Monitoring Pancreatic α -Amylase of Postoperative **Patients with Droplet-Based Microfluidics**

OR CHEMISTRY AND LIFE SCIENCES

<u>Xinne Zhao¹</u>, Fiona R. Kolbinger², Marius Distler², Jürgen Weitz², Denys Makarov¹, Michael Bachmann¹, and Larysa Baraban¹ ¹ Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany ² TUD Dresden University of Technology, Germany

HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

Abstract Reference No: 0134

Introduction

- Postoperative complications after pancreatic surgery are frequent and can be life-threatening. Current clinical strategies quantify α -amylase activity intermittently, resulting in delayed treatment.
- The portable droplet-based microfluidic device is capable of realtime monitoring α -amylase activity.
- This strategy significantly improves the determination time (3 min) and

detection limit (7 nmol/s-L) and reduces sample and reagent

requirement (**10 µL)**.

Microfluidic droplet-based device

Methods	Gold Standard in Clinic	Microplate	Microfluidics
Detection method	Colorimetric	Fluorometric	Fluorometric
Sensitivity	> 6 U/L	> 0.72 U/L	LOD 0.42 U/L
Range	4.8 U/L - 1200 U/L	2 U/L - 50 U/L	0.5 U/L - 3 U/L
Detection time	1 h	20 min	1-3 min
Reagent requirement	1 kit for 1 assay (1-5 mL)	1 kit for 1 assay (1-5 mL)	1 kit for 50 assay (10 µL)
Sample requirement	1-5 mL (96 replicates, one 96-well plate)	1-5 mL (96 replicates, one 96-well plate)	10 µL (100 replicates, 100 droplets)
Real-time monitoring	No	No	Yes

Detection Principle

- Pancreatic drain liquid samples are collected and injected to the microfluidic system by switching valves
- Reagent, amylase, and buffer are mixed as an aqueous phase through T-junctions.
- Droplets formed at cross-junction
 - after meeting HFE oil and mineral oil (spacer).
- Amylase reacts with the reagent, resulting in cleavage products emitting fluorescence.

Calibration Curve & Patient Sample Test

Continuous monitoring

Conclusion

- Calibration curve determined at **3 min** with LoD of **7 nmol/s-L** \bullet
- Results of the clinical and microfluidic methods have a great linear \bullet correlation in a total of **32 patient samples**.
- Droplet-based real-time detection of amylase offers improvement in LoD, detection time, and reagent requirements.
- All 32 samples results matched well with clinical measurements
- Rapid response of fluorescence intensity to sample concentration fluctuations indicates the method can be implemented to continuously monitor drain α -amylase activity of patients.

Outlook

X. Zhao *et. al.*, Portable droplet-based real-time monitoring of pancreatic α -amylase in postoperative patients, submitted

- We expect this concept could be transferred to further relevant analytes, setting new standards of diagnostics, monitoring, and surgical care.
- We envision the potential utility of our technique in other clinical scenarios, e.g., detecting "anastomotic leakage in colorectal surgery" or "bile leaks in liver • surgery" where our droplet-based analysis technique could be explored.

Department of Nano-Microsystems for Life Science Department Head: Dr. Larysa Baraban (I.baraban@hzdr.de) Xinne Zhao (x.zhao@hzdr.de) www.hzdr.de

