

The Open Standard for Particle-Mesh Data

Franz Poeschel (CASUS/HZDR) 9th Annual MT Meeting @KIT Karlsruhe Data Management and Analysis Session

On behalf of the openPMD Community incl. content from Axel Huebl (LBNL), Lipeng Wan (GSU), Remi Lehe (LBNL) Norbert Podhorszki (ORNL), Junmin Gu (LBNL), Maxence Thévenet (DESY), Erik Schnetter (PITP),

Image: PIC simulation computed by PIConGPU 2nd prize Helmholtz Imaging Best Scientific Image Contest 2022

Heterogeneity through Standardized Data

Scientific workflows are complex:

- need to span different time and length scales
- scientific modeling requires multiple codes,
 collaborating in a data processing pipeline
- bridge heterogeneous models by standardization of data

Axel Huebl et al. "openPMD: A meta data standard for particle and mesh based data". 2015. doi: 10.5281/zenodo.591699. url: https://openPMD.org Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2021. doi:10.1007/978-3-030-96498-6_6

Heterogeneity through Standardized Data

Visualization Particle Booster 1 Particle Source 1 Particle Injection Particle Booster 2 Aggregation Particle Reduction Particle Source 2 Particle Booster 3 **Optional:** Avoid File I/O via Streaming Persistent Storage openPMD standard open for particle-mesh data \rightarrow as communication layer

Scientific workflows are complex:

Axel Huebl et al. "openPMD: A meta data standard for particle and mesh based data". 2015. doi: 10.5281/zenodo.591699. url: https://openPMD.org Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2021. doi:10.1007/978-3-030-96498-6_6

What is particle-mesh data?

[0:3] particles [3:6] particles [6:10] particles

Mesh

n-dimensional space, divided into discrete cells

- e.g. temperature: store a scalar number per cell
- e.g. electrical fields: store a 3D vector per cell

Particles

A list of discrete objects, located on the mesh

- for each particle: list its position
- optionally: list charge, weight, ...

openPMD hierarchy

- **Structure** for series & snapshots encoded as either:
 - **files** (one file per iteration)
 - **groups** (reuse files)
 - **variables** (reuse files & variables in ADIOS2)
- Records for **physical observables** constants, mixed precision, complex numbers
- Attributes: unit conversion, description, relations, mesh geometry, authors, env. info, ...

Example dataset: HDF5 backend

Sample data created with PIConGPU

simData_000100.h5
- - - - - - - - - -
√ ∏fields
▶ 🛄 B
~ 🔄 E
3 X
Щy
∰ Z
🗱 e_all_chargeDensity
🇱 e_all_energyDensity
🇱 i_all_chargeDensity
🧱 i_all_energyDensity
🕨 🎦 picongpu_idProvider
🕶 🚍 particles
▶ 🔄 e
~ ∰i
📮 charge
amass
🕨 📴 momentum
🕶 💳 particlePatches
- ▶ ⊇ extent
numParticles
articles (1997) and 1997 and 1
▶ 📴 offset
√ → position
X
W V
▶ ≧ positionOffset
weighting
the organisming

Object Attribute Info General Object Info						
	Attribute Creation	ı Order	: Creation	Order NOT Tracked		
Number of attributes = 11						
	Name	Туре	Array Size	Value[50]()		
	axisLabels	String	3	z, y, x		
	dataOrder	String	Scalar	С		
	fieldSmoothing	String	Scalar	none		
	geometry	String	Scalar	cartesian		
	gridGlobalOffset	64-bit	3	0.0, 0.0, 0.0		
	gridSpacing	32-bit	3	1.7416798, 1.7416798, 1.7416798		
	gridUnitSI	64-bit	Scalar	5.3662849982E-8		
	position	32-bit	3	0.0, 0.0, 0.0		
	timeOffset	32-bit	Scalar	0.0		
	unitDimension	64-bit	7	-3.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0		
	unitSI	64-bit	Scalar	338590.78364382515		

Example dataset: ADIOS2 backend

float float float float float float int32_t int32_t int32_t	<pre>/data/50/fields/E/x /data/50/fields/E/y /data/50/fields/E/z /data/50/particles/e/position/x /data/50/particles/e/position/y /data/50/particles/e/position/z /data/50/particles/e/positionOffset/x /data/50/particles/e/positionOffset/y /data/50/particles/e/positionOffset/y /data/50/particles/e/positionOffset/y</pre>	<pre>{128, 128, 128} {128, 128, 128} {128, 128, 128} {50053105} {50053105} {50053105} {50053105} {50053105} {50053105} {50053105} {50053105} {50053105}</pre>
string	/data/50/fields/E/axisLabels	attr = {"z", "y", "x"}
string	/data/50/fields/E/dataOrder	attr = "C" Attributes
string	/data/50/fields/E/fieldSmoothing	attr = "none" for self-description
string	/data/50/fields/E/geometry	attr = "cartesian"
double	/data/50/fields/E/gridGlobalOffset	attr = $\{0, 0, 0\}$
float	/data/50/fields/E/gridSpacing	attr = {1.74168, 1.74168, 1.74168}
double	/data/50/fields/E/gridUnitSI	attr = 5.36628e-08
float	/data/50/fields/E/timeOffset	attr = 0
double	/data/50/fields/E/unitDimension	attr = {1, 1, -3, -1, 0, 0, 0}
float	/data/50/fields/E/x/position	attr = {0.5, 0, 0}
double	/data/50/fields/E/x/unitSI	attr = 9.5224e+12
float	/data/50/fields/E/y/position	attr = $\{0, 0.5, 0\}$
double	/data/50/fields/E/y/unitSI	attr = 9.5224e+12
float	/data/50/fields/E/z/position	attr = $\{0, 0, 0.5\}$
double	/data/50/fields/E/z/unitSI	attr = 9.5224e+12

Findable: Standardized metadata to identify the data producer

string	/author	attr	= "franz"
string	/software	attr	= "PIConGPU"
string	/softwareVersion	attr	= "0.5.0-dev"

"The FAIR Guiding Principles for scientific data management and stewardship" (Mark D. Wilkinson et al.)

openPMD – a FAIR standard

Interoperable:

Data exchange spans applications, platforms and teams

Reusable:

Rich and standardized description for physical quantities

Name	Value
axisLabels	[b'z' b'y' b'x']
dataOrder	Ь'С'
fieldSmoothing	b'none'
geometry	b'cartesian'
gridGlobalOffset	[0. 0. 0.]
gridSpacing	[4.252342 1.0630856 4.252342]
gridUnitSI	4.1671151662e-08
position	[0. 0. 0.]
timeOffset	0.0
unitDimension	[-3. 0. 1. 1. 0. 0. 0.]
unitSl	15399437.98944343

"The FAIR Guiding Principles for scientific data management and stewardship" (Mark D. Wilkinson et al.)

Ecosystem & Community

openPMD powered Projects and Users

Documents:

 openPMD standard (1.0.0, 1.0.1, 1.1.0) the underlying file markup and definition A Huebl et al., doi: 10.5281/zenodo.33624

Scientific Simulations:

- PIConGPU (HZDR) electro-dynamic particle-in-cell code maintainers: R Widera, S Bastrakov, A Debus et al.
- WarpX (LBNL, LLNL) electro-dynamic/static particle-in-cell code maintainers: JL Vay, D Grote, R Lehe, A Huebl et al.
- **FBPIC** (LBNL, DESY) *spectral, fourier-bessel particle-in-cell code* maintainers: R Lehe, M Kirchen et al.
- **SimEx Platform** (EUCALL, European XFEL) *simulation of advanced photon experiments* maintainer: C Fortmann-Grote

Language Binding:

• **openPMD-api** (HZDR, CASUS, LBNL) *reference API for openPMD data handling* maintainers: A Huebl, J Gu, F Poeschel et al.

PIConGPU+ISAAC on Summit 2nd prize Helmholtz Imaging Best Scientific Image Contest 2022 Image credit: Felix Meyer/HZDR

WarpX PI: Jean-Luc Vay/LBNL

see also: https://github.com/openPMD/openPMD-projects

openPMD powered Projects and Users

Documents:

• openPMD standard (1.0.0, 1.0.1, 1.1.0) the underlying file markup and definition A Huebl et al., doi: 10.5281/zenodo.33624

Language Binding:

openPMD-api (HZDR, CASUS, LBNL)

reference API for openPMD data handling

maintainers: A Huebl, J Gu, F Poeschel et al.

Analysis and Visualization

openPMD/openPMD-viewer

15 / 34

Analysis and Visualization

Reference Implementation in C++ & Bindings: Python and Julia

Online Documentation: openpmd-api.readthedocs.io

INSTALLATION	openPMD-api as follows:					
Installation	017	Dether				
Changelog	C++17	Python				
Upgrade Guide	<pre>#include <openpmd openpmd.hpp=""></openpmd></pre>	<pre>import openpmd_api as io</pre>				
	// example: data handling	# example: data bandling				
Concepts	<pre>#include <numeric> // std::iota #include <vector> // std::vector</vector></numeric></pre>	import numpy as np				
First Write	namespace in $=$ openPMD.					
Include / Import						
3 Open	0					
∃ Iteration	Open					
B Attributes	Write into a new openPMD series in <u>my0utput/data_<00N>.h5</u> . Further file formats than <u>.h5</u> (HDF5) are supported: <u>.bp</u> (ADIOS1/ADIOS2) or <u>.1son</u> (JSON).					
Data						
Record						
Units	<pre>auto series = io::Series(</pre>	series = io.Series(
Register Chunk	<pre>"myOutput/data_%05T.h5", io::Access::CREATE);</pre>	<pre>"myOutput/data_%05T.h5", io.Access.create)</pre>				
	LOT HOUGOUT ONERTE) ,					

Open-Source Development & Tests: github.com/openPMD/openPMD-api

 	All checks have passed 25 successful checks	
~	🗑 🎽 macOS / appleclang12_py_mpi_h5_ad2 (pull_request) Successful in 17m	Details
~	🗑 🔣 Windows / MSVC w/o MPI (pull_request) Successful in 6m	Details
~	Intel / ICC C++ only (pull_request) Successful in 7m	Details
~	Tooling / Clang ASAN UBSAN (pull_request) Successful in 58m	Details
~	Nvidia / CTK@11.2 (pull_request) Successful in 4m	Details
~	C Linux / clang8 py38 mpich h5 ad1 ad2 newLayout (pull request) Successful in 29m	Details

Rapid and easy installation on any platform:

python3 -m pip install openpmd-api

conda install -c conda-forge openpmd-api

brew tap openpmd/openpmd brew install openpmd-api

spack install openpmd-api

cmake -S . -B build
cmake --build build
 --target install

module load openpmd-api

A Huebl, F Poeschel, F Koller, J Gu, et al.

"openPMD-api: C++ & Python API for Scientific I/O with openPMD" (2018) DOI:10.14278/rodare.27

openPMD-api – open stack for scientific I/O


```
import openpmd_api as io
# pick backend by filename extension
series = io.Series("simOutput.h5", io.Access.create)
series = io.Series("simOutput.bp", io.Access.create)
series = io.Series("simOutput.sst", io.Access.create)
series = io.Series("simOutput.json", io.Access.create)
```

- MPI support at all levels
- Implemented in C++17
- Bindings in C++17, Python and (dev version only) Julia
- Specify backend at runtime: I/O library, transport, compression, streaming, aggregation, ...

Community

www.openPMD.org

The **openPMD standard** is co-authored by <u>Axel Huebl</u>, <u>Rémi Lehe</u>, Jean-Luc Vay, David P. Grote, Ivo F. Sbalzarini, Stephan Kuschel, David Sagan, Frédéric Pérez, Fabian Koller, <u>Franz Poeschel</u>, Carsten Fortmann-Grote, Ángel Ferran Pousa, Juncheng E, <u>Maxence Thévenet</u>, and Michael Bussmann.

The authors are thankful for the **community contributions** to libraries, software ecosystem, user support, review and integrations. Particularly, thank you to Yaser Afshar, Lígia Diana Amorim, James Amundson, Weiming An, Igor Andriyash, Ksenia Bastrakova, Jean Luca Bez, Richard Briggs, Heiko Burau, Jong Choi, Ray Donnelly, Dmitry Ganyushin, Marco Garten, Lixin Ge, Berk Geveci, Daniel Grassinger, Alexander Grund, Junmin Gu, Marc W. Guetg, Ulrik Günther, Sören Jalas, Manuel Kirchen, John Kirkham, Scott Klasky, Noah Klemm, Fabian Koller, Mathieu Lobet, Christopher Mayes, Ritiek Malhotra, Paweł Ordyna, Richard Pausch, Norbert Podhorszki, David Pugmire, Felix Schmitt, <u>Erik Schnetter</u>, Dominik Stańczak, Klaus Steiniger, Michael Sippel, Frank Tsung, Lipeng Wan, René Widera, and Erik Zenker!

Ongoing projects

focus on simulations

background: laser-plasma physics

NeXus

focus on experiments

background: photon and neutron physics

openPMD

focus on simulations

background: laser-plasma physics

NeXus

focus on experiments

background: photon and neutron physics

and in between?

openPMD	HELPMI	NeXus
focus on simulations	\rightarrow focus on experiments \rightarrow	focus on experiments
background: laser-plasma physics	background: ← laser-plasma physics ←	background: photon and neutron physics
open DRACD	Helmholtz Laser Plasma Metadata	NeXus

openPMD

CASUS CENTER FOR ADVANCED SYSTEMS UNDERSTANDING

NeXus

HELPMI

23 / 34

HELPMI – a Helmholtz Metadata Collaboration project

- Primary goal: Develop a user-driven
 NeXus extension proposal for laser-plasma experiments
- Develop a glossary for LPA experiment data and infer the ontology for automated validation and processing
- openPMD is an existing standard for laser-plasma *simulations:*
 - aim for interoperability between both standards
 - example: openPMD "view" into NeXus data to compare experimental and simulation data

& project observers at LBNL, LMU, ELI and STFC

HELPMI – a Helmholtz Metadata Collaboration project

- Primary goal: Develop a user-driven
 NeXus extension proposal for laser-plasma experiments
- Develop a glossary for LPA experiment data and infer the ontology for automated validation and processing
- openPMD is an existing standard for laser-plasma *simulations:*
 - aim for interoperability between both standards
 - example: openPMD "view" into NeXus data to compare experimental and simulation data

Contact and time frame

- Project from April 2023 to April 2025
- Upcoming: Helpmi Workshop at GSI (Darmstadt) Nov 13-14
- helpmi@hzdr.de

& project observers at

LBNL, LMU,

ELI and STFC

I/O Performance lags behind Compute Performance

					CA KRIDCE Nati ral Labor tory C E VERGI C C C C C C C C C C C C C C C C C C C		
		Titan		Summit		Frontier	Growth Factor
Peak Performance:	27	Pflop/s	200	Pflop/s	1.6	Eflop/s	~60
FS Throughput:	1	TiByte/s	2.5	TiByte/s	5~10	TiByte/s	5~10
FS Capacity:	27	PiByte	250	PiByte	500~1000	PiByte	18~37

→ **parallel bandwidth** insufficient for HPC at full scale

→ **filesystem capacity** insufficient for HPC at full scale

Same trend in **experiments**?

→ Increasing camera resolutions and data rates

Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2022. doi: 10.1007/978-3-030-96498-6_6.

Streaming: Don't touch the Filesystem at all

- Data processing pipelines and increasingly experiments setups have large I/O usage
- Scalable alternative: Streaming
 e.g. via Infiniband (on HPC systems)
 or wide area networks (in lab settings)

Challenge:

Compute a balanced, aligned, local mapping between two applications that remains useful in the problem domain

Franz Poeschel et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2". 2022. doi: 10.1007/978-3-030-96498-6_6.

Break through Filesystem Bandwidth with Streaming

Memory-bound simulations reach the I/O system limits at a fraction of full scale

- Summit FS bandwidth (2.5TiByte/s) reached at 512 nodes (~11% of system size)
- Streaming workflows unaffected by filesystem bandwidth, use Infiniband hardware to scale beyond it

Fast Compressors Needed: DOI:10.1007/978-3-319-67630-2_2 by A Huebl et al., ISC DRBSD-1 (2017)

threads: $\bigcirc 1 \bigcirc 2 \bigcirc 4 \bigcirc 8 \bigcirc 16$ 1.00Titan 0.75

 \bigcirc lz4hc ∇ zfp \bigcirc zstd \square zlib \diamondsuit lz4 \bigcirc blosclz \triangleright snappy

compression ratio $f_{\rm C}$ noshuffle 0.50 -0.25- break-even 0.00 10^{-2} 10^{-1} 10^{0} compression throughput $\mathcal{T}_{\rm C}$ [$T_{\rm memcpv}$]

DOI:10.1007/978-3-319-67630-2 2

by A Huebl et al., ISC DRBSD-1 (2017)

Fast Compressors Needed:

 $\frac{\mathcal{T}_{\mathsf{R}} \times (1 - f_{\mathsf{R}})}{1 - \mathcal{T}_{\mathsf{R}}} > \mathcal{T}_{\mathsf{out}}$

Streaming Data Pipelines:

DOI:10.1007/978-3-030-96498-6 6

by F Poeschel, A Huebl et al., SMC21 (2022)

43253722

Fast Compressors Needed: DOI:10.1007/978-3-319-67630-2_2 by A Huebl et al., ISC DRBSD-1 (2017) 1 4 16 64 256 1024 4096 6144 Number of nodes

openPMD-api w/ WarpX

WarpX 256³/task - 8 tasks per node - 6 steps - I/O overhead - 70GB-360TB

10000

1000

100

10

GiB/s from overhead

>5.5TB/s FS BW: two-tier lustre w/ highperformance storage & progressive files

Streaming Data Pipelines:

DOI:10.1007/978-3-030-96498-6_6

by F Poeschel, A Huebl et al., SMC21 (2022)

Streaming Data Pipelines: DOI:10.1007/978-3-030-96498-6 6

by F Poeschel, A Huebl et al., SMC21 (2022)

Online Data Layout Reorganization: DOI:10.1109/TPDS.2021.3100784

by L Wan, A Huebl et al., TPDS (2021)

Fast Compressors Needed: DOI:10.1007/978-3-319-67630-2_2 by A Huebl et al., ISC DRBSD-1 (2017)

ADIOS openPMD-api w/ WarpX

>5.5TB/s FS BW: two-tier lustre w/ highperformance storage & progressive files

Impact of decomposition schemes when reading

First Steps

→ head to https://github.com/openPMD/

	openPMD							
PMD	Open Standard for Particle-Mesh Data Files							
	Attps://www.openPMD.org							
Repositories 17 🔗 Packages 🔉 People 50 🙊 Teams 5 🔟 Projects								
Pinned reposito	ories							
 openPMD-standard Open Standard for Particle-Mesh Data Files 		, openPMD-projects	openPMD-viewer					
		Overview on Projects around openPMD	Sector State Python visualization tools for openPMD files					
☆ 41 양 17		☆ 4 약 4	🛑 Jupyter Notebook 🛛 ਨੂੰ 35 😵 26					
📮 openPMD	-api	☐ openPMD-visit-plugin	openPMD-example-datasets					
💾 C++ & Pytho	on API for Scientific I/O	* Plugin allowing VisIt to read openPMD files	1 HDF5 Example Files					
● C++ ☆ 55 양 30		●С ☆8 약3	● Python ☆ 5 약 1					

...and of course https://openpmd-api.readthedocs.io/

https://github.com/openPMD/ https://openpmd-api.readthedocs.io/

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration). Supported by EC through Laserlab-Europe, H2020 EC-GA 871124. Supported by the Consortium for Advanced Modeling of Particles Accelerators (CAMPA), funded by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany's Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. The HElmholtz Laser Plasma Metadata Initiative (HELPMI) project (ZT-I-PF-3-066) was funded by the "Initiative and Networking Fund" of the Helmholtz Association in the framework of the "Helmholtz Metadata Collaboration" project call 2022.

Summary and Outlook

- openPMD is a F.A.I.R. standard for scientific metadata
 - bridge scientific models and domains by common markup language
 - Large **open-source ecosystem**: documentation, example data, validation, scripts, integration via plugins and converters, reference libraries
- Reference **implementation**:
 - Easy to use I/O for scientific data
 - Scalable I/O at the Exascale and Pbyte-scale
 - Scalable from small workstation via parallel in-transport data processing to file-less RDMA workflows
- Outlook
 - Complex data layouts such as **mesh refinement**
 - Bridge towards **experimental data acquisition systems**
 - Transfer HPC solutions to experiments challenges

Picture: LWFA simulation in PIConGPU