Cost effective production of siderophores by genetic manipulation for metal recovery

Shalini Singh^{a,b}, Katrin Pollmann^a, Michael Schlömann^b, Rohan Jain^a

a : Department of Biotechnology, Helmholtz-Institute Frieberg für Ressourcentechnologie (HIF), Helmholtz Zentrum Dresden Rossendorf (HZDR), Dresden, Germany b : Institut für Biowissenschaften, TU Bergakademie Freiberg, Freiberg. Germany

Introduction Siderophore secretion by bacteria for capturing Fe³⁺ Limitation of Siderophores in Application Nature Research Production Value Commercialization

CONCLUSION

- Streptomyces pilosus produces two siderophore DFOB and DFOE, where DFOB is dominantly produced in both complex media like Yeast Malt extract and simple media like
 Minimal media
- Siderophore is produced in five times more in complex media as compared to minimal media. Phosphate plays important role in production of Desferrioxamines.
- The inoculum with homogenous culture produces siderophore in relatively lesser (five times lesser) quantity than the inoculum with clusters.
- The morphology difference in both kind of inoculum and cultures indicates indirect relation between morphology of *Streptomyces pilosus* and Desferrioxamine production.

HIF · Department of Biotechnology

Ms. Shalini Singh · Shalini.singh@hzdr.de · www.hzdr.de

