
www.casus.science

The alpaka SYCL back-end
Patatrack Students Meeting // 18 October 2022

Jan Stephan – The alpaka SYCL back-end | 2

(Short) Introduction to alpaka

Jan Stephan – The alpaka SYCL back-end | 3

Introduction to alpaka

alpaka – Abstraction Library for Parallel Kernel Acceleration

alpaka is…

● A parallel programming library: Accelerate your code by exploiting your hardware‘s parallelism!

● An abstraction library: Create portable code that runs on CPUs and GPUs!

● Free & open-source software

Jan Stephan – The alpaka SYCL back-end | 4

Introduction to alpaka

Programming with alpaka

● C++ only!

● Header-only library: No additional runtime dependency introduced

● Modern library: alpaka is written entirely in C++17

● Supports a wide range of modern C++ compilers (g++, clang++, Apple LLVM, MS Visual Studio)

● Portable across operating systems: Linux, macOS, Windows are supported

Jan Stephan – The alpaka SYCL back-end | 5

Introduction to alpaka

alpaka‘s purpose

Without alpaka

● Multiple hardware types commonly used (CPUs, GPUs, …)

● Increasingly heterogeneous hardware configurations available

● Platforms not inter-operable parallel programs not easily portable→

alpaka: one API to rule them all

● Abstraction (not hiding!) of the underlying hardware & software platforms

● Code needs only minor adjustments to support different accelerators

User

CPU

alpaka

GPU

Jan Stephan – The alpaka SYCL back-end | 6

Portable Heterogeneous Parallel Programming

alpaka enables portability!

● Idea: Write algorithms once…
● … independently of target architecture
● … independently of available programming models

● Decision on target platform made during compilation
● Choosing another platform just requires another compilation pass

● alpaka defines an abstract programming model

● alpaka utilizes C++17 to support many architectures
● CUDA, HIP, OpenMP, TBB, …

User

CPU

alpaka

GPU

Jan Stephan – The alpaka SYCL back-end | 7

The SYCL back-end

Jan Stephan – The alpaka SYCL back-end | 8

Initial Goals

● Started as student project (diploma thesis) in late 2019

● Main interest: alpaka-based programs for FPGAs

● Available vendor at Helmholtz-Zentrum Dresden-Rossendorf: Xilinx

Jan Stephan – The alpaka SYCL back-end | 9

Initial Goals

● Started as student project (diploma thesis) in late 2019

● Main interest: alpaka-based programs for FPGAs

● Available vendor at Helmholtz-Zentrum Dresden-Rossendorf: Xilinx

● Implement a prototype for a SYCL back-end

● Support the Xilinx SYCL implementation

Jan Stephan – The alpaka SYCL back-end | 10

Initial Goals

● Started as student project (diploma thesis) in late 2019

● Main interest: alpaka-based programs for FPGAs

● Available vendor at Helmholtz-Zentrum Dresden-Rossendorf: Xilinx

● Implement a prototype for a SYCL back-end

● Support the Xilinx SYCL implementation

● Experimental SYCL back-end merged in February 2022

● Supports Intel oneAPI and AMD/Xilinx SYCL implementations

Jan Stephan – The alpaka SYCL back-end | 11

Current State

Missing Features
● No pointer support in kernels

Jan Stephan – The alpaka SYCL back-end | 12

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

Jan Stephan – The alpaka SYCL back-end | 13

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

● No RNG library support

Jan Stephan – The alpaka SYCL back-end | 14

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

● No RNG library support

● Not CI tested

Jan Stephan – The alpaka SYCL back-end | 15

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

● No RNG library support

● Not CI tested

● No special codepaths for FPGAs

Jan Stephan – The alpaka SYCL back-end | 16

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

● No RNG library support

● Not CI tested

● No special codepaths for FPGAs

● FPGA images are not being reused

Jan Stephan – The alpaka SYCL back-end | 17

Current State

Missing Features
● No pointer support in kernels

● Users must use alpaka::experimental::accessor instead

● No RNG library support

● Not CI tested

● No special codepaths for FPGAs

● FPGA images are not being reused

● Some smaller functionality is missing
● Lack of functionality in SYCL

Jan Stephan – The alpaka SYCL back-end | 18

Current State

Active Work
● Add pointer support for Intel oneAPI targets

● Require alpaka::experimetal::accessors only for AMD/Xilinx targets

Short-term Goal
● Add CI support for Intel oneAPI

Long-term Goals
● Improve FPGA support / performance

● Make use of vendor-specific SYCL extensions

Jan Stephan – The alpaka SYCL back-end | 19

Help Wanted

Contributors welcome!
● Find us on https://github.com/alpaka-group/alpaka

● Go to the issue tracker and filter for the “Backend:SYCL” flair

https://github.com/alpaka-group/alpaka

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

