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Kurzfassung
Ein auf schnellen Digitizern basierendes Daten-Erfassungs-System, das vor kurzem am
Neutronen-Flugzeit Experiment nELBE am supraleitenden Elektronenbeschleuniger
ELBE des Forschungszentrums Dresden-Rossendorf aufgebaut wurde, wird mit zwei ver-
schiedenen Detektortypen getestet. Zum einen werden die Vorverstärker-Signale eines
hochreinen Germanium Detektors digitalisiert, gespeichert und anschließend verarbeitet.
Um die Energie der detektierten Strahlung mit hoher Genauigkeit zu bestimmen, werden
der Moving Window Deconvolution Algorithmus zur Korrektur des ballistischen Defizits
sowie verschiedene Algorithmen zur Pulsformung verwendet. Die Energieauflösung wird
in einem Experiment mit der γ-Strahlung einer 22Na Quelle bestimmt und mit der En-
ergieauflösung verglichen, die bei analog verarbeiten Signalen erreicht wird. Zum anderen
werden Signale digitalisiert, die von Bariumfluorid- und Plastik-Szintillationsdetektoren
stammen. Von diesen Signalen mit einer Anstiegszeit von nur wenigen Nanosekunden soll
der Zeitpunkt, zu dem die Wechselwirkung der Strahlung mit dem Detektor stattfand, mit
Methoden der digitalen Signalverarbeitung bestimmt werden. Dazu werden verschiedene
Zeit-Bestimmungs-Algorithmen angewendet und anhand von Daten aus einem Experi-
ment an nELBE getestet. Die mit diesen Algorithmen erreichten Zeitauflösungen werden
sowohl untereinander verglichen als auch mit Referenzwerten, die aus analoger Signalver-
arbeitung stammen. Zusätzlich zu diesen Experimenten wurden einige Eigenschaften der
Digitalisierungs-Hardware gemessen und ein Programm für die Analyse gespeicherter,
digitalisierter Signale entwickelt. Die durchgeführten Untersuchungen zeigen, dass das
verwendete 10-bit Digitizer-System nicht die Auflösung eines 14-bit peak-sensing ADC
erreicht, obwohl das ballistische Defizit vollständig korrigiert werden kann. Hingegen
werden bei der Zeit-Bestimmung im sub-ns Bereich bessere Resultate als mit analoger
Signalverarbeitung erreicht.

Abstract
A fast-digitizer data acquisition system recently installed at the neutron time-of-flight
experiment nELBE, which is located at the superconducting electron accelerator ELBE
of Forschungszentrum Dresden-Rossendorf, is tested with two different detector types.
Preamplifier signals from a high-purity germanium detector are digitized, stored and
finally processed. For a precise determination of the energy of the detected radiation, the
moving-window deconvolution algorithm is used to compensate the ballistic deficit and
different shaping algorithms are applied. The energy resolution is determined in an ex-
periment with γ-rays from a 22Na source and is compared to the energy resolution achieved
with analogously processed signals. On the other hand, signals from the photomultipliers
of barium fluoride and plastic scintillation detectors are digitized. These signals have
risetimes of a few nanoseconds only. The moment of interaction of the radiation with
the detector is determined by methods of digital signal processing. Therefore, different
timing algorithms are implemented and tested with data from an experiment at nELBE.
The time resolutions achieved with these algorithms are compared to each other as well
as to reference values coming from analog signal processing. In addition to these experi-
ments, some properties of the digitizing hardware are measured and a program for the
analysis of stored, digitized data is developed. The analysis of the signals shows that the
energy resolution achieved with the 10-bit digitizer system used here is not competitive to
a 14-bit peak-sensing ADC, although the ballistic deficit can be fully corrected. However,
digital methods give better result in sub-ns timing than analog signal processing.
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Chapter 1

Introduction

1.1 Analog and Digital Signal Processing

Signal Processing, no matter whether it is done by digital or by conventional analog
means, is the part of a measurement, in which a raw signal from a detector is modified
in such a way that finally a digitized value of the measured quantity with the best pos-
sible accuracy is obtained. A simplified signal chain in analog signal processing (ASP) is
sketched in figure 1.1. It consists typically of the detector followed by a preamplifier and
a main amplifier. Depending on what is measured, the chain continues with a discrimi-
nator - to produce a logical signal for counting or timing measurements - or, in the case
of pulse height analysis, with dedicated electronics (pile-up rejector, baseline restorer)
and a multi-channel analyzer. Several textbooks [1, 2, 3] deal with this topic and explain
underlying electronics, basic principles and applications in nuclear physics experiments
but also limitations and problems caused by analog pulse processing.

The requirements to a measuring system in nuclear physics are very high and are not
always met by ASP. An ideal measuring system extracts the desired information from all
detected events with highest precision even at high count rates, is stable over time, insen-
sitive to any disturbance, compensates systematic deficits of the detector and is cheap.
The realization of all these issues is sometimes contradictory in itself and underlies gen-
eral limitations. Most of the electronics used is based on semiconductor components,
which change their properties while temperature changes. Every stage of analog pulse
processing may contribute some noise to the signal. An accurate pulse height analysis
can cause significant dead time and is impaired by piled-up pulses at high counting rates.
The detector response to radiation can vary in a nonlinear way. There are lots of other
examples, but nevertheless, since ASP was the first and for a long time only way of pulse
processing, big efforts were made to compensate its drawbacks and over decades ASP was
and still is used very successfully.

Detector - Preamplifier -Main amplifier
���

@@R

Single-channel
analyzer

- Counter

Pile-up rejector,
Baseline restorer

- Multi-channel
analyzer

Figure 1.1: Simplified signal chain in analog signal processing for pulse counting
(upper branch) or pulse height spectrometry (lower branch).
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In digital signal processing (DSP) fast digitizers are used to convert the analog pream-
plifier signals into digital signals. Then the process of amplifying and shaping is done
by digital means, e.g. by filters, shapers or even more complex algorithms for specific
problems. Noise characteristics of analog shaping circuits using components which are
susceptible to changes in temperature and other environmental disturbances, have no
influence anymore. On the other hand, one has to deal with huge amounts of data that
have to be transfered, stored and analyzed. Figure 1.2 shows two typical signal chains in
DSP. One option is to analyze the digitized data online in field-programmable gate arrays
(FPGAs) or digital signal processors and store the results only, while another approach
is to store all digitized signals and process them after the end of the experiment offline.
But however this is realized, DSP only makes sense if it is competitive to ASP, i.e. DSP
must be a feasible solution that delivers equal or better results than ASP.

Detector - Preamplifier - Digitizer
���

@@R

online DSP - Recording
Storage

Recording
Storage

- offline DSP

Figure 1.2: Simplified signal chain in digital signal processing performed online
(upper branch) or offline (lower branch).

1.2 Nuclear Physics Experiments at ELBE

A good benchmark test for DSP in nuclear physics are experiments which use state of the
art ASP. At the radiation source ELBE (Electron Linac for beams with high Brilliance
and low Emittance) at Forschungszentrum Dresden-Rossendorf such experiments are per-
formed. ELBE is a superconducting accelerator for electrons up to 40 MeV which are
used to generate infrared light in a free-electron laser, X-rays, positrons, fast neutrons or
bremsstrahlung [4].

Figure 1.3 shows a sketch of the ELBE bremsstrahlung facility which is used for photoac-
tivation studies on p-process nuclei [5] as well as for photon scattering experiments [6].
The electrons with energies up to 20 MeV generate bremsstrahlung in a radiator made
of a thin niobium foil. Afterwards the electrons are deflected into a beam dump, where
they are stopped and produce bremsstrahlung again. The high photon flux inside the
electron beam dump is used to activate nuclear samples. After the irradiation, these sam-
ples are taken to a low background installation where the decay of the produced unstable
nuclei is measured using high-purity germanium (HPGe) detectors with high efficiency
and high energy resolution. Steering magnets in front of the radiator allow the use of
partly polarized off-axis bremsstrahlung. Behind the radiator the γ-beam goes through a
hardener, a collimator, a thin deuteron-breakup target for beam monitoring and through
the actual target before it is stopped in the photon beam dump. The target nuclei are
excited by the bremsstrahlung and deexcite by emitting γ-transitions of discrete energies,
which can be detected by one of four HPGe detectors. Each detector is surrounded by
an escape-suppression shield made of bismuth germanate (BGO) scintillation detectors.
For this experiment a pulse-height analysis of digitized HPGe preamplifier signals and
the implementation of digital methods are planned.
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Figure 1.3: The bremsstrahlung facility at the ELBE accelerator with electron beam
(red line), photoactivation site (green dot) within the electron beam dump and γ-
beam (blue line) for photon scattering experiments. See text for details. Figure from
reference [5].

Another experiment at ELBE is the neutron time-of-flight system nELBE [7, 8] shown
in figure 1.4. It was developed for neutron cross section measurements relevant for the
transmutation of minor actinides in nuclear waste, as well as for applications to fission
and fusion reactors. Neutrons are generated in (γ,n)-reactions when the ELBE electron
beam hits a radiator and produces bremsstrahlung. In order to cope with the high power
density of the electron beam, the radiator is a liquid-lead loop. Its volume is kept small
in order to avoid moderation and — because the electron beam has pulse lengths of some
picoseconds — to reduce the time during which photo-neutron are produced to a sub-
nanosecond region. Thereby, only the neutrons emitted at about 90◦ from the direction
of the electron beam, in which the photon rate is relatively small, are used for experiments
and are shaped by a collimator into a well-defined beam, entering the experimental site
in the adjacent room. Between the radiator and the collimator there is a holder for ab-

Figure 1.4: The neutron time-of-flight system nELBE with electron beam (blue
line), liquid lead radiator (right upper corner) and neutron beam (dashed green line).
Target and detector systems (within red circle) are enlarged in the lower left corner.
See text for details. Figure from reference [7].
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sorbers and samples for transmission measurements. After a flight path of 4 to 7 meters
the neutrons can undergo interactions with the scattering target surrounded by an array
of 42 barium fluoride (BaF2) crystals with photomultipliers, that detect γ-rays created in
neutron capture or inelastic scattering reactions. The neutron time-of-flight is measured
using a liquid scintillator or a wall of plastic scintillators [9]. For all of these detector
systems a high time resolution is demanded for a precise determination of the neutron
energy, which is distributed between some tens of keV and a few MeV. The fast signals
of these detector systems are also well suited to implement and test digital methods for
high-resolution timing measurements.

1.3 Objectives and Contents of this Diploma Thesis

The aim of this diploma thesis is to perform first measurements with a digitizer system re-
cently installed at nELBE and to analyze the acquired data with methods of digital signal
processing. Therefore, experiments with high-purity germanium detectors and scintilla-
tion detectors are to be carried out. An analysis program has to be developed which
contains algorithms to determine the energy deposition and the moment of interaction
from the digitized signals with high precision. Finally, these algorithms are to be tested
and compared to each other as well as to standard methods of analog signal processing.

In chapter 2, a short introduction is given about how digitizing generally works and how
it is realized in analog and digital signal processing. The digitizing hardware at nELBE
as well as the analysis software is introduced. Pulser signals are processed to measure the
dead time of the digitizing hardware.
Chapter 3 starts with some fundamentals about semiconductor diode detectors. The bal-
listic deficit of a charge-sensitive preamplifier is derived and an algorithm to compensate
this effect is discussed. Further algorithms for the shaping of signals are presented. All
these algorithms are applied to signals, which were acquired in a measurement with an
HPGe detector and 22Na source, and the energy resolution is used the give statements
about the precision of these methods.
In chapter 4, barium fluoride and plastic scintillation detectors are introduced and tim-
ing algorithms are presented. A measurement at nELBE is described and the acquired
signals are analyzed. The parameters of the algorithms are varied in order to determine
the optimum time resolution. The results are compared with analogously processed data.
Finally, in chapter 5, conclusions are drawn from the results. Problems and future plans
are discussed in an outlook. In the subsequent appendices, the source code of the used
algorithms and some mathematical supplements are given.
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Chapter 2

Fast Digitizer Data Acquisition and
Data Analysis

2.1 Digitizing of Analog Signals

In the processing of analog voltage signals of detectors several applications based on
analog-to-digital converters (ADCs) are used which are usually located at the end of the
signal chain. The peak-sensing ADC delivers a digital signal equal to the peak amplitude
during a certain time interval, the charge-sensitive ADC (often called QDC) delivers a
digital signal equal to the charge collected during a certain time interval and the time-
to-digital converter (TDC) delivers a digital signal proportional to the length of a time
interval between a start and a stop signal. In digital signal processing it is not enough
to know the amplitude, the charge or a characteristic time of the detector signal, but the
whole analog signal has to be digitized.

During this digitizing process the continuous signal is reduced to a discrete signal, both
in amplitude and time. Using the sampling rate (also: sampling frequency) fS, which
corresponds to a sampling interval ∆t = (fS)−1, a continuous-time signal s(t) with t ∈ R

is converted to a discrete-time signal sn = s(n · ∆t) with n ∈ N. This is shown in
figure 2.1. Although it is unusual, it should be mentioned that the signal amplitude could
be treated in an equivalent way: after the amplitude digitization with an ideal N -bit
digitizer corresponding to M = 2N amplitude values, s(t) could also be represented by
s(t) = soffset + m(t) · ∆s, whereas ∆s is the so-called code width, N,M,m(t) ∈ N and
0 ≤ m(t) < M . Apart from the number of bits N , the effective number of bits (ENOB) is
often used to take into account that digitized noise decreases the resolution. It is defined
by ENOB = (SNR − 1.76)/6.02 for a full-scale sine wave with a signal-to-noise ratio
SNR in dB. In the ideal case only the quantization error, which is

√

2/3 for a sine wave,

contributes to the noise. Then, the signal-to-noise ratio is SNR = 20 log(2N/
√

2/3) and
it follows that ENOB = N .

Fast digitizers are mainly characterized by the parameters fS and N . For precise ampli-
tude determination, N is chosen that the quantization error, i.e. the deviation between the
amplitude of the analog and the digitized signal, does not effect the detector resolution.
For example, in high-resolution γ-spectroscopy with germanium detectors, digitizers with
N ≥ 13 bit are used. Contradictory to this, high sampling rates are required, if timing
information has to be extracted from signals with short rise times, e.g. signals from scin-
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Figure 2.1: Digitizing of an analog signal (up-
per panel) and corresponding quantization errors
(lower panel).
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Figure 2.2: Schematic of
a flash ADC. See text for
details.

tillation detectors in time-of-flight experiments, in which digitizers with fS ≥ 500 MS/s
(megasamples/second) are used. Fast digital oscilloscopes also use fast digitizers and have
high sampling rates up to 20 GS/s, but usually only 8 bit resolution. Even higher sampling
rate are usually limited by the analog bandwidth.

There are several technical possibilities to construct ADCs but the majority of them is
not practicable for fast digitizing due to their long conversion time tconv. Therefore, the
idea of the flash ADC (or direct conversion ADC) is to reduce tconv by simultaneous com-
parisons of the input voltage to successive reference voltages. This principle is shown in
figure 2.2. In an N -bit flash ADC the voltage signal U(n ·∆t) is fed into 2N −1 compara-
tors (c0, . . ., cM−2) together with each one voltage reference signal, which is realized in a

Figure 2.3: Crate with four digitizer cards (upper slots) and one recording card
(VMETRO, lower slot). The nELBE FDDAS consists of two of these crates and two
JBODs (see text for details).
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voltage ladder with a maximum reference voltage Uref applied across 2N − 2 resistors R
connected in series. The comparators deliver a logical signal containing the information
whether the signal is greater than the reference signal or not. All these logical signals
are combined in a register and are encoded to a binary sequence bn of the length N . The
drawback of the very short conversion time is the large number of comparators which are
needed. That’s why fast digitizers have usually only 8 to 12 bit vertical resolution. If
very high sampling rates are required so that tconv > ∆t, then a demultiplexer delivers
the analog signal to several flash ADCs.

To compare fast digitizers to peak-sensing ADCs, Bardelli and Poggi introduced the
Peak-Sensing-Equivalent Number of Bits (PSENOB) [10]. It is defined by

PSENOB = ENOB +
1

2
log2

(

fS

k2
G

)

− 1

2
. (2.1)

The parameter k2
G = k2

G⋆/ϑ describes the influence of a digital filter used to shape the
signal, whereas the dimensionless kG⋆ is between 0.7 and 1.5 depending on the filter and ϑ
is a time parameter of the shaper. A ”bit-gain” is expected for fast digitizers compared to
peak-sensing ADCs with the same ENOB. In the same reference, an example of a digitizer
with ENOB = 11.0 and fS = 100 MS/s is presented. In this example, a CR-(RC)4 shaper
(kG⋆=0.823) with an optimized shaper time ϑ = 6 µs is used, resulting in PSENOB ≈ 15.
The PSENOB of the digitizer system used here is discussed in section 3.4.2.

2.2 FDDAS and DSP at nELBE

The nELBE Fast Digitizing Data Acquisition System (FDDAS) consists of three com-
ponents: The digitizer cards, the recording cards and the storage device. The Acqiris
DC282 digitizer card1 [11, 12] allows the sampling of four channels, each at a sampling
rate up to 2 GS/s and a resolution of 10 bit. The cards in the nELBE FDDAS have the
standard front end options, i.e. the input impedance is 50 Ω, the full scale voltage range
can be chosen between 50 mV and 5.0 V and the maximum bandwidth is 2 GHz. At this
bandwidth a pulse with a rise time θreal will be observed with a value determined by the
relation θ2

observed = θ2
real + (0.17 ns)2, which is of interest for the sampling of fast-changing

signals. The ENOB is between 5.4 and 7.2 depending on the test conditions. The on-
board acquisition memory is 256 000 points per channel and can be segmented in order
to use the Simultaneous Multi-buffer data Acquisition and Readout mode (SMAR-mode).
Further adjustable global parameters are the number of sampled points and the trigger
delay (number of points stored before the trigger time), while for every channel some local
parameters can be adjusted: full scale voltage range, voltage offset, coupling (AC/DC),
trigger type (leading edge, window trigger) and trigger threshold. The triggering can
either be realized with an internal hardware trigger, while every channel can trigger the
whole card, or with an external signal which can be fed to a trigger input of the card.
For each trigger a time stamp is generated and tagged to the digitized signals. Figure 2.3
shows four of these digitizing cards in a crate, which connects them via a 64-bit 66 MHz
compactPCI (cPCI) backplane with the recording card located in the lowest slot of the
shown crate.

1The company Acqiris was acquired by Agilent Technologies in 2006 and the name of the digitizer
card was changed to Agilent U1065A.
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The recording card is a cPCI single board computer, whose task it is to configure and
read out the digitizing cards on the one hand and to transfer the data to the storage
device on the other hand. At the nELBE FDDAS two different combinations of recording
card and storage device are available. The ”small” solution, which was not used here, is a
1.6 GHz Pentium single board computer with a Linux operating system, Acqiris drivers
and acquisition software. It is remote-controlled via ethernet and connected to an exter-
nal hard disk, where the data is stored. The ”big” solution is a VMETRO Vortex system
consisting of the single board computer PowerMIDAS C5000 [13], the storage device VS-
FC41F [14] and the SAN Access Kit [15]. The latter is a fibre channel (FC) host bus
adapter and a software suite for the analysis server to provide direct high-speed access to
the storage area network (SAN). The VS-FC41F is Just a Bunch Of Disks (JBOD) which
uses twelve physical drives of each 300 GB to create one logical drive but provides no data
redundancy. The SAN includes dual 2 Gb/s fibre channels connecting the recording card
to the JBOD and the JBOD to the analysis server. The PowerMIDAS C5000, which
is shown in figure 2.3, is an IBM 440GX PowerPC with a VxWorks operating system
and provides a web-based graphical user interface as well as an Application Programming
Interface (API) to configure the card via ethernet.

Data acquired with this FDDAS is processed using a dedicated HP ProLiant DL380
G5 server [16] with a 1.86 GHz Intel Xeon quad-core-processor and 4 GB RAM. Since
the data cannot be read directly from the JBOD, an API script [17] copies the data to
named pipes. The algorithms, which are described in the following chapters and listed in
appendix A, are implemented as functions within a self-developed analysis program using
the programming language C and the C++ based program ROOT [18] in its version
5.16.16. For the analysis of signals and spectra the MINUIT fitting package implemented
in ROOT is applied. The analysis program also contains several functions for reading meta
data and the digitized signals from data files (or pipes). Furthermore, graphical output
by predefined ROOT-commands and argument-handling is realized in the program. To
run an analysis the program has to be compiled and can then be executed with different
arguments and data files, whereas several analyses (even of the same data) using different
instances of the compiled program are possible. Thanks to the quad-core processor up to
four analyses can be carried out at the same time without a loss in performance.

2.3 Measurement of the Dead Time of the nELBE

FDDAS

There are two processes contributing to the dead time of the nELBE FDDAS. On the
one hand, the internal hardware trigger needs a certain time tdt1 to rearm after an event
occurred. This time is given by the manufacturer to be 350 ns. On the other hand, the
FDDAS is only ready to trigger if there is free on-board acquisition memory to store
another event. The time tdt2 that is needed to transfer data points from this memory
to the JBOD is theoretically limited by the maximum data transfer rate of the cPCI
backplane, which is 64 bit · 66 MHz = 528 MB/s. The specifications to the manufacturer
of the recorder card was, that tdt2 should be zero at a trigger rate of up to 1000 detections
per second per channel with a frame size of 1000 (i.e. 1000 stored data points per event
per channel), within any 30 ms time period.
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Figure 2.4: Such digitized signals
of a pulse generator are used to de-
termine the dead time of nELBE
FDDAS.

Figure 2.5: Plot of t1 from equa-
tion (2.2) vs. the number of delayed
pulses divided by the number of regu-
lar pulses. See text for details.

Both contributions are investigated with signals from a BNC BL-2 pulse generator [19]
with the pulse repetition rate fpulse. To determine the rearm time tdt1 the pulse generator
is set to fpulse ≈ 200 kHz and is operated in the so called double-pulse mode, i.e. every
regular pulse is followed by a similar pulse with an adjustable delay tdelay, while the reg-
ular pulses are separated by the time (fpulse)

−1. Figure 2.4 shows a signal from this pulse
generator. The nELBE FDDAS, equipped with one digitizer card and the VMETRO
recording card, is used with the parameters fS = 2 GS/s, leading edge trigger (negative
slope) with a threshold of −600 mV and a trigger delay of Ptrig = 32 points.

The time stamps of the acquired signals are analyzed to separate the events into regular
pulses and delayed pulses. In a first qualitative investigation, tdelay and P , which is the
number of acquired data points per event per channel, are varied. From the absence of
the delayed pulses the dead time is roughly estimated to be about 300 ns and it turns out
that the trigger-rearming process starts after the last point is acquired. In other words,
the dead time is the highest value of (tdelay − (P − Ptrig)∆t) in the case that no delayed
pulses are measured.

This is investigated in a more quantitative way with a fixed delay time tdelay ≈ 425 ns.
Since tdelay drifts a little bit, the difference tdiff of the time stamps of a regular and of a
delayed signal is determined, filled into a histogram and fitted with a gaussian function
with the mean value t̄diff. This is done for several values of P . The time between the last
acquired data point of a regular pulse and the trigger time of the following delayed pulse
is determined by

t1(P ) = t̄diff(P ) − (P − Ptrig)∆t . (2.2)

A figure of merit, which is the ratio of the number of delayed pulses to the number of
regular pulses, is calculated for each value of P and shown in figure 2.5 as a function of
t1. As one can see, all regular pulses are followed by a delayed pulse if t1 > tdt1 = 306 ns.
Below this value the delayed pulse are overlooked partly or fully since the trigger is not
rearmed yet.



10 Chapter 2. Fast Digitizer Data Acquisition and Data Analysis

To investigate the second contribution tdt2 coming from the data transfer time, the same
pulse generator is used but operated in the normal (single-pulse) mode. Also the nELBE
FDDAS is in the same configuration as in the dead time measurement before. The repe-
tition rate fpulse is varied between 3 and 20 kHz. As in the specifications required, 1000
data points per event for each of the four channels are acquired. Thereby, the pulser is
connected to one channel only, but if an event occurs the signals of all four channels are
acquired. The on-board acquisition memory is divided into two segments of each 128 000
data points per channel in order to use the SMAR-mode. With this specifications, 115
events (each with 1000 data points plus some data points overhead) per channel can be
filled in each memory segment. The next 115 events are then filled in the second segment
while the first segment is read out and the data is transfered to the JBOD.

By increasing the repetitions rate, the limit of transfer-time free data acquisition is inves-
tigated. The transfer time is determined from the time difference between the first events
of two subsequent segments, which differs from 115 · (fpulse)

−1 if the FDDAS can not
trigger the events during the readout process. Up to fpulse = 10 kHz, which is equivalent
to a data transfer rate of 80 MB/s (= 2 Byte · 4 channels · 1000 data points · 10 kHz),
no transfer time is measured. At fpulse = 20 kHz the data transfer time is about 10 ms,
which is needed to read ≈ 1 MB (= 2 Byte · 4 channels · 128 000 data points) from the
memory. This is equivalent to a data transfer rate of 100 MB/s. Therefore, a maximum
data transfer rate of 400 MB/s is expected if all four digitizer cards are installed and
used.
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Chapter 3

Pulse Height Analysis of HPGe
Preamplifier Signals

3.1 Semiconductor Diode Detectors

In several applications of γ-ray detection, semiconductor diode detectors have major ad-
vantages compared to other detector types. Their high density makes them more efficient
than gas-filled detectors and their extremely good energy resolution makes them more pre-
cise than scintillation detectors. Information about general properties of semiconductors
like band structure, effects of impurities and dopants, etc. and about different detector
types are well described in textbooks, e.g. in Knoll [1]. Drawing on the example of high-
resolution γ-spectroscopy with high-purity germanium (HPGe) detectors, in this section
the detection process is explored step by step from the interaction of the radiation with
the detector material via the charge collection to the final preamplifier signal. Typical
effects influencing the energy resolution such as charge carrier trapping or the ballistic
deficit will be discussed.

3.1.1 Interaction of γ-rays with Matter

According to the Beer-Lambert law

I(l) = I0 · e−µ·l (3.1)

a beam of monoenergetic γ-rays of the intensity I0 penetrating into homogeneous matter
on a path of the length l is attenuated exponentially with the so called linear attenuation
coefficient µ. An equivalent formula of equation (3.1) is

I(ρ · l) = I0 · e−(µ/ρ)·(ρ·l) (3.2)

with the mass thickness ρ · l, the mass attenuation coefficient µ/ρ and the density ρ.
Since different processes contribute to the attenuation of the beam — for each process
with a fixed probability of occurrence per unit path length — the total linear attenuation
coefficient is

µtotal =
∑

x

µx = µpea + µcs + µppn + µppe (3.3)

with the process-specific linear attenuation coefficients µx described below. Figure 3.1
shows µtotal and several µx in the upper panel and the contribution of several processes
to the total attenuation µx/µtotal in the lower panel as a function of the γ-ray energy Eγ.
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Figure 3.1: Linear attenuation coefficient for γ-rays in germanium. Apart from the
total linear attenuation coefficient (µtotal, solid line) from equation (3.3), the par-
ticular processes photoelectric absorption (µpea, dashed line), Rayleigh scattering
(µrs, dash-dotted gray line), Compton scattering (µcs, dash-dotted black line), pair
production in the Coulomb field of a nucleus (µppn, dotted black line) and of an
electron (µppe, dotted gray line) are shown in the upper panel. The major contribu-
tions relative to µtotal are shown in the lower panel. (Data are taken from the NIST
XCOM database [20].)

In the low-energy range (up to 100 keV), µtotal is dominated by µpea, i.e. by photo-
electric absorption. In this process the incident photon interacts with an atom of the
absorbing material and disappears resulting in a so-called photoelectron emitted from one
of the bound states of the atom. Since momentum has to be conserved, the photoelec-
tric absorption cannot take place with free electrons. The energy of the photoelectron
is Ee = Eγ − Eb in which Eb is the binding energy of the photoelectron before the in-
teraction. In the case of germanium the highest binding energies are EK = 11.103 keV,
EL1 = 1.415 keV, EL2 = 1.248 keV and EL3 = 1.217 keV which can be identified in the
upper panel of figure 3.1 as discontinuities of µpea at these energies. After the emission
of the photoelectron, the atom refills the vacancy in its electron shells resulting in char-
acteristic X-rays or Auger electrons.

Another, less dominant process in this low-energy range is coherent scattering or
Rayleigh scattering, i.e. elastic scattering at the whole atom. Here, the atom is not
ionized or exited and the photon retains its energy only changing direction. Since high-
resolution γ-spectroscopy aims to measure the photon energy, the detector volume is
normally large enough to ensure that coherent scattered photons will be absorbed by
other subsequent processes and hence µrs does not contribute to equation (3.3) here.
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Incoherent scattering or Compton scattering, expressed by µcs, is the major con-
tribution to µtotal in the mid-energy range (between 200 keV and 4 MeV). In contrast to
coherent scattering, the incident photon interacts with one single bound electron. The
photon changes direction and partly transfers its energy to this recoil electron. As a
result, the scattered photon retains the energy E ′

γ and is deflected through an angle θ
with respect to its original direction. Neglecting the binding energy of the electron in this
energy range, it can be considered to be free and at rest. The energies of the scattered
photon E ′

γ and the recoil electron E ′

e can be derived using conservation of energy and
momentum. They are

E ′

γ = Eγ ·
1

1 + ǫ (1 − cos θ)
E ′

e = Eγ ·
ǫ (1 − cos θ)

1 + ǫ (1 − cos θ)
(3.4)

with ǫ = Eγ/(mec
2). This shows that for every angle θ the photon retains a portion of its

original energy and thus can undergo further interactions or – in the worst case – leave the
detector volume before the whole energy of the original photon Eγ is absorbed. From the
mean free path λcs = (µcs)

−1 ≈ 2 . . . 10 cm it becomes clear, that large volume detectors
are needed to avoid the escape of a Compton-scattered photon. Often, these escaping
photons can be detected in scintillators surrounding the HPGe detector in order to reject
events without the full energy.

In the high-energy range (above 10 MeV) pair production is the dominant interaction
mechanism. Within a Coulomb-field, an electron-positron pair can be created while the
incident photon disappears. One distinguishes between µppn for the pair production in
the Coulomb-field of a nucleus with an energy threshold of two electron rest masses and
µppe for the less probable pair production in the Coulomb-field of an electron with an
energy threshold of four electron rest masses. The remaining energy Epp = Eγ − 2mec

2 is
transferred to the created electron and positron as kinetic energy and also to the nucleus
or electron as recoil energy resulting from the conservation of momentum.

Except for coherent scattering, all these processes decrease the energy of the incident pho-
ton and create electrons and positrons. These light charged particles loose their energy in
matter, too. Their main interaction mechanisms are collisions resulting in ionized or ex-
cited atoms and radiative losses due to coulomb interactions resulting in bremsstrahlung,
whereas the ratio of the specific energy losses of these processes is ≈ EZ/700 for electrons
with the energy E in MeV in a material with the atomic number Z. Slowed down positrons
will annihilate with an electron of the absorbing material and two or more photons are
created. Secondary electromagnetic radiation follows the same interaction mechanisms as
the γ-rays described above.

Crystalline materials with a periodic lattice are well described using models of delocalized
electrons which arrange in so-called bands of allowed energies with gaps between these
bands. The energetically highest band that is completely filled is called valence band.
The electron population of the next band above (conducting band) and the band gap in
between categorize the material into a metal, a semiconductor or an insulator. In the case
of the semiconductor the band gap is relatively small and electrons from the valence band
can be transferred to the conducting band, while a hole is left at the electron’s position.
The energy necessary for the creation of one electron-hole pair is for example ε = 2.96 eV
for germanium and can be gained from the deceleration of moving charged particles.
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3.1.2 Charge Collection

An HPGe detector is a crystal of germanium in which the concentrations of acceptor and
donor impurities are nearly zero. These small impurities, which always remain in the
material, are used to classify germanium as ν-type (high-purity n-type) or π-type (high-
purity p-type) depending on whether the donors or the acceptors prevail. On the crystal,
contacts of high donor or acceptor concentration (n+- or p+-contacts) are created and a
high voltage is applied on the resulting n+-p or p+-n junction. With this reverse biasing,
a depleted zone is formed that normally reaches through the whole detector volume, in
order to separate electron-hole pairs created in any place inside the detector. Finally
the electrons and holes drift with characteristic velocities ve and vh along the electric
field lines towards the contacts, where they form the detector current Idet(t). The drift
velocities ve and vh are both strongly depending on the electric field strength and the
temperature. Hence a sufficient overvoltage is applied to saturate the drift velocities.
The detector volume is cooled down to the temperature of liquid nitrogen anyhow to
reduce the leakage current through the junction to acceptable levels.

The estimation of a mean free path of several centimeters in the mid-energy range is
followed by the requirement for large volume detectors. Such detectors are realized in an
coaxial configuration with one contact on the inside and the other one on the outside.
Usually, closed-ended coaxial detectors – with the closed end directed onto the radia-
tion source – are used instead of true coaxial detectors. Compared to planar detectors,
the drawback of the higher volume and the dedicated geometry is a more complicated
field strength distribution and stronger varying drift path lengths. These two effects
cause position-sensitive drift times and lead to complicated shapes of the detector current
Idet(t). Another influence on the shape of the detector current are trapping and detrap-
ping processes. Due to crystal imperfections, interstitial impurities or radiation damage
(especially by fast neutrons) there are so called traps, which can catch the charge carriers
and inhibit their drifting towards a contact. This statistical process can lead to a per-
manent loss of charge carriers or, if the trapped charge carriers are detrapped again, to a
delayed arrival at the contact. As mentioned above, the incident photon is not necessarily
absorbed at its first interaction, but can be scattered and undergo further interactions at
other places within the detector, which is also true for the created secondary radiation
that can move through the detector. Hence, the detector current is usually a superposi-
tion of currents created in a cascade of multiple interactions.

The following four representative examples show the influence of the charge collection pro-
cess to the preamplifier signal. These examples are revived in section 3.2.1 to demonstrate
how this influence is compensated by DSP algorithms. The process of charge collection
shall be represented by the four normalized detector currents

I1(t) =

{

Q0/θ : 0 ≤ t < θ
0 : θ ≤ t

I2(t) =







0.75 · Q0/θ : 0 ≤ t < θ
0.25 · Q0/θ : θ ≤ t < 2θ

0 : 2θ ≤ t

I3(t) = e−t/θ · Q0/θ : 0 ≤ t

I4(t) = δ(t) · Q0

(3.5)

whereas Ii(t) = 0 for t < 0. θ is a characteristic charge collection time, Q0 is the total
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collected charge and δ(t) is the Dirac delta function. The collected charge is

Qi(t) =

∫ t

−∞

Ii(t
′)dt′ . (3.6)

Ii(t) and Qi(t) are shown in figures 3.2 and 3.3 for i ∈ {1, 2, 3}. Q4(t) is not shown since
it is constant at Q0. The shapes of Ii(t) in equation (3.5) simplify the statements on
the charge collection process: I1 and I2 can be interpreted as the current from a single
interaction in a homogeneous electric field for ve = vh and ve 6= vh, respectively, I3 as
combined effects from drift time variations, multiple interactions and trapping and I4 as
an ideal pulse with zero drift time.

Figure 3.2: Detector currents I1(t)
(green line), I2(t) (red line) and I3(t)
(blue line) from equation (3.5).

Figure 3.3: Detector charges Q1(t)
(green line), Q2(t) (red line) and Q3(t)
(blue line) from equation (3.6).

3.1.3 Preamplifier

The function of a preamplifier is not only to amplify the pulse but mainly to interface the
detector to the amplifier. Figure 3.4 shows a schematic of a charge-sensitive preamplifier
connected to a reverse-biased semiconductor diode detector. The detector is represented
by its capacitance CD, its generated current signal Idet(t), its bias resistor Rb and its
bias voltage Ub and is coupled to the inverting input of an operational amplifier via a
DC-blocking capacitor Cc. The operational amplifier is supplied by VS− and VS+, which
are usually symmetric. Its non-inverting input is grounded and its output U(t) is fed back
to its inverting input via a resistor Rf and a capacitor Cf connected in parallel. In this
feedback-circuit, the charge generated within the detector is collected in the capacitor
Cf which then is discharged across the resistor (so called resistive feedback preamplifier)1.
Without discharging, the capacitor would fully charge and the output signal would satu-
rate after a certain number of signals. Then the preamplifier would become insensitive to
further detector signals. A feature of the charge-sensitive preamplifier is, that its output
signal U(t) is only a function of Rf , Cf and Idet(t) but not of the detector capacitance Cd

1Another method to reset the capacitor is to use a transistor (so called transistor reset preamplif ier).
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Figure 3.4: Schematic of a reverse-
biased semiconductor diode detector
connected to a charge-sensitive pream-
plifier. See text for detailed descrip-
tion.

Figure 3.5: Calculated preamplifier
signal U1(t) from equation (B.9) with
θ/τ = 1 (solid line), θ/τ = 0.1 (dotted
line) and θ/τ = 0.01 (dashed line).

that may depend on Ub.

The proper choice of the feedback resistor Rf is a matter of relative importance, be-
cause several effects are influenced by it. On the one hand, thermal noise associated
with the feedback resistor, which is one of the significant contributors to preamplifier
noise, and the ballistic deficit discussed below are decreased by increasing Rf . One the
other hand, a high value of Rf causes a long decay time constant τ and pulses will sit
on the tail of their previous pulse more often. This effect is called pile-up and normally
does not cause trouble, since it is removed by subsequent shaping in the main amplifier.
However, the operational amplifier only provides a linear amplification for output signals
VS− < U(t) < VS+ and hence can saturate if the count rate becomes too high.

In appendix B.1 the response U(t) of a resistive feedback preamplifier to a detector current
signal Idet(t) is derived. With the constraints Idet(t) = 0 for t < 0 and U(t) = 0 for t < 0
it is

U(t) = − 1

Cf

∫ t

0

Idet(t
′) · e−(t−t′)/τdt′ (3.7)

with the time constant τ = RfCf . The responses Ui(t) of the detector currents Ii(t) from
equation (3.5) and their minima Umin

i = Ui(t
min
i ) can be found in appendix B.1, too.

U1(t), U2(t) and U3(t) are shown in figures 3.5, 3.6 and 3.7 for different ratios θ/τ . The
ideal case U4(t) is not shown since it is a simple exponential decay. For θ/τ → 0 the
preamplifier output Ui(t) merges into −Q(t)/Cf from equation (3.5) shown in figure 3.3.
Higher values of θ/τ result in a reduced amplitude. This effect is called ballistic deficit,
which is defined here by the fractional reduced amplitude BDi = 1−Umin

i /(−Q0/Cf ). It
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Figure 3.6: Calculated preamplifier
signal U2(t) from equation (B.13) with
θ/τ = 1 (solid line), θ/τ = 0.1 (dotted
line) and θ/τ = 0.01 (dashed line).

Figure 3.7: Calculated preamplifier
signal U3(t) from equation (B.17) with
θ/τ = 1 (solid line), θ/τ = 0.1 (dotted
line) and θ/τ = 0.01 (dashed line).

is

BD1 = 1 − τ

θ

(

1 − e−θ/τ
)

(3.8)

BD2 =











1 − 0.75 · τ

θ

(

1 − e−θ/τ
)

: θ ≥ τ · ln 3
2

1 − 0.25 · τ

θ

(

1 + 2 · e−θ/τ − 3 · e−2θ/τ
)

: θ < τ · ln 3
2

(3.9)

BD3 =











1 −
(

θ

τ

)θ/(τ−θ)

: τ 6= θ

1 − e−1 : τ = θ

(3.10)

BD4 = 0 (3.11)

and is obviously independent from the signal charge Q0. In figure 3.8 the ballistic deficits
(except BD4) are shown depending on the ratio θ/τ .

The most important goal of signal reconstruction of either ASP or DSP is to reduce
the effect of ballistic deficit while staying insensitive to electronic noise, pile-up or other
effects. According to Goulding and Landis [21], a photon with the energy Eγ detected
within a large-diameter coaxial germanium detector does not result in a sharp line in the
pulse height spectrum, but in a broadened peak with a total full width at half maximum
(FWHM) WT , which can be written as

W 2
T = W 2

n + 2.352ǫF · Eγ + A2 · E2
γ . (3.12)

The first term of equation (3.12) is the contribution of any electronic noise, which is
independent of Eγ and the second term is the contribution of non-statistical sequences of
individual process in the charge collection with the Fano factor F ≈ 0.1 and the energy
per electron-hole pair ǫ = 2.96 eV, which are both assumed to be independent of Eγ . The
last term is the contribution of the ballistic deficit with a constant A independent of Eγ.
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Figure 3.8: Ballistic deficits BD1 (green line), BD2 (red line) and BD3 (blue line)
from equations (3.8), (3.9) and (3.10) depending on the ratio θ/τ .

From equations (3.8), (3.9) and (3.10) it becomes clear, that for a fixed amplitude of the
preamplifier the measured value can fluctuate due to fluctuations in the signal’s rise time.
At high energies the ballistic deficit is the major contribution to the energy resolution,
especially for large-volume detectors and if the time constant τ is chosen small in order
to reduce pile-up at high count rates. From that, the importance of a ballistic deficit
correction becomes clear especially for higher energies.

3.2 Algorithms for Pulse Height Analysis

Since effects associated with the analog shaping process like undershoot or baseline shift
do not occur in the digital shaping process, there are — apart from the pile-up problem
at high count rates — three things left which are important for pulse height analysis
of preamplifier signals: (a) the compensation of the ballistic deficit, (b) the reduction
of fluctuations, and (c) a shape suitable for a precise determination of the pulse height
Therefore, in this section three groups of algorithms are introduced that deal with these
three requirements: (a) algorithms for finite decay-time correction, (b) filter and (c)
shaper. In spite of this categorization it should be mentioned that filters may also shape
the signal and that shapers usually reduce the fluctuations of the signal, too. For all
algorithms the following nomenclature is arbitrary chosen: vn is the digitized input signal
to be processed and sn is the output signal of the algorithm.

3.2.1 Finite Decay-Time Correction

In appendix B.1 the response U(t) of a resistive feedback charge-sensitive preamplifier
with a decay time constant τ to a detector current signal Idet(t) is derived. With the
constraints Idet(t) = 0 for t < 0 and U(t) = 0 for t < 0 it is

U(t) = − 1

Cf

∫ t

0

Idet(t
′) · e−(t−t′)/τdt′ . (3.13)



3.2. Algorithms for Pulse Height Analysis 19

This formula can be interpreted as a convolution of the detector current Idet(t) with the
impulse response of the preamplifier since it can be rewritten as

U(t) = − 1

Cf

∫ +∞

−∞

Idet(t
′) · H(t − t′) · e−(t−t′)/τdt′

= I(t) ∗
(

− 1

Cf

· H(t) · e−t/τ

)

(3.14)

in which ∗ is the convolution operation and H(t) is the Heavyside step function.

Using equation (3.13) the response for specific currents Idet(t) with a characteristic rise
time θ is derived in section 3.1 and the ballistic deficit BD is introduced as an intrinsic
property of the preamplifier in the case θ/τ > 0, which is valid for any realistic measure-
ment with θ > 0 and a finite decay time constant τ . The ballistic deficit is the major
contribution to the FWHM at high γ-ray energies. To overcome this effect, Büchner

et al. developed a digital filter algorithm called Moving Window Deconvolution (MWD)
[22, 23, 24] that restores the original charge information and shapes the preamplifier
signal. The MWD is expressed by

sn = vn − vn−m + α
n−1
∑

i=n−m

vi (3.15)

α = 1 − e−∆t/τ (3.16)

whereas m is a number of samples used for the correction, ∆t is the sampling interval and
τ is the decay time constant of the preamplifier. In figure 3.9 the response of the MWD
to U1(t), U2(t) and U3(t) from equations (B.9), (B.13) and (B.17) is shown. Comparing to
figure 3.3 one sees that the MWD algorithm converts the preamplifier output signal into
the output signal of the ideal integrator for the first m samples. In the case m → ∞ and
according to equation (3.5), the preamplifier signals v

(i)
n = Ui(n∆t) from figures 3.5, 3.6

and 3.7 should result in s
(i)
n = −Qi(n∆t)/Cf and have the shape of their charge signals

from figure 3.3. This is true for the zero risetime pulse U4(t), but not for any other
signal, if the sampling interval ∆t is not chosen as small relative to the characteristic
time constants θ and τ . Applying the MWD with m → ∞ to U1(t) and U3(t) from
equations (B.9) and (B.17) one finds

s(1)
n

θ<n∆t
= −Q0

Cf

· τ

∆t

(

1 − e−∆t/τ
) ∆t≪τ≈ −Q0

Cf

(3.17)

s(3)
n

n→∞
= −Q0

Cf

· τ

τ − θ

(

1 − 1 − e−∆t/τ

1 − e−∆t/θ

)

∆t≪τ,θ≈ −Q0

Cf

. (3.18)

In figure 3.10 this small variation is shown for s
(3)
n in the case τf = 100µs (solid blue line)

and τf = 1 µs (solid gray line) with θ = 0.1 µs each. Another variation occurs if the decay
time constant of the resistive feedback preamplifier τf and the decay time constant τMWD

given to the MWD algorithm as a parameter do not match, which is shown in figure 3.10
for s

(3)
n , too.

Choosing m → ∞ allows the use of shapers from subsection 3.2.3 while choosing a finite
value of m results in the truncated signal of the ideal integrator. In both cases, the char-
acteristic shaper length has to be longer than the time needed to collect the whole charge.
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Figure 3.9: Response sn of the MWD
with m = 6000 to U1(t) (green line),
U2(t) (red line) and U3(t) (blue line)
each with τ = 1 µs and θ = 1 µs from
equations (B.9), (B.13) and (B.17).
∆t = 0.5 ns. Compare with figure 3.3.

Figure 3.10: Pulse height variations
in the response sn of the MWD with
m = 6000 to U3(t) with θ = 0.1 µs
from equation (B.17). ∆t = 0.5 ns.
τf = 1 µs (gray line)
τf = 100µs (blue lines)
τMWD = 0.9 τf (dashed line)
τMWD = τf (solid lines)
τMWD = 1.1 τf (dotted line)

In the examples shown here, this time has to be θ for U1(t), 2θ for U2(t) and ≈ 5θ for
U3(t). The latter is not valid in figure 3.9 where m · ∆t = 6000 · 0.5 ns = 3 µs but the
rise time constant of U3(t) is θ = 1 µs, so the maximum amplitude is proportional to the
charge collected after m · ∆t.

After the MWD has been published, Jordanov and Knoll presented an algorithm for
the correction of the ballistic deficit, which they created with a method called digital
synthesis [25]. This trapezoidal shaping algorithm is given by

dn = vn − vn−k − vn−k−m + vn−2·k−m

pn = pn−1 + dn

sn = sn−1 + N · (pn + M · dn) (3.19)

with the slope length k, the plateau length m, the decay time constant of the sampled
exponential signal M and a normalization factor N = 1. In appendix B.3 the parameters
M and N are derived using an exponentially decaying signal vn = A · e−n∆t/τ . One finds

M =
1

e∆t/τ − 1
≈ τ/∆t (3.20)

N =
(1 − c)2

M + k − (M + k + 1) · c − M · ck + (M + 1) · ck+1
(3.21)

with the abbreviation c = e−∆t/τ . The identity of this Jordanov-Trapezoid-Shaper (JTS)
with the parameters k = 1, m = l − 1 and the MWD with the parameter m = l is shown
in appendix B.4.
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3.2.2 Filter

Input signals

To illustrate the filter and shaper algorithms, their response to typical input signals, which
are shown in figure 3.11, is investigated. One realistic example is the offset-corrected,
negative HPGe preamplifier signal, which is digitized with the nELBE FDDAS with 10
bit and a sampling rate of fS = 2 GS/s for 5µs resulting in a discrete time-signal rn with
0 ≤ n < 10000. The amplitude of this signal is ≈ −25 mV, its trigger time (where half
the amplitude is reached) is ≈ 1.6 µs, its rise time (time between 10% and 90% of the
amplitude) is ≈ 250 ns and its decay time constant is ≈ 60 µs. Using this decay time
constant, the response of the MWD to rn is un. For a better graphical representation the
noisy signals, like un or the response of some filters to un, are smoothed by digital means
using the moving average filter (see below) with a window length of 100 samples.

To have an ideal, noise-free signal, a modified Heavyside step function

hn =

{

0.0 : n < 1600
−25.0 : n ≥ 1600

(3.22)

is used to determine the so called step response of the algorithms. The reason for modify-
ing the Heavyside step function is to have an amplitude similar to un and to plot both
in the same graph. Furthermore hn represents a preamplifier signal with zero rise time
and infinite decay time, which is ideal to determine the signal amplitude.

If input signals starting at a certain point v0 are to be processed, assumptions for the
unknown values for n < 0 are necessary. The simplest thing is to assume that any value
is zero for n < 0, although this means that a signal with an offset is similar to a step
function at n = 0. As a result of this, the shaper will give a start-up response, which can
disturb the response to the signal, if the length of the shaper is in the order of the signal
length. In this case an offset compensation, that can can be realized easily by subtracting
the signal’s baseline average from the signal, is indispensable.

High-Pass Filter (CR Filter, Differentiator)

Some fundamental circuits in analog electronics are resistor-capacitor circuits (RC cir-
cuits). Working exactly like a voltage divider, an input voltage is applied across the
impedances of a capacitor (with the capacitance C) and a resistor (with the resistance
R) connected in series or parallel and the output is the voltage across one impedance.
Considering a series connection, the voltage across the resistor is the output of a passive,
analog, first-order high-pass filter with a time constant τanalog = R · C and a cutoff fre-
quency 1/τanalog. Starting from this analog filter and the sampling interval ∆t, its digital
representation is derived in appendix B.2. It is

sn =
τ

τ + ∆t
· (sn−1 + vn − vn−1) (3.23)

and is valid for ∆t ≪ τ . This constraint becomes obvious in the simple example ∆t = τ
and vn = 1 for 0 ≤ n, in which s0 = 1/2 instead of s0 = 1/e. Figure 3.12 shows the
response of the high-pass filter for different time constants τ .
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Low-Pass Filter (RC Filter, Integrator)

In the series RC circuit mentioned above, the voltage across the capacitor is the output
of a passive, analog, first-order low-pass filter with a time constant τanalog = R · C and a
cutoff frequency 1/τanalog. Its digital representation (in the case ∆t ≪ τ )

sn =
τ

τ + ∆t
· sn−1 +

(

1 − τ

τ + ∆t

)

· vn (3.24)

is derived in appendix B.2 as well. Figure 3.13 shows the response of the low-pass filter
for different time constants τ .

Moving Average Filter

In general, a moving average (MA) filter is the weighted sum of a certain number l of
data points with specific, relative positions to the current data point vn. Usually vn is at
the end (prior moving average) or in the middle (central moving average) of this sample
of l data points, leading to the iterative equations

sprior
n =

l−1
∑

i=0

wi · vn−i with l ∈ N

scentral
n =

l−1
∑

i=0

wi · vn−i+a with a ∈ N, l = 2 · a + 1

whereas wi is a weighting function, for example:

wi = wconst = 1 sn is an unweighted moving sum

wi = wmean =
1

l
sn is a moving arithmetic mean

wi = wlin
i =

2 · (l − i)

l · (l + 1)
sprior

n is a linear weighted MA

wi = wexp
i =

{

α · (1 − α)i : i < n
(1 − α)n : i = n

sprior
n is an exponentially weighted MA

The weighting functions wi listed above are not suited for the central moving average. In
this case, so-called window functions are used, which are symmetric to i = 0, e.g. cosine-,
triangular-, Hamming-, Hann-, or Gauss-windows.

To save computing time a recursive representation (including suitable initial values) of
the algorithms of practical interest is desirable. Therefore, in the case of the moving
arithmetic mean with w = l−1, sprior

n can be written as

sn = sn−1 + w · (vn − vn−l) (3.25)

and is shown in figure 3.14. Equation (3.25) is also true for the unweighted moving sum
with w = 1. While the linear weighted MA has no recursive expression, one can show that
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the recursive exponential weighted MA is identical to the recursive integrator algorithm
in equation (3.24) with α = 1 − τ/(τ + ∆t). The response of these MA filters is similar
to that of the high-pass filter: It reduces the amplitude of periodic signals with a period
T shorter than the filter duration l · ∆t and smoothes noisy signals.

Figure 3.11: Digitized, offset-
corrected HPGe preamplifier signal
(green line), its smoothed MWD re-
sponse un (red line) and the step func-
tion hn from equation (3.22) (blue
line). ∆t = 0.5 ns.

Figure 3.12: Responses of the high-
pass filter from equation (3.23) to un

(blue lines, smoothed) and to hn (red
lines) with τ = 0.1 µs (dashed lines)
and τ = 1 µs (solid lines). ∆t = 0.5 ns.

Figure 3.13: Responses of the low-
pass filter from equation (3.24) to un

(blue lines) and to hn (red lines) with
τ = 0.1 µs (dashed lines) and τ = 1 µs
(solid lines). ∆t = 0.5 ns.

Figure 3.14: Responses of the MA
filter from equation (3.25) with w =
l−1 to un (blue lines) and to hn (red
lines), with l = 500 (dashed lines)
and l = 2000 data points (solid lines).
∆t = 0.5 ns.
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3.2.3 Shaper

Gaussian Shaper (CR-(RC)n Shaper)

The result of a high-pass filter, described by equation (3.23), is already very well suited
to eliminate tails of preamplifier signals, which have relative long time constants of about
100 µs. However, the sharply pointed top makes a precise determination of the amplitude
difficult and in addition fast fluctuations passing the filter can worsen the accuracy of
this measurement, too. To overcome these drawbacks, one could take advantage of the
low-pass filter, described by equation (3.24). By applying n sequent stages of the low-
pass filter after one high-pass filter — all of them with the same time constant τ —
a Gaussian-like or CR-(RC)n shaper is obtained. The peaking time, i.e. the time value
with the maximum amplitude, is given by τp = n · τ , the normalization factor is given by
N = n! · en/nn. While CR-RC shaping (n = 1), shown in figure 3.15, results in a clear
asymmetric shape, the deviations to a Gaussian curve become negligible for n = 4, which
is shown in figure 3.16.

Triangular and Trapezoidal Shaper

With the method of digital synthesis by Jordanov and Knoll [25], it is not only possible
to correct the ballistic deficit but also to implement several shapers. Trapezoidal shaping
shown in figure 3.17 can be realized with the recursion formula

sn = sn−1 + N · (vn − vn−k − vn−k−m + vn−2·k−m) (3.26)

where k is the slope length, m is the plateau length and N = 1/k is the normalization
factor. For m = 0 the trapezoidal shaper becomes a triangular shaper. Choosing k = 1
will result in a rectangular shape.

Cusp-like and Truncated Cusp-like Shaper

The cusp-like shaping is similar to the triangular shaping, but with slopes rising or falling
faster than linear slopes, which is indicated in figure 3.18 and expressed recursively by

pn = pn−1 + vn − vn−2·k−1

sn = sn−1 + N · [pn − (2 · k + 1) · vn−k] .
(3.27)

Having slopes as cusp-like shapers but a plateau in between the truncated cusp-like shaper
is being described in the recursion formula

pn = pn−1 + vn − vn−k + vn−k−m − vn−2·k−m

sn = sn−1 + N · [pn − k · (vn−k + vn−k−m) − vn−k−m + vn−2·k−m] .
(3.28)

The parameters of both shapers are the slope length k, the plateau length m and the
normalization factor N = 2/(k2 + k).
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Figure 3.15: Responses of the CR-
RC shaper from equations (3.23) and
(3.24) to un (blue lines) and to hn (red
lines), with τ = 200 ns (dashed lines)
and τ = 800 ns (solid lines). ∆t =
0.5 ns.

Figure 3.16: Responses of the Gaus-
sian or CR-(RC)4 shaper from equa-
tions (3.23) and (3.24) to un (blue
lines) and to hn (red lines), with τ =
50 ns (dashed lines) and τ = 200 ns
(solid lines). ∆t = 0.5 ns.

Figure 3.17: Responses of the trian-
gular shaper with k = 1000 (dashed
lines) and the trapezoidal shaper both
from equation (3.26) with k = 2500,
m = 1000 (solid lines) to un (blue
lines) and to hn (red lines). ∆t =
0.5 ns.

Figure 3.18: Responses of the cusp-
like shaper from equation (3.27) with
k = 1000 (dashed lines) and the
truncated cusp-like shaper from equa-
tion (3.28) with k = 2500, m = 1000
(solid lines) to un (blue lines) and to
hn (red lines). ∆t = 0.5 ns.
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3.3 Measurements with an HPGe Detector and a
22Na Source

One of the HPGe detectors, which are usually used in the photon scattering experiments
introduced in section 1.2, is set up together with two BaF2 scintillation detectors from the
nELBE experiment as shown in figure 3.19. The ORTEC GMX-100 [26] used here is a
coaxial n-type HPGe detector with a crystal length of 90.0 mm and a diameter of 79.1 mm.
This detector has a relative efficiency of 105 % and an operating bias voltage of −4500 V.
The HPGe crystal is surrounded by eight BGO scintillation crystals to detect escaping
photons. The whole detector system is surrounded by a 2 cm thick lead shielding. The
BGO shield does not cover the end cap of the HPGe crystal. There, a 10 cm thick lead
collimator with a conical aperture centered around the end cap is mounted. Figure 1.2
shows a radiation source mounted in this aperture. The radiation to detect in this ex-
periment is emitted from an encapsulated 22Na source. 22Na decays by electron capture
(branching ratio: 9.5 %) and β+ decay (90.5 %) with a half-life of 2.6 years to an excited
state of the stable 22Ne. This excited state decays state by emitting a photon with the
energy Eγ = 1274.53 keV [27]. The positron produced in the β+ decay is slowed down and
annihilates with an electron within the source material. In this annihilation, two photons
with the energy Eγ = 511 keV each are emitted. In both cases mono-energetic γ-rays are
emitted which are well suited to determine the resolution of detectors in high-resolution
γ-ray spectroscopy. The annihilation quanta are subject to Doppler-broadening so the
peak at 511 keV will be wider than a ”regular” γ-peak. The BaF2 detectors are supposed
to detect the photons in coincidence with the HPGe detector, however this coincidence is
not analyzed in this experiment.

Figure 3.19: Setup of an HPGe detector and two BaF2 detectors in the measurement
with the 22Na source. The picture shows in the left the radiation source mounted in
the aperture of the lead collimator with red stripes of adhesive tape. The right half
of the picture shows (from left to right) the BaF2 detectors, the shielding lead block,
the shielded germanium crystal, the PMs of the BGO crystals and the dewar filled
with liquid nitrogen.
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Figure 3.20: Digitized preamplifier
signal of the HPGe detector. It is the
same signal as in figure 3.11.

Figure 3.21: Logical signal gener-
ated by an analog CFD from the sig-
nal in figure 3.20. This signal trig-
gered the nELBE FDDAS during the
experiment.

The nELBE FDDAS was equipped with one Acqiris DC-282 digitizing card and the
VMETRO recording card in this experiment. In preparation of the data acquisition
two problems were observed. The first problem was to configure the trigger conditions
of the FDDAS. The intention was to trigger on the preamplifier signal of the HPGe
detector only and acquire it together with the two BaF2 signals and a veto signal of the
BGO detectors. Since it is not possible to disable the triggers of the other channels, their
trigger thresholds were set to values which are usually not reached. Anyhow, the FDDAS
did not acquire data in this configuration2. After tests with several trigger configurations,
one suitable configuration was found that triggered on a positive signal. A logical sig-
nal (TTL standard) was generated by an analog constant-fraction discriminator from the
HPGe preamplifier signal and used to trigger the FDDAS. The trigger thresholds of the
negative HPGe preamplifier signal and the negative BaF2 signals were set to a positive
value. In figure 3.20 one of the preamplifier signals is shown while figure 3.21 shows the
corresponding logical signal. In this configuration, signals were sampled with N = 10 bits
for 5µs at a sampling rate fS = 2 GS/s, i.e. the sampling interval was ∆t = 0.5 ns, result-
ing in 10000 data points per channel per event. The pre-trigger-delay, i.e. the number of
data points which are stored before the trigger point was set to 3200 in order to determine
the baseline of the signal. The HPGe preamplifier signal was acquired in the range from
−100 mV to 0 mV while the trigger threshold was set to −2 mV. Due to the offset this
value is not realized for any signal. The logical signal was acquired in the range from
−2500 mV to 2500 mV and triggered the FDDAS after the threshold at 2400 mV was
crossed with a positive slope.

The second problem was that at a random time after the acquisition started all pream-
plifier signals showed an offset in the order of 100 mV and therefore left the predefined
voltage range of the digitizer. This happened suddenly and can not be explained by a
saturation of the preamplifier due to high count rates. After the acquisition was stopped

2Later it turned out, that there are constraints for the trigger levels.



28 Chapter 3. Pulse Height Analysis of HPGe Preamplifier Signals

and the next acquisition was started, the signals had returned to their usual baseline. This
strange behavior of preamplifier and digitizer is not yet understood. As a consequence of
this, data was acquired in nine subsequent runs with each 3600 events in order to keep
the number of events affected by this problem small. In total 2700 MiB or 32400 events
were digitized, 22109 of those events do not have this problem.

For comparison also the energy resolution of the HPGe detector was measured with the
state of the art signal-processing and data-acquisition system of the photon-scattering
experiments at ELBE. The preamplifier signal was shaped by an ORTEC 671 spectroscopy
amplif ier [28] and the pulse height was determined by the 14-bit peak-sensing ADC
SILENA 7423 [29]. The shaping time-constant was optimized in order to achieve the
best possible energy resolution. The ADC was controlled and read out by a fast ADC-
controller [30] which routed the ADC value to higher channels within the final spectrum
if there was a veto signal of the BGO detectors. The results of this measurement are
discussed in the next section.

3.4 Energy Resolution of the HPGe Detector

3.4.1 Analogously Processed Data

The pulse height spectrum of the analogously processed signals is shown in figure 3.22.
The pulse height is given in ADC channels, which are in the range from from 0 to 214 =
16348. All pulse heights are below channel 5200. The mean values k511 and k1275 of the
peaks at 511.00 keV and 1274.53 keV are used to perform an energy calibration. The
energy is

E(k) = m · k + n (3.29)

with m =
(1274.53 − 511.00) keV

k1275 − k511

and n = 511.00 keV − m · k511 ,

whereas k is the quantity of the pulse height measurement (e.g. voltage or channel
number). The full width at half maximum of the peaks is calculated by FWHM =
m ·σ ·2

√
2 ln 2. For this spectrum the calibration parameters are m = 0.5295 keV/channel

and n = −34.38 keV, so the dynamic range of the ADC is m · 214 ≈ 8660 keV. The energy
scale is shown in the upper part of figure 3.22. Apart from the two peaks coming from the
22Na source, three other peaks from the natural occurring background radiation are visible.

The mean values of the peaks are determined by a fit with an asymmetric gaussian func-
tion, which is implemented in the analysis program. The parameters of this fit function
defined in appendix B.5 are the area A, the mean value k and the standard deviation σ of
the symmetric part, the asymmetric area Aas (relative to A) and an asymmetry parameter
λ. The peaks at 511.00 keV and 1274.53 keV are shown in figures 3.23 and 3.24 together
with the asymmetric gaussian function. For comparison a normal gaussian function is
fitted to the data, too. As one can see, the value χ2 becomes significantly smaller for the
asymmetric function and also the standard deviations improve a little bit. The energy
resolutions (FWHM) are 3.46 keV at 511.00 keV and 2.88 keV at 1275.53 keV.
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Figure 3.22: Spectrum of the pulse heights of analogously processed preamplifier
signals of the HPGe detector. The pulse heights are digitized with a 14-bit peak-
sensing ADC with 16384 channels. The peaks at 511 keV and 1275 keV stem from
a 22Na source and are used for the energy calibration. The other peaks stem from
naturally occurring background radiation of the isotopes 40K, 214Bi and 208Tl (from
left to right).

Figure 3.23: Peak in the ASP pulse
height spectrum at E = 511.00 keV
fitted with a gaussian (blue line) and
an asymmetric gaussian function (red
line). With the latter the energy reso-
lution (FWHM) is 3.46 keV.

Figure 3.24: Peak in the ASP pulse
height spectrum at E = 1274.53 keV
fitted with a gaussian (blue line) and
an asymmetric gaussian function (red
line). With the latter the energy reso-
lution (FWHM) is 2.88 keV.
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Figure 3.25: Histogram of the
preamplifier decay time constant de-
termined from the digitized signals.
See text for details.
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Figure 3.26: Energy resolutions
(FWHM) achieved with CR-(RC)n

shaping. Note the change of the time-
constant scale.
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Figure 3.27: Energy resolutions
(FWHM) achieved with trapezoidal
shaping with the plateau length m =
1000 with and without MWD.
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Figure 3.28: Energy resolutions
(FWHM) achieved with truncated
cusp-like shaping with the plateau
length m = 1500 with and without
MWD.

3.4.2 Digitally Processed Data

The algorithms described in section 3.2 are applied to digitized preamplifier signals of
the HPGe detector, which were acquired in the experiment in section 3.3. The baseline
of the signals is between −6.8 mV and −7.8 mV. This offset is determined by averaging
the baseline and then subtracted from the signal in order to suppress the response of the
applied algorithms to the step at t = 0. Then the moving window deconvolution is applied
with a length mMWD longer than the number of sampled data points (here: 10000 data
points) in order to convert the preamplifier signal to a step signal which is then shaped by
a CR-(RC)n, trapezoidal or truncated cusp-like shaper. Thereby, the application of MWD
with mMWD = 10000 followed by trapezoidal shaping with the slope length k and the
plateau length mshaper is equivalent to the application of MWD with mMWD = k+mshaper

followed by the MA filter from equation (3.25) with the length l = k. Finally, the pulse
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height of the shaped signals is determined and filled into histograms. The energy calibra-
tion and the determination of the FWHM is done in the same way as for the analog data.

One parameter of the MWD algorithm is the decay time constant τdecay of the preamplifier,
which is here determined from the signals. Therefore, the exponential decaying tail of each
signal is fitted with the function

f(t) = p1 · e−t/p2 (3.30)

with the time t and the parameters p1 and p2. Then the values of p2 are filled into a
histogram, whereas each value is weighted with its relative error from the fit. This his-
togram is shown in figure 3.25 and gives a mean value τdecay = 61.58 µs for the MWD.
The sampling interval ∆t = 0.5 ns is given to the MWD algorithm as the other parameter.

The CR-(RC)n-shaper is applied to the output signal of the MWD with different parame-
ters n (number of integrations) and τshaper (time constant of differentiator and integrator).
For the cases n = 1, n = 4, n = 8 and n = 12 the FWHM is shown as a function of τshaper

in figure 3.26. There one can see that for each curve the FWHM has a minimum, which
decreases for increasing n. The best results here are FWHM of 7.55 keV at 511.00 keV and
10.52 keV at 1275.53 keV for n = 12. In the application of the trapezoidal and truncated
cusp-like shaper to the MWD output signal, the plateau length m is varied between 500
and 3000 points and the slope length k is varied between 500 and 4000 points. For the
trapezoidal shaper the best result are FWHM of 4.69 keV at 511.00 keV and 5.39 keV at
1275.53 keV for m = 1000 and k = 2000 and for the truncated cusp-like shaper the best
result are FWHM of 4.75 keV at 511.00 keV and 5.37 keV at 1275.53 keV for m = 1500
and k = 3000. Although these results are very close to each other, the truncated cusp-like
shaper has the better results over a wide range of k. Figures 3.27 and 3.28 show the
best results as a function of k. Furthermore, the FWHM achieved with this shapers in
this configuration but without the MWD are shown there. As one can see this makes a
significant difference especially for the higher energy of 1275.53 keV. Tests with m = 0
(i.e. triangular and cusp-like shaper) are performed, too, but do not result in competitive
energy resolutions. The results of all measurements are summarized in table 3.1 for CR-
(RC)n-shaping and in table 3.2 for all other shapers.

In figure 3.29 the pulse height spectrum of the signals processed with the truncated cusp-
like shaper with m = 1500 and k = 3000 is shown. The energy calibration is performed
with equation (3.29) and the two peaks shown in figures 3.30 and 3.31 are fitted with the
asymmetric gaussian function. The calibration parameters are m = 20.41 keV/mV and
n = 1.23, so the dynamic range is m · 100 mV = 2041 keV.

In section 2.1 the concept of the Peak-Sensing Equivalent Number Of Bits (PSENOB) is
introduced. The truncated cusp-like shaper used here is nearly equivalent to the shaper
”Trapezoidal 2” in table 1 of reference [10]. With ϑ = k · ∆t = 1.5 µs, kG⋆ = 1.225
and an ENOB given between 5.4 and 7.2 the PSENOB calculated with equation (2.1) is
between 10.4 and 12.2. In comparison to the analogously processed data one finds that
digital methods applied to signals digitized with the nELBE FDDAS can reduce the prob-
lem of the ballistic deficit, but the energy resolution achieved with this 10-bit digitizer
system is worse than with the 14-bit ADC by a factor of two.



32 Chapter 3. Pulse Height Analysis of HPGe Preamplifier Signals

Figure 3.29: Spectrum of the pulse heights of digitally processed preamplifier signals
of the HPGe detector. The signals are processed with the MWD to correct the ballistic
deficit and shaped with the truncated cusp-like shaper with m = 1500 and k = 3000.
The labeled peaks are described in figure 3.22. The peak at 94 mV does not stem
from radiation, but contains all signals leaving the voltage range of the digitizer.

Figure 3.30: Peak in the DSP pulse
height spectrum at E = 511.00 keV
fitted with an asymmetric gaussian
function. The energy resolution
(FWHM) of this peak is 4.75 keV.

Figure 3.31: Peak in the DSP pulse
height spectrum at E = 1274.53 keV
fitted with an asymmetric gaussian
function. The energy resolution
(FWHM) of this peak is 5.37 keV.



3.4. Energy Resolution of the HPGe Detector 33

n=1 n=4 n=8 n=12
τ/ns 511 1275 τ/ns 511 1275 τ/ns 511 1275 τ/ns 511 1275
200 36.07 76.96 100 36.39 71.68 75 33.16 91.00 50 40.38 103.37
300 20.09 35.82 150 17.97 27.68 100 19.98 39.65 75 22.90 40.95
400 13.68 20.99 200 11.89 20.97 125 14.57 26.65 100 14.57 28.02
500 10.92 15.00 250 9.01 15.03 150 10.91 19.76 125 10.60 18.88
600 9.97 13.28 300 8.17 12.51 175 8.93 15.87 150 8.38 14.31
700 10.74 12.39 350 8.63 11.42 200 7.96 13.23 175 7.55 11.81
800 12.06 13.74 400 9.53 11.29 225 7.62 11.49 200 7.68 10.84
900 13.23 13.95 450 10.80 11.59 250 8.04 11.04 225 8.31 10.52

1000 13.95 14.34 500 11.99 12.57 275 8.82 10.58 250 9.25 10.58
1100 13.96 15.17 550 13.09 13.23 300 9.38 10.74 275 10.34 11.25
1200 14.43 15.70 600 14.17 14.07 325 10.19 11.02 300 13.45 23.69

350 11.08 12.09

Table 3.1: Energy resolutions (FWHM) / keV achieved with CR-(RC)n shaping for
different shaping time-constants τ .
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trapezoidal trunc. cusp trapezoidal trunc. cusp
k 511 1275 511 1275 511 1275 511 1275

m = 500 m = 1000
500 10.98 12.99 13.29 21.63 9.45 9.82 10.40 12.60

1000 6.09 8.88 7.77 13.18 5.42 6.02 6.97 7.76
1500 5.91 7.32 6.23 9.36 5.49 6.11 5.81 6.46
2000 4.79 7.07 5.35 8.22 4.69 5.39 5.31 5.91
2500 5.44 6.22 6.03 7.45 4.95 5.59 5.01 5.60
3000 5.47 6.63 4.73 6.89 5.28 5.86 4.94 5.63
3500 6.11 7.29 4.76 6.54 6.18 6.46 4.95 5.58
4000 6.68 7.51 5.21 6.73 6.84 6.99 5.01 5.45
4500 5.45 6.06
5000 5.83 6.17

m = 1500 m = 2000
500 6.30 7.03 7.70 9.36 8.49 8.71 8.52 9.39

1000 5.30 5.95 5.60 6.28 5.24 5.80 6.34 6.97
1500 4.91 5.73 5.18 5.91 5.35 6.14 5.54 6.08
2000 4.77 5.47 4.90 5.69 5.15 5.83 5.21 5.85
2500 5.02 5.68 4.78 5.61 5.71 6.28 5.09 5.68
3000 5.54 6.23 4.75 5.37 6.11 6.59 5.26 5.83
3500 6.48 6.65 4.91 5.68 7.01 7.21 5.50 6.01
4000 7.22 7.18 5.25 5.89 7.80 7.79 5.84 6.68

m = 2500 m = 3000
500 6.33 6.60 7.78 8.37 8.34 8.82 8.20 9.02

1000 5.17 5.93 5.47 6.14 5.72 6.40 6.53 7.20
1500 5.34 5.91 5.12 5.83 6.14 6.77 5.95 6.71
2000 5.55 6.35 5.12 5.79 6.18 6.52 6.05 6.81
2500 6.01 6.62 5.22 5.97 6.61 7.20 6.04 6.90
3000 6.58 7.05 5.49 6.29 7.16 7.34 6.26 6.95
3500 7.52 7.88 5.83 6.47 8.30 8.09 6.57 7.02
4000 8.49 8.15 6.19 6.61 8.73 8.94 5.42 5.68

(m = 0) m = 1000 m = 1500
triangular cusp-like trapezoidal* trunc. cusp*

k 511 1275 511 1275 511 1275 511 1275
500 9.61 11.37 8.08 12.65

1000 5.36 6.80 5.81 8.67
1500 27.19 66.58 5.51 6.63 5.27 7.30
2000 19.94 37.10 4.80 5.99 5.00 6.54
2500 17.16 39.27 30.05 103.18 5.08 6.05 4.98 6.50
3000 14.24 27.56 24.57 50.30 5.72 6.49 5.24 6.43
3500 12.99 26.24 21.90 50.53 6.70 7.11 5.62 6.52
4000 12.15 23.70 19.52 45.55 7.45 7.62 6.15 6.79
4500 11.67 20.86 18.04 48.23
5000 11.46 19.52 16.38 37.00 * without MWD
5500 11.31 18.12 15.79 32.53
6000 11.26 17.32 14.72 30.11

Table 3.2: Energy resolutions (FWHM) / keV achieved with trapezoidal and trun-
cated cusp-like (trunc. cusp) shaping for different plateau lengths m and slope lengths
k. For m = 0 this is equivalent to triangular or cusp-like shaping.



35

Chapter 4

Time Resolution of Scintillation
Detectors

4.1 Scintillation Detectors

Scintillations are light flashes induced by ionizing radiation in certain materials. The ori-
gin of the luminescence is either a transition in the electronic band structure of materials
with a crystal lattice (inorganic scintillators) or a transition in the energy level structure
of a single molecule (organic scintillators). The photons emitted at these transitions are
then detected by photomultiplier tubes (PMT) or photodiodes. This concept of radi-
ation detection is applied in wide range of experiments with several different materials.
Principles and applications of scintillation detectors are well described in textbooks [1, 31].

The detectors used at nELBE are plastic scintillators for neutron detection and barium
fluoride (BaF2) scintillators for photon detection. The plastic scintillators are made from
the organic material EJ-200 [32], which has a scintillation-light decay time of 2.1 ns. The
dimensions of one scintillator are 1000 × 42 × 11 mm3. At both ends of the 1000 mm
long sides, the scintillator is readout by one photomultiplier tube each. Barium fluoride
is an inorganic scintillator with two scintillation light components. The slow component
has a decay time of ≈ 630 ns and is emitted in a band centered at 310 nm. The fast
component has a decay time of 0.6 ns – 0.8 ns and is emitted in bands centered at 195 nm
and 220 nm. The intensity of slow component is depending on the primary ionization
density and therefore it is possible to discriminate particles by their pulse shape. The
crystals used here are 19 cm long and have a hexagonal cross section with an inner diameter
of 53 mm. Each crystal is read out by one PMT. The PMTs used for both detector types
are Hamamatsu R2059-01 2-inch photomultiplier tubes [33] with the active high-voltage
divider socket iseg PHQ2059 [34]. They are used at a gain of about 2 · 107. The tubes
have a short rise time of 1.3 ns and a low transit-time spread of 0.55 ns. To be sensitive
to the ultraviolet (UV) scintillation light of the fast component of BaF2, the PMTs have
a fused silica window.

4.2 Algorithms for Timing Measurements

The moment of an interaction in the detector has often to be derived with high accuracy
from a detector signal. Fluctuations of the timing signal can be a result of varying
pulse appearance (i.e. different amplitude, rise time, shape) or of appearance-independent
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effects (e.g. noise) and are called walk or jitter. In analog signal processing there are
several common methods [1, 2] to determine a precise time from detector signals. These
methods can be adapted in digital signal processing, where the challenge is to achieve time
signals of the same precision, although a big part of the information about the detector
signal was lost in the digitizing process. Especially for signals with short rise times one
has to close the gaps, that are of the width of the sampling interval ∆t, between the
sampled data points by interpolation or by fitting.

4.2.1 Digital Counterparts of Analog Methods

Leading Edge Timing

The sampled data points vn are investigated point by point until the signal crosses a fixed
threshold vth and a slope condition (rising or falling) is fulfilled. Between the points vi

and vi+1, which enclose the threshold, the signal is interpolated linearly, resulting in

tth =

(

i +
vth − vi

vi+1 − vi

)

· ∆t . (4.1)

This method is called leading edge timing (LET), although it is also possible to determine
a time signal from the trailing edge of a signal. It should be mentioned that a linear
interpolation can strongly differ from the original curve shape particularly near the peak
or the baseline of the signal and that LET is sensitive to the walk effect mentioned above.
In figure 4.1, the two signals A and B are of identical shape but have different amplitudes
and thus generate two different time signals t′A and tB, if LET is applied with a threshold
of vth ≈ 0.67 V in this example.

Extrapolated Leading Edge Timing

Using two different threshold values vth1 and vth2 in equation (4.1) one gets the time
values tth1 and tth2 which lie upon a line that crosses the pulse’s baseline vbl at

tbl = tth1 +
vbl − vth1

vth2 − vth1

· (tth2 − tth1) . (4.2)

The second threshold value of this extrapolated leading edge timing (ELET) method can
be parametrized with vth2 = fth · vth1, where fth > 1 is a stretch factor.

Zero-Crossing Shaper Timing

By applying the low-pass (CR) and the high-pass filter (RC) from equations (3.23) and
(3.24) in the order CR-RC-CR to the detector signal, the zero crossing time tzc of the
output signal is theoretically independent of the amplitude of the detector signal. tzc

is determined by interpolating between the two surrounding data points. The correct
zero-crossing is usually the only zero-crossing between the maximum and the minimum
of the output signal and can be discriminated from random, noise-induced zero-crossings.
While in ASP this zero-crossing shaper timing (ZCT) method will introduce more noise
to the signal and contribute to the jitter, this is not the case in DSP. In figure 4.2 the
response of the CR-RC-CR shaper to a BaF2 detector signal is shown.
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Figure 4.1: Working principle of the
LET and the FCFT method. Signal
B is an attenuated and shifted copy of
the BaF2 detector signal A. See text
for details.

Figure 4.2: Responses of the ZCT
with τ = 0.2 ns (blue line, scaled up
by a factor of 20) and the ZCCFT
method with acf = 0.2 and tcf = 5 ns
(red line) to a BaF2 detector signal
(black line).

Zero-Crossing Constant-Fraction Timing

Figure 4.2 shows the response of the zero-crossing constant-fraction timing (ZCCFT)
method to a BaF2 detector signal, too. This method is similar to ZCT but with lower
jitter and also free of the amplitude-walk. In ASP the ZCCFT method is realized in
the constant fraction discriminator (CFD) and is the most common method for precision
timing measurements. The working principle is: (a) the detector signal vn is multiplied
with an attenuation factor 0 < acf < 1 on the one hand and (b) vn is inverted and delayed
by a time tcf = m · ∆t shorter than the pulses rise time on the other hand. The sum of
(a) and (b) is

sn = acf · vn − vn−m (4.3)

which has again a zero crossing at tzc which is independent of the amplitude of the detector
signal. tzc is determined as described for ZCT. Since tzc is not independent of the rise time
of the detector signal there is a related method called amplitude and rise time compensated
(ARC) timing where tcf is chosen as small as possible to avoid an influence of the rise
time variation on tzc.

4.2.2 Fully Digital Methods

Constant Fraction Timing

Constant fraction timing (CFT) can be realized by determining the amplitude and then
determining the time where the signal crosses a certain fraction of this amplitude. For
the negative signal used here, the determination of vmin is followed by leading edge timing
with vth = ccf · vmin. This is not practicable in normal ASP systems whereas in DSP the
amplitude can easily be found and the LET method from equation (4.1) allows a different
threshold for each detector signal. For small fractions one has to pay attention to signals
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of low amplitude, because then vth is close to the baseline and noise can generate the
time signal instead of the signal. This effect is compensated by moving backwards on the
leading edge point by point, starting at the position of the amplitude vmin and determining
the threshold-crossing by interpolating between the two surrounding data points.

Fitting Constant Fraction Discriminator

Motivated by results presented by Bečvář et al. [35], the results of CFT can maybe
be improved by using fitting methods to determine the amplitude vmin, the baseline vbl

and the threshold crossing time tth more precisely. The peak region, which is fitted with
a parabola f(x) = ax2 + bx + c, consists of the four points

vi−2 , vi−1 , vi = vmin , vi+1 : vi−1 ≥ vi+1 or

vi−1 , vi = vmin , vi+1 , vi+2 : vi−1 < vi+1 .
(4.4)

In both cases the vertex of the parabola should be located between the two central points
at tvertex = −b/2a. The new maximum is v′

min = (4ac − b2)/4a.
From the rising slope of the detector signal the data points vlow and vtrig crossing the
thresholds 0.1 · v′

min and ccf · v′

min, respectively, are determined. The baseline vbl is calcu-
lated by averaging vn over a certain number l of points beginning l + 5 points before the
point vlow. The neighborhood of vtrig, which consists of the four points

vi−2 , vi−1 , vi = vtrig , vi+1 , (4.5)

is again fitted with a second-order polynomial. The intersection of this polynomial with
the threshold vth = vbl + ccf (v′

min − vbl) is finally the time signal of the fitting constant
fraction timing (FCFT) method. In figure 4.1 the whole procedure is illustrated, where
the two signals A and B are of identical shape and have different amplitudes but anyhow
generate the same time signals tA = tB.

4.3 Measurements with BaF2 and Plastic Scintilla-

tion Detectors at nELBE

A parasitic data acquisition with the nELBE FDDAS was performed during an experi-
ment at the neutron time-of-flight system nELBE which was introduced in section 1.2.
In this experiment the ELBE accelerator delivered an electron beam with a beam current
of 2µA and a micro-pulse rate of 101.5625 kHz, i.e. the electron bunch interval was about
10 µs. The neutrons generated in the liquid-lead radiator were used to measure the cross
section of the inelastic scattering reaction 56Fe(n,n’γ)56Fe. Therefore, a target of 40 g of
elemental iron consisting of 91.754 % of the isotope 56Fe was installed in the center of
the BaF2 array as shown in figure 1.4. A picture of an nELBE detector setup is shown
in figure 4.3. At variance to the shown setup, in this experiment four of the five plastic
scintillation detectors were located close to each other, next to the BaF2 array, to detect
neutrons scattered under angles near 90◦ from the direction of the neutron beam. To
determine the energy dependent cross section of the reaction mentioned above the time-
of-flight of the incident neutron is measured by detecting the photon emitted from the
Fe target in the BaF2 array and the time-of-flight of the scattered neutron is measured
by detecting it in one of the plastic scintillation detectors. Thereby, the time-of-flight
is determined from the measured time signal relative to the micro-pulse signal from the
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ELBE-accelerator. The micro-pulse signal shown in figure 4.4 serves as a reference signal.
In the time-of-flight spectrum the photon-flash peak, i.e. the almost constant time of
arrival of the bremsstrahlung photons, stemming from the liquid-lead radiator, can then
be used as a time reference. For the following transmission experiment the fifth plastic
scintillation detector has been installed directly in the beam.

The nELBE FDDAS was equipped with one Acqiris DC-282 digitizing card and the
VMETRO recording card in this experiment and data was acquired in two subsequent
runs. In the first run, signals from the BaF2 scintillation detectors #1, #5 and #9 (as
numbered in figure 4.5) on the channels 1, 2 and 3 and the micro-pulse signal on channel
4 were acquired in a range from −1900 mV to 100 mV, while the internal hardware trigger
(leading edge, negative slope) of the FDDAS was set to -300 mV for each of the channels
1, 2 and 3. In the second run, signals from the two photomultiplier tubes of the plastic
scintillation detector, which stood directly in the neutron beam, on the channels 1 and
2 and the micro-pulse signal on channel 4 were acquired in a range from −4900 mV to
100 mV, while channel 3 was not connected and the internal hardware trigger (leading
edge, negative slope) of the FDDAS was set to -900 mV for each of the channels 1 and
2. In both runs, the signals were sampled with N = 10 bits for 2.5µs at a sampling rate
fS = 2 GS/s, i.e. the sampling interval was ∆t = 0.5 ns, resulting in 5000 data points per
channel per event. The pre-trigger-delay, i.e. the number of data points which are stored
before the trigger point was set to 512 in the first run and 2048 in the second run. In
each of both runs, 1 536 000 events with a total size of 60 GiB of data were digitized, and
stored for an offline analysis described in section 4.4.2.

Figure 4.3: The nELBE detector setup. The array of 42 BaF2 scintillation detectors
is located in the center of the picture. The five upright stripes on the right are the
plastic scintillation detectors which are closely surrounded by a lead shielding. The
collimated neutron beam enters the room at the left edge at the position where, here,
the beam shutter (metallic cylinder) is shown, follows through another collimator
made of yellow lead bricks left of the BaF2 array, passes the two detector systems
and is finally stopped in the beam dump at the right edge.
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Analog signal processing at nELBE is done with a home-built constant fraction discrimina-
tors [37] with acf = 0.22 and an adjustable delay time tcf . The VMEbus data acquisition
system (DAQ) uses the 128-channel multihit TDC CAEN V1190A [38] with a dispersion
of 100 ps per channel and a dynamic range of 52µs (19 bit). Further information about
ASP and the DAQ system at nELBE can be found in reference [9]. Parts of the experi-
mental data acquired with this system are analyzed in section 4.4.1 for comparison.

To characterize the digitized signals, figure 4.6 shows a typical signal of the BaF2 scin-
tillation detector #9. The inset in this figure shows this signal in shorter time range.
From all signals of this detector a two-dimensional distribution of the amplitude vmin vs.
the timing information tdet extracted with the FCFT method with ccf = 0.5 is shown
in figure 4.7. The histogram is limited in the time tdet to the inspection window of the
analysis. On can see that the majority of events is close to the trigger time (512 · 0.5 ns).
The events with amplitudes to low to be triggered (vmin > −300 mV) are digitized if
one of the other detectors triggered. In the same way a typical signal and the 2D his-
togram are shown for the two PMTs of the plastic scintillation detectors in figures 4.8,
4.9, 4.10 and 4.11. In figure 4.10 a signal is shown, which leaves the range of the FD-
DAS and is therefore distorted. In the 2D distribution one can see that these signals at
vmin = −4900 mV dominate the distribution. Further discussion of this phenomenon can
be found in section 4.4.2. The time-scale difference of the two histograms is due to an
offset of 100 ns between PMT0 and PMT1. Hence, in most of the cases PMT0 triggered
the event. This explains why in the histogram of PMT0 only a few events have amplitudes
vmin > −800 mV while in the histogram of PMT1 also a large amount of signals with this
low amplitudes is present which did not fulfill the trigger condition.

Figure 4.4: The digitized ELBE
micro-pulse signal, from which tref

is determined, was acquired together
with the detector signal.
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Figure 4.5: Sketch of the nELBE
BaF2 array with the consecutively
numbered detectors. The neutron
beam (centered black spot) points out
of the plane. In the inner ring of
the array, two detectors are installed
head to head, whereas the detectors 1
– 12 are closer to the neutron beam
dump. [36]
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Figure 4.6: Digitized signal of the
BaF2 detector #9.

Figure 4.7: 2D histogram of tdet vs.
vmin of the BaF2 detector #9.

Figure 4.8: Digitized signal of the
PMT0 of the plastic scint. detector.

Figure 4.9: 2D histogram of tdet vs.
vmin of the PMT0.

Figure 4.10: Digitized signal of the
PMT1 of the plastic scint. detector.

Figure 4.11: 2D histogram of tdet vs.
vmin of the PMT1.
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4.4 Time Resolution of BaF2 and Plastic Scintillation

Detectors

The timing methods described in section 4.2 are applied to data acquired with three of
the 42 BaF2 scintillation detectors and one of the five plastic scintillation detectors during
an nELBE experiment as described in section 4.3. The detector signals, i.e. the signals
of the photomultiplier tubes mounted to the scintillators, are processed using the meth-
ods leading edge timing (LET), extrapolated leading edge timing (ELET), zero-crossing
shaper timing (ZCT), zero-crossing constant fraction timing (ZCCFT), constant fraction
timing (CFT) and fitting constant fraction timing (FCFT) with different parameters to
extract the timing information tdet.

From the ELBE micro-pulse signal of the same event a reference timing information tref

is determined with the LET method with a threshold vth = −400 mV. For the signals of
the BaF2 scintillation detectors the difference

tBaF2 = tdet − tref (4.6)

is filled into histograms. For the signals of the plastic scintillation detectors, which have
one photomultiplier tube (PMT0 or PMT1) mounted to each end, the difference

tplast = (tPMT0 + tPMT1)/2 − tref (4.7)

is used, in which tPMT0 = tdet(PMT0) and tPMT1 = tdet(PMT1).

To investigate the timing capability of the nELBE FDDAS, the time resolution (FWHM)
of the photon-flash peak in the time spectra of tBaF2 and tplast is investigated. Since the
ELBE electron bunches are very short (some ps) and the interaction between the electron
beam and the nELBE liquid-lead radiator takes place in a small volume (0.6 cm3), the
uncertainty of the generation time contributing to the FWHM can be neglected. The
fitting tool of ROOT is used to perform a least-square fit with the gaussian function

f(x) = Ae−
(x−µ)2

2σ2 (4.8)

to the photon-flash peaks, in which A is the amplitude, µ is the mean, σ is the standard
deviation and FWHM = σ · 2

√
2 ln 2 is the time resolution. For making the results of

the digital methods comparable to the analog analysis, the bin width of the histograms in
DSP is chosen close to the fixed bin width of the histograms of the analog data analysis,
which is 98 ps. A possible influence of the DSP bin width on the FWHM was investigated
and can be neglected for a bin width of 100 ps or smaller.

4.4.1 Analogously Processed Data

As a result of the analysis of the data processed and acquired with state of the art
electronics mentioned before, figure 4.12 shows the distribution of tBaF2 of the BaF2 de-
tector #9 and figure 4.13 shows the distribution of tplast. In both figures only the part
with the photon-flash peak is shown. The plastic scintillator stood in the beam during
the experiment and detected about ten times more events than each of the BaF2 scin-
tillation detectors which surrounded the in-beam scattering target and mainly detected
scattered photons. In both cases a peak about 24 ns before the main peak is present.
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This peak is due to electron beam losses in the beam line towards nELBE neutron gener-
ator. Thereby, electrons sometimes hit structural materials of the beam guiding system
and create bremsstrahlung that arrives earlier than bremsstrahlung from the liquid lead
target. The suppression of the pre-photon-flash towards the main photon-flash is higher
for the plastic scintillator because its position is better shielded by concrete walls and is
also further away than the position of the BaF2 detectors. Another peak in the time dis-
tribution of the BaF2 detectors 6 ns after the main peak is also suppressed by two orders
of magnitude. It is assumed that backscattering of photons from the lead shielding of
the plastic scintillator in the beam is the origin of this post-photon-flash. The time res-
olutions (FWHM) are determined from the main photon-flash peaks. In this experiment
with analog signal processing they are 1.08 ns, 0.82 ns and 0.79 ns for the BaF2 scintillation
detectors #1, #5 and #9, respectively, and 0.98 ns for the plastic scintillation detector.

Figure 4.12: Spectrum (photon-
flash peak) of tBaF2 determined from
analog processed signals of the BaF2

scintillation detector #9. In the up-
per right inset the peak fitted with a
Gaussian function is shown.

Figure 4.13: Spectrum (photon-
flash peak) of tplast determined from
analog processed signals of the plastic
scintillator. In the upper right inset
the peak fitted with a Gaussian func-
tion is shown.

4.4.2 Digitally Processed Data

In the case of the negative signals of the BaF2 detectors the voltage range is −1900 mV
to 100 mV while no systematic offset of the signals’ baseline is observed. The FDDAS
triggered to the first signal coming from one of the three detectors with a internal hard-
ware trigger (leading egde, negative slope) and a threshold of −300 mV. The analysis is
limited to a narrow range of 200 to 300 ns, which includes the trigger time, in order to
save analysis time. A digital copy of each detector signal signal is smoothed with the
central moving-average filter (a = 15). If the pulse height of a smoothed signal is smaller
than 30 mV, the signal is rejected.

The analysis of the ELBE micro-pulse signal, which triggered no events, is performed over
the whole time range from 0 to 2500 ns. In the analysis, a few events are found with no
reference time tref and are rejected. The absence of tref is possible since the accelerator
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works with a micro-pulse rate of 101.5625 kHz, i.e. the electron bunch interval is about
10 µs and hence twice as long as the time range. The total number of triggered events is
1 536 000, whereas the number of accepted events is about 500 000 for the detectors #1
and #5, respectively, and about 450 000 for detector #9.

In the case of the negative signals of the two PMTs of the plastic scintillation detectors
the voltage range is, as mentioned before, −4900 mV to 100 mV. The FDDAS triggered
to the first signal coming from one of the two PMTs of the detector with a internal trigger
(leading egde, negative slope) and a threshold of −900 mV. The analysis is limited to a
narrow range of 850 to 1050 ns (PMT0) and 950 to 1150 ns (PMT1), where coincident
photon-flash events are expected. The different time windows are due to a delay of about
100 ns between the two signals which was installed to suppress electronic cross-talk. A dis-
tribution of tPMT1 − tPMT0 is shown in figure 4.14, while the CFT method with ccf = 0.1
was applied.

The analysis of the ELBE micro-pulse signal is done as for BaF2. In the signals of
PMT0 there is a systematic offset, which is determined and finally corrected by aver-
aging the baseline and subtracting the offset. The total number of triggered events is
1 536 000. In 80% of all events one or both PMTs show signals, which have high am-
plitudes (vmin < −4900 mV) and leave the range of the digitizer (see also figure 4.10).
These events are rejected as well as signals that do not fulfill the coincidence condition
90 ns < tPMT1 − tPMT0 < 130 ns. As for BaF2, signals with very low amplitude are filtered
out by a central moving average filter (a = 15, 30 mV). Finally there are about 260 000
accepted events. In figure 4.15 a spectrum of tplast for all coincident events of the PMTs of
the plastic scintillation detector is shown in a larger range. Apart from the photon-flash
peak, a broad distribution of neutrons is visible.

Figure 4.14: Spectrum of tPMT1 −
tPMT0. In the upper right inset the
peak fitted with a Gaussian function
is shown.

Figure 4.15: Full spectrum of tplast

determined from digitally processed
signals of the PMTs of the plastic scin-
tillation detector. The photon-flash
peak is followed by a broad distribu-
tion of neutrons.
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4.4.3 Comparison of Timing Algorithms

The results of the methods applied are presented in this section in the three following
ways: (a) The determined time resolutions (FWHM) are plotted for each method as a
function of the parameters varied to compare the detectors to each other on the one hand
and different parameter sets to each other on the other hand. For further comparison
the results of the analog analysis are shown as dashed, horizontal lines in these plots.
(b) For one selected parameter set (usually the one which produces the best result) of
each method the photon-flash peak in the distribution of tBaF2 and tplast is plotted in a
similar way as in figures 4.12 and 4.13 to compare the different methods to each other
and to the analog result. (c) For all methods and parameter sets the determined time
resolutions (FWHM) are presented in tables at the end of this section. The parts (a)
and (b) are discussed in the following subsections, while similar methods are discussed
together.

Leading Edge Timing and Extrapolated Leading Edge Timing

The LET method is applied with thresholds vth from −25 mV to −1500 mV. ELET is
applied with the lower threshold vth1 as in LET and the higher threshold vth2 = fth · vth1,
whereas the stretch factor fth is 1.5, 2.0, 2.5 or 3.0. Figure 4.16 shows clearly, that the
LET method applied to the detector signals results in a worse time resolution than the
analog reference values. The best results are obtained with thresholds near the baseline,
the worst with a threshold at the trigger level of the FDDAS. If the threshold is moved
from this point up to the maximal amplitude, the results seem to become better again.
The reason for that is that the further the threshold is away from the baseline the more
signals are not recognized by the LET method since their amplitude is too small. There-
fore, the variation of the amplitudes of the recognized signals becomes smaller and the
walk effect is decreased with the drawback that more signals are rejected. The signals of
the plastic scintillation detector, which have amplitudes up to −4900 mV, are less sensi-
tive to this effect at the investigated thresholds.

The results of the ELET method are not competetive in their time resolution and are
therefore not shown. The problem of the rejection of signals smaller than the threshold
occurs here, too. The fitted photon-flash peaks in the distributions of tBaF2 and tplast are
shown for LET with vth = −50 mV in figure 4.21 for BaF2 detector #9 and in figure 4.27
for the plastic scintillation detector. There, it can be observed that the shape of the analog
spectrum is well reproduced for BaF2, while in the spectrum of the plastic scintillation
detector lots of signals between the photon-flash peak and and the pre-photon-flash peak
disturb the spectrum.

Zero-Crossing Shaper Timing

The ZCT method is applied with τ from 0.1 ns to 10.0 ns, which is the time constant
of the used digital CR- and RC-shapers. As mentioned before the sampling interval
was ∆t = 0.5 ns. Under the condition ∆t ≪ τ the used shapers are precise digital
representations of their analog counterparts, but even in the cases investigated here they
should show a similar behavior. In figure 4.17 the time resolution is shown as a function
of τ . For all detectors this function is similar with a minimum between τ = 0.1 ns and
τ = 1 ns. Smaller time-constants were not investigated since the output signal became
too small in this case. For τ = 1 ns, the fitted photon-flash peak is shown in figure 4.22
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for BaF2 detector #9. For BaF2, results similar to or better than ASP are obtained. In
the case of the plastic scintillation detector, figure 4.28 shows a photon-flash peak, which
is widened towards longer times. Here the results are worse compared to ASP.

Zero-Crossing Constant Fraction Timing

Using the ZCCFT method the delay parameter m is here 3, 5 or 10 points and the
attenuation factor acf varies between 0.05 and 0.60. As can be seen in figure 4.18, each
curve has a clear minimum, that moves towards smaller values of acf while m increases.
Except for BaF2 detector #1 the time resolution improves for increasing m, too. For
all BaF2 detectors much better results are obtained than with ASP, while for the plastic
scintillation detector this is only with m = 10 the case. For BaF2 detector #9, figure 4.23
shows the photon-flash peak for m = 10 and acf = 0.15. The photon-flash peak of the
plastic scintillation detector is shown in figure 4.29 for m = 10 and acf = 0.10.

Constant Fraction Timing and Fitting Constant Fraction Timing

The parameter ccf is varied between 0.025 and 0.80 for the CFT and the FCFT method.
Also the peak time, i.e. the time when vmin (or v′

min) is reached, is determined and denoted
with ccf = 1.0. In figure 4.19 the time resolution is shown as a function of ccf for both
methods and the four detectors of the experiment. For all detectors much better results are
obtained than with ASP. The differences between CFT and FCFT are very small except
for the plastic scintillation detector, where the CFT gives slightly better resolutions. Also
the photon-flash peaks shown in figures 4.24 and 4.25 as well as in figures 4.30 and 4.31
show nearly no differences and are also very similar to their counterparts of the ZCCFT
method. The fact that FCFT gives equal resolutions as CFT means, that (a) the linear
interpolation in CFT is competitive to the fit used in FCFT and (b) the more precise
pulse height determination has no effect, since the corrections in the order of 3% – 5% do
not influnce the walk effect significantly.
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Figure 4.16: Time resolution
achieved with LET. Note the change
of the threshold scale at −250 mV.
Data is listed in table 4.1.
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Figure 4.17: Time resolution
achieved with ZCT. Note the loga-
rithmic time-constant scale. Data is
listed in table 4.2.
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Figure 4.18: Time resolution achieved with ZCCFT. Note the different scale of the
right diagram. Data is listed in 4.3.
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Figure 4.19: Time resolution achieved with CFT and FCFT. Note the different
scales of the right diagram. Data is listed in table 4.4.
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Figure 4.20: ASP (figure 4.12) Figure 4.21: LET, vth = −50 mV

Figure 4.22: ZCT, τ = 1.0 ns Figure 4.23: ZCCFT, acf = 0.15,
m = 10

Figure 4.24: CFT, ccf = 0.125 Figure 4.25: FCFT, ccf = 0.125

Figures 4.21 - 4.25: Photon-flash peaks in the spectra of tBaF2 determined from digital
processed signals of the BaF2 detector #9.
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Figure 4.26: ASP (figure 4.13) Figure 4.27: LET, vth = −50 mV

Figure 4.28: ZCT, τ = 1.0 ns Figure 4.29: ZCCFT, acf = 0.10,
m = 10

Figure 4.30: CFT, ccf = 0.10 Figure 4.31: FCFT, ccf = 0.10

Figures 4.27 - 4.31: Photon-flash peaks in the spectra of tplast determined from digital
processed signals of the PMTs of the plastic scintillation detector.



50 Chapter 4. Time Resolution of Scintillation Detectors

vth / mV BaF2 #1 BaF2 #5 BaF2 #9 Plast. Scint.
↓

-25 1.08 1.15 1.06
-50 1.14 1.22 1.07 1.04
-75 1.23 1.37 1.18 1.05

-100 1.33 1.40 1.23 1.08
-150 1.49 1.55 1.47 1.09
-200 1.80 1.84 1.67 1.14
-300 2.07 2.26 2.14 1.22
-500 1.76 1.86 1.82 1.29
-700 1.64 1.67 1.51 1.39
-900 1.51 1.49 1.39 1.43

-1200 1.24 1.24 1.21 1.41
-1500 1.10 1.20 1.04 1.40

Table 4.1: Time resolution (FWHM) / ns of the tested detectors with the LET
method. The varied parameter is the threshold vth.

τ / ns BaF2 #1 BaF2 #5 BaF2 #9 Plast. Scint.
↓
0.1 0.82 0.91 0.84
0.2 0.83 0.88 0.82 1.48
0.5 0.87 0.87 0.81 1.39
1.0 0.94 0.86 0.81 1.33
2.0 1.07 0.89 0.84 1.42
5.0 1.36 1.14 1.03 1.77

10.0 1.94 1.66 1.43 2.08

Table 4.2: Time resolution (FWHM) / ns of the tested detectors with the ZCT
method. The varied parameter is the time constant τ of the used CR- and RC-
shapers.
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aCF BaF2 #1 m → BaF2 #5 m → BaF2 #9 m → Plast. Scint. m →
↓ 3 5 10 3 5 10 3 5 10 3 5 10

0.05 1.43 0.86 0.84 1.62 1.00 0.85 1.63 0.89 0.76 1.48 1.11 0.92
0.10 0.94 0.74 0.80 1.16 0.83 0.78 1.04 0.72 0.70 1.23 1.00 0.90
0.15 0.79 0.72 0.80 0.95 0.80 0.77 0.82 0.70 0.69 1.12 0.98 0.91
0.20 0.72 0.74 0.81 0.86 0.79 0.77 0.74 0.70 0.70 1.06 0.98 0.94
0.25 0.71 0.75 0.82 0.82 0.79 0.77 0.71 0.71 0.70 1.03 1.00 0.96
0.30 0.71 0.77 0.84 0.81 0.79 0.77 0.71 0.72 0.71 1.02 1.03 0.99
0.35 0.73 0.79 0.85 0.80 0.80 0.78 0.71 0.73 0.72 1.03 1.05 1.02
0.40 0.75 0.81 0.87 0.80 0.80 0.79 0.72 0.74 0.73 1.05 1.09 1.05
0.45 0.77 0.83 0.88 0.81 0.81 0.79 0.73 0.75 0.74 1.07 1.12 1.09
0.50 0.79 0.85 0.90 0.82 0.82 0.80 0.75 0.76 0.75 1.11 1.16 1.13
0.55 0.81 0.88 0.91 0.83 0.83 0.81 0.76 0.77 0.75 1.15 1.21 1.17
0.60 0.84 0.90 0.93 0.84 0.84 0.82 0.78 0.79 0.77 1.20 1.27 1.22

Table 4.3: Time resolution (FWHM) / ns of the tested detectors with the ZCCFT
method. The varied parameters are the attenuation factor acf and the delay time
tcf = m · ∆t.

ccf BaF2 #1 BaF2 #5 BaF2 #9 Plast. Scint.
↓ CFT FCFT CFT FCFT CFT FCFT CFT FCFT

0.025 0.94 0.95 1.00 1.02 0.91 0.92 0.96 0.99
0.050 0.79 0.79 0.85 0.85 0.76 0.75 0.90 0.91
0.075 0.75 0.75 0.81 0.81 0.71 0.71 0.89 0.89
0.100 0.73 0.73 0.80 0.79 0.70 0.70 0.88 0.89
0.125 0.73 0.73 0.79 0.79 0.70 0.69 0.89 0.90
0.150 0.73 0.73 0.79 0.79 0.70 0.69 0.90 0.91
0.175 0.74 0.74 0.79 0.79 0.70 0.70 0.91 0.92
0.200 0.75 0.74 0.79 0.79 0.70 0.70 0.92 0.93
0.250 0.76 0.75 0.79 0.79 0.71 0.71 0.95 0.96
0.300 0.77 0.77 0.80 0.80 0.72 0.72 0.98 0.99
0.350 0.78 0.78 0.80 0.80 0.73 0.73 1.02 1.03
0.400 0.80 0.80 0.81 0.81 0.74 0.74 1.06 1.07
0.450 0.81 0.81 0.82 0.82 0.75 0.75 1.10 1.11
0.500 0.83 0.83 0.83 0.83 0.77 0.77 1.15 1.16
0.600 0.86 0.86 0.85 0.85 0.79 0.79 1.26 1.28
0.700 0.90 0.90 0.88 0.88 0.83 0.82 1.41 1.44
0.800 0.95 0.95 0.92 0.92 0.87 0.86 1.69 1.70
1.000 1.28 1.16 1.23 1.09 1.17 1.02 2.52 2.41

Table 4.4: Time resolution (FWHM) / ns of the tested detectors with the CFT and
FCFT method. The varied parameter is the fraction ccf .
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Chapter 5

Conclusion and Outlook

The fast-digitizer data acquisition system installed at the nELBE experiment was tested
in a configuration with one digitizer card, which makes it possible to perform short and
simple experiments with four input channels. The strong point of the FDDAS was seen
in the timing measurements of signals with short risetimes from BaF2 and plastic scin-
tillation detectors. In combination with timing algorithms, which compensate the walk
effects, better time resolutions were achieved than with a state-of-the-art analog-signal
processing system. From the tested algorithms, the leading edge timing methods (LET
and ELET) resulted in no improvement or were impracticable. Applying an algorithm,
which determines the time information from the zero-crossing of the shaped input sig-
nal (ZCT), the time resolution was competitive to analog reference values for the BaF2

detectors only. The method using the working principle of an analoge constant-fraction
discriminator (ZCCFT) and the methods which measure the pulse height in order to set
the threshold to a constant fraction (CFT, FCFT) gave the best results. CFT and FCFT
are ways of signal processing which are only feasible with digital signal processing. It
showed that no significantly higher precision is obtained with fitting algorithms applied
to the digitized signals used here. Further investigations should also take differences in the
pulse shape into account to find the optimal timing method. A weak point which became
obvious during the analysis was the response of the timing methods to low-amplitude
signals and in this context the role of the analog trigger. A subject of interest for future
experiments at nELBE will also be the investigation of the pulse shapes in order to find
out if signals from the experiment can be discriminated from underground signals or noise
in the photomultiplier.

In the measurements with the HPGe detector it turned out that the 10-bit digitizer is
not competitive to a state-of-the-art analog-signal processing system with a 14-bit ADC,
which even had a four times larger dynamic range. It was shown that the moving window
deconvolution algorithm can reduce the ballistic deficit and improve the energy resolution.
Thereby, the shaping algorithms creating a flat-top gave the best results. A correction of
piled-up events or events with BGO veto signal was not included in the analysis, since the
influence of these effects should be negligible under the experimental conditions described
in this work.

At the moment, technical difficulties with the external trigger input and the limited
flexibility of the internal trigger hinder longer experiments with a bigger detector system
that uses all four cards. Furthermore, there are open questions which have to be answered
before such experiments can start. On the one hand, the data acquisition in two crates
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with four cards each has to be triggered and synchronized in order to combine the sig-
nals of all channels in the following offline analysis. Thereby, it has to be investigated
how to synchronize the two crates with each other and if an external trigger limits the
performance of the digitizer system. On the other hand, such experiments will create
huge amounts of data and the capacity of the storage device will become a limiting fac-
tor. Plans exist to reduce unwanted data online with filter algorithms implemented on
the digitizer card. This works in principle but has not been tested under experimental
conditions, yet. Anyhow, the first measurements have been performed successfully in this
work and a modular analysis program was developed. The trigger-rearm time and the
data transfer time were investigated and apart from some small technical problems, the
hardware has proved to be suitable for experiments at nELBE.
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Appendix A

C Algorithms for Digital Signal
Processing

A.1 Auxiliary Functions

00 double func_average (const double *v, int start, int stop)

01 { int i; double sum=0;

02 for (i=start; i<stop; i++) sum+=v[i];

03 return sum/(double)(stop-start);

04 }

00 double func_rms (const double *v, int start, int stop)

01 { int i; double sum=0;

02 for (i=start; i<stop; i++) sum+=v[i]*v[i];

03 return sqrt(sum/(double)(stop-start));

04 }

00 int func_extreme_value (const double *v, int start, int stop, int sign)

01 { int i, t=0; double ev=v[start];

02 if (sign > 0)

03 { for (i=start+1; i<stop; i++)

04 if (v[i] > ev)

05 { ev=v[i]; t=i;

06 }

07 }

08 else

09 for (i=start+1; i<stop; i++)

10 if (v[i] < ev)

11 { ev=v[i]; t=i;

12 }

13 return t;

14 }

00 double func_interpolate (const double *v, int i, double th, double dt)

01 { return (i+(th-v[i])/(v[i+1]-v[i]))*dt;

02 }
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00 void func_add_to_wf (double *v, int start, int npts, double add)

01 { int i;

02 for (i=start; i<start+npts; i++) v[i]+=add;

03 }

00 void func_stretch_wf (double *v, int start, int npts, double f)

01 { int i;

02 for (i=start; i<start+npts; i++) v[i]*=f;

03 }

A.2 Pulse Shaping Functions

00 void module_CR_diff_HP (const double *v, double *s, int npts,

double dt, double tau)

01 { int i; double alpha=tau/(tau+dt);

02 s[0]=0;

03 for (i=1;i<npts;i++)

04 s[i]=alpha*(s[i-1] + v[i] - v[i-1]);

05 }

00 void module_RC_int_LP (const double *v, double *s, int npts,

double dt, double tau)

01 { int i; double alpha=dt/(tau+dt);

02 s[0]=v[0];

03 for (i=1;i<npts;i++)

04 s[i]=(1-alpha)*s[i-1] + alpha*v[i];

05 }

00 void module_gaussian (const double *v, double *s, int npts,

double dt, double tau, int n)

01 { int i=0; double p[npts], norm;

02 if (n > 20)

03 norm=exp((-1)*(double)n)*pow((double)n,(double)n);

04 else

05 norm=1.0/sqrt(2*acos(-1)*n);

06 module_CR_diff_HP(v, s, npts, dt, tau);

07 while (i < n)

08 { if (i%2 == 0)

09 module_RC_int_LP(s, p, npts, dt, tau);

10 else

11 module_RC_int_LP(p, s, npts, dt, tau);

12 i++;

13 if (n > 20) norm/=(double)i;

14 }

15 if (n%2 == 1) module_add_to_wf(p, s, 0, npts, 0);

16 module_stretch_wf(s, 0, npts, 1.0/norm);

17 }



A.2. Pulse Shaping Functions 57

00 void module_ma (const double *v, double *s, int npts, int l, int a,

int weighting, double alpha)

01 { int i,j; double w[l];

02 if (a == 0) // proir moving average

03 { switch (weighting)

04 { case 0: // no weighting, no scaling

05 s[0]=v[0];

06 for (i=1; i<l-1; i++) s[i]=s[i-1]+v[i];

07 for (i=l-1; i<npts; i++) s[i]=s[i-1]+v[i]-v[i-l];

08 break;

09 case 1: // no weighting, scaling with 1/l

10 s[0]=v[0]/(double(l));

11 for (i=1; i<l; i++) s[i]=s[i-1]+v[i]/(double(l));

12 for (i=l; i<npts; i++) s[i]=s[i-1]+(v[i]-v[i-l])/(double(l));

13 break;

14 case 2: // linear weigting, scaling with 2/(l*(l+1))

15 for (i=0; i<l; i++) w[i]=2.0*(l-i)/((double)(l*(l+1)));

16 for (i=0; i<l; i++)

17 for (j=0; j<i; j++) s[i]+=w[j]*v[i-j];

18 for (i=l; i<npts; i++)

19 for (j=0; j<l; j++) s[i]+=w[j]*v[i-j];

20 break;

21 case 3: // exponential weigting

22 s[0]=v[0];

23 for (i=1; i<npts; i++) s[i]=(1.0-alpha)*s[i-1]+alpha*v[i];

24 break;

25 }

26 }

27 else if (l == 0) // central moving average

28 { l=2*a+1;

29 switch (weighting)

30 { case 0: // no weighting, no scaling

31 s[0]=v[0];

32 for (i=1; i<a+1; i++) s[i]=s[i-1]+v[i];

33 for (i=a+1; i<=npts-a; i++) s[i]=s[i-1]+v[i+a]-v[i-a-1];

34 for (i=npts-a+1; i<npts; i++) s[i]=s[i-1]-v[i-a-1];

35 break;

36 case 1: // no weighting, scaling with 1/l

37 for (i=0; i<a; i++) s[i]=0;

38 for (i=0; i<l-1; i++) s[a]+=v[i];

39 for (i=a+1; i<npts-a+1; i++)

40 s[i]=s[i-1]+(v[i+a]-v[i-a-1])/(double(l));

41 for (i=npts-a+1; i<npts; i++) s[i]=0;

42 break;

43 }

44 }

45 }
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00 void module_mwd (const double *v, double *s, int npts, int m,

double tau, double dt)

01 { int i; double sum=0, k=exp((-1)*dt/tau), d[npts];

02 s[0]=v[0];

03 for (i=1; i<m; i++)

04 { sum = sum+v[i-1];

05 s[i]=v[i]+(1-k)*sum;

06 }

07 sum=sum+v[m-1];

08 s[m]=v[m]-v[0]+(1-k)*sum;

09 for (i=m+1; i<npts; i++)

10 { sum=sum+v[i-1]-v[i-m-1];

11 s[i]=v[i]-v[i-m]+(1-k)*sum;

12 }

13 }

00 void module_trapezoid (const double *v, double *s, int npts, int k,

int m)

01 { int i; double norm=1/(double(k));

02 s[0]=norm*v[0];

03 for (i=1;i<k;i++) s[i]=s[i-1]+norm*v[i];

04 for (i=k;i<k+m;i++) s[i]=s[i-1]+norm*(v[i]-v[i-k]);

05 for (i=k+m;i<2*k+m;i++) s[i]=s[i-1]+norm*(v[i]-v[i-k]-v[i-k-m]);

06 for (i=2*k+m;i<npts;i++)

07 s[i]=s[i-1]+norm*(v[i]-v[i-k]-v[i-k-m]+v[i-2*k-m]);

08 }

00 void module_cusp_trunc (const double *v, double *s, int npts, int k,

int m)

01 { int i, l=k+m; double p[npts], norm=2.0/(k*(k+1));

02 p[0]=v[0]; s[0]=norm*p[0];

03 for (i=1;i<k;i++)

04 { p[i]=p[i-1]+v[i];

05 s[i]=s[i-1]+norm*p[i];

06 }

07 for (i=k;i<k+m;i++)

08 { p[i]=p[i-1]+v[i]-v[i-k];

09 s[i]=s[i-1]+norm*(p[i]-v[i-k]*k);

10 }

11 for (i=k+m;i<2*k+m;i++)

12 { p[i]=p[i-1]+v[i]-v[i-k]+v[i-k-m];

13 s[i]=s[i-1]+norm*(p[i]-(v[i-k]+v[i-k-m])*k-v[i-k-m]);

14 }

15 for (i=2*k+m;i<npts;i++)

16 { p[i]=p[i-1]+v[i]-v[i-k]+v[i-k-m]-v[i-2*k-m];

17 s[i]=s[i-1]+norm*(p[i]-(v[i-k]+v[i-k-m])*k-v[i-k-m]+v[i-2*k-m]);

18 }

19 }
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00 void module_triangular (const double *v, double *s, int npts, int k)

01 { int i; double norm=1/(double(k));

02 s[0]=norm*v[0];

03 for (i=1;i<k;i++) s[i]=s[i-1]+norm*v[i];

04 for (i=k;i<2*k;i++) s[i]=s[i-1]+norm*(v[i]-2*v[i-k]);

05 for (i=2*k;i<npts;i++) s[i]=s[i-1]+norm*(v[i]-2*v[i-k]+v[i-2*k]);

06 }

00 void module_cusp (const double *v, double *s, int npts, int k)

01 { int i; double p[npts], norm=2.0/(k*(k+1));

02 p[0]=v[0]; s[0]=norm*p[0];

03 for (i=1;i<k;i++)

04 { p[i]=p[i-1]+v[i];

05 s[i]=s[i-1]+norm*p[i];

06 }

07 for (i=k;i<2*k+1;i++)

08 { p[i]=p[i-1]+v[i];

09 s[i]=s[i-1]+norm*(p[i]-v[i-k]*(2*k+1));

10 }

11 for (i=2*k+1;i<npts;i++)

12 { p[i]=p[i-1]+v[i]-v[i-2*k-1];

13 s[i]=s[i-1]+norm*(p[i]-v[i-k]*(2*k+1));

14 }

15 }
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A.3 Timing Functions

00 double module_let (const double *v, int start, int stop, double

threshold, int condition, double dt, double no_success)

01 { int i;

02 for (i=start; i<stop-1; i++)

03 { if ((v[i]-threshold)*(v[i+1]-threshold) <= 0)

04 if ((condition==0) || (condition*(v[i]-v[i+1]) < 0))

05 return func_interpolate(v, i, threshold, dt);

06 }

07 return no_success;

08 }

00 double module_elet (const double *v, int start, int stop, double

threshold, int condition, double dt, double factor, double no_success)

01 { int i=start; double t1=0.0, t2=0.0;

02 while (i<stop-1)

03 { if ((v[i]-threshold)*(v[i+1]-threshold) <= 0)

04 if ((condition==0) || (condition*(v[i]-v[i+1])<0))

05 { t1=func_interpolate(v, i, threshold, dt);

06 break;

07 }

08 i++;

09 }

10 while (i<stop-1)

11 { if ((v[i]-factor*threshold)*(v[i+1]-factor*threshold) <= 0)

12 if ((condition == 0) || (condition*(v[i]-v[i+1]) < 0))

13 { t2=func_interpolate(v, i, factor*threshold, dt);

14 break;

15 }

16 i++;

17 }

18 if ((t1!=0.0) && (t2!=0.0))

19 return (t1+(module_average(v, 0, 100)-threshold)*(t2-t1)/

((factor-1.0)*threshold));

20 else

21 return no_success;

22 }

00 double module_zct (const double *v, double *s, int npts, int sign,

double tau, int start, int stop, double dt, double no_success)

01 { int i, i_min=0, i_max=0;

02 double p[npts];

03 module_CR_diff_HP(v, s, npts, dt, tau);

04 module_RC_int_LP (s, p, npts, dt, tau);

05 module_CR_diff_HP(p, s, npts, dt, tau);

06 for (i=0; i<npts; i++)

07 { if (s[i] > s[i_max]) i_max=i;

08 if (s[i] < s[i_min]) i_min=i;
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09 }

10 if (i_min > i_max)

11 { if (fabs(s[i_min]) > fabs(s[i_max]))

12 { for (i=i_min-1; i>i_max; i--)

13 if (s[i+1]*s[i] < 0) return func_interpolate(s, i, 0, dt);

14 }

15 else

16 { for (i=i_max+1; i<i_min; i++)

17 if (s[i-1]*s[i] < 0) return func_interpolate(s, i-1, 0, dt);

18 }

19 }

20 else

21 { if (fabs(s[i_max] > s[i_min]))

22 { for (i=i_max-1; i>i_min; i--)

23 if (s[i+1]*s[i] < 0) return func_interpolate(s, i, 0, dt);

24 }

25 else

26 { for (i=i_min+1; i<i_max; i++)

27 if (s[i-1]*s[i] < 0) return func_interpolate(s, i-1, 0, dt);

28 }

29 }

30 return no_success;}

31 }

00 double module_zccft (const double *v, double *s, int npts, int sign,

int delay, double reduct_fact, double dt, int start, int stop,

double no_success)

01 { int i, i_max=start, i_min=start;

02 if (start < delay) start=delay;

03 for (i=start; i<stop; i++)

04 { s[i]=(-1)*reduct_fact*v[i]+v[i-delay];

05 if (s[i] > s[i_max]) i_max=i;

06 if (s[i] < s[i_min]) i_min=i;

07 }

08 if (i_min > i_max)

09 { if (fabs(s[i_min]) > fabs(s[i_max]))

10 { for (i=i_min-1; i>i_max; i--)

11 if (s[i+1]*s[i] < 0) return func_interpolate(s, i, 0, dt);

12 }

13 else

14 { for (i=i_max+1; i<i_min; i++)

15 if (s[i-1]*s[i] < 0) return func_interpolate(s, i-1, 0, dt);

16 }

17 }

18 else

19 { if (fabs(s[i_max] > s[i_min]))

20 { for (i=i_max-1; i>i_min; i--)

21 if (s[i+1]*s[i] < 0) return func_interpolate(s, i, 0, dt);

22 }
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23 else

24 { for (i=i_min+1; i<i_max; i++)

25 if (s[i-1]*s[i] < 0) return func_interpolate(s, i-1, 0, dt);

26 }

27 }

28 return no_success;}

29 }

00 double module_cft (const double *v, int sign, int start, int stop,

double fraction, double dt, double no_success)

01 { int i_max=func_extreme_value(v,start,stop,sign);

02 int i=i_max;

03 if (fraction == 1.0) return i_max*dt;

04 else

05 { while (sign*v[i] > fraction*sign*v[i_max]) i--;

06 return func_interpolate(v, i, fraction*v[i_max], dt);

07 }

08 }

00 double module_fcft (const double *v, const double *t, int sign,

int start, int stop, double low, double fraction, double high,

double dt, double no_success)

01 { int i_max=func_extreme_value(v,start,stop,sign);

02 double v_rms=func_rms(v,start,start+100);

03 if (v[i_max]*sign < 5*v_rms) return no_success;

04 int i=i_max, i_low=0, i_trig=0, i_high=0, bl_start=0, bl_length=20;

05 double v_max = v[i_max], v_trig=0.0, v_bl=0;

06 double a0=0, a1=0, a2=0, t_max=0, t_trig1=0, t_trig2=0;

07 if (low == 0.0) low=5*v_rms;

08 while (sign*v[i] > high*sign*v_max) i--;

09 i_high=i;

10 while (sign*v[i] > fraction*sign*v_max) i--;

11 i_trig=i;

12 while (sign*v[i] > low) i--;

13 i_low=i+1;

14 if (sign*v[i_max-1] < sign*v[i_max+1])

15 gGraph = new TGraph(4,&(t[i_max-1]),&(v[i_max-1]));

16 else

17 gGraph = new TGraph(4,&(t[i_max-2]),&(v[i_max-2]));

18 TF1 *f1 = new TF1("f1","pol2",t[i_max-2],t[i_max+2]);

19 if (gGraph->Fit(f1,"RNQF") == 0)

20 { a0=f1->GetParameter(0);

21 a1=f1->GetParameter(1);

22 a2=f1->GetParameter(2);

23 if (a2 != 0)

24 { t_max=(-0.5)*a1/a2;

25 v_max=(4*a2*a0-a1*a1)/(4*a2);

26 }

27 f1->Delete();
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28 gGraph->Delete();

29 if (fraction == 1.0) return t_max;

30 }

31 else

32 { f1->Delete();

33 gGraph->Delete();

34 return no_success;

35 }

36 if ((i_low-1-bl_length) < 0)

37 { bl_start=0;

38 bl_length=i_low-1;

39 }

40 else

41 bl_start=i_low-1-bl_length;

42 v_bl=func_average (v, bl_start, bl_start+bl_length);

43

44 v_trig=fraction*(v_max-v_bl)+v_bl;

45 if (sign*v_trig >= sign*v[i_trig])

46 gGraph = new TGraph(4,&(t[i_trig-1]),&(v[i_trig-1]));

47 else

48 gGraph = new TGraph(4,&(t[i_trig-2]),&(v[i_trig-2]));

49 TF1 *f2 = new TF1("f2","pol2",t[i_trig-2],t[i_trig+2]);

50 if (gGraph->Fit(f2,"RNQF") == 0)

51 { a0=f2->GetParameter(0);

52 a1=f2->GetParameter(1);

53 a2=f2->GetParameter(2);

54 t_trig1=a1/(-2.0)/a2+sqrt(a1*a1/4.0/a2/a2+(v_trig-a0)/a2);

55 t_trig2=a1/(-2.0)/a2-sqrt(a1*a1/4.0/a2/a2+(v_trig-a0)/a2);

56 f2->Delete();

57 gGraph->Delete();

58 if (fabs(t[i_trig]-t_trig1) < fabs(t[i_trig]-t_trig2))

59 return t_trig1;

60 else

61 return t_trig2;

62 }

63 else

64 { f2->Delete();

65 gGraph->Delete();

66 return no_success;

67 }

68 }
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Appendix B

Mathematical Supplements

B.1 Derivation of the Response of a

Charge-Sensitive Preamplifier

In subsection 3.1.3 an AC-coupled charge-sensitive resistive feedback preamplifier, shown
in figure 3.4 schematically, is introduced. In this section, the response of this preamplifier
to the detector current Idet(t) is derived. Therewith, the responses Ui(t) to the currents
Ii(t) from equations (3.5) and their local extreme values U ext

i are determined.

The components of the preamplifier’s feedback circuit are a resistor with the resistance
Rf and a capacitor with the capacitance Cf . For the operational amplifier it is assumed
that the input impedance is infinite, resulting in zero input currents, and that there is
no offset voltage between the inputs. Using Kirchhoff’s Current Law and Kirchhoff’s
Voltage Law one gets

0 = Idet(t) + IR(t) + IC(t)

= Idet(t) +
1

Rf

U(t) +
d

dt
Q(t)

= Idet(t) +
1

Rf

U(t) + Cf
d

dt
U(t)

resulting in the ordinary first-order inhomogeneous linear differential equation

1

τ
U(t) +

d

dt
U(t) =

1

Cf

Idet(t) (B.1)

for the output voltage signal U(t), in which τ = RfCf is the time constant. A general
solution of equation (B.1) is the superposition of one particular solution of equation (B.1)
and the general solution of the corresponding homogeneous differential equation

1

τ
U(t) +

d

dt
U(t) = 0 (B.2)

which can be solved using the method of seperation of variables leading to

Uhom(t) = A · e−t/τ (B.3)

with the integration constant A. To find a particular solution of equation (B.1) the
method of variation of parameters with the ansatz

Upart(t) = a(t) · Uhom(t) (B.4)
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is used. Inserting equation (B.4) into (B.1) one finds

a(t) = − 1

CfA

∫ t

−∞

Idet(t
′) · et′/τdt′ . (B.5)

Finally, the general solution of (B.1) is

Uinhom(t) = Uhom(t) + Upart(t)

= A · e−t/τ − 1

Cf

∫ t

−∞

Idet(t
′) · e−(t−t′)/τdt′ . (B.6)

Straitening on detector currents Idet(t) = 0 for t < 0 and the consequential inital condition
U(t) = 0 for t < 0, equation (B.6) is

U(t) = − 1

Cf

∫ t

0

Idet(t
′) · e−(t−t′)/τdt′ . (B.7)

With equation (B.7) the output voltage signals of the preamplifier Ui(t) are determined
for the detector currents Ii(t) from equation (3.5). Using the locale extreme values Umin

i =
Ui(t

min
i ) the ballistic deficit BDi = 1 − Umin

i /(−Q0/Cf ) is derived.

I1(t) =

{

Q0/θ : 0 ≤ t < θ

0 : θ ≤ t
(B.8)

U1(t) = −Q0

Cf

· τ

θ
·
{
(

1 − e−t/τ
)

: 0 ≤ t < θ
(

eθ/τ − 1
)

· e−t/τ : θ ≤ t
(B.9)

tmin
1 = θ (follows from the monotonicity of U1(t)) (B.10)

BD1 = 1 − τ

θ

(

1 − e−θ/τ
)

(B.11)

I2(t) =











0.75 · Q0/θ : 0 ≤ t < θ

0.25 · Q0/θ : θ ≤ t < 2θ

0 : 2θ ≤ t

(B.12)

U2(t) = −Q0

Cf

· τ

θ
·















0.75 − 0.75 · e−t/τ : 0 ≤ t < θ

0.25 +
(

0.5 · eθ/τ − 0.75
)

· e−t/τ : θ ≤ t < 2θ
(

0.25 · e2θ/τ + 0.5 · eθ/τ − 0.75
)

· e−t/τ : 2θ ≤ t

(B.13)

tmin
2 =

{

θ : θ ≥ τ · ln 3
2

2θ : θ < τ · ln 3
2

(follows from d
dtU2(t) = 0

for θ < t < 2θ and from the
monotonicity of U2(t))

(B.14)

BD2 =











1 − 0.75 · τ

θ

(

1 − e−θ/τ
)

: θ ≥ τ · ln 3
2

1 − 0.25 · τ

θ

(

1 + 2 · e−θ/τ − 3 · e−2θ/τ
)

: θ < τ · ln 3
2

(B.15)
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I3(t) = e−t/θ · Q0/θ : 0 ≤ t (B.16)

U3(t) = −Q0

Cf

·











τ

τ − θ
·
(

e−t/τ − e−t/θ
)

: τ 6= θ

t

τ
· e−t/τ : τ = θ

(B.17)

tmin
3 =







τθ

τ − θ
ln

τ

θ
: τ 6= θ

θ : τ = θ

(follows from
d
dtU3(t) = 0 for t = tmin

3 )
(B.18)

BD3 =











1 −
(

θ

τ

)θ/(τ−θ)

: τ 6= θ

1 − e−1 : τ = θ

(B.19)

I4(t) = δ(t) · Q0 (B.20)

U4(t) = −(Q0/Cf ) · e−t/τ : 0 ≤ t (B.21)

tmin
4 = 0 (follows from the monotonicity of U4(t)) (B.22)

BD4 = 0 (B.23)

B.2 Derivation of the Recursive High- and

Low-Pass Filter

In analog electronics a passive, first-order high- and low-pass filter can be realized by
a simple RC-circuit consisting of a capacitor C and a resistor R connected in series.
Applying an input voltage signal U(t) across the circuit the voltage signals UR(t) across
the resistor and UC(t) across the capacitor are the output voltage signals of a high- and
low-pass filter. Kirchhoff’s Voltage Law for this system is

U(t) = UC(t) + UR(t) . (B.24)

Using Ohm’s Law, the definition of the electric current, the definition of the capacitance
and equation (B.24) one gets

UR(t) = R · IR(t) = R · d

dt
Q(t) = R · C · d

dt
UC(t)

= τ · d

dt
[U(t) − UR(t)] (B.25)

UC(t) = U(t) − UR(t) = U(t) − R · C · d

dt
UC(t)

= U(t) − τ · d

dt
UC(t) (B.26)
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where τ = R · C is the time constant of the filter. These formulas are discretized by the
substitutions

UR(t), UC(t) → s(n · ∆t) = sn (B.27)

U(t) → v(n · ∆t) = vn (B.28)

d

dt
f(t) := lim

t0→t

f(t0) − f(t)

t0 − t
=

f(t) − f(t − ∆t)

∆t
(B.29)

which convert equation (B.25) to

sn =
τ

∆t
· (vn − vn−1 − sn + sn−1)

=
τ

τ + ∆t
· (sn−1 + vn − vn−1) (B.30)

and equation (B.26) to

sn = vn − τ

∆t
· (sn − sn−1)

=
τ

τ + ∆t
· sn−1 +

(

1 − τ

τ + ∆t

)

· vn . (B.31)

B.3 Derivation of the parameters M and N

for the Jordonav-Trapezoid-Shaper

Starting from the recursive formulas of the JTS

dn = vn − vn−k − vn−k−m + vn−2·k−m

pn = pn−1 + dn

sn = sn−1 + N · (pn + M · dn) (B.32)

and provided that vn = dn = pn = sn = 0 for n < 0, iterative formulas can be derived for
0 ≤ n < k

dn = vn

pn =
n
∑

i=0

di =
n
∑

i=0

vi

sn = N ·
n
∑

i=0

(pi + M · di) = N ·
n
∑

i=0

(

i
∑

j=0

vj + M · vi

)

= N ·
n
∑

i=0

(M + n − i + 1) · vi (B.33)

and for n = k

dk = vk − v0 (B.34)

pk =
k−1
∑

i=0

vi + vk − v0 =
k
∑

i=1

vi (B.35)
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The rising slope of the trapezoidal shape is k samples long and starts at n = 0, so the slope
finishes at n = k − 1, where the flat top is starting. Hence, sn = sn−1 for k ≤ n < k + m
and with equations (B.32), (B.34), (B.35) in the case n = k it follows

sk = sk−1 + N ·
(

k
∑

i=1

vi + M · (vk − v0)

)

⇒ M =
1

v0 − vk

·
(

k
∑

i=0

vi − v0

)

.

The purpose of this algorithm is to convert an exponentially decaying signal v(t) with an
amplitude A and a time constant τ into a trapezoidal shaped signal. With the sampling
interval ∆t one gets

v(t) = A · e−t/τ

vn = v(n · ∆t) = A ·
(

e−∆t/τ
)n

:= A · cn (B.36)

resulting in

M =
1

1 − ck
·
(

k
∑

i=0

ci − 1

)

and, using the properties of the geometric sequence, finally in

M =
1

1 − ck
· 1 − ck+1

1 − c
− 1

1 − ck
=

1 − ck+1 − 1 + c

(1 − ck) (1 − c)

=
c ·
(

1 − ck
)

(1 − ck) (1 − c)
=

c

1 − c
=

1

c−1 − 1

=
1

e∆t/τ − 1
. (B.37)

Since ∆t/τ is usually small, one can use the first-order approximation e∆t/τ ≈ 1 + ∆t/τ
to estimate M . It results in M ≈ τ/∆t.
The normalization factor N has to guarantee that sn = A for k−1 ≤ n < k+m, in which
case A is the amplitude of vn in equation (B.36). In the case n = k + 1 equation (B.33)
turns into

sk−1 = A · N ·
(

(M + k) ·
k−1
∑

i=0

ci −
k−1
∑

i=0

i · ci

)

. (B.38)

Using the relation

n
∑

i=0

i · ci =
c − (n + 1) · cn+1 + n · cn+2

(1 − c)2

and again the properties of the geometric sequence, equation (B.38) can be written as

sk−1 = A · N ·
(

(M + k) · 1 − ck

1 − c
− c − (n + 1) · cn+1 + n · cn+2

(1 − c)2

)

= A · N ·
(

(M + k)(1 − ck)(1 − c) − c + (n + 1) · cn+1 − n · cn+2

(1 − c)2

)

.
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After arranging the numerator by powers of c and applying sn = A the normalization
factor is

N =
(1 − c)2

M + k − (M + k + 1) · c − M · ck + (M + 1) · ck+1
(B.39)

with c = e−∆t/τ .

B.4 Relation between Mowing Window Deconvolu-

tion and Jordonav-Trapezoid-Shaper

In this section the identity of the MWD with the parameter m = l and the JTS with the
parameters k = 1 and m = l− 1 is shown. The moving window deconvolution is given by
the formulas

sn = vn − vn−l + α
n−1
∑

i=n−l

vi (B.40)

α = 1 − e−∆t/τ (B.41)

while the trapezoidal shaper by Jordanov is given by the formulas

dn = vn − vn−1 − vn−l + vn−l−1 (B.42)

pn = pn−1 + dn (B.43)

sn = sn−1 + N · (pn + M · dn) (B.44)

M =
1

e∆t/τ − 1
(B.45)

N =
1

M + 1
. (B.46)

The last formula follows from equation (B.39) in the case k = 1. Equations (B.41), (B.45)
and (B.46) result in

M =
1

α
− 1 (B.47)

N = α (B.48)

and, provided that vn = 0 for n < 0, from equations (B.42) and (B.43) results

pn = vn − vn−l . (B.49)

Using the equations (B.47), (B.48) and (B.49), the JTS from equation (B.44) can be
expressed by

sn = sn−1 + α (pn − dn) + dn

= sn−1 + α (vn−1 − vn−l−1) + dn . (B.50)

Equation (B.50) is exactly the recursive expression of the MWD described in equa-
tion (B.40).



B.5. Asymmetric Gaussian Function 71

B.5 Asymmetric Gaussian Function

With the formulas

F j
k =

0.565 Aj√
2 σ

·
(

e−
(k−kj)2

2 σ2 +
1.772 Aas

√
2 σ

λ
· e
(

k−kj

λ
+ σ2

2 λ2

)

· G
(

k − kj√
2 σ

+
σ√
2 λ

)

)

G(x) = 0.5 · erfc(x) ≈
(

e(α·x+β·x3) + 1
)−1

(B.51)

an asymmetric Gaussian function is defined [39]. Thereby j enumerates one of several
peaks. The other notations are

k position (bin or channel)

F j
k value of peak j at position k

Aj area of peak j
kj position of peak j
σ2 variance of the symmetric part
Aas area of the asymmetric part relative to Aj

λ asymmetry parameter
erfc(x) complementary error function

(B.52)

The complementary error function erfc(x) is parametrized with the constants α = 2.25718
and β = 0.202197.
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stets eine große Hilfe gewesen sind. Insbesondere bedanke ich mich dafür, daß es mir
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