
Ũp − Ũf

)
︸ ︷︷ ︸

mean drag

+D|Up −Uf |
(
αp
αf

α
′
fu

′
f − α′

pu
′
f

)
︸ ︷︷ ︸

turbulent dispersion force Ff
TD

(16)

It is assumed that |Up −Uf | ≈ |Ũp − Ũf | in Burns et al. (2004). A more accurate
evaluation can be made as follows. Assume that

|Up −Uf | ≈
[
Ur ·Ur + u′

r · u′
r

]1/2
(17)

where φr denotes φp − φf , Ur ·Ur can be expressed as

Ur ·Ur =Ũr · Ũr + (u′′
p − u

′′
f ) ·
[
(u′′

p − u
′′
f )− 2Ũr

]
(18)

The particle fluctuating velocity u
′
p can be related to the fluid counterpart by the follow-

ing expression

u
′

p = u
′

f

(
1− e−1/St

)
(19)
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where St is the Stokes number defined as the ratio of the particle response time τp to
the eddy life time τe,

St = τp/τe , τp =
4

3

ρp
ρf

dp
CD |Up −Uf |

(20)

Then, we have

u
′

r = −u
′

fe
−1/St, u′′

p = −α
′
pu

′
f

αp

(
1− e−1/St

)
(21)

In addition, we have u′
r · u′

r = 2kfe
−2/St, where kf = 1/2u

′
f · u

′
f is the turbulent kinetic

energy of the fluid. Adopting the eddy diffusivity hypothesis (EDH),

α
′
ku

′
f = −νf,t

σk
∇αk (22)

where σk is the turbulent Schmidt number of phase k to be determined empirically and
reported to be 0.72 for air-water flow (Moraga et al., 2003), we have

u
′′
f =

νf,t
σf αf

∇αf , u′′
p =

νf,t
σp αp

∇αp
(
1− e−1/St

)
(23)

With reference the above expressions, the turbulent dispersion force on the dispersed
phase, which is opposite to the force on the fluid Ff

TD, can be expressed as follows

Fp
TD ≈ −

νf,t
αf

CD|Up −Uf |
(
αf
σp
∇αp −

αp
σf
∇αf

)
(24)

In the case of the two-fluid model, one has αp + αf = 1 and σp = σf . Therefore

Fp
TD ≈ −

3

4
ρf
CD

dp

νf,t
σf αf

|Up −Uf |∇αp (25)

Equations (24) and (25) are equivalent to the model formulations in Burns et al.
(2004) and several other models in the literature (Gosman et al., 1992; Lopez de Berto-
dano, 1998; Drew, 2001), in the limit of dilute flow of spherical particles. Hence we
have derived the FAD model from a new way. Moreover, considering its starting point
this derivation has also provided a theoretical foundation for applying the FAD model
to the Lagrangian solver, which is expected to increase the computational efficiency
significantly.

3 Validation and evaluation

Model validations is based on numerical and experimental investigations of upward
bubbly flows in a vertical pipe. The numerical results are compared with the experi-
mental data for the radial distribution of the gas concentration measured in the fully
developed flow region. Details are described below.
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Fig. 3.1: MTLoop test facility (left) and the selected test cases (right).

3.1 Experimental Set Up and Test Case Definitions

The experiments were carried out on the MTLoop test facility of FZR illustrated in
Fig. 3.1 (above). The test section is 4 m long and has an inner diameter D = 51.2 mm.
The Loop was operated under atmospheric pressure and a constant temperature of
30 ◦C. Measurements were carried out for stationary flows of various air-water su-
perficial velocity ratios at 10 different cross sections located between L/D = 0.6 and
59.2 from the gas injection using a wire-mesh sensor with 24 × 24 electrodes. Care-
ful measures were taken to ensure axial-symmetry of the macroscopic flow. Details
are described in Prasser et al. (2003). The test cases defined are marked in Fig. 3.1
(below). They covers bubbly flows with a wall, core gas peak, in the transition region
between them, and finely dispersed flows. The cases where the mono-dispersed flow
assumption applies have been reported in Shi et al. (2004); Frank et al. (2004). Here
we present some results for poly-dispersed flows. The experimental data measured at
L/D = 59.2 were chosen for the validation, where the flow is fully developed and the
gas concentration profile is independent of the inlet condition (Shi et al., 2004).

3.2 Numerical Settings

The numerical simulation was based on the CFX multi-fluid model using the User-
Fortran implementation of the FAD model in the commercial CFD package CFX-5.6 (Shi
et al., 2004) and also the formally released implementation in CFX-5.7. Both the liquid
and the gas phase were assumed to be incompressible. Adopting the eddy viscos-
ity hypothesis, the Reynolds averaged governing equations for mass and momentum
transport can be written as follows:

∂

∂t
(αkρk) +∇ · (αkρkUk) =0 (26)

∂

∂t
(αkρkUk) +∇ · (αkρkUkUk) =− αk∇P −∇ ·

[
αkµk,eff

(
∇Uk +∇TUk

)]
+ αkρkgk + Mk

(27)
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where k is the phase indicator, α the volume fraction, U the velocity, P the pressure
shared by both phases, µk,eff the effective dynamic viscosity consisting of the mate-
rial (µk) and turbulence eddy (µk,t) contributions, g the gravity acceleration, and M the
interfacial forces including the drag (FD), lift (FL), wall foce (FW) and turbulence dis-
persion force (FTD). The following models were appied for the interfacial forces: the
Grace model (Grace and Weber, 1982) for the drag force, the Tomiyama correlation for
the lift and wall lubrication force (Tomiyama et al., 1995; Tomiyama, 1998), and the FAD
model for the turbulence dispersion force. The Tomiyama lift force model is as follows:

Fg
L = −CLαgρ`(Ug −U`)×∇×U` (28)

where CL is the lift coefficient defined by

CL =


min[0.288 tanh(0.121Rep), f(Eod)], Eod < 4

f(Eod) = 0.00105Eo3
d − 0.0159Eo2

d − 0.0204Eod + 0.474, 4 ≤ Eod ≤ 10.7

−0.29, Eod > 10.7

(29)

Here Eod is the Eötvös number based on the long axis dH of a deformable bubble, i.e.

Eod =
(ρ` − ρg) geff d2

H

σ
, with dH = dp(1 + 0.163Eo0.757)1/3 and Eo =

(ρ` − ρg) geff d2
p

σ
(30)

And the wall force model by Tomiyama (1998) is

Fg
W = −CWαgρ`|Ur − (Ur · nw)nw|2

dp
2

[
1

y2
w

− 1

(D − yw)2

]
nw (31)

with a coefficient as a function of the Eötvös number,

CW =

{
exp(−0.933Eo+ 0.179) if 1 ≤ Eo ≤ 5,

min(0.0059905Eo− 0.0186865, 0.179) if Eo > 5
(32)

The added mass force was neglected for the stationary fully developed flow consid-
ered here. Detailed validation of the above non-drag force models for mono-dispersed
bubbly flows has been reported by Shi et al. (2004).

The bubbles were classified into several size classes and each was treated as a
continuum fluid. According to eq. (29), the lift force on a bubble changes the sign when
the Eötvös number Eo exceeds a critical value about 10.7 for the current air-water
system under atmospheric pressure and the ambient temperature, corresponding to a
critical diameter about 5.8 mm. Hence bubbles over this critical size were separated
from those smaller. The computational input are specified in Table 3.1. In a previous
work (Shi et al., 2004), we found the k − ω based Shear Stress Transport (SST) tur-
bulence model (Menter, 1994) to yield superior predictions to the k − ε model. Hence
the SST model was applied to the liquid phase turbulence in the present study. Particle
induced turbulence was accounted for by using the enhanced eddy viscosity model
of Sato and Sekoguchi (1975) and Sato et al. (1981), which which adds a bubble in-
duced eddy viscosity to the fluid phase turbulence

µt,b = Cµαgρ`dp|Ug −U`| (33)
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Tab. 3.1: Test case definitions, U`, Ug–superficial velocity, dp–diameter [mm], VF–gas
volume fraction.

Index U` Ug Air Air 1 Air 2 Air 3
[m/s] [m/s] VF[%] dp VF[%] dp VF[%] dp VF[%]

070 0.161 0.0368 22.86 4.8 12.20 7.0 10.66
071 0.255 0.0368 14.43 4.8 11.27 6.6 3.16
083 0.405 0.0574 12.76 3.7 1.00 5.0 8.86 6.7 2.90
084 0.641 0.0574 8.95 4.6 8.24 6.4 0.71
107 1.017 0.140 13.77 5.1 9.47 6.8 4.30
110 4.047 0.140 3.46 2.4 1.71 3.4 1.75

The dispersed phase turbulence was treated by an algebraic model assuming the
kinematic eddy viscosity to be proportional to the value of the continuous phase, i.e.
νt,p = νt,f/σp. Here and also in the FAD model the turbulent Schmidt number σk was
set equal to unity for each phase.

A computational domain consisting of a 60 degree sector of the pipe with the sym-
metry condition on both sector faces was applied in the simulation. A uniform volume
fraction distribution was assumed for both phases at the inlet together with a 1/7-th
power inlet velocity profile Uin = 1.224U0 (1− r∗)1/7, where U0 is the mean velocity and
r∗ = 2r/D the dimensionless radial coordinate. The radial velocity was assumed to be
null. In addition, a medium turbulence intensity (5%) was assigned there. The outlet was
located at 3.3 m away from the inlet, where an averaged static pressure equal to the at-
mospheric pressure P0 was assigned. No-slip condition together with the CFX5 build-in
wall functions for the turbulence models was applied for the liquid at the wall, whereas
a free-slip wall condition was assumed for the gas. The pressure field was initialized
using the expression P = P0 + ρ`|g|(3.3−L). The convergence error, grid dependence
of the numerical results and the inlet condition effect were carefully examined. Details
were reported in Shi et al. (2004).

3.3 Results and Discussion

Some results for bubbly flows with low gas superficial velocities (Ug < 0.06 [m/s]) are
presented in Fig. 3.2. The computational results for the radial profile of the air volume
fraction at the cross section chosen for validation are compared with the corresponding
measurement data. The numerical results for each dispersed phase are also plotted for
reference. The volume fraction is normalized by the mean value over the cross section
as defined below.

α∗g =
αg
αg,0

, with αg,0 = 2

∫ 1

0

αg(r
∗) r∗dr∗ (34)

These cases cover a wide range of complex flow conditions, namely with a core gas
peak (070), a wall gas peak (084), and in transition region (071, 083). Good agree-
ments between computation and measurement can be observed. Similar trends are
observed for the other test cases with a wall gas peak (not shown here). This confirms
the applicability of the FAD turbulent dispersion force model in combination with the
other non-drag force models to bubbly flows under these conditions. In addition, due
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Fig. 3.2: Comparison of the numerical results and measurement data for the radial
profile of the gas volume fraction at L/D = 59.2.

to the Tomiyama lift force model (Tomiyama, 1998), a core gas peak was predicted for
the dispersed phase with a bubble diameter larger than 5.8 mm and a wall peak for the
smaller bubbles. This is consistent with experimental observations.

It is interesting to examine the behavior of various non-drag forces. The radial distri-
butions of these forces from the computation are displayed in Fig. 3.3 for both dispersed
phases of the case 070. The results show that the wall force is limited to the near-wall
region. Due to the high gradient in the volume fraction of Air1 occurring in the wall peak
region, the turbulent dispersion force there has a high magnitude and is the important
force component to balance the wall force. Beyond the wall proximity, the balance be-
tween the lift and the turbulent dispersion force determines the radial distribution of the
gas volume fraction in a fully developed flow.

In Fig. 3.4 we also present two examples where agreements between computation
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Fig. 3.3: Radial distribution of non-drag forces, FZR070.
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Fig. 3.4: Two examples of unsatisfactory agreements between computation and mea-
surements; radial distribution of the gas volume fraction at L/D = 59.2.

and measurements are unsatisfactory, namely 107 (transition region) with a larger gas
superficial velocity Ug = 0.140 [m/s], and 110 (finely dispersed flow). Considering that
the turbulent dispersion force model is the only one among the non-drag force mod-
els being physically well founded and mathematically rigorously derived, the problem
should be due to the lift or wall force model. They seem to cease to be valid under
these flow conditions. In the present work, we focus on the turbulent dispersion force
model and leave the uncertainties in the other non-drag forces to be clarified in the
future investigation.

With reference to eqs. (24) and (25), the turbulent dispersion force is a function
of the drag coefficient CD and the slip velocity |Ũp − Ũf |, which again depends on
CD. Hence it is important to examine the influence of the drag closure model on the
numerical results. For that purpose, some calculations were repeated by applying the
drag model of Ishii and Zuber (1979). The comparison of the corresponding results with
those obtained based on the Grace model (Grace and Weber, 1982) are displayed in
Fig. 3.5 for the test case 070 and in Fig. 3.6 for the case 110, respectively. In case 070,
some small differences in the drag coefficient CD and in the slip velocity were predicted
due to different drag models. Consequently, the same trend can be expected for the
turbulent dispersion force. This is shown by the results for the turbulent dispersion
force coefficient CTD. The definition (35) is based on eq. (24), namely under the two-
fluid model assumption. However, this is a good approximation to the true value and is
suitable for the evaluation.

CTD ≈
3

4
ρf
CD
dp

νf,t
σf
|Ũp − Ũf |, (35)

The differences in the volume fraction are discernible for each bubble group, but is
insignificant. In the latter case (110), the results almost show no drag model effect.
Hence, these results allow us to conclude that the influence of the drag model on
the turbulence dispersion and on the numerical results is insignificant. In addition, it
is interesting to note the larger slip velocities observed for the smaller bubbles in the
case 110 (dp = 2.4, 3.4mm) than for those larger ones in the case 070 (dp = 4.8,
7.0mm). These results are self consistent considering the lower CD obtained for the
smaller bubbles in the case 110. This observation acn be understood with reference
to Grace and Weber (1982) for a diagram of the terminal velocity as a function of the
bubble diameter, which indicates a local velocity peak at dp ≈ 2 mm for ellipsoidal air
bubbles in pure water as in the present study. The results also show that the turbulence
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Fig. 3.5: Radial profile of the drag coefficient CD, the slip velocity |Ũp−Ũf |, the turbulent
dispersion force coefficient CTD and the volume fractions α∗g based on different drag
models (Grace and Weber, 1982; Ishii and Zuber, 1979), FZR070.

d= 3.4mm, Ishii&Zuber dag law
d= 3.4mm, Grace drag law
d= 2.4mm, Ishii&Zuber dag law
d= 2.4mm, Grace drag law

r∗

C
D

10.90.80.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0
d= 3.4mm, Ishii&Zuber dag law
d= 3.4mm, Grace drag law
d= 2.4mm, Ishii&Zuber dag law
d= 2.4mm, Grace drag law

r∗

|Ũ
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dispersion is much stronger in the case 110. This is due to the higher turbulent eddy
viscosity νf,t corresponding to the higher Reynolds number of the liquid flow in this
case. Also, the bubble diameter is much smaller in the finely dispersed flow regime.

4 Conclusion

A new mathematical derivation is presented for the turbulent dispersion force model
for Eulerian multiphase flows. We started from the Lagrangian approach and explained
the physics in a straightforward way. This derivation also provides a theoretical foun-
dation for applying this model to the Lagrangian solver, which will significantly increase
the computational efficiency. Furthermore, we have carried out extensive model eval-
uations by numerical and experimental investigations of bubbly flows in a vertical pipe
under various flow conditions. Poly-dispersed models were applied in the computa-
tions. The results indicate that the FAD model in combination of other interfacial force
models applied in the numerical simulation is applicable to bubbly flows both with a
wall and a core gas peak and to flows in the transition region with a low gas superficial
velocity. Unsatisfactory agreements between simulation and measurements were ob-
served in the finely dispersed flow regime and in the transition region with a high gas
superficial velocity. Nevertheless, it seems that this is due to the uncertainties in the lift
and wall force models. The results also show that the bubble size and the liquid flow
Reynolds number have a strong effect on the turbulent dispersion, as is indicated in the
model derivation. The influence of the drag law on the turbulent dispersion force and
also on the numerical results was found to be insignificant.
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