Luft-Wasser Experimente im vertikalen DN200-Rohr

Technischer Fachbericht

M. Beyer, D. Lucas, J. Kussin, P. Schütz

Oktober 2008

Wissenschaftlich - Technische Berichte FZD-504 2008 · ISSN 1437-322X

WISSENSCHAFTLICH-TECHNISCHE BERICHTE

Forschungszentrum Dresden Rossendorf

Wissenschaftlich-Technische Berichte FZD-504 Oktober 2008

M. Beyer, D. Lucas, J. Kussin, P. Schütz

Luft-Wasser Experimente im vertikalen DN200-Rohr

Technischer Fachbericht

Technischer Fachbericht

Luft-Wasser Experimente im vertikalen DN200-Rohr

Technical Report

Air-water experiments in a vertical DN200-pipe

Reaktorsicherheitsforschung-Vorhaben-Nr./ Reactor Safety Research-project No.: 150 1329

- Vorhabenstitel: TOPFLOW-Experimente, Modellentwicklung und Validierung von CFD-Codes für Wasser-Dampf-Strömungen mit Phasenübergang
- Project Title: TOPFLOW-Experiments, development and validation of CFD models for steam-water flows with phase transfer
- Autoren / Author(s):M. Beyer, D. Lucas, J. Kussin, P. SchützDienststelle der Autoren /
Performing Organisation:Forschungszentrum Dresden-Rossendorf e.V.
Institut für SicherheitsforschungBerichtsdatum /Oktober 2008

Publication Date:

Berichts-Nr. / Report-No.: FZD-504

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Technologie unter dem Förderkennzeichen 150 1329 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

	Berichtsblatt	
1. ISBN oder ISSN	2. Berichtsart	
3a. Titel des Berichts		
Luft-Wasser Experimente im v	vertikalen DN200-Rohr	
3b. Titel der Publikation		
4a. Autoren des Berichts (Name, Vornam	e(n))	5. Abschlussdatum des Vorhabens
M. Beyer, D. Lucas, J. Kussin	30.09.2010	
		6. Veröffentlichungsdatum
4b. Autoren der Publikation (Name, Vorna	ame(n))	Oktober 2008
		7. Form der Publikation
		Broschure
8. Durchführende Institution(en) (Name, A	Adresse)	9. Ber.Nr. Durchführende Institution
Forschungszentrum Dresden-	Rossendorf e V	10. Förderkennzeichen
Institut für Sicherheitsforschur		150 1329
Postfach 510119	.9	11a. Seitenzahl Bericht
01314 Dresden		255
		11b. Seltenzani Publikation
13. Fördernde Institution (Name, Adresse	3)	12. Literaturangaben
		38
Bundesministerium für Wirtsch	naft und Technologie (BMWi)	14. Tabellen
11019 Berlin	3 15. Abbildungen	
		51
16. Zusätzliche Angaben		3
17. Vorgelegt bei (Titel, Ort, Datum)		
18. Kurzreferat Die im Rahmen dieser Versuch eine hochwertige Datenbasis für die Entwicklung und Validierung fragmentierung, genutzt werde Entwicklung der Zweiphasenströ betrachteten Kombinationen aus variablen Abständen zwischen Druck an der Gaseinspeisestelle den Vorteil, dass die so geme widerspiegeln, d.h. eine Konfigu eingespeist wird und die Messun Wesentliche Ergebnisse dieser die Gasgeschwindigkeit sowie ze liegen blasengrößen- und or Versuchsserien wurden auch Klassifizierung anhand der Blase Ein wesentlicher Bestandteil Plausibilitätsprüfung der Mess eindeutigen, widerspruchsfreien Gaseinspeisung aufweisen. Zur über der Rohrhöhe mit theoretisc Zusätzlich zu diesen Ergebnis Bohrungsdurchmessers an der G	asserie erzielten umfangreichen exper r Luft-Wasser-Strömungen in einem vo g von CFD-Modellen, beispielweise b en können. Besonderes interessant mung über der Rohrhöhe. Aus diesem 6 Gas- und Wasser-Volumenstromdich Gaseinspeisung und Messebene du e konstant auf 0,25 MPa(a) gehalten. ssenen Daten die Entwicklung der S ration beschreiben, bei der das Gas a gen in verschiedenen darüberliegender Messserie sind radiale zeitgemittelte F eit- und querschnittsgemittelte Blaseng tsaufgelöste Gasgehaltsdaten vor. in diesem Fall die Strömungsfor ngröße erfolgte. dieser neuen Luft/Wasser-Versuch daten. Es konnte festgestellt werd Trend bzgl. ihrer Entwicklung mit zur Plausibilitätsprüfung wurden Vergleic ch zu erwartenden Kurven durchgeführt sen enthält der Bericht eine Einsch	rimentellen Ergebnisse bilden ertikalen DN200-Rohr, die für ozgl. Blasenkoaleszenz und - ist die Untersuchung der Grund wurden für jede der 92 ten bis zu 18 Messungen mit rchgeführt. Dabei wurde der Diese Randbedingung bietet Strömung über der Rohrhöhe an einer festen Höhenposition n Ebenen erfolgen. Profile für den Gasgehalt und rößenverteilungen. Außerdem Wie bereits bei früheren rmen analysiert, wobei die e war die Qualitäts- und len, dass die Daten einen nehmendem Abstand von der che des Gasgehaltsverlaufes te hätzung des Einflusses des e Strömung.
Zweiphasenströmung, Gasblaser	n, Gasgehaltsverteilungen, Gasgeschw	indigkeit
20. Verlag		21. Preis

	Document Control Sheet							
1. ISBN or ISSN	2. Type of Report							
20. Roport Title	Technical Report							
Air-water experiments in a vert	ical DN200-pipe							
3b. Title of Publication								
4a Author(s) of the Report (Family Name	First Name(s))	5 End of Project						
M. Bever, D. Lucas, J. Kussin.	30.09.2010							
	6 Publication Date							
4b. Author(s) of the Publication (Family Na	me First Name(s))	Oktober 2008						
	7. Form of Publication							
		Booklet						
8. Performing Organisation(s) (Name, Add	ress)	9. Originator's Report No.						
		10. Poforonco No. ^{*)}						
Forschungszentrum Dresden-F		150 1329						
Dootfoob 510110	y .	11a. No. of Pages Report						
01214 Drosdon	255							
01514 Diesdell		11b. No. of Pages Publication						
13 Sponsoring Agency (Name Address)		12 No. of References						
		38						
Bundesministerium für Wirtsch	aft und Technologie (BMWi)	14. No. of Tables						
11019 Berlin	5							
		15. No. of Figures						
16. Supplementary Notes		51						
47 Dresented at (Title Dises Date)								
Tr. Presented at (Thie, Place, Date)								
18. Abstract		Listen alle database for alle						
water flows in a vertical pipe with	a nominal diameter of 200 mm. This	database can be used for the						
development and validation of CF	D-like models for two-phase flows. e.	a. for bubble coalescence and						
fragmentation. In particular, the ir	nvestigations aim on the evolution of	the two-phase flow along the						
pipe height. Therefore, up to 18	8 single measurements with varying	distances between the gas						
injection and measurement plane	were realised for each of the 92 comb	pinations of gas and water flow						
rates. The pressure at the position	on of the activated gas injection was	kept constant at 0.25 MPa(a).						
the flow along the pipe, i.e. they	advantage that the measured data rep	resent exactly the evolution of						
position while the measurement r	plane varies	as injection is at a fixed height						
Important results of this test serie	es are time averaged radial profiles of	the gas fraction, and the gas						
velocity, as well as the time and	cross-section averaged bubble size c	listributions. Furthermore, gas						
fraction data resolved regarding th	ne bubble size and spatial distribution	are presented. As in previous						
test series, flow patterns were ana	alysed, whereby the classification resu	Its from the bubble size.						
A substantial part of these new	air/water experiments were quality a	and plausibility checks of the						
distance from the position of the c	measured data. In the result, a clear and consistent trend regarding their evolution with increasing							
section averaged gas volume fra	iction along the pipe height with the	theoretically expected values						
were carried out.	ener energine fifte reight rimt me							
The influence of the orifice diam	eter of the gas injection on flow path	terns is also discussed in the						
report.	· · · · · · · · · · · · · · · · · · ·							
19. Keywords Two-phase flow Gas hubbles Ga	is volume fraction distribution. Gas vel	locity						
20. Publisher		21. Price						
		1						

Inhaltsverzeichnis

1.	Vers	suchs	dokumentation	11
	1.1	Versu	chsziel	11
	1.2	Versu	chsdurchführung	12
		1.2.1	Beschreibung der Versuchsanlage und Aufbau der	
			Testsektion	12
		1.2.2	Abschätzung der Druckrandbedingungen	16
		1.2.3	Versuchsprozedur	19
	1.3	Messr	matrix	20
	1.4	Messt	echnik	22
		1.4.1	Spezialmesstechnik	22
			1.4.1.1 Funktionsweise von Gittersensoren	22
		4 4 0	1.4.1.2 Konstruktion des Gittersensors	23
		1.4.2	Betriebsmesstechnik	25
			1.4.2.1 Deschreibung der Demebsmesstechnik	25
	15	A		20 ວວ
	1.5	1 5 1	Messdatenkalibrierung	20 28
		1.5.2	Gasgehaltsprofile	20
		1.5.3	Gasgeschwindigkeiten	33
		1.5.4	Blasenidentifikation	34
		1.5.5	Blasengrößenverteilungen und blasenklassenaufgelöste	
			Informationen	37
	1.6	Unger	nauigkeitsabschätzung	38
		1.6.1	Gasgehalt	39
		1.6.2	Blasendurchmesser	39
		1.6.3	Azimutal gemittelte Gasgeschwindigkeiten	40
		1.0.4	Caseinspeisestelle	11
	4 7	Canal	Uigkeitenröfung en Hand der Cos Leerrehrgeschwindigkeit	++
S	L./	Gena	and der Gas-Leenonrgeschwindigkeit	47 52
Ζ.				
	2.1	Strom	ungstormen	52
		2.1.1	Kriterien zur Beschreibung von Strömungsformen	52 52
		213	Abhängigkeit der Strömungsform von der relativen	52
		2.1.0	Teststreckenhöhe	53
		2.1.4	Abhängigkeit der Strömungsform vom Durchmesser der	
			Einspeisebohrungen	59
		2.1.5	Strömungsformen in den Messreihen II bis IV	60
		2.1.6	Zusammenfassung der beobachteten Strömungsformen	65
	2.2	Plausi	ibilität der integralen Gasgehaltswerte	67
		2.2.1	Driftgeschwindigkeit zur Validierung experimenteller	
		0 0 0	Ergebnisse	67
		2.2.2	berechnung der gewichteten Driftgeschwindigkeiten	68
		۲.۲.၁	zunehmenden I/D	71
	23	Vortoi	lung des Blasendurchmessers	, , , , 7⊿
	2.0	VOIG		

		2.3.1 Öffnungsdurchmesser der Gaseinspeisung	. 74
		2.3.2 Mittelwerte der Blasengrößenverteilung	. 76
3.	Sch	lussfolgerungen	86
4.	Lite	raturverzeichnis	88
5.	Ver	zeichnisse	92
	5.1	Formelverzeichnis	. 92
	5.2	Indizes	93
	5.3	Abkürzungen	. 94
	5.4	Abbildungen	95
	5.5	Tabellen	. 99
6.	Anh	ang1	00
	I.	Profile der Messpunkte	101
	II.	Median- und Modalwerte	193
	III.	Zusätzliche Abhängigkeiten zur Genauigkeitsprüfung nach Kapitel	
		1.7	197
	IV.	Betriebsdaten	200
	V.	Kalibrierprotokolle	218
	VI.	Beschreibung der zur Luft/Wasser-Messserie L12 verfügbaren 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	246

1. Versuchsdokumentation

1.1 Versuchsziel

Ziel der in diesem Bericht vorgestellten Experimente war die Schaffung einer hochwertigen Datenbasis für Luft-Wasser-Strömungen in einem vertikalen Rohr mit einem Nenndurchmesser von 200 mm. Diese Datenbasis kann für die Entwicklung und Validierung von CFD-Modellen für Zweiphasenströmungen genutzt werden. Basierend auf den Erfahrungen vorangegangener Experimentalserien wurde hier besonderes auf eine durchgängig hohe Qualität und Konsistenz der Daten geachtet. Die Messungen wurden nun so durchgeführt, dass sie die Entwicklung der Zweiphasenströmung entlang des Rohres bei konstanten Bedingungen für die Gaseinspeisung wiedergeben.

In Prasser et al. 2007a werden die vorangegangen Experimente sowie deren Ergebnisse ausführlich beschrieben. Der Bericht beinhaltet auch Ergebnisse zur Entwicklung von Strömungsformen, zum Verhalten der Zwischenphasengrenzfläche sowie zum Wärme- und Impulsaustausch zwischen den Phasen. Für die Experimente mit Variabler Gaseinspeisung befindet sich die Messebene immer am oberen Rohrende, während das Gas über Bohrungen in der Rohrwand in unterschiedlichen Abständen von dieser Messebene eingespeist wird. Ein Nachteil der vorangegangen Experimente bestand darin, dass sich der Druck an den einzelnen Positionen der Gaseinspeisung auf Grund des hydrostatischen Drucks unterschiedlich einstellte, da der Druck an der Messebene weitgehend konstant war.

In CFD-Simulationen zur Evolution polydisperser Blasenströmungen zeigte sich, dass vor allem die Modelle zu Blasenkoaleszenz- und –fragmentation weiter optimiert werden müssen (Lucas & Krepper 2007). Bei relativ geringen Gasgehalten kann der Effekt der Zunahme der Blasengröße auf Grund des abnehmenden hydrostatischen Drucks einen größeren Einfluss auf die Blasengrößenverteilung haben als Koaleszenz- und Fragmentationseffekte. In Prasser et al., 2007a wird an Hand von experimentellen und numerischen Ergebnissen erläutert, welchen wesentlichen Einfluss die Blasenexpansion auf die Blasengrößenverteilung haben kann.

Daher wurde in der neuen Serie der Druck an der jeweiligen Gaseinspeisung konstant gehalten. Die Messdaten repräsentieren dann die Entwicklung der Strömung entlang des Rohrs, wie sie bei einer Einspeisung an einer konstanten Höhenposition und Verschiebung der Messebene beobachtet würde. Ein weiterer Nachteil der vorangegangen Messung bestand in den unterschiedlichen Wassertemperaturen, die während den Messserien zwischen 20 °C und 37 °C schwankten. Im Gegensatz dazu wurden nun alle Messungen bei einer nahezu konstanten Temperatur von T = 30 °C durchgeführt. Die Abweichungen waren kleiner als 1 K. Das ist wichtig, weil die Koaleszenzraten und Zerfallsfrequenzen über die Oberflächenspannung von der Temperatur abhängen. Des Weiteren wurde die Anzahl der gemessenen Kombinationen von Luft- und Wasservolumenströmen gegenüber den früheren Messungen deutlich erhöht.

Neben der detaillierten Versuchsbeschreibung widmet sich der vorliegende Bericht auch ausführlich der Überprüfung der Stimmigkeit der Daten untereinander. Das betrifft zum einen die kontinuierliche Entwicklung der zeitgemittelten Profile und Blasengrößenverteilungen mit zunehmenden L/D als auch den Vergleich der aus den Messwerten abgeleiteten Gasvolumenströme mit den Einstellwerten. Letzteres ermöglicht eine globale Fehlerschätzung und zeigt die Abhängigkeit der Genauigkeit der Messungen von den jeweiligen Strömungsbedingungen. Im zweiten Kapitel erfolgt eine Interpretation der aus den Messwerten abgeleiteten integralen Gasgehalte, der Blasengrößenverteilungen sowie der mittleren Blasengrößen.

1.2 Versuchsdurchführung

1.2.1 Beschreibung der Versuchsanlage und Aufbau der Testsektion

Wie bereits die Experimente zum Vorläuferprojekt "Aufbau und Durchführung von Experimenten an der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW für generische Untersuchungen von Zweiphasenströmungen und die Weiterentwicklung und Validierung von CFD-Codes" wurden auch die für diese umfangreiche Versuchsserie erforderlichen Messungen an der Transient tw**O** Phase flow test facility (TOPFLOW) am Institut für Sicherheitsforschung des Forschungszentrums Dresden-Rossendorf durchgeführt. Aufbau und Funktion dieser Anlage sind ausführlich in Schaffrath et al. 2001, Beyer et al. 2004 und Prasser et al. 2006 beschrieben, so dass in diesem Bericht nur auf die Systeme und Anlagenteile eingegangen wird, die zur Durchführung dieser Versuchserie relevant waren.

Bild 1-1 Schema der Versuchsanlage TOPFLOW; Teststreckenkreislauf und Druckluftsystem farbig hervorgehoben

Das sind vor allem der Teststreckenkreislauf und das Druckluftsystem, die in Bild 1-1 farbig dargestellt sind. Zusätzlich zu diesen Anlagenkomponenten sind Teile des Abblase- und Kühlsystems hervorgehoben, die zur Reglung der Temperatur in der Teststrecke erforderlich waren.

Um die Entwicklung der Strömung, vor allem der Blasengrößenverteilungen und des Gasgehaltes, analysieren zu können, kommt eine spezielle Bauform der vertikalen Teststrecke DN200 mit einem Innendurchmesser von 195,3 mm zum Einsatz. Hierbei handelt es sich um die sogenannte Variable Gaseinspeisung, die während des Vorläuferprojektes aufgebaut und montiert wurde.

Bild 1-2 zeigt den geometrischen Aufbau der Variablen Gaseinspeisung mit sechs annähernd logarithmisch über der Höhe verteilten Einspeisemodulen. Jedes Modul (Bild 1-3) besteht aus drei Kammern, aus denen Gas durch Bohrungen in den Innenraum der Teststrecke eingeperlt wird. Die Randeinspeisung des Gases Vorteil. dass bietet den die Zweiphasenströmung ungestört bis zur Messebene aufsteigen kann, ohne durch Einspeisevorrichtungen innerhalb in des Rohres anderen Höhenpositionen beeinflusst zu werden.

Zwei der drei Kammern (jeweils oben mit und unten) sind 72 x 1 mm Bohrungen versehen, die mittleren Kammern enthalten 32 x 4 mm Öffnungen. Zur rotationssymmetrischen Gaseinspeisung sind alle Bohrungen pro Kammer gleichmäßig über dem Umfang des Rohres verteilt. Diese Konstruktion bietet die Möglichkeit, den Einfluss unterschiedlicher Primärblasendurchmesser auf die Entwicklung der Strömung zu analysieren. Die Kammern sind einzeln absperrbar mit der Einspeiseleitung für Gas verbunden, die an das Druckluftsystem angeschlossen ist (Bild 1-1).

Bild 1-2 Variable Gaseinspeisung in die Bild 1-3 vertikale Teststrecke DN200

Die Zuführung der flüssigen Phase erfolgt im unteren Bereich der Teststrecke über eine Absperrarmatur und einen 90° Bogen. Während der Experimente war unterhalb der Teststrecke (Bild 1-2) ein Modul zur zentralen Gaseinspeisung montiert, das bei dieser Versuchsserie aber nicht verwendet wurde. Durch den großen Abstand bis zur Messebene kann der Einfluss dieses Bauteils auf die Strömung jedoch vernachlässigt werden. Eine Beschreibung der Konstruktion dieser Einspeisevorrichtung ist in Prasser et al. 2007a enthalten.

Die Messebene befand sich bei diesen Experimenten immer am oberen Ende der Teststrecke (Bild 1-2). Dabei kam ein Zweiebenen-Niedertemperatur-Gittersensor zum Einsatz, der in Kapitel 1.4.1 genauer beschrieben ist. Tabelle 1 listet die Einlauflängen zwischen den einzelnen Gaseinspeisungen und der in Strömungsrichtung ersten Messebene des Gittersensors auf.

Einspeise- kammer	Höhen- position	Bohrungsdurch- messer [mm]	Einlauflänge [mm]	L/D- Verhältnis
1	А	1 mm	221	1.1
1	В	4 mm	278	1.4
1	С	1 mm	335	1.7
2	D	1 mm	494	2.5
2	E	4 mm	551	2.8
2	F	1 mm	608	3.1
3	G	1 mm	1438	7.4
3	Н	4 mm	1495	7.7
3	1	1 mm	1552	7.9
4	J	1 mm	2481	12.7
4	К	4 mm	2538	13.0
4	L	1 mm	2595	13.3
5	М	1 mm	4417	22.6
5	Ν	4 mm	4474	22.9
5	0	1 mm	4531	23.2
6	Р	1 mm	7688	39.4
6	Q	4 mm	7745	39.7
6	R	1 mm	7802	39.9

Tabelle 1: Absolute und relative Einlauflängen an der Testsektion Variable Gaseinspeisung Stromabwärts der Gittersensoren fließt das Zweiphasengemisch durch einen 500 mm langen geraden Rohrabschnitt und nachfolgend durch einen 90° Bogen sowie ein T-S tück zur Dampftrommel, in der die Phasenseparation erfolgt (Bild 1-1 und Bild 1-2).

1.2.2 Abschätzung der Druckrandbedingungen

Wie bereits erwähnt bestand ein Ziel dieser Versuchsserie darin. möglichst exakt die Entwicklung einer Zweiphasenströmung über der Rohrhöhe wiederzugeben. Das wäre der Fall, wenn die Gaseinspeisung immer an derselben Position erfolgt und die Messung in verschieden Abständen (= Höhenpositionen) davon durchgeführt würde. Da bei der Variablen Gaseinspeisung aber die Höhe der Einspeisung variiert wird. während die Position der Messebene bleibt. konstant muss demzufolae eine Druckkorrektur erfolgen. Daher wurde in den Messungen ein konstanter Druck von 0,25 MPa(a) an der jeweils aktiven Einspeiseposition angestrebt. Bild 1-4 zeigt einen Schnitt durch die Variable Gaseinspeisung und die Positionen der Temperatur (TI4-08) sowie der Druckmessstelle (PI4-07) oberhalb der Gittersensoren. Der Abstand zwischen diesen Messstellen und der in Strömungsrichtung ersten Messebene des Gittersensors betrug 0,87 m. Differenzdruckmessungen zwischen den einzelnen Einspeisepositionen und der Messebene sind an dieser Teststrecke nicht verfügbar.

Um konstante Druckrandbedingungen der an Gaseinspeiseposition zu gewährleisten, wurden jeweils für gemessenen Kombinationen aus alle den Leerrohrgeschwindigkeiten für die Gas- bzw. flüssige Phase unter Berücksichtigung der einzelnen Einspeisehöhen die sich ergebenden zweiphasigen Druckverluste entlang der Teststrecke ermittelt. aus denen dann der an der Druckmessstelle oberhalb der Gittersensorposition abgeleitet einzustellende Druck werden kann. Die Berechnung des zweiphasigen Druckverlustes berücksichtigt sowohl den hydrostatischen Druckverlust Δp_H als auch den Reibungsdruckverlust Beschleunigungsdruck- Δp_R . Die verluste wurden aufgrund ihres geringen Anteils (< 1 %) an den Gesamtdruckverlusten bei diesen Berechnungen vernachlässigt. Der hydrostatische Druckverlust bestimmt sich entsprechend:

 $\Delta p_{\rm H} = \rho_{\rm F} \cdot g \cdot \Delta L$

wobei g die Erdbeschleunigung (9,81 m/s²) und ΔL der Abstand zwischen Gaseinspeisung und Druckmessstelle sind. Die Dichte des zweiphasigen Gemisches ρ_F berechnet sich nach Gleichung (1.2):

$$\rho_{\rm F} = \varepsilon \cdot \rho_{\rm G} + (1 - \varepsilon) \cdot \rho_{\rm W} \tag{1.2}$$

In dieser Gleichung steht ε für den volumetrischen Gasgehalt sowie ρ_G bzw. ρ_W jeweils für die Luft- bzw. Wasserdichte. Die Bestimmung der Stoffwerte erfolgte mit Hilfe der Datenbank IAPWS–IF97 (Wagner et al. 2000). Der volumetrische Gasgehalt wurde entsprechend Gleichung (1.3) abgeschätzt.

$$\varepsilon = \frac{J_G}{J_G + J_W + \overline{U}_D}$$
(1.3)

Gleichung (1.3) nutzt die Leerrohrgeschwindigkeiten der beiden Phasen und die mittlere Driftgeschwindigkeit \overline{U}_{D} . Da \overline{U}_{D} vor den Experimenten noch unbekannt ist, wurde mit einem konstanten Wert von 0,25 m/s gerechnet. Dieser Wert ist eine gute Näherung für die Driftgeschwindigkeit von Blasen mit einem Durchmesser im Bereich von 5 bis 9 mm, in dem das Maximum der Blasengrößenverteilung für die meisten in dieser Versuchsserie betrachteten Matrixpunkte liegt. Die Ungenauigkeit, die durch diese Annahme entsteht, wird im Kapitel Ungenauigkeitsabschätzung (Kapitel 1.6.4) analysiert.

Zur Bestimmung des zweiphasigen Reibungsdruckverlustes wurde die Methode nach LOCKHART/MARTINELLI (Huhn et al. 1975) verwendet, bei der die Strömung nach dem Schlupfmodell betrachtet wird. Zunächst bestimmt man die Reibungsdruckverluste der an der Strömung beteiligten Einzelphasen, wobei angenommen wird, dass die Phasen jeweils allein im Rohr strömen, d. h. jeweils den gesamten Rohrquerschnitt ausfüllen. Mit Hilfe der Korrekturfunktion Φ - auch Zweiphasenmultiplikator genannt - berechnet man den zweiphasigen Reibungsdruckverlust:

$$\left(\frac{\Delta p}{\Delta L}\right)_{\rm F} = \Phi_{\rm W}^2 \left(\frac{\Delta p}{\Delta L}\right)_{\rm W} = \Phi_{\rm G}^2 \left(\frac{\Delta p}{\Delta L}\right)_{\rm G}$$
(1.4)

Gleichung (1.4) liefert das Verhältnis der Funktionen Φ_G zu Φ_W , abhängig vom Quotienten der Reibungsdruckverluste beider Phasen, das als LOCK-HART/MARTINELLI - Parameter bezeichnet wird:

$$X_{LM} = \left[\frac{(\Delta p / \Delta L)_{W}}{(\Delta p / \Delta L)_{G}}\right]^{0.5} = \frac{\Phi_{G}}{\Phi_{W}}$$
(1.5)

Zur Berechnung der Reibungsdruckverluste der Einzelphasen p werden zunächst die Reynolds-Zahlen nach Gleichung (1.6) bestimmt.

$$Re_{p} = \frac{J_{p} \cdot d_{i}}{v_{p}}$$
(1.6)

Hierbei ist J die Leerrohrgeschwindigkeit, d_i der Innendurchmesser des Rohres (0,195 m) und v die kinematische Viskosität der Einzelphasen. Unter Berücksichtigung der Versuchsmatrix (Tabelle 2) ergibt sich für die Wasserphase ein Bereich von: $10^5 < Re_W < 4*10^6$ bzw. für die Gasphase von: $75 < Re_A < 10^6$. Für

laminare Strömungen (Re < 2320) berechnet sich der Rohrreibungsbeiwert λ nach Gleichung (1.7) (Matek et al. 2000). Für turbulente Strömungen ist die Rohrrauhigkeit k (0,1 mm) mit zu berücksichtigen, so dass λ_p unabhängig von der Reynolds-Zahl nach Gleichung (1.8) bestimmt wurde (VDI 1988a).

$$\lambda_{\rm p} = \frac{64}{{\rm Re}_{\rm p}} \tag{1.7}$$

$$\lambda_{p} = \frac{1}{\left[2 \cdot \lg(d_{i}/k) + 1, 14\right]^{2}}$$
(1.8)

Unter Verwendung des Rohrreibungsbeiwerts λ_p berechnet sich der Reibungsdruckverlust der einzelnen Phase p zu:

$$\Delta p_{p} = \lambda_{p} \cdot \frac{\rho_{p}}{2} \cdot J_{p}^{2} \cdot \frac{\Delta L}{d_{i}}$$
(1.9)

Mit den so bestimmten Reibungsdruckverlusten der Einzelphasen kann man die Druckverlustgradienten $(\Delta p/\Delta L)_G$ und $(\Delta p/\Delta L)_W$ berechnen und mit Gl. 1.5 X_{LM} ermitteln.

Für die Bestimmung der Funktionen Φ_W und Φ_G in Abhängigkeit vom Parameter X_{LM} wurde das Verfahren nach WALLIS (Huhn et al. 1975) ausgewählt. Dieses Verfahren beruht ebenfalls auf dem Schlupfmodell und nimmt an, dass beide Phasen in getrennten Zylindern strömen, deren Querschnittsflächen zusammen den realen Rohrquerschnitt ergeben. Der Druckverlust in jedem Zylinder ist dem realen Druckabfall der gesamten Strömung gleich und wird aus der Einphasenströmung mit mittleren Geschwindigkeitswerten berechnet.

Der allgemeine Lösungsansatz ist hierbei:

$$\left(1/\Phi_{\rm G}^2\right)^{1/n} + \left(1/\Phi_{\rm W}^2\right)^{1/n} = 1 \tag{1.10}$$

Daraus folgt mit Gleichung (1.5):

-

$$\Phi_{G}^{2} = \left[1 + X_{LM}^{2/n}\right]^{h} \qquad X_{LM} < 1 \qquad (1.11)$$

$$\Phi_{W}^{2} = \left[1 + 1/X_{LM}^{2/n}\right]^{h} \qquad X_{LM} > 1 \qquad (1.12)$$

wobei der Parameter n vom Strömungszustand abhängt:

n = 3,5	$Re_W > 10^3$, $Re_G < 10^3$	Die Reynolds-Zahlen der einzelnen Phasen
n = 4	$Re_W > 10^3$, $Re_G > 10^3$	wurden gemäß Gleichung (1.6) bestimmt.

Ergebnis dieser Rechnungen sind die zweiphasigen Druckverluste in der Teststrecke für alle gemessenen Kombinationen aus den Leerrohrgeschwindigkeiten für Luft und Wasser, die sich aus den hydrostatischen und den Reibungsdruckverlusten zusammensetzen. Dabei ändert sich der Anteil des Reibungsdruckverlustes am Gesamtdruckverlust von ca. 2 % für geringe Leerrohrgeschwindigkeiten (Versuchspunkt 041, vgl.Tabelle 2) bis zu 23 % für den Versuchspunkt 184.

Da die Druckmessstelle (PI4-07) im Bogen nach den Gittersensoren angeordnet ist, wurde die Hälfte des Druckverlustes im Bogen Δp_B bei der Bestimmung des Gesamtdruckverlustes mit berücksichtigt. Hierzu wurden die Druckverluste für die einzelnen Phasen p nach Gleichung (1.13) berechnet (VDI 1988b).

$$\Delta \mathbf{p}_{\mathrm{B},\mathrm{p}} = \mathbf{k}_{\mathrm{B},\mathrm{p}} \cdot \frac{\mathbf{\rho}_{\mathrm{p}}}{2} \cdot \mathbf{J}_{\mathrm{p}}^{2}$$
(1.13)

Der Koeffizient $k_{B,p}$ beinhaltet sowohl den Rohrreibungsbeiwert λ_p (nach Gleichung (1.7) bzw. (1.8)) als auch den Widerstandsbeiwert $\zeta_{B,p}$, der seinerseits die Umlenk-, Reynolds-Zahl- und Rauhigkeitsbeiwerte entsprechend VDI 1988b berücksichtigt. Danach erfolgte die Abschätzung des zweiphasigen Druckverlustes im Bogen, ebenfalls nach der Methodik von LOCKHART/MARTINELLI und WALLIS.

Die so ermittelten Drücke sind als Überdrücke in der Spalte "Druck am GS(ü) PI4-07 [kPa]" in den Versuchsprotokollen im Anhang IV aufgelistet und wurden zur Durchführung der Experimente genutzt.

1.2.3 Versuchsprozedur

Die Variable Gaseinspeisung ist ebenso wie die im Vorläuferprojekt genutzten vertikalen Teststrecken im Teststreckenkreislauf der Versuchsanlage TOPFLOW (Bild 1-1) montiert. Während des Versuchsbetriebs wird Wasser aus der Dampftrommel mittels der Teststreckenpumpe durch die vertikalen Teststrecken gefördert. Dabei erfolgt die Regelung des Wassermassenstromes mit drei parallel geschalteten Regelventilen und den zugehörigen Regelkreisen in den Bereichen 0 -0,5 kg/s; 0,5 – 5 kg/s und 4,75 – 50 kg/s. Für die Experimente im Rahmen der hier beschriebenen Versuchsserie waren Massenströme zwischen 1,2 und 48 kg/s einzustellen. Zur Gewährleistung der Temperaturrandbedingungen (30 $^{\circ}$ C ± 1 K) wurde vor Beginn der Messungen die Temperatur des Inhaltswassers im Teststreckenkreislauf durch den Energieeintrag der laufenden Teststreckenpumpe auf 30 °C erhöht. Da die Temperatur des Inhaltswass ers beim Betrieb der Pumpe weiter steigt, wurde Speisewasser aus dem Abblasetank (vgl. Bild 1-1) mit einer Temperatur von ca. 20 ℃ mittels der Kesselspeisepumpe in die Dampftrommel gefördert und Inhaltswasser aus der Dampftrommel über die Entleerungsleitung zurück in den Abblasetank geleitet.

Nach Erreichen des Normtemperaturbereichs wurde der Wassermassenstrom eingestellt und Druckluft in den Teststreckenkreislauf eingespeist, um den erforderlichen Druck an der Messstelle PI4-07 oberhalb des Gittersensors annähernd zu erreichen. Ist diese Bedingung erfüllt, kann der Luftvolumenstrom auf seinen Sollwert reduziert werden. Nachfolgend wird durch Veränderung des Abblasevolumenstroms aus der Dampftrommel der Drucksollwert an der Messstelle oberhalb des Gittersensors eingestellt. Entsprechen alle anlagentechnischen Randbedingungen den Vorgaben, kann die Messung durchgeführt werden. Hierzu ist die Messbereitschaft der Gittersensoren herzustellen und das Strömungsbild am Messrechner mittels online Visualisierung zu kontrollieren. Sind auch diese Bedingungen erfüllt, erfolgt die eigentliche Messung offline. Um charakteristische Strömungsparameter, wie z. B. Gasgehalts- bzw. Geschwindigkeitsverteilungen oder Blasengrößen, aus den Messdaten bestimmen zu können, wurde die Messzeit für alle Experimente dieser Versuchsserie auf 10 s bei einer Frequenz von 2,5 kHz festgelegt. Direkt nach der Messung kann die Qualität der Daten durch visuelle Prüfung am Messrechner kontrolliert werden.

Parallel zur Erfassung der volumetrischen Gasgehalte mit den Gittersensoren werden alle verfügbaren Betriebsdaten des Teststreckenkreislaufs gespeichert. Für diese Messserie sind das vor allem die Wassermassenströme, die Luftvolumenströme sowie Temperatur und Druck oberhalb des Gittersensors. Zur Synchronisierung der Betriebsdaten mit den Gittersensormessdaten wird vom Prozessleitsystem zum Startzeitpunkt der Messung ein Impuls erzeugt, der im Betriebsdatenerfassungssystem für die Zeit der Messung ein Signal setzt und gleichzeitig den Messvorgang in der Elektronikeinheit der Gittersensoren startet. Damit lassen sich aus den gespeicherten Betriebsdaten genau die Werte zur Auswertung auswählen, die dem Messintervall entsprechen. Diese Werte werden dann arithmetisch gemittelt und in den Tabellen im Anhang IV unter der Rubrik Betriebsdaten archiviert.

1.3 Messmatrix

In der Abteilung "Experimentelle Thermofluiddynamik" des FZD werden seit vielen Jahren Versuche zur Untersuchung von Zweiphasenströmungen durchgeführt. Um einen Vergleich der einzelnen Messungen miteinander zu vereinfachen, wurde eine allgemeine Versuchsmatrix erarbeitet. Bei einem Vergleich der Daten verschiedener Messserien sind jedoch die Druckrandbedingungen zu beachten. Im Gegensatz zu der in diesem Bericht beschriebenen Messserie, bei der ein konstanter Druck (0,25 MPa(a)) an der Gaseinspeisung eingehalten wurde, sind frühere Experimente bei Umgebungsdruck in der Dampftrommel (vgl. Bild 1-1) durchgeführt worden.

Tabelle 2 zeigt die aus 231 Versuchspunkten aufgebaute FZD-Matrix. Jeder Versuchspunkt charakterisiert ein Verhältnis aus Leerrohrgeschwindigkeiten für die flüssige und gasförmige Phase. Der Bereich der Leerrohrgeschwindigkeiten ist logarithmisch aufgeteilt und erstreckt sich bei der flüssigen Phase bis ca. 4 m/s bzw. bei der Gasphase bis ca. 19 m/s. Damit deckt die Matrix alle wichtigen Strömungsformen, beginnend bei einer feindispersen Blasenströmung über die Pfropfen- und aufgewühlte Strömung bis zur Ringströmung ab.

In Tabelle 2 sind die für die **aktuelle Versuchsserie (Druck an der Gaseinspeisung: 0,25 MPa(a); Temperatur des Zweiphasengemischs: 30 °C \pm 1 K)** ausgewählten Messpunkte farbig dargestellt. Sie lassen sich in vier Reihen gruppieren, wobei bei jeweils zwei Reihen die Leerrohrgeschwindigkeit der flüssigen bzw. gasförmigen Phase konstant bleibt. Diese Auswahl hat den Vorteil, dass man Strömungsphänomene einerseits in Abhängigkeit von nur einem variablen Parameter untersuchen kann und andererseits die Effekte, z. B. zwischen zwei "Wasserreihen", miteinander vergleichen kann. Zur Untersuchung der Entwicklung der Zweiphasenströmung über der Höhe der Teststrecke wurden für jeden Versuchspunkt < 149 (Tabelle 2) alle in Tabelle 1 bzw. Bild 1-2 angegebenen Höhenpositionen (A-R) gemessen. Da der maximal mögliche Gasvolumenstrom, der durch die 1 mm Einspeisekammern (vgl. Bild 1-3) ins Rohr eingeperlt werden kann, durch Anzahl und Durchmesser der Bohrungen begrenzt ist, ergeben sich für die Messpunkte \geq 149 folgende Einschränkungen: Bei den Punkten **149, 151, 160** und **162** wurden alle Höhen mit vier mm Einspeiseungen gemessen (B, E, H, K, N, Q) und bei den 1 mm Bohrungen beide Einspeisekammern parallel betrieben.

m/s		0.0025	0.004	0.0062	0.0096	0.0151	0.0235	0.0368	0.0574	0.0898	0.14	0.219	0.342	0.534	0.835	1.305	2.038	3.185	4.975	7.772	12.14	18.97
w in	4.047	011	022	033	044	055	066	077	088	099	110	121	132	143	154	165	176	187	198	209	220	231
er J	2.554	010	021	032	043	054	065	076	087	098	109	120	131	142	153	164	175	186	197	208	219	230
ass	1.611	009	020	031	042	053	064	075	086	097	108	119	130	141	152	163	174	185	196	207	218	229
it W	1.017	800	019	030	041	052	063	074	085	096	107	118	129	140	151	162	173	184	195	206	217	228
igke	0.641	007	018	029	040	051	062	073	084	095	106	117	128	139	150	161	172	183	194	205	216	227
indi	0.405	006	017	028	039	050	061	072	083	094	105	116	127	138	149	160	171	182	193	204	215	226
chw	0.255	005	016	027	038	049	060	071	082	093	104	115	126	137	148	159	170	181	192	203	214	225
ges	0.161	004	015	026	037	048	059	070	081	092	103	114	125	136	147	158	169	180	191	202	213	224
ohr	0.102	003	014	025	036	047	058	069	080	091	102	113	124	135	146	157	168	179	190	201	212	223
eeri	0.0641	002	013	024	035	046	057	068	079	090	101	112	123	134	145	156	167	178	189	200	211	222
	0.0405	001	012	023	034	045	056	067	078	089	100	111	122	133	144	155	166	177	188	199	210	221
-	Messr	eihe	e l		J _W =	= 1.0)17	m/s		I	Ves	srei	he I	ll J _G	= 0	.219	9 m/	S				
	Messr	eihe	e II		J _W =	= 0.4	105	m/s			Ves	srei	he l'	V J _G	= 0	.009	9 <mark>6 n</mark>	n/s				

Tabelle 2:Allgemeine Versuchsmatrix des FZD für vertikale Rohrströmungen,
Versuchspunkte der aktuellen Serie farbig markiert

Leerrohrgeschwindigkeit Gas J_G in m/s

Die Daten dieser Messungen wurden in den entsprechenden Files mit der Buchstabenkombination aus beiden Kammern eines Moduls gekennzeichnet (AC, DF, GI, JL, MO, PR). Für die Messpunkte **171, 173, 182, 184** reichte der Querschnitt beider 1 mm Einspeisekammern für den noch höheren Gasvolumenstrom jedoch nicht mehr aus, so dass für diese Punkte lediglich Daten der 4 mm Einspeisungen verfügbar sind.

Die in diesem Kapitel beschrieben Messungen wurden zwischen dem 11.01.07 und 29.06.07 durchgeführt. Detailliert sind sowohl die Betriebsdaten, die Wassermassenund Luftvolumenströme sowie die exakten Druck- und Temperaturrandbedingungen als auch die Basisbezeichnung für die Datenfiles (siehe Anhang VI) in den Tabellen im Anhang IV angefügt. Die im Anhang enthaltenen Norm-Luftvolumenströme $(V_{GN} [nm^3/h])$, die an den Luftreglern eingestellt wurden, berechnen sich aus den in Tabelle 2 vorgegebenen Gas-Leerrohrgeschwindigkeiten zu:

$$V_{GN} = \frac{p_{in} \cdot T_N \cdot J_{G,in} \cdot \pi \cdot d_i^2}{4 \cdot T_{in} \cdot p_N}$$
(1.14)

wobei p_{in} und T_{in} : Druck (0,25 MPa(a)) und Temperatur (303,15 K) an der Gaseinspeiseposition, p_N und T_N : Normdruck (0,1013 MPa(a)) und Normtemperatur (273,15 K) sowie $J_{G,in}$: die Gas-Leerrohrgeschwindigkeit an der Einspeiseposition (entsprechend Versuchsmatrix – Tabelle 2) sind.

1.4 Messtechnik

1.4.1 Spezialmesstechnik

1.4.1.1 Funktionsweise von Gittersensoren

Grundlage der Funktion von Gittersensoren ist die Messung der elektrischen Leitfähigkeit einer Zweiphasenströmung. Im Falle einer Gas/Wasser-Strömung hat die flüssige Phase (Deionat) eine geringe Leitfähigkeit, während das Gas (Luft) praktisch ein Isolator ist. Die Leitfähigkeitswerte werden an den Kreuzungspunkten eines Drahtgitters erfasst, das sich aus zwei um 90° zueinander gedrehten Drahtebenen aufbaut, die über dem Messquerschnitt montiert und elektrisch untereinander sowie gegen den Sensorgrundkörper isoliert sind. Bild 1-5 zeigt schematisch einen Gittersensor mit 4 x 4 Drahtelektroden sowie die wichtigsten elektronischen Baugruppen.

Bild 1-5 Messprinzip eines Gittersensors mit 4 x 4 Drahtelektroden und Grundkomponenten der Signalerfassung

Während der Signalerfassung wird eine Elektrodenebene als Erreger, die andere als Empfänger genutzt. Die Erregerelektroden werden mittels eines Spannungsimpulses nacheinander aktiviert. Dadurch fließt am Empfängerdraht ein Strom, der ein Maß für die Leitfähigkeit im Messvolumen um den Kreuzungspunkt der beiden Drahtelektroden ist. Die Ströme aller Empfängerdrähte werden gleichzeitig abgetastet, zur besseren Signalverarbeitung in Spannungswerte umgewandelt und in einen 12 bit Wert (Auflösung: 4096 Zustände) digitalisiert. Dieser Prozess wird für alle Sendeelektroden wiederholt. Nachdem die letzte Sendeelektrode aktiviert wurde, sind in der Gittersensorelektronik die Spannungssignale für einen kompletten zweidimensionalen Messquerschnitt gespeichert.

Um Polarisationseffekte an den Elektroden zu vermeiden, teilt sich der Spannungsimpuls, mit dem die Erregerelektroden beaufschlagt werden, in eine positive und eine negative Halbwelle. Bei beiden Erregerspannungen werden die Ströme gemessen und ihre Differenz in der Elektronikeinheit weiterverarbeitet.

Das hier gewählte Messprinzip bietet den Vorteil, dass die so gemessenen Daten nicht aufwendig tomografisch rekonstruiert werden müssen, sondern nach einer Kalibrierung als örtlich und zeitlich hochaufgelöste Informationen über den volumetrischen Gasgehalt direkt verwendet werden können. Bei einer räumlichen Auflösung von 64 x 64 Messpunkten ermöglicht die Elektronikeinheit derzeit Messfrequenzen bis zu 2,5 kHz. Eine detaillierte Beschreibung von Aufbau und Funktion der Gittersensoren enthalten Prasser et al. 1998 und 2000a.

Nachteil der Gittersensoren ist die Beeinflussung der Strömung, da ein invasives Messverfahren zum Einsatz kommt. Dieser Nachteil spielt bei der Messung mit einem Sensor jedoch kaum eine Rolle, da der Gasgehalt in dem Moment erfasst wird, in dem die Sensordrähte die Struktur der Phasengrenze beeinflussen. Er ist jedoch bei der Verwendung von zwei direkt hintereinander montierten Sensoren bzw. einem Zweiebenen-Sensor, wie sie zur Bestimmung lokaler Gasgeschwindigkeiten eingesetzt werden, zu beachten. Weitere Informationen zur Messgenauigkeit der Gittersensoren und Vergleiche mit alternativen Messverfahren sind im Kapitel 1.6 zusammengefasst.

Gittersensoren werden seit mehr als 15 Jahren sowohl im FZD als auch international erfolgreich eingesetzt. Mit ihnen können Gasgehalte in Zweiphasenströmungen bei Drücken bis zu 7 MPa und Temperaturen bis 290 $^{\circ}$ C ge messen werden. Die derzeit maximal erreichbare zeitliche Auflösung beträgt 0,1 ms. Der minimale bisher realisierte Drahtabstand liegt bei 0,5 x 0,5 mm.

1.4.1.2 Konstruktion des Gittersensors

Die in diesem Bericht beschriebenen Versuche wurden mit Luft/Wasser-Strömungen entsprechend Tabelle 2 bei einer Wassertemperatur von 30 °C und Drücken am Sensor kleiner als 0,25 MPa(a) durchgeführt. Aus diesen Randbedingungen und aus dem Funktionsprinzip ergeben sich die Anforderungen an die Konstruktion des Gittersensors.

In diesem Fall kam ein Zweiebenen-Niedertemperatur-Gittersensor zum Einsatz, bei dem jede Messebene aus 64 x 64 Drähten aufgebaut ist. Er besteht aus zwei

Leiterplatten (Materialstärke: 2,5 mm), auf die jeweils auf der Ober- und Unterseite die vorgespannten Drahtelektroden in einem Winkel von 90° zueinander aufgelötet sind. Dabei haben die Drähte einen Abstand von 3 mm. Um die mechanische Abdichtung des Sensors zu ermöglichen, wurden die Drahtelektroden mit einem Durchmesser von 0,125 mm in ca. 0,3 mm tief eingefräste Nuten auf der Leiterplatte befestigt. Durch diese Konstruktionsform ergibt sich ein Abstand zwischen den Drahtebenen von ca. 2 mm.

Die derart vorbereiteten Leiterplatten werden zwischen zwei Flanschen und dem Zwischenring montiert (siehe Bild 1-6, Einzelheit Z), wobei sich der Abstand beider Leiterplatten und damit der Messebenen aus der Dicke des Zwischenringes und den gepressten Silikondichtungen zu ca. 40,5 mm ergibt. Der Zwischenring ist zum Teil aus Aluminium gefertigt, um das Gewicht des Sensors zu reduzieren. Des Weiteren werden im Sensor vier Kunststoff-Distanzringe verwendet, um den Anpressdruck auf die Silikondichtringe zu begrenzen und bei wiederholter Montage (Bild 1-7) einen reproduzierbaren Abstand der Messebenen zu gewährleisten.

Bild 1-6 Konstruktionszeichnung des doppelten Niedertemperatur-Gittersensors

Für den elektrischen Anschluss der Drahtelektroden laufen Leiterzüge von den Lötstellen der Drähte zu den Buchsen am Rand der Leiterplatte (Bild 1-6), an denen Vorverstärker befestigt werden, die über geschirmte Kabel mit der Elektronikeinheit verbunden sind. Weitere ausführliche Informationen zur Konstruktion von Drahtgittersensoren enthält Pietruske 2007. Details zum Aufbau der Messelektronik sind in Prasser et al. 2000a beschrieben.

Bild 1-7 Montage des Sensors im oberen Bereich der Teststrecke

1.4.2 Betriebsmesstechnik

1.4.2.1 Beschreibung der Betriebsmesstechnik

Neben der entsprechenden Spezialmesstechnik ist die genaue Kenntnis der Randbedingungen für eine qualitativ hochwertige Durchführung und Auswertung der Experimente wichtig. Von der sehr umfangreichen Betriebsmesstechnik an der Versuchsanlage TOPFLOW sollen in diesem Bericht nur die für diese Versuchsserie relevanten Messstellen betrachtet werden.

Bild 1-8 zeigt die Positionen wichtiger Messstellen am Teststreckenkreislauf von TOPFLOW. Die verwendete Anlagenkennzeichnung hat folgende Bedeutung: Der erste Buchstabe beschreibt die physikalische Größe (F – Durchfluss, T – Temperatur, P – Druck). Der zweite bzw. dritte Buchstabe klassifiziert den Type (I – Anzeige, C – Regler). Die nachfolgende Nummer kennzeichnet die Messstelle, wobei die erste Ziffer die Zugehörigkeit zum System oder Kreislauf angibt (4 – Teststreckenkreislauf). Alle relevanten Betriebsdaten für die durchgeführten Experimente sind in den Tabellen im Anhang IV aufgelistet.

Die beiden Wasser-Massenstromregler FIC4-01 und FIC4-02 sind vorkonfektionierte Messketten. Die zugehörigen Transmitter ermitteln aus dem Absolutdruck und der Temperatur die Dichte der Flüssigkeit. Mittels der Dichte, dem über einer Venturi-Düse gemessenen Differenzdrucks sowie Geometriekenngrößen bestimmt das Messsystem den Massenstrom. Die Regelung des erforderlichen Wassermassenstroms erfolgt mit der von einem Frequenzumrichter gesteuerten Teststreckenpumpe. Die Arbeitspunkte hierfür werden mit den direkt nach den Messsystemen angeordneten Regelventilen eingestellt. Zur Bereitstellung des Luftvolumenstromes dienen die parallel angeordneten Regler FIC4-10 – FIC4-13. Hierbei handelt es sich um thermische Massedurchflussmesser und –regler für Gase vom Type EL-FLOW (FIC4-12 und 13) bzw. IN-FLOW (FIC4-10 und 11) der Firma Bronkhorst.

Zur Messung des Luftmassenstromes wird nach einem Turbulenzfilter vom Gesamtluftstrom ein definierter Teilabaetrennt und durch strom die Messzelle geleitet. In der Messzelle sind in Strömungsrichtung hinterein-Messwiderstände zwei und ander dazwischen eine Heizung angeordnet. einstellende Temperatur-Die sich differenz ist eine Funktion des Luftmassenstromes, der durch die Messfließt. Um aus dem zelle Luftmassenstrom den Luftvolumenstrom zu ermitteln, wird wiederum die Dichte genutzt, die sich aus dem Druck und Temperatur vor der Heizung der bestimmen lässt. Die Regelung des Luftvolumenstromes erfolgt bei den FIC4-11 bis 13 mittels direkt nach der Messzelle angeordneter Magnetventile. Sehr große Luftströme (FIC4-10) steuert eine nachgeschaltete pneumatische betriebene Regelarmatur.

Um Leckraten der insgesamt sechs parallel geschalteten Luftregler in den Teststreckenkreislauf auszuschließen, sperrt je ein Dreiwegeventil die

inaktiven Regelkreise vom Teststreckenkreislauf ab und leitet eventuelle Leckraten in die Versuchshalle ab. Mit den Druckluftreglern von TOPFLOW können Volumenströme bis maximal 750 nm³/h stationär eingestellt werden.

Die Messung des Druckes oberhalb der Gittersensoren erfolgt mit einem Drucktransmitter vom Typ Smar LD 301, der auf einen Messbereich von 0 bis 250 kPa eingestellt ist. Die Temperaturen nach den Luftreglern und nach den Gittersensoren werden mit Thermoelementen vom Typ K erfasst.

1.4.2.2 Kalibrierung

Zur Aufrechterhaltung der Genauigkeit der Messkanäle ist es erforderlich, die für den Versuchsbetrieb relevanten Messumformer und elektronischen Baugruppen zu

kalibrieren, soweit dies möglich ist. Eine Übersicht über die Ergebnisse der Kalibrierung für die in Bild 1-8 dargestellte Messtechnik ist in Tabelle 3 zusammengefasst.

Tabelle 3:	Messstellen im Tests	trec	kenkreislauf, die für die Durc	chführu	ung und zur
	Datenauswertung d	er	Luft/Wasser-Versuchsserie	L12	verwendet
	wurden				

Messum- former	Messbereich	Kalibrier-	Kalibrier-	max. Ab- weichung	Bemerkungen
FIC4-01	4,75 - 50 kg/s		21.05.02	1 %	5 Jahre ab Her-
FIC4-02	0,5 - 5 kg/s		21.05.02	1 %	stellung garantiert
FIC4-10	500 - 1000 nm³/h	400 - 950 nm³/h	02.10.06	0,83 %	Bronkhorst (vom Messwert)
FIC4-11	50 - 500 nm³/h	50 - 450 nm³/h	04.10.06	6,66 %	Bronkhorst (vom Messwert)
FIC4-12	5 - 50 nm³/h	5 - 50 nm³/h	15.09.06	1,58 %	Bronkhorst (vom Messwert)
FIC4-13	0,5 - 5 nm³/h	0,5 - 5 nm³/h	10.10.06	1,9 %	Bronkhorst (vom Messwert)
PI4-07.1	0 - 250 kPa(ü)	0 - 250 kPa	07.02.07	1,5 %	Smar LD 301 (vom Messwert)
TI4-08	-270 - 1200 °C	50 - 300 ℃	08.11.06	0,5 K	ТЕ Тур К
TI4-410	-270 - 1200 °C	35 - 50 °C	16.11.06	0,0 K	ТЕ Тур К
TI4-411	-270 - 1200 ℃	35 - 50 ℃	16.11.06	0,0 K	ТЕ Тур К
TI4-412	-270 - 1200 ℃	35 - 50 ℃	16.11.06	0,1 K	ТЕ Тур К
TI4-413	-270 - 1200 °C	35 - 50 °C	16.11.06	0,1 K	ТЕ Тур К

Für die Massenstromregler FIC4-01 und FIC4-02 wird vom Hersteller für fünf Jahre nach der Lieferung garantiert, dass der Fehler 1 % vom Messwert nicht übersteigt. Das Herstellungsdatum der an TOPFLOW eingesetzten Geräte war der 21.05.02. Eine Eichung dieser Geräte direkt an der TOPFLOW Anlage ist nicht möglich.

Die Polynomkalibrierung der Luftvolumenstromregler (FIC4-10 – FIC4-13) erfolgte zu den in Tabelle 3 angegebenen Daten beim Hersteller (FIC4-10 – FIC4-12) bzw. bei der Firma Wagner (FIC4-13).

Der Drucktransmitter PI4-07.1 wurde mit einem UNOMAT MCX/1910 kalibriert, der einmal jährlich (letzte Prüfung: 20.06.06) bei der Firma Druck Lfd seinerseits geeicht wird. Die Kalibrierung erfolgt durch Einstellen von mehreren Drücken innerhalb des Kalibrierbereiches, wobei die Punkte einmal beim Druckauflasten und ein zweites Mal beim Druckablasten angefahren und geprüft werden. Danach werden die Ausgangssignale mit dem Sollwert verglichen und falls erforderlich der Aufnehmer entsprechend justiert.

Die Thermoelemente wurden mit einem Metallblock-Kalibrator vom Typ Jupiter 650SN überprüft. Zum Vergleich der Temperaturanzeigen kommt ein Platinthermoelement zum Einsatz. Beide Referenzgeräte wurden letztmalig am 10.10.06 von der Firma Klasmeier Kalibrier- und Messtechnik GmbH kontrolliert. Nach Feststellung der Abweichungen vom Sollwert, besteht bei den Thermoelementen die Möglichkeit, am Digital/Analog-Wandler die Abweichung zu kompensieren. Die maximale Abweichung im Kalibrierbereich nach der Kompensation ist in Tabelle 3 angegeben.

Technische Parameter der Messtechnik und die detaillierten Ergebnisse der Prüfungen sowie die Dokumente zu den Vergleichsgeräten sind in den Kalibrierprotokollen im Anhang V angefügt.

1.5 Auswertung

Nach Beendigung der Experimente liegen die Messdaten in Form von komprimierten Binärfiles vor, in denen in diesem Fall 25000 Messquerschnitte, sogenannte frames, mit jeweils 64 x 64 digitalisierten Spannungswerten in einem speziellen 12 bit Format gespeichert sind. In den folgenden Kapiteln werden die einzelnen Schritte beschrieben, die zur numerischen Auswertung der Rohdaten erforderlich sind. Die Struktur aller in diesem Kapitel beschriebenen Dateitypen ist im Anhang VI ausführlich beschrieben.

1.5.1 Messdatenkalibrierung

Das Ziel dieser Prozedur ist die Konvertierung der Spannungssignale aus den Messfiles in volumetrische Gasgehalte. Hierzu werden zwei Verfahren genutzt: Einerseits können die Messwerte der Zweiphasenströmung mit Kalibrierwerten einer reinen Wasserströmung gewichtet werden, da, wie in Kapitel 1.4.1.1 bereits erwähnt, die elektrische Leitfähigkeit von Luft vernachlässigbar klein ist:

$$\varepsilon = \frac{U_{\rm W} - U_{\rm meas}}{U_{\rm W}} = 1 - \frac{U_{\rm meas}}{U_{\rm W}}$$
(1.15)

wobei ϵ – der volumetrische Gasgehalt, U_W – das Spannungssignal des Kalibrierwertes (Wasser) und U_{meas} – das Spannungssignal des Messwertes ist.

Zur Bestimmung der Kalibrierwerte für die einzelnen Gitterpunkte des Sensors werden die Daten im Kalibrierfile vor allem auf Gasfreiheit untersucht und danach die Signale der nutzbaren frames gemittelt. Diese Methode bietet den Vorteil, dass sie für alle Messdaten, unabhängig von der Gas-Leerrohrgeschwindigkeit, anwendbar ist. Der Nachteil besteht darin, dass extra Kalibrierfiles erfasst werden müssen, was in der Regel mit zeitlichem Abstand zu den eigentlichen Messungen erfolgt. Dadurch können die Betriebsbedingungen (Druck, Temperatur, Leitfähigkeit des Wassers) schwanken und somit den Fehler bei der Bestimmung des volumetrischen Gasgehalts vergrößern.

Andererseits besteht die Möglichkeit, eine Histogrammkalibrierung durchzuführen. Bei dieser Methode werden für jeden Gitterpunkt des Sensors Histogramme der digitalisierten Spannungssignale aller frames eines Messfiles numerisch analysiert. In der Regel haben die Histogramme zwei Maxima. Ein Maximum, das nahe beim Nullwert liegt, bildet sich für den Gaswert aus, ein Zweites für den Wasserwert. Dieses zweite Maximum dient als Kalibrierwert für den jeweiligen Gitterpunkt. Bild 1-9 stellt beispielhaft ein Histogramm für den Versuchspunkt 140 dar.

Bild 1-9 Histogramm des Gitterpunktes 43 x 43 für den Versuchspunkt 140

Die Vor- und Nachteile dieser Methode ergeben sich aus dem Prinzip. Der wesentliche Vorteil ist die Bestimmung der Kalibrierwerte unmittelbar aus den Messdaten. Fehler durch Änderungen der Randbedingungen sind mit dieser Methode ausgeschlossen. Ein Nachteil der Histogrammkalibrierung ergibt sich aus der Begrenzung im volumetrischen Gasgehalt, d. h. wenn bei hohen Gasgehalten nur noch wenige Einzelmesswerte vorliegen, bei denen das Messvolumen um den Gitterpunkt vollständig mit Wasser gefüllt ist. In diesem Fall kann kein eindeutiges Wassermaximum im Histogramm mehr ermittelt werden und man erhält von der Histogrammkalibrierung einen fehlerhaften Kalibrierwert. Um die Vorteile dieser Methode trotzdem nutzen zu können, wird die berechnete Matrix aus Kalibrierwerten für jeden Versuchspunkt azimutal gemittelt und die radialen Profile überprüft.

Bild 1-10 Vergleich radial gemittelter Kalibrierprofile für die Versuchspunkte 140 - grün und 182 - rot (Histogrammkalibrierung)

Bild 1-10 zeigt zwei radiale Profile von Kalibrierwerten für die Messpunkte 140 (grün) bzw. 182 (rot). Die vom Zentrum (r = 0) aus gesehen relativ lange annähernd konstant bleibende Kurve für den Versuchspunkt 140, die erst unmittelbar am Rand des Sensors steil abfällt, beschreibt ein nahezu ideales Kalibrierprofil und bestätigt

die Anwendbarkeit der Methode für diesen Punkt, wogegen für den Punkt 182 das Kalibrierprofil im Zentrum zusammenbricht. Die rote Kurve zeigt deutlich, dass im Zentrum der Strömung keine befriedigenden Kalibrierwerte mehr zu bestimmen sind, da für die Gitterpunkte im Zentrum des Rohres bei dieser hohen Gas-Leerrohrgeschwindigkeit (Ringströmung) kaum noch frames mit reinem Wasser in den Messdaten vorhanden sind.

Das Absinken der Kalibrierprofile am Rand des Gittersensors ergibt sich aus der Nähe der Gitterrandpunkte zur geerdeten Rohrwand, die ein hohes Massepotential darstellt. Dadurch fließt ein Teil des Erregerpotenzials nicht zum Empfängerdraht, sondern zur Rohrwand ab. Ein weiterer Grund für diesen Effekt besteht darin, dass viele der Messvolumina um die Gitterpunkte am Rand des Sensors kleiner sind als das Standardvolumen im Inneren (vgl. Bild 1-11).

Demzufolge wurde die Kalibrierung der Messdaten dieser Versuchsserie in zwei Schritten durchgeführt: Als Erstes erfolgte die Bestimmung der radialen Kalibrierprofile mittels Histogrammkalibrierung für alle verfügbaren Daten. Beginnend bei den Versuchspunkten mit hohen Gas-Leerrohrgeschwindigkeiten wurden danach die radialen Kalibrierprofile überprüft und Versuchspunkte mit unbefriedigenden Ergebnissen unter Verwendung der Filekalibrierung erneut berechnet. Das bedeutet für diese Messserie, dass die volumetrischen Gasgehalte für die Versuchspunkte 171, 173, 182 und 184 (vgl. Tabelle 2) mit Hilfe von Kalibrierfiles erzeugt wurden, wogegen bei allen anderen Punkten die Histogrammkalibrierung zum Einsatz kam. Die Ergebnisse der Kalibrierung werden in Form eines Textfiles (*.uw) gespeichert, das die Kalibrierwerte für jeden Gitterpunkt als Matrix enthält. Des Weiteren sind nach erfolgreicher Histogrammkalibrierung die radialen Kalibrierprofile (*.uwrad_80) verfügbar.

Mit den so berechneten Kalibrierwerten werden aus den Messdaten mit Gleichung (1.15) die Werte für die volumetrischen Gasgehalte ermittelt. Da in den Messdaten Signalrauschen (Drahtschwingen, Rauschen in analogen Elektronikkomponenten, Elektrosmog) enthalten ist, werden die berechneten volumetrischen Gasgehalte vor der weiteren Verarbeitung gefiltert. Hierbei kann kein normales Rauschfilter benutzt werden, da auch Messsignale mit geringem Pegel, wie bereits in Prasser et al. 2001 beschrieben, auftreten können. Durchdringt z. B. eine Gasblase das Drahtgitter, so kann der Rand der Blase ein Messvolumen des Gittersensors anschneiden, in dem dann ein kleiner aber realistischer Gasgehalt gemessen wird. Um diese kleinen aber realen Signale von Signalrauschen unterscheiden zu können, kommt ein spezielles Filter zum Einsatz, das die Gasgehaltswerte der umliegenden Gitterpunkte mit berücksichtigt. Das heißt, bevor ein Gasgehaltswert $\epsilon_{i,i,k}$, der kleiner als der Grenzwert des Filters (20 %) ist, auf 0 gesetzt wird, analysiert das Filter die Umgebung dieses Gasgehaltswertes. Liegen sämtliche 26 umliegenden Werte ebenfalls unter dem Grenzwert, wird $\varepsilon_{i,j,k}$ genullt. Gilt diese Bedingung nicht, so kann man davon ausgehen, dass das Messsignal zum Randbereich einer Gasblase gehört. In diesem Fall bleibt der gemessene Wert unverändert.

Der Grenzwert von 20 % beschränkt die Empfindlichkeit des hier verwendeten Gittersensors in Bezug auf die Blasengröße theoretisch auf einen Äquivalentdurchmesser von 3 mm und zwar in dem ungünstigen Fall, wenn die Gasblase so durch die Messebene des Sensors tritt, dass sie vier Messvolumina gleichmäßig anschneidet. In der Realität wird der Gittersensor jedoch auch einen Großteil dieser Blasen noch erfassen, da die Wahrscheinlichkeit, dass eine Gasblase den Sensor genau symmetrisch zwischen vier Drahtelektroden durchdringt, sehr gering ist und somit diese Blase in einem der vier Messvolumina einen Gasgehalt > 20 % erzeugt. Nimmt die Blasengröße aber weiter ab, sinkt auch die Wahrscheinlichkeit, dass die Blase vom Sensor noch erfasst wird.

Nach der Filterung werden die Gasgehalte auf 0 bzw. 100 % begrenzt und im byte Format in einem Binärfile mit der Erweiterung *.v messquerschnittsweise abgespeichert. Aus numerischen Gründen enthalten diese Files auch Werte für Punkte, die außerhalb des kreisförmigen Messquerschnitts liegen. Diese sind mit der Zahl 255 gekennzeichnet.

1.5.2 Gasgehaltsprofile

Nach Kalibrierung der Messdaten liegen diese als lokale momentane volumetrische Gasgehalte $\varepsilon_{i,j,k}$ (i, j – Indizes der Gitterpunkte in der Messebene, k – laufende Nummer des frames) mit einer räumlichen Auflösung von 3 x 3 mm und einer zeitlichen Auflösung von 0,4 ms vor. Um eine Untersuchung der Strömung zu ermöglichen, ist eine zeitliche bzw. räumliche Mittelung dieser Gasgehalte sinnvoll (Prasser et al. 2002). Im Gegensatz zu den Gasgehaltswerten in den *.v-files werden die zur Mittelung verwendeten Daten nicht auf 0 bzw. 100 % begrenzt.

Die räumliche Mittelung über den Messquerschnitt des Gittersensors basiert auf Wichtungskoeffizienten, die den Anteil jedes Gitterpunktes (i,j) an der Gesamtquerschnittsfläche des Sensors definiert. Die Bestimmung dieser Wichtungsfaktoren beschreibt Bild 1-11. Die räumliche Mittelung kann für jeden Messframe individuell durchgeführt werden:

$$\overline{\epsilon}_{k} = \epsilon(t) = \sum_{i} \sum_{j} a_{i,j} \cdot \epsilon_{i,j,k}$$
(1.16)

Ergebnis der Datenauswertung mit Gleichung (1.16) ist eine Sequenz von momentanen gemittelten volumetrischen Gasgehalten, die mit der vollen Messfrequenz von 2,5 kHz verfügbar sind. Bei Bedarf können diese Werte in einem Extra-file ausgegeben werden.

Bild 1-11 Wichtungskoeffizienten für die räumliche Mittelung von lokalen Gasgehalten über dem Messquerschnitt

Eine weitere Möglichkeit ist die zeitliche Mittelwertbildung. Zweidimensionale zeitgemittelte Gasgehaltsverteilungen werden entsprechend Gleichung (1.17) ermittelt:

$$\overline{\epsilon}_{i,j} = \frac{1}{k_{max}} \sum_{k=1}^{k_{max}} \epsilon_{i,j,k}$$
(1.17)

Aus Gleichung (1.16) und (1.17) kann man mittlere Gasgehalte im gesamten gemessenen Strömungsvolumen bestimmen:

$$\overline{\epsilon} = \sum_{i} \sum_{j} a_{i,j} \cdot \overline{\epsilon}_{i,j} = \frac{1}{k_{max}} \sum_{k=1}^{k_{max}} \overline{\epsilon}_{k}$$
(1.18)

Eine weitere wichtige Darstellungsform der momentanen Gasgehaltswerte bei rotationssymmetrischen Rohrströmungen ergibt sich aus der Kombination von zeitlicher (über die Messzeit von 10 s) und räumlicher Mittelung über m konzentrische Ringe (vgl. Gleichung (1.19))

 $\overline{\mathbf{E}} = \frac{1}{2} \sum \sum \mathbf{A} \mathbf{a}$

Bild 1-12 Wichtungsfaktoren zur radialen Querschnittsmittelung des lokalen Gasgehalts

dabei sind ai,j,m Wichtungsfaktoren,

(1.19)

$$(m-1) \cdot \frac{R_{sensor}}{m_{max}} \le r \le m \cdot \frac{R_{sensor}}{m_{max}}$$
 (1.20)

die den Anteil jedes Gitterpunktes mit den Indizes i,j an der Fläche eines Ringes mit der Nummer m (Bild 1-12) definieren. Die ringförmigen Flächen erfassen einen mit Gl. 20 abgegrenzten Bereich vom Gesamtradius des Sensors:

In Gleichung (1.20) steht m_{max} für die Gesamtanzahl von Ringen, die bei dem DN200 Gittersensor auf 80 festgelegt wurde.

Außerdem gibt es die Möglichkeit, Gasgehaltsprofile zu erzeugen, die sich auf einen begrenzten Bereich von Blasengrößen beziehen (vgl. Kapitel 1.5.5). Diese Prozedur benötigt jedoch Informationen über die Größe der einzelnen Blasen, die

eine Blasenerkennungsroutine ermittelt, die im nachfolgenden Kapitel erläutert wird (Prasser et al. 2002).

Somit stehen zur Auswertung dieser Versuchsserie zeitlich und azimutal gemittelte Gasgehaltsprofile (*.epsrad_80) und zeitlich gemittelte lokale Gasgehalte für jeden Punkt des Messquerschnitts (*.epsxy) zur Verfügung. Zu Kontrollzwecken werden ebenfalls die zeitgemittelten lokalen Gasgehalte pro Messpunkt zusammen mit dem

radialen Abstand vom Zentrum des Rohres in Textfiles mit der Erweiterung *.epsr ausgegeben. Des Weiteren können zum Vergleich der einzelnen Experimente untereinander die integral-gemittelten Gasgehalte nach Gleichung (1.18) (eps_all.asc) genutzt werden.

1.5.3 Gasgeschwindigkeiten

Die Nutzung eines Sensors mit zwei Messebenen (vgl. Kapitel 1.4.1.2) ermöglicht die Bestimmung von zeitlich und azimutal gemittelten Gasgeschwindigkeiten. Dazu werden die Signale beider Messebenen für jeden übereinander angeordneten Gitterpunkt kreuzkorreliert. Für zeit-diskrete Serien von Fluktuationskomponenten des Gasgehaltssignals von der ersten Messebene ($\epsilon'_{1,i,j,k}$) und der zweiten Messebene ($\epsilon'_{2,i,j,k}$) des Gittersensors kann die Kreuzkorrelationsfunktion folgendermaßen definiert werden:

$$\mathsf{F}_{i,j,\Delta k} = \frac{\sum_{k} \varepsilon_{1,i,j,k}' \cdot \varepsilon_{2,i,j,k+\Delta k}'}{\sqrt{\sum_{i} \varepsilon_{1,i,j,k}'^{2}} \cdot \sqrt{\sum_{i} \varepsilon_{2,i,j,k}'^{2}}}$$
(1.21)

Der Index Δk entspricht dem Zeitversatz $\Delta t = \Delta k/f_{meas}$. Die Fluktuationskomponenten errechnen sich durch Subtraktion des zeitgemittelten vom momentanen Wert: $\epsilon'_{i,j,k} = \epsilon_{i,j,k} - \overline{\epsilon}_{i,j}$. Die Kreuzkorrelation selbst wird mittels der Fast Fourier Transformation (FFT) durchgeführt. Um die Qualität der lokalen Gasgeschwindigkeiten zu erhöhen, werden die ermittelten Kreuzkorrelationsfunktionen innerhalb von konzentrischen Ringen (m) azimutal gemittelt. Dazu verwendet man die gleichen Wichtungskoeffizienten a_{i,j,m}, wie zur Bestimmung der radialen Gasgehaltsprofile:

$$F_{m,\Delta k} = \frac{1}{k_{max}} \sum_{i} \sum_{j} a_{i,j,m} \cdot F_{i,j,\Delta k}$$
(1.22)

Im nächsten Schritt wird das Maximum der mit Gleichung (1.22) gemittelten Kreuzkorrelationsfunktion gesucht. Die mittlere Geschwindigkeit der Gasphase für einen bestimmten Radiusring m errechnet sich aus dem Zeitversatz nach:

$$w_{G}(r) = w_{G}(m) = \frac{\Delta L}{\Delta k_{max}} \cdot f_{meas}$$
(1.23)

mit Δk_{max} entsprechend $F_{m,\Delta k_{max}} = max(F_{m,\Delta k})$

 Δ L in Gleichung (1.23) ist der axiale Abstand zwischen den beiden Messebenen des Gittersensors. Die radiale Mittelung der Kreuzkorrelationsfunktionen vor Bestimmung ihres Maximums liefert stabilere Geschwindigkeitswerte im Gegensatz zur direkten Berechnung der Gasgeschwindigkeiten aus den Punkt-zu-Punkt Kreuzkorrelationen nach Gleichung (1.21), die große Streuungen enthalten. Zu Kontrollzwecken werden die Ergebnisse der Punkt-zu-Punkt Kreuzkorrelation als Wertepaar, bestehend aus dem radialen Abstand des Messpunktes vom Rohrzentrum und dem zugehörigen Geschwindigkeitswert, in Textfiles (*.v00) gespeichert. Die azimutal gemittelten Gasgeschwindigkeiten und die mittleren Radien der 80 Ringe enthalten die Textfiles

*.vel. Visualisierungen der gemittelten Gasgeschwindigkeiten sind im Anhang I als radiale Profile verfügbar.

1.5.4 Blasenidentifikation

Die Blasenerkennung und die Bestimmung wichtiger Kenngrößen der Gasblasen erfolgt mit speziell entwickelten Auswertealgorithmen, die in Prasser et al. 2001 ausführlich beschrieben wurden. Dabei ist eine Blase als Region mit zusammenhängenden Gaszellen in der Gasgehaltsmatrix $\varepsilon_{i,j,k}$ definiert, die vollständig von Zellen mit Flüssigkeit umgeben ist. Jede zu derselben Blase gehörende Gaszelle wird mit der gleichen Identifikationsnummer markiert. Unterschiedliche Blasen erhalten unterschiedliche Identifikationsnummern. Diese Nummern werden in einem neuen Massiv als Elemente b_{i,j,k} gespeichert, das die gleiche Dimension wie das Gasgehaltsmassiv hat. Nach Beendigung des Blasenerkennungs-Algorithmus trägt jedes Element b_{i,j,k} die Identifikationsnummer der Blase, zu der der Gasgehalt der Zelle mit den Indizes i,j,k gehört.

Die lokalen momentanen Gasgehalte können Werte zwischen 100 % (Gas) und 0 % (Wasser) annehmen, wenn das zugehörige Messvolumen, das sich in der Umgebung des entsprechenden Gitterpunkts befindet, sowohl Gas als auch Wasser gleichzeitig enthält. Außerdem kann Signalrauschen zu Zwischenwerten im Gasgehalt führen. Aus diesem Grund ist es unmöglich, eine scharfe Abgrenzung der Gaszellen gegen die Flüssigkeit numerisch zu definieren, so dass ein Grenzwert eingeführt werden muss. Dieser Grenzwert beeinflusst das Ergebnis der Blasenerkennung. Ein zu kleiner Wert führt zu unrealistischen Koaleszenzen von Einzelblasen, da der Füllalgorithmus Blasen über Messvolumina vereinigt, die jeweils von zwei Blasen berührt werden. Andererseits führt ein zu großer Grenzwert zu unrealistischen Fragmentationen von Gasblasen, wenn die Füllprozedur bei Messvolumina stoppt, bei denen der Gasgehalt durch Signalrauschen reduziert ist. Untersuchungen zum Einfluss des Grenzwertes zeigten, dass die Kombination aus einem rekursiven Füllalgorithmus und einer nachgeschalteten Agglomerationsprozedur für die Messvolumina an der Blasenoberfläche die besten Ergebnisse brachte (vgl. Prasser et al. 2001).

Die Füllprozedur startet bei einem lokalen Maximum des Gasgehalts und stoppt, wenn der lokale Gasgehalt unter den Grenzwert sinkt. Die besten Ergebnisse erhält man, wenn der Grenzwert zum Abbruch der Füllprozedur für jede Blase individuell festgelegt wird. Dies erfolgt durch Subtraktion eines sogenannten "Differenziellen Grenzwertes" vom Gasgehaltsmaximum der jeweiligen Blase. Jeder erneute Start der Füllprozedur generiert eine neue Blase. Werden keine neuen Startelemente für den Füllalgorithmus mehr gefunden, startet die Agglomerationsprozedur. Dieses Modul sucht nicht mehr nach neuen Blasen, sondern vervollständigt die Blasenoberflächen, indem Messvolumina mit einem Gasgehalt kleiner als der Grenzwert des Füllalgorithmus in die Oberfläche integriert werden. Diese Messvolumina erhalten die gleiche Identifikationsnummer wie die Blase in deren Oberfläche sie integriert wurden, d. h. auf die Position in der Blasenerkennungsmatrix mit den Elementen b_{i.i.k} wird die entsprechende Blasennummer ergänzt.

Dieser Algorithmus liefert für Zweiphasenströmungen mit Wasser-Leerrohrgeschwindigkeiten größer als 0,1 m/s gute Ergebnisse. Unterhalb dieses Wertes

treten jedoch unrealistische Fragmentationen auf, die darauf zurückzuführen sind, dass bei derart geringen Strömungsgeschwindigkeiten die einzelnen Blasen bei konstanter Messfrequenz mit wesentlich mehr Querschnitten erfasst werden. Dadurch steigt die Wahrscheinlichkeit, dass aufgrund von Signalrauschen der Füllalgorithmus innerhalb der Blase beendet wird. Dieser Effekt verstärkt sich noch durch die Tatsache, dass bei Wasser-Leerrohrgeschwindigkeiten < 0,1 m/s Gasblasen beim Durchdringen des Drahtgitters abgebremst werden, was die Verweildauer der Blase in der Messebene weiter erhöht (vgl. auch Prasser et al. 2001). Um diese negativen Effekte zu kompensieren, wurde nach dem Agglomerieren ein Defragmentierungsprozess angefügt. Dieses Programmmodul scannt die Blasenströmung in Richtung der Zeitachse und prüft anhand von Parametern der Einzelblasen (Gasgehalt, Schwerpunkt, Gasgehaltsgradient über der Kontaktfläche), ob unrealistische Fragmentation vorliegen. Ist dies der Fall, wird das kleinere Fragment mit der Identifikationsnummer des größeren in der Blasenerkennungsmatrix überschrieben. Die Ergebnisse der Blasenerkennung werden als Matrix von Identifikationsnummern in einem binären File (*.b) abgespeichert.

Zusammen mit den Informationen über die Gasgehalte können jetzt wichtige Parameter für jede Blase bestimmt werden. Dabei ist zu beachten, dass sich aus programmtechnischen Gründen bei der Berechnung der Eigenschaften der Blasen der Index i auf die laufende Nummer des frames bezieht, während j und k in diesem Fall als Indices in der Messebene dienen.

Das **Volumen einer Blase** mit der Nummer n errechnet sich durch Integration der lokalen Gasgehalte aller mit dieser Nummer gekennzeichneten Messvolumina:

$$V_{b,n} = \Delta x \Delta y \Delta t \cdot w_{b} \sum_{i,j,k} \varepsilon_{i,j,k} \quad \forall [i, j, k] : b_{i,j,k} = n$$
(1.24)

Die Summe der Gasgehalte wird mit dem Messvolumen multipliziert, das sich aus dem Produkt des Abstands der Elektroden in x bzw. y Richtung mit der Abtastzeit und der Blasengeschwindigkeit ergibt. In diesem Fall beträgt der Elektrodenabstand 3 mm und die Messfrequenz 2500 Hz:

$$\Delta x = \Delta y = 3 \text{ mm und } \Delta t = \frac{1}{f_{sample}}$$
(1.25)

Da die Blaseneinzelgeschwindigkeit nicht bekannt ist, wird die azimutal gemittelte Geschwindigkeit der Gasphase im Schwerpunkt der Blase als Näherung verwendet.

$$w_{b} = w_{G}(r_{n}) \text{ mit } r_{n} = \sqrt{(x_{CM,n} - x_{0})^{2} + (y_{CM,n} - y_{0})^{2}}$$
 (1.26)

Die **Schwerpunktkoordinaten** einer Blase können durch Mittelung der Koordinaten aller Volumenelemente dieser Blase mit dem Gasgehalt als Wichtungsfunktion bestimmt werden:
$$\mathbf{x}_{CM,n} = \frac{\sum_{i,j,k} \mathbf{j} \cdot \Delta \mathbf{x} \cdot \mathbf{\varepsilon}_{i,j,k}}{\sum_{i,j,k} \mathbf{\varepsilon}_{i,j,k}}; \quad \mathbf{y}_{CM,n} = \frac{\sum_{i,j,k} \mathbf{k} \cdot \Delta \mathbf{y} \cdot \mathbf{\varepsilon}_{i,j,k}}{\sum_{i,j,k} \mathbf{\varepsilon}_{i,j,k}}$$
(1.27)

Danach kann der **Äquivalentdurchmesser** der Blase ermittelt werden, der als Durchmesser einer volumengleichen Kugel nach Gleichung (1.24) definiert ist:

$$D_{b,n} = \sqrt[3]{\frac{6V_{b,n}}{\pi}}$$
(1.28)

Zur Beurteilung der Asymmetrien der Blasen werden **Momente** für jede Blase ermittelt, wobei wiederum der Gasgehalt als Wichtungsfunktion dient:

$$rm_{x,n} = \sqrt{\frac{5 \cdot \sum_{i,j,k} \varepsilon_{i,j,k} \cdot (j \cdot \Delta x - x_{CM,n})^{2}}{\sum_{i,j,k} \varepsilon_{i,j,k}}}; \quad rm_{y,n} = \sqrt{\frac{5 \cdot \sum_{i,j,k} \varepsilon_{i,j,k} \cdot (k \cdot \Delta y - y_{CM,n})^{2}}{\sum_{i,j,k} \varepsilon_{i,j,k}}}$$

$$rm_{z,n} = \sqrt{\frac{5 \cdot \sum_{i,j,k} \varepsilon_{i,j,k} \cdot (i \cdot \Delta z - z_{CM,n})^{2}}{\sum_{i,j,k} \varepsilon_{i,j,k}}}; \quad \Delta z = w_{b} \cdot \Delta t; \quad \forall [i, j, k] : b_{i,j,k} = n$$

$$(1.29)$$

Aus den Momenten für die Koordinaten x und y in der Messebene des Gittersensors ergibt sich das radiale Moment zu:

$$rm_{r,n} = \sqrt{rm_{x,n}^2 + rm_{y,n}^2}$$
 (1.30)

Weitere Informationen über die Verformung der Blase erhält man durch Bestimmung des maximalen Äquivalentdurchmessers in der x-y-Ebene. Hierzu wird die Fläche aufsummiert, die die Blase in der x-y-Ebene einnimmt. Ähnlich wie in Gleichung (1.24) wird die Summe der lokalen momentanen Gasgehaltswerte der zur Blase gehörenden Messvolumina mit der Fläche eines Messvolumens in x-y-Richtung multipliziert. Diese Prozedur wird für jeden gemessenen Zeitschritt (i) ausgeführt:

$$A_{xy,n,i} = \Delta x \Delta y \sum_{j,k} \varepsilon_{i,j,k} \quad \forall [i, j, k] : b_{i,j,k} = n$$
(1.31)

Nachfolgend wird das Maximum der Querschnittsfläche bestimmt und in den Äquiva-Ientdurchmesser eines flächengleichen Kreises umgerechnet:

$$\mathsf{D}_{xy,n} = \sqrt{\frac{4\mathsf{A}_{xy,n,\max}}{\pi}} \quad \text{mit} \quad \mathsf{A}_{xy,n,\max} = \max(\mathsf{A}_{xy,n,i}) \tag{1.32}$$

Neben diesen Blaseneigenschaften wurden ebenfalls **Anfangs- und Endkoordinaten** der Blasen bestimmt. Um diese Werte berechnen zu können, ist es erforderlich, einen Gasgehaltsgrenzwert für die Zwischenphasengrenzfläche festzulegen. Wie in Prasser 2007b beschrieben, kann für Blasengrößen > 20 mm ein Grenzwert von 50 % als gute Näherung angenommen werden. Verkleinern sich die Blasendurchmesser, so verringert sich dieser Grenzwert bis ca. 20 %. Betrachtet man den maximalen Gasgehalt in den Blasen, kann man feststellen, dass sich dieser Wert beginnend bei 100 % unterhalb eines Durchmessers von ca. 20 mm mit abnehmendem Blasendurchmesser ebenfalls verringert. Dieser Effekt erklärt sich aus der räumlichen Auflösung des Gittersensors von 3 x 3 mm, in dem Blasen mit kleinen Durchmessern die zugehörigen Messvolumina nicht mehr vollständig füllen können und somit Gasgehalte unter 100 % bewirken. Berücksichtigt man diese Randbedingungen, wird für den Gasgehaltsgrenzwert der Zwischenphasengrenzfläche die Hälfte vom maximalen Gasgehalt der Blase als guter Kompromiss bei den Berechnungen verwendet.

Ein weiterer wichtiger Parameter für die Charakterisierung von Gasblasen ist der Volumenanteil der Blase bezogen auf das Gesamtvolumen der Strömung:

$$\varepsilon_{b,n} = \frac{V_{b,n}}{V_{ges}}; \quad V_{ges} = t_{meas} \cdot f_{meas} \cdot \Delta x \cdot \Delta y \cdot \Delta t \cdot \overline{w}_{A} \cdot \sum_{j} \sum_{k} a_{j,k}; \quad \overline{w}_{A} = \frac{J_{A}}{\epsilon}$$
(1.33)

Außer den bereits beschriebenen Parametern werden noch der maximale Gasgehalt und die Anzahl der Messvolumina pro Blase bestimmt und alle Werte in einem Textfile (*.a) als Tabelle für jede identifizierte Blase abgespeichert.

1.5.5 Blasengrößenverteilungen und blasenklassenaufgelöste Informationen

Nach den Auswertungen der Messdaten, die in den vorangestellten Kapiteln beschrieben wurde, liegen dreidimensionale Informationen zur Gasgehaltsverteilung und zur Blasenidentifikation vor. Außerdem steht für jede Messung eine Liste mit Eigenschaften jeder Blase zur Verfügung.

Kombiniert man diese Daten, besteht die Möglichkeit, Blasengrößenverteilungen zu erzeugen. Hierzu werden Histogramme erstellt, in denen sowohl bezogen auf den volumengleichen Äquivalentdurchmesser nach Gleichung (1.28) als auch auf den flächengleichen Äquivalentdurchmesser der Gasblasen entsprechend Gleichung (1.32) der Gasgehalt pro Blasenklasse aufsummiert wird. Diese Informationen sind sowohl für eine lineare Blasenklassenbreite von 0,25 mm als auch für sich logarithmisch ändernde Blasenklassen beginnend mit 0,1 mm verfügbar. Sie sind in Textfiles mit den Erweiterungen *.his_lin bzw. *.his_log abgespeichert, wobei die linearen Verteilungen vorzugsweise für numerische Untersuchungen und die logarithmischen Informationen zur Visualisierung (Blasengrößenverteilungen in Anhang I) verwendet wurden.

In beiden Typen von Blasengrößenverteilungen wird der Gasgehalt bezogen auf die Klassenbreite ($\Delta \epsilon / \Delta D_b$) dargestellt, so dass gilt:

$$\varepsilon_{ges} = \sum_{0}^{D_{b,max}} \frac{\Delta \varepsilon}{\Delta D_{b}} \cdot \Delta D_{b}$$
(1.34)

Zusätzlich werden diese Verteilungen, bezogen auf den Gesamtgasgehalt $(\Delta \epsilon / \Delta D_b / \epsilon_{ges})$, in beiden Files aufgelistet. Außerdem enthalten sie Blasenanzahl-

verteilungen, bei denen die absolute Blasenanzahl pro Blasenklasse auf die Blasenklassenbreite und die Gesamtmesszeit bezogen wird.

Weiterhin besteht die Möglichkeit, die azimutal und zeitlich gemittelten Gasgehaltsverteilungen nach Gleichung (1.19) blasenklassenaufgelöst darzustellen. Die so ermittelten Daten werden in den Dateien *.epsrad_80_bub in Abhängigkeit vom Radius und aufgeteilt auf vier Blasenklassen (0 – 4 mm, 4 mm – 5,8 mm, 5,8 mm – 7 mm und 7 mm – 200 mm) gespeichert. Die Blasenklassen wurden mit der Grenze 5,8 mm ausgewählt, die für Luft/Wasser-Strömungen bei Drücken von ca. 0,2 MPa dem Blasendurchmesser entspricht, bei dem die Tomiyama Lift-Kraft ihr Vorzeichen wechselt. Somit ergeben sich zwei schmalere Blasenklassen ober- und unterhalb dieses Wertes sowie zwei Klassen, die den Gasgehalt für die verbleibenden Blasen enthalten. Zusätzlich beinhalten diese Dateien den Gasamtgasgehalt pro Radiusscheibe.

Außerdem wurden hauptsächlich für numerische Zwecke die in diesem Kapitel bereits erwähnten linearen Blasengrößenverteilungen (*.his_lin) auf Radiusscheiben aufgeteilt. Dazu wird Position (i,j) und Durchmesser (D_b) jeder rekonstruierten Blase geprüft und ihr Gasgehalt entsprechend ihres Durchmessers auf die zugehörige Blasenklasse sowie unter Verwendung der Wichtungsfaktoren $a_{i,j,m}$ (vgl. Bild 1-12) anteilig auf die jeweiligen Radiusscheiben m(r) aufgeteilt. Diese Gasgehaltsverteilungen werden, wie in den *.his_lin files, auf die Blasenklassenbreite bezogen, so dass man als Ergebnis $\Delta \epsilon(r)/\Delta D_b$ erhält. Es gilt:

$$\frac{\Delta \varepsilon}{\Delta D_{b}} = \frac{1}{2 \cdot R_{Sensor}^{2}} \sum_{r=1}^{R_{Sensor}} \frac{\Delta \varepsilon(r)}{\Delta D_{b}} \cdot r \cdot \Delta r$$
(1.35)

Weiterhin wurden diese Ergebnisse auf den Gesamtgasgehalt pro Radiusscheibe bezogen: $\Delta\epsilon(r)/\Delta D_b/\epsilon_{ges}(r)$. Für die Bestimmung der Blasenanzahlverteilungen wurden folgende Bedingungen berücksichtigt: Jede Blase wird pro Radiusscheibe nur einmal erfasst. Durchdringt eine Blase mehrere Radiusscheiben, so wird sie in jeder Scheibe extra erfasst.

Die so berechneten Daten sind in Form von 80 einzelnen Blasengrößenverteilungen, bezogen auf je eine Radiusscheibe wie in Gleichung (1.20) beschrieben, in den Dateien *.his_lin_r verfügbar. Zu Kontrollzwecken enthalten diese Dateien am Ende die über den Radius integrierte Blasengrößenverteilung nach Gleichung (1.35), die den Daten im *.his_lin file entspricht.

1.6 Ungenauigkeitsabschätzung

Die mit dem Gittersensor ermittelten Werte für Gasgehalt und Blasengröße sind hauptsächlich aufgrund des Drahtabstandes von 3 x 3 mm und des Abstandes der Drahtebenen von 2 mm fehlerbehaftet. Vergleichsmessungen zwischen Gittersensoren und anderen Untersuchungsmethoden lieferten Aussagen zur Genauigkeit der Messtechnik und der Auswertealgorithmen bei der experimentellen Bestimmung dieser Strömungsparameter.

1.6.1 Gasgehalt

Der Messfehler von Gittersensoren bei der Ermittlung von Gasgehaltsprofilen wurde durch Vergleichsmessungen mittels Röntgentomographie und Gammadurchstrahlung untersucht. Alle Versuche wurden dabei aufgrund der eingeschränkten Funktionalität der Referenzverfahren in Rohren mit einem Durchmesser von 50 mm durchgeführt.

Die Gammadurchstrahlung einer Luft/Wasser-Strömung mit Variation der Volumenstromdichten beider Medien und Gasgehalten zwischen 0 und 100 % konnte zeigen, dass die maximalen Abweichungen zwischen Gittersensor- und Gamma-Messung bei ± 5 % lagen (Prasser 2000b). Die Durchstrahlung einer Dampf/Wasserströmung bei Atmosphärendruck bestätigte diese Feststellung (Manera et al. 2001), wobei berücksichtigt werden muss, dass auch das Referenzverfahren mit Messungenauigkeiten behaftet ist.

Innerhalb einer Luft/Wasser-Strömung fanden auch Vergleichsmessungen zwischen Gittersensor und einem Röntgentomographen statt, der ein genaueres Referenzverfahren darstellt. Ergebnis dieser Untersuchung war die Feststellung, dass die Genauigkeit des über dem Strömungsquerschnitt gemittelten Gasgehalts von der Art der sich einstellenden Zweiphasenströmung abhängt. Hier wurden Unterschiede im absoluten Gasgehalt:

- bei einer Blasenströmung von ± 1 % bzw.
- bei Pfropfenströmungen eine systematische Unterschätzung von ca. 4 %

festgestellt (Prasser et al. 2005).

Des Weiteren wird in Prasser et al. 2005 gezeigt, dass die Integration von Gasgehalts- und Geschwindigkeitsprofilen, die mit Gittersensoren in der Teststrecke DN200 gemessen wurden, bei Volumenstromdichten bis etwa 1 m/s zur Reproduktion des eingespeisten Gasvolumenstroms führt, was die grundsätzliche Anwendbarkeit der Sensoren bestätigt (vgl. Kapitel 1.7). Leider lässt sich daraus keine direkte Bewertung der Genauigkeit der Gasgehaltsmessung mit dem Gittersensor ableiten. Um zu einer Abschätzung des Fehlers zu gelangen, wird angenommen, dass auch in der Leitung DN200 der Messfehler dem entspricht, der für eine Blasenströmung in der Nennweite DN50 ermittelt wurde. Die größere systematische Unterbewertung, die bei einer Pfropfenströmung in Rohrleitungen mit kleinerem Querschnitt beobachtet wurde, wird nicht unterstellt, da bekannt ist, dass in Leitungen größeren Durchmessers bei den hier vorliegenden Randbedingungen eine Herausbildung von Gaspfropfen weniger ausgeprägt ist und erst bei sehr hohen Gas-Leerrohrgeschwindigkeiten auftritt (Ohnuki et al. 2000).

1.6.2 Blasendurchmesser

Zur Abschätzung des Messfehlers bei der Bestimmung des äquivalenten volumengleichen Blasendurchmessers nach Gleichung (1.28)sind Vergleichsmessungen mit einer Hochgeschwindigkeitskamera verfügbar. Die Untersuchung fand in einem transparenten Strömungskanal DN100 statt, in dem Luft/Wasserströmungen unterschiedlichen mit Blasengrößen und Wassergeschwindigkeiten zwischen 0 und 0.8 m/s generiert wurden.

Dabei konnte nachgewiesen werden, dass die örtliche Auflösung eines Gittersensors mit einem Drahtabstand von ca. 3 x 3 mm (Abstand der Ebenen: 1,5 mm, Drahtdurchmesser: 0,12 mm) die Erfassung der Blasendurchmesser auf 1,6 mm bearenzt (Scholz 2000). Außerdem zeigen die Vergleiche zwischen Gittersensordaten und denen der Kamera, dass der volumengleiche Durchmesser bei Wasser-Leerrohrgeschwindigkeiten > 0,2 m/s mit einer Genauigkeit von \pm 20 % bestimmt wird. Bei kleineren Strömungsgeschwindigkeiten des Wassers wurden Überbewertungen von bis zu + 50 % beobachtet. Es ist dabei jedoch zu berücksichtigen, dass die Streuung der ermittelten Blasengrößen während konstanter Strömungsbedingungen bei der Hochgeschwindigkeitskamera signifikant größer ausfällt als beim Gittersensor, d. h. es kann angenommen werden, dass die angegebenen Abweichungen zwischen beiden Verfahren vorrangig auf die Messungenauigkeit des optischen Verfahrens zurückgehen. Bei höheren Wassergeschwindigkeiten liegen die Ergebnisse in einem Band mit einer konstanten absoluten Streubreite von ca. ± 2 mm (Prasser et al. 2001).

Im laufenden Projekt ist der Vergleich von Messdaten eines Gittersensors mit einem Röntgentomographen vorgesehen. Da die Röntgentomographie (Messfrequenz bis zu 7 kHz) ein sehr genaues Referenzverfahren darstellt, lassen diese Untersuchungen die bisher beste Fehlerabschätzung der Gittersensordaten erwarten.

1.6.3 Azimutal gemittelte Gasgeschwindigkeiten

In Kapitel 1.5.3 wurde die Methodik der Kreuzkorrelation beschrieben, mit der azimutal gemittelte Gasgeschwindigkeiten aus mit Drahtgittersensoren gemessenen Gasgehaltsmustern bestimmt werden können. Daten zu Fehlern der so berechneten Werte liegen leider nicht vor, da keine Referenzmethode in der Lage ist, in Zweiphasenströmungen entsprechenden räumlichen mit einer Auflösung Geschwindigkeitsdaten zu liefern. Es besteht jedoch die Möglichkeit, anhand des Abstandes der beiden Messebenen (vgl. Kapitel 1.4.1.2) unter Berücksichtigung der mittleren Gasgeschwindigkeit und der Messfrequenz den Diskretisierungsfehler abzuschätzen. Hierzu wurde mittels der Gasleerrohrgeschwindigkeit und des mittleren Gasgehalts die mittlere Gasgeschwindigkeit berechnet. Dividiert man den Abstand zwischen den Messebenen durch diese Geschwindigkeit, erhält man die Laufzeit der Gasphase zwischen den Drahtgittern. Setzt man diese Laufzeit ins Verhältnis zur Abtastzeit (1/Messfrequenz), erhält man den relativen Diskretisierungsfehler der Gasgeschwindigkeit.

Bild 1-13 Diskretisierungsfehler bei der Bestimmung der lokalen Gasgeschwindigkeiten in Abhängigkeit vom Abstand der Messebenen

Bild 1-13 zeigt die Ergebnisse für ausgewählte Versuchspunkte (041, 118, 184, vgl. Tabelle 2). Es wird deutlich, dass mit abnehmendem Abstand zwischen den Messebenen der Fehler stark ansteigt. Das erklärt sich daraus, dass sich die Laufzeit der Gasphase bei kleinen Abständen zwischen den Messebenen der Abtastzeit annähert. Andererseits verbessert sich die Qualität der Kreuzkorrelationsergebnisse mit aerinaer werdendem Abstand zwischen den Messebenen. da die Kreuzkorrelationsfunktion eindeutiger ausgeprägte Maxima bildet. Berücksichtigt man diese beiden gegenläufigen Effekte und die konstruktiven Randbedingungen bei der Sensorfertigung, gilt es, einen guten Kompromiss für die Geometrie des Gittersensors zu finden. Der für diese Messserie verwendete Doppelsensor hat einen Abstand zwischen den Messebenen von 40 mm. so dass sich ein Diskretisierungs-4 % für Matrixpunkt fehler von maximal den 184 mit den höchsten Gasgeschwindigkeiten ergibt. Bereits ab Versuchspunkt 118 sinkt der Fehler unter 1%.

Eine kritische Bewertung der entsprechend Kapitel 1.5.3 bestimmten azimutal Geschwindigkeiten bei gemittelten zeigt, dass einzelnen Werten trotz Mittelwertbildung Ausreißer auftreten. Um die lokalen Gasgeschwindigkeiten vor allem zur Rekonstruktion der Gas-Leerrohrgeschwindigkeiten und zur Bestimmung gewichteten Driftgeschwindigkeiten benutzen zu können, der wurden alle Geschwindigkeitsdaten in den *.vel files geprüft und Werte, die mehr als ca. 80 -100 % von der jeweiligen Durchschnittsgeschwindigkeit abweichen (m), durch Interpolation der Werte für die m-1 und m+1 Radiusscheibe ersetzt. Die Anzahl der korrigierten lokalen Gasgeschwindigkeiten ist in Tabelle 4 für jeden Matrixpunkt (vgl. Tabelle 2) und für jede Einlauflänge (siehe Tabelle 1 und Bild 1-2) aufgelistet. Leere Felder bedeuten, dass die durch Kreuzkorrelation und Mittelung bestimmten Daten unverändert für die Auswertung benutzt wurden, was auf ca. 85 % der Messungen zutrifft. Die angegeben Zahlen beziehen sich auf jeweils 80 Radiusscheiben.

In Tabelle 4 sind zwei Tendenzen eindeutig zu erkennen: Einerseits häufen sich die Fehler bei kleinen Wasser-Leerrohrgeschwindigkeiten (Matrixpunkt: 34-37 bzw. 111-114). Eine Begründung dieses Effektes könnte sich aus der Kreuzkorrelation ergeben, deren Ergebnis auf dem Maximum der Kreuzkorrelationsfunktion basiert. Bei der Untersuchung von Zweiphasenströmungen mit kleinen Wasser-Leerrohrgeschwindigkeiten, d. h. auch kleinen lokalen Gasgeschwindigkeiten, ist dieses Maximum nur schwach ausgebildet und bewegt sich im Bereich des Signalrauschens. Somit ist es nicht in jedem Fall möglich, das "richtige" Signal aus der Ergebnismatrix herauszufiltern.

Andererseits wurden mehrere Ausreißer bei einer Gaseinspeisung über die Höhenpositionen A-F (vgl. Tabelle 1 und Bild 1-2) gefunden. Ein Grund hierfür könnte der geringe Abstand zwischen Gaseinspeisung und Messebenen sein, so dass die hohen radialen Geschwindigkeitskomponenten der Gaseinspeisung zwischen den beiden Messebenen des Gittersensors zu einem radialen Versatz der Gasblasen führen. Dieser Gasversatz bewirkt eine Verschlechterung der Punkt-zu-Punkt Kreuzkorrelationsergebnisse. Außerdem zeigt die Zusammenstellung in Tabelle 4, dass die Fehler bei diesen Höhenpositionen fast ausschließlich bei einer Flüssig-Leerrohrgeschwindigkeit von 0,405 m/s (Messreihe II) auftreten, wogegen die Gasgeschwindigkeiten der Messreihe I eine gute Qualität aufweisen. Auch in diesem Fall scheint sich die geringere Gasgeschwindigkeit negativ auf die Ergebnisse der Kreuzkorrelation auszuwirken.

		Einlauflänge																	
		Α	В	С	D	Е	F	G	Н	I	J	Κ	L	Μ	Ν	0	Ρ	Q	R
t	6							1			2								
u k	8				2														
nd	17												3						
i.	19																		
ati	28					2		4	2			5							
Σ	30			1									2						
	34	19	2	1		3	4			4	1						2	1	5
	35	6	4			3					3							1	2
	36	4		15		14			1										
↓	37		1	17	2		1												
	38					3													
	39					2						2							
	40																		
	41																		
	42						1												
	50	8			2														
	52			2		3													
	61		3			-	5												
	63		-				-												
	72	3				11	7												
	74	-					-												
	83			7	9	10	1												
	85																		
	94	3		1	8		3										3		
	96						6												
	105		1	16	10	2	3												
	107					3	5												
	111	11	6	9	6	3		3	7	10	10	3		7	3	13	7	2	3
	112	5	15	5	5	6	5	5	2	7	3	8		9	7	6	1	7	11
	113		10		3	7	3			3	1	5					2		2
	114		2	1	5	6	2	5	3	3		4	1		3		5	3	
	115		16	8		4				2									
	116		13	11															
	117			1		2													
	118																		
	119																		
	127	13	15	8															
	129																		
	138		7														3		
	140		5				2												
	149		6																
	151																		
	160																		
	162																		
	171																		
	173																		
	182																		
	184																		

Tabelle 4Anzahl der interpolierten azimutal gemittelten Gasgeschwindigkeiten
pro Matrixpunkt und Einlauflänge bezogen auf 80 Radiusscheiben

1.6.4 Fehler bei der Berechnung der Drücke an der Gaseinspeisestelle

Um den konstanten Druck an der Gaseinspeisung (0,25 MPa) zu gewährleisten, wurden die zweiphasigen Druckverluste in der Teststrecke berechnet (siehe 1.2.2) und damit die Druckrandbedingungen für die Experimente definiert. Hierzu benötigt man die Driftgeschwindigkeit, die vor Beginn der Versuche noch unbekannt war. Aus diesem Grund wurde mit einer konstanten Geschwindigkeit von 0,25 m/s gerechnet, die eine gute Näherung für Blasen im Bereich von 5 bis 9 mm äquivalenter Blasendurchmesser ist. Nach Beendigung der Versuche kann, wie in Kapitel 2.2.2 dieses Berichtes erläutert, aus den vorliegenden Gasgehalts-, Geschwindigkeits- und Blasengrößenverteilungen eine gewichtete Driftgeschwindigkeit berechnet werden. Mit diesen Informationen lässt sich der Fehler bestimmen, der durch die Annahme der konstanten Driftgeschwindigkeit bei der Berechnung der einzustellenden Drücke oberhalb des Gittersensors entsteht. Zu diesem Zweck wurde die Druckverlustberechnung mit den gewichteten Driftgeschwindigkeiten erneut ausgeführt und diese Ergebnisse mit den ursprünglichen Druckwerten verglichen.

Bei den Berechnungen geht die Driftgeschwindigkeit in den Gasgehalt und der wiederum in die Stoffwerte des Zweiphasengemisches ein. Damit ist der Einfluss der Driftgeschwindigkeit auf den in der Teststrecke zu berücksichtigenden Druckverlust für die Versuche mit den größten Einlauflängen (P, Q, R; vgl. Bild 1-2) am höchsten. Bild 1-14 bis Bild 1-17 verdeutlichen diese Fehler geordnet nach den Messreihen I - IV, wie in Tabelle 2 definiert.

Bild 1-14 Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihe I

Messreihe II

Bild 1-15 Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihe II

Bild 1-16 & Bild 1-17 Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihen III und IV

Für die Messreihen I und II wurde eine ähnliche Tendenz der Fehler ermittelt, die für Messreihe I im Absolutwert jedoch geringer ausfallen. Dieser Effekt erklärt sich aus dem geringeren Gasgehalt, da die Wasser-Leerrohrgeschwindigkeit um das 2,5fache über der für die Messreihe II liegt. Kleinere Gasgehalte bedeuten, dass die Driftgeschwindigkeit einen geringeren Einfluss auf den Gesamtdruckverlust hat, wodurch sich kleinere Fehler ergeben. Dieser Effekt erklärt ebenfalls den Anstieg des Fehlers mit zunehmendem Matrixpunkt (ansteigende Gas-Leerrohrgeschwindigkeit). In den Diagrammen in Bild 2-14 und Bild 1-15 ist zu beachten, dass bei den Versuchen 171 – 184 Gas nur durch die 4 mm Bohrungen in die Teststrecke eingespeist wurde, so dass für die Einlauflängen P und R keine Fehler vorliegen. In Messreihe IV ist der Fehler praktisch gleich 0, da der Gasgehalt bei diesen Experimenten sehr gering war. Die Tendenz zu sinkenden Fehlern bei ansteigenden Matrixpunkten (kleinerer Gasgehalt) ist aber bereits zu erkennen. Dieser Trend wird bei der Messreihe IVII deutlicher sichtbar, da die Gas-Leerrohrgeschwindigkeit wesentlich höher (0,22 m/s) als bei Messreihe IV (0,01 m/s) ist.

1.7 Genauigkeitsprüfung an Hand der Gas-Leerrohrgeschwindigkeit

Aus den gemessenen radialen Profilen des Gasgehaltes $\epsilon(r)$ und der Geschwindigkeit der Gasphase $u_G(r)$ lässt sich die über den Querschnitt integrierte Gas-Leerrohrgeschwindigkeit am Sensor nach:

$$J_{G,S} = \frac{\dot{V}_{G}}{A} = \frac{2}{R^{2}} \int_{0}^{R} u_{G}(r) \cdot \varepsilon(r) \cdot r \cdot dr = \langle \varepsilon \cdot U_{G} \rangle$$
(1.36)

berechnen. In Abhängigkeit von der Testreckenhöhe folgt unter Beachtung des Boyle-Mariotteschen Gesetzes die Gas-Leerohrgeschwindigkeit an der Einspeisung:

$$J_{G,Ein} = J_{G,S} \cdot \frac{p_{Sensor}}{p_{Ein}}.$$
 (1.37)

Diese kann mit dem Sollwert J_G verglichen werden. Im Bild 1-18 ist ein solcher Vergleich für die Messreihe I und die maximale relative Teststreckenhöhe dargestellt. Die zugehörige relative Abweichung:

$$\Delta J_{G} = \frac{J_{G,Ein} - J_{G}}{J_{G}}$$
(1.38)

ist im Bild 1-19 gezeigt.

Bild 1-18 Vergleich der berechneten Gas-Leerrohrgeschwindigkeit $J_{G,Ein}$ mit dem Sollwert J_G bei maximalem L/D für die Messreihe I ($J_L = 1,017$ m/s) bei unterschiedlicher Einspeisung D_{öffnung} = 1 und 4 mm

Bild 1-19 Änderung von ΔJ_G der Messreihe I in Abhängigkeit vom Sollwert der Gas-Leerohrgeschwindigkeit für unterschiedliche Durchmesser der Gaseinspeisung bei maximalem L/D

Bild 1-20 Änderung von ΔJ_G entlang der relativen Aufstiegshöhe L/D am Beispiel des Messpunktes 140 der Messreihe I bei D_{Öffnung} = 1 mm

Während im Bereich der Blasenströmung die aus den Messungen ermittelte Gasleerohrgeschwindigkeit um ca. 20 % überschätzt wird, sinkt der Fehler bei

mittleren und höheren Gas-Leerrohrgeschwindigkeiten ab $J_G> 0,2$ m/s auf unter ca. 15 %. Dabei werden keine signifikanten Unterschiede von ΔJ_G in Abhängigkeit von $D_{Offnung}$ beobachtet.

Es ist zu beachten, dass die Abweichungen zum Sollwert sowohl aus der Gasgehalts- als auch der Geschwindigkeitsmessung resultieren. Bei der Berechnung von $J_{G,S}$ nach Gleichung (1.36) wird die gemessene und über alle Radiusringe azimutal gemittelte Aufstiegsgeschwindigkeit u_G (r) verwendet. Zur genaueren Untersuchung der Effekte wird im Abschnitt 2.2 eine gewichtete Driftgeschwindigkeit berechnet.

Bei den einzelnen Messpunkten der Matrix ändert sich die Differenz zum Sollwert J_G und damit die Genauigkeit der Messung auch entlang der Aufstiegshöhe (Bild 1-20). Unterschiede in der Höhe der Differenz ΔJ_G zwischen dem Bereich der Einspeisung (Messhöhe A) und der maximalen relativen Höhe L/D zeigen sich am Beispiel der Messreihe I vor allem im Bereich der Gasleerrohrgeschwindigkeiten von ca. 0,05 m/s $\leq J_G \leq 0.4$ m/s (s. Bild 1-21).

Bild 1-21 Ånderung der Differenz ∆J_G in Abhängigkeit von der Gas-Leerohrgeschwindigkeit für den Bereich der Gaseinspeisung (Messhöhe A) und bei maximaler Testreckenhöhe (Messhöhe R) der Messreihe I (D_{Öffnung} = 1 mm)

Die Ergebnisse zur Genauigkeitsprüfung bei der Messreihe II sind im Anhang III ab Seite 197 aufgeführt und zeigen tendenziell ähnliche Ergebnisse wie bei der Messreihe I.

Die Messreihe III (konstantes $J_G = 0,219 \text{ m/s}$) zeigt die Grenzen der Messmethode im Fall kleiner Flüssigkeitsgeschwindigkeiten. Im Bereich von ca. $J_L < 0,2 \text{ m/s}$ wird die aus den Messungen des Gasgehalts und der Geschwindigkeit berechneten Gas-

Leerrohrgeschwindigkeit $J_{G,Ein}$ bis zu 50 – 100 % größer als der Sollwert J_G (Bild 2-22 und Bild 1-23). Eine Ursache ist der Messfehler bei der Bestimmung der Blasenaufstiegsgeschwindigkeit, so wie bereits im Kapitel 1.6.3 diskutiert. Der Fehler steigt mit sinkender Flüssig-Leerohrgeschwindigkeit (Messpunkt 111-113 der Messreihe III sowie Messpunkt 34-36 der Messreihe IV). Des Weiteren bleibt die Abhängigkeit der Blasenaufstiegsgeschwindigkeit vom Blasendurchmesser unberücksichtigt. Die Ermittlung der Geschwindigkeit erfolgt über eine Kreuzkorrelation zweier übereinander liegender Messebenen des Gittersensors (Kapitel1.5.3). Eine blasengrößenabhängige Zuordnung der Aufstiegsgeschwindigkeit ist bisher noch nicht möglich, so dass bei Berechnung der Gas-Leerrohrgeschwindigkeit J_{G,S} nach Gleichung (1.36) die Aufstiegsgeschwindigkeit u_G (r) unabhängig von der Blasenbei den Gas/Flüssig-Strömungen vermehrt aröße einaeht. Treten Blasen unterschiedlicher Größe und somit auch unterschiedlicher Aufstiegsgeschwindigkeit auf, kommt es daher zu größeren Differenzen zwischen dem berechneten Wert JG.Ein und dem Sollwert J_G. Die Effekte der blasendurchmesserabhängigen Aufstiegsgeschwindigkeit werden in Kapitel 2.2 näher untersucht.

Eine tendenziell ähnliche Differenz zwischen dem berechneten Wert $J_{G,Ein}$ und dem Sollwert J_G ist auch bei Messreihe IV, allerdings auf deutlich niedrigerem Niveau nachzuweisen (Bild 1-22 und Bild 1-23). Weitere Ergebnisse zur Genauigkeitsprüfung bei der Messung der Gas- Leerohrgeschwindigkeit sind im Anhang III ab Seite 197 aufgeführt.

Bild 1-22 Vergleich der berechneten Gas-Leerrohrgeschwindigkeit $J_{G,Ein}$ mit dem konstanten Sollwert J_G für Messreihen III (J_G = 0,219 m/s) und IV (J_G = 0,0096 m/s) in Abhängigkeit von J_L bei maximaler relativer Testreckenhöhe L/D

Bild 1-23 Änderung der Differenz ΔJ_G in Abhängigkeit von der Flüssig-Leerohrgeschwindigkeit bei maximaler relativer Testreckenhöhe L/D für die Messreihen III (J_G = 0,219 m/s) und IV (J_G = 0,0096 m/s)

2. Ergebnisse

2.1 Strömungsformen

2.1.1 Beobachtete Strömungsformen

Strömungsformen in vertikalen Rohren (s. z. B. Baehr 1996) werden in der Literatur meist an Hand subjektiver Beobachtungen festgelegt. Allgemein lassen sich die Strömungsformen an Hand der charakteristischen Phasenverteilung im Rohr einteilen. Basierend auf den detaillierten Gittersensordaten können objektive Kriterien eingeführt werden (s. Prasser et al., 2003). Für die vorliegenden Messungen wird zwischen Blasenströmung, turbulent-aufgewühlter Strömung und Ringsträhnenströmung unterschieden. Blasenströmungen können dabei noch in solche mit Rand- bzw. Mittenmaximum des Gasgehalts unterteilt werden. In Übereinstimmung mit Ohnuki et al. (2000) und Prasser et al. (2007) tritt in dem verwendeten DN200 Rohr keine Pfropfenströmung, die durch Bildung von Taylorblasen gekennzeichnet ist, auf.

2.1.2 Kriterien zur Beschreibung von Strömungsformen

Im Folgenden werden durch Einführung eines Kriteriums die auftretenden Strömungsformen bei den vorliegenden experimentellen Ergebnissen charakterisiert. Als Kriterium wird der maximal auftretende Blasendurchmesser D_{B,max} (als Äquivalenzdurchmesser einer kugelförmigen Blase) genutzt. An Hand der Blasengrößenverteilung sowie durch Visualisierung der Gasverteilung kann dann eine entsprechende Einteilung erfolgen. Die Blasengrößenverteilungen für Messreihe I ($J_L = 1,017$ m/s) bei einer relativen Testreckenhöhe von L/D = 39,7 und unterschiedlichen Gas-Leerrohrgeschwindigkeiten J_G, sind im Bild 2-1 gezeigt. In Übereinstimmung mit den virtuellen Seitenansichten in Bild 2-2 (1 mm Einspeisung) und Bild 2-3 (4 mm Einspeisung) lassen sich die drei Strömungsbereiche in der Messreihe I wie folgt beschreiben:

(1) Blasenströmung

Die Strömung wird im Folgenden als Blasenströmung bezeichnet, wenn der maximale gemessene Blasendurchmesser kleiner 50 mm ist ($D_{B,max} < 50$ mm). Diese Strömung ist durch monomodale Verteilung des Blasendurchmessers charakterisiert. Das Maximum der Blasengrößenverteilung liegt dabei typischerweise zwischen ca. 5 und 8 mm. Eine Blasenströmung tritt bei maximaler Testreckenhöhe für alle Messungen mit $J_G \leq 0,0574$ m/s auf.

Wie in Bild 2-4 gezeigt sind die Strömungen bei der größten relativen Teststreckenhöhe für $J_G \leq 0,0151$ m/s durch ein Randmaximum des Gasgehalts gekennzeichnet, während für $J_G > 0,0151$ m/s ein Mittenmaximum auftritt.

Randmaxima des Gasgehaltes treten auf Grund der Einspeisung durch Bohrungen in der Rohrwand ebenfalls stets nahe der Gaseinspeisung auf. Mit wachsendem L/D erfolgt dann der Übergang zu den Profilen der weitgehend entwickelten Strömung (Bild 2-5). Die radialen Gasgehaltsprofile ϵ (r) für alle Messpunkte sind im Anhang ab Seite 101 dargestellt.

(2) Turbulent-aufgewühlte Strömung

Die turbulent aufgewühlte Strömung ist durch eine bimodale Blasengößenverteilung gekennzeichnet. Neben Blasengrößen ähnlich wie bei der Blasenströmung treten größere Blasen mit einem kugeläquivalenten Durchmesser von 50 bis 500 mm auf. Des Weiteren bildet sich mit steigendem J_G eine rechts-schiefe Häufigkeitsverteilung für die kleinere Blasengrößenfraktion (D_B < 50 mm) aus. Als Kriterium für diese Strömungsform wurde 50 mm $\leq D_{B,max} \leq 500$ mm festgelegt. Turbulent-aufgewühlte Strömung tritt bei maximaler Testreckenhöhe für die Messreihe I im Bereich von 0,0898 m/s $\leq J_G \leq 0,835$ m/s auf. Die Größe der maximal auftretenden Blasendurchmesser beträgt D_{B,max}< 400 mm (Messpunkt 151). Diese Blasen lassen sich nicht nur an Hand der Blasengrößenverteilung (Bild 2-1 a und b) nachweisen, sie sind auch in der virtuellen Ansicht des Zentralschnittes im Bild 2-2 sichtbar.

(3) Ringsträhnenströmung

Auch bei Ringsträhnenströmungen treten bimodale Blasengrößenverteilungen auf. Als Kriterium für diese Strömungsform wird D_{B,max} > 500 mm festgelegt. Es kommt zu einem Anstieg des mittleren Blasendurchmessers für die kleinere Blasengrößenfraktion ($D_B < 50$ mm) im Vergleich zur Blasenströmung sowie zu einer rechts-schiefen Häufigkeitsverteilung. Sehr große Gasstrukturen mit einem kugeläguivalenten Durchmesser von bis zu ca. 1 m treten auf. An Hand der virtuellen Ansicht des Zentralschnittes im Bild 2-2 a lässt sich die Verdrängung der Flüssigkeit in Richtung Rohrwand durch Ausbildung sehr großer zusammenhängender Gasstrukturen in der Rohrmitte erkennen. Beim Messpunkt 184 der Messreihe I sowie bei den Messpunkten 171 und 182 der Messreihe II sind die Gasstrukturen so groß, dass der kugeläguivalente Durchmesser oberhalb 1 m liegt. Ringsträhnenströmung tritt in der Messreihe I bei maximaler Testreckenhöhe ab einer Gas-Leerohrgeschwindigkeit von $J_G \ge 1,305$ m/s auf.

2.1.3 Abhängigkeit der Strömungsform von der relativen Teststreckenhöhe

Änderungen der Strömungsform entlang der Blasenaufstiegshöhe treten bei der Messreihe I im Bereich von 0,0898 m/s $\leq J_G \leq 0,219$ m/s auf. Beispielgebend wird am Messpunkt 118 der Übergang von der Blasenströmung in der Einspeiseregion bei L/D = 1,1 hin zur turbulent-aufgewühlten Strömung bei L/D = 39,9 an Hand der Blasengrößenverteilung gezeigt (Bild 2-6). Während im Bereich der Gaseinspeisung der maximale Blasendurchmesser ca. 50 mm ist, treten bei L/D = 39,9 deutlich größere Blasen mit einem D_{B,max} = 130 mm als Resultat der Blasenkoaleszenz auf. In Übereinstimmung mit den Ergebnissen zur Blasengrößenverteilung wird die Bildung größerer Blasen entlang der Aufstiegshöhe auch an Hand der virtuellen Schnittdarstellung im Bild 2-7 sichtbar. Bei diesen Darstellungen ist stets die Höhe entsprechend der mittleren Gasgeschwindigkeit skaliert und das Verhältnis zwischen dem vertikalen und dem horizontalen Maßstab beträgt 1:1.

Bild 2-1 a) Verteilung des Blasendurchmessers für unterschiedliche Gas-Leerrohrgeschwindigkeiten J_G (Messreihe I $J_L = 1,017$ m/s, $D_{Offnung} = 1$ mm und ab Messpunkt 173 $D_{Offnung} = 4$ mm, bei L/D = 39,7), b) Auswahl einiger charakteristischer Verteilungen. Das Auftreten von größeren Blasen und Gasstrukturen ist ein Zeichen für unterschiedliche Strömungsformen.

Bild 2-2 a) Ansicht Zentralschnitt und b) virtuelle Seitenansicht der Gasverteilung in der vertikalen Teststrecke; (Luft von rot nach gelb, Wasser = blau). (1) Blasenströmung (2) Turbulent-aufgewühlte Strömung (3) Ringsträhnenströmung. Messreihe I mit einem $D_{Offnung} = 1 \text{ mm } (D_{Offnung} = 4 \text{ mm ab } J_G = 2,038 \text{ m/s})$ und maximalem L/D. Vertikaler zu horizontaler Maßstab = 1:1

Bild 2-3 Im Vergleich zu Bild 2-2, Messreihe I mit D_{Öffnung}= 4 mm und maximalem L/D (1) Blasenströmung (2) turbulent-aufgewühlte Strömung (3) Ringsträhnenströmung

Bild 2-4 Bildung von Gagsehaltsmaxima bei einer Blasenströmung in Abhängigkeit vom Radius mit unterschiedlichen Gas-Leerohrgeschwindigkeiten und konstantem $J_L = 1,017m/s$ (Messreihe I), jeweils maximale Testreckenhöhe und D_{Öffnung} = 1 mm

Bild 2-5 Änderung des Gasgehaltsmaximum bei einer Blasenströmung entlang der Blasenaufstiegshöhe am Beispiel des Messpunktes 052 ($J_L = 1,017$ m/s, $J_G = 0,0151$ m/s, $D_{Offnung} = 1$ mm)

Bild 2-6 Auswahl einiger Durchmesserverteilungen entlang der Aufstiegshöhe am Messpunkt 118. Übergang von der Blasenströmung nach Gaseinspeisung bei L/D = 1,1 zur turbulent-aufgewühlten Strömung bei L/D = 39,9. Döffnung = 1 mm

Bild 2-7 a) Ansicht des Zentralschnitts und b) virtuelle Seitenansicht der Gasverteilung bei unterschiedlichen relativen Teststreckenhöhen L/D. Messpunkt 118 mit $J_G = 0,219$ m/s und $J_L = 1,017$ m/s, $D_{Offnung} = 1$ mm. Übergang von der Blasen- zur turbulent-aufgewühlten Strömung entlang der Aufstiegshöhe. Vertikaler zu horizontaler Maßstab = 1:1

2.1.4 Abhängigkeit der Strömungsform vom Durchmesser der Einspeisebohrungen

Eine Änderung der Strömungsform bei maximalem L/D als Folge der Vergrößerung des Öffnungsdurchmessers der Begasungseinrichtung von $D_{Offnung} = 1 \text{ mm}$ auf 4 mm kann nicht festgestellt werden. Obwohl sich vor allem im Bereich der Blasenströmung die Lage der Blasengrößenverteilung bei $D_{Offnung} = 4 \text{ mm}$ ändert, bleibt die jeweilige Strömungsform erhalten. Im Anhang I sind die Blasengrößenverteilungen bei $D_{Offnung} = 1 \text{ mm}$ und 4 mm in Abhängigkeit von der relativen Höhe L/D für alle Messpunkte dargestellt.

Den Einfluss von D_{Öffnung} auf die Blasengrößenverteilung im Bereich der Gaseinspeisung zeigen die Verteilungen und die virtuellen Darstellungen der Gasverteilung am Beispiel des Messpunktes 39 der Messreihe II im Bild 2-8. Obwohl bei einem D_{Öffnung} = 4 mm deutlich größere Blasen gebildet werden, ändert sich jedoch nicht die vorherrschende Strömungsform (D_{max} < 50mm). Im Kapitel 2.3.1 wird der Einfluss des Öffnungsdurchmessers auf die Lage der Blasengrößenverteilung bei maximalem L/D an Hand der Messergebnisse näher diskutiert.

Bild 2-8 a) Verteilung der Blasengrößen und b) virtuelle Seitenansicht der Gasverteilung am Messpunkt 039 im Bereich der Gaseinspeisung bei unterschiedlichen Öffnungsdurchmessern der Gaseinspeisung. Vertikaler zu horizontaler Maßstab = 1:1

2.1.5 Strömungsformen in den Messreihen II bis IV

Die Änderungen der Blasengrößenverteilungen für die Messreihe II (J_L = 0,405 m/s) bei relativer Teststreckenhöhe von L/D = 39,7 und variablen J_G , zeigt Bild 2-9.

Bild 2-9 a) Verteilung des Blasendurchmessers für unterschiedliche Gas-Leerrohrgeschwindigkeiten J_G (Messreihe II $J_L = 0,405$ m/s, bei L/D = 39,7 und D_{Öffnung} = 1 mm und ab Messpunkt 171 D_{Öffnung} = 4 mm), b) Auswahl einiger charakteristischer Verteilungen. Das Auftreten von größeren Blasen und Gasstrukturen ist ein Zeichen unterschiedlicher Strömungsformen. Wie beim Verlauf der Blasengrößenverteilungen am Beispiel der Messreihe I, treten auch hier die drei Strömungsbereiche (1)-(3) mit den jeweiligen charakteristischen Merkmalen in den Verteilungen auf. Der Übergang von der turbulent-aufgewühlten Strömung zur Ringsträhnenströmung erfolgt im Gegensatz zur Messreihe I bereits bei einer Gas-Leerohrgeschwindigkeit von $J_G = 0,835$ m/s (Bild 2-10).

Bild 2-10 a) Verteilung des Blasendurchmessers bei unterschiedlicher Flüssigleerrohrgeschwindigkeit J_L; Messpunkt 151 mit J_L = 1,017 m/s und Messpunkt 149 mit J_L = 0,405 m/s, bei L/D = 39,7 und D_{Öffnung} = 1 mm. Ansicht des Zentralschnitts und virtuelle Seitenansicht der Gasverteilung bei b) turbulent-aufgewühlter Strömung und bei c) Ringsträhnenströmung. Vertikaler zu horizontaler Maßstab = 1:1

Als Folge der im Vergleich zur Messreihe geringeren Flüssig-Leerohrgeschwindigkeit J₁ der Messreihe II kommt es eher zur Ausbildung größerer Gasstrukturen, die zur Bildung der Ringsträhnenströmung führen. Treten bei einer Gas-Leerohrgeschwindigkeit von $J_G = 0.835$ m/s in der Messreihe I Gasstrukturen mit einem D_{B.max} von < 400 mm auf, bilden sich bei der Messreihe II deutlich größere Strukturen mit einem D_{B,max} von bis zu ca. 800 mm aus (Bild 2-10 a). Der Vergleich der virtuellen Seitenansichten zeigt die unterschiedlichen Strömungsformen bei identischer Gas-Leerohrgeschwindigkeit J_G (Bild 2-10 b und c).

Bild 2-11 Blasendurchmesserverteilung im Bereich der Gaseinspeisung bei L/D = 1,1 und bei vollentwickelter Strömung (L/D = 39,9) am Beispiel des Messpunktes 105 der Messreihe II ($J_L = 0,405 \text{ m/s}$). Übergang von der Blasenströmung nach Gaseinspeisung zur turbulent-aufgewühlten Strömung; D_{öffnung} = 1 mm. Ansicht des Zentralschnitts und virtuelle Seitenansicht der Gasverteilung. Vertikaler zu horizontaler Maßstab = 1:1

Bei der Messreihe II kann für den Geschwindigkeitsbereich 0,0898 m/s $\leq J_L \leq$ 0,140 m/s ebenfalls die Änderung der Strömungsform beim Blasenaufstieg nachgewiesen werden. Am Beispiel des Messpunktes 105 wird der Übergang von der Blasen- hin zur turbulent-aufgewühlten Strömung beim Blasenaufstieg an Hand der Größenverteilung sowie des Zentralschnittes und der virtuellen Seitenansicht dargestellt (Bild 2-11). Bilden sich im Bereich der Gaseinspeisung zwei Blasenfraktionen mit einem mittleren Durchmesser von ca. 5 mm und 35 mm sowie einem D_{B,max} \approx 50 mm, entsteht durch Fragmentation und Koaleszenz entlang der Aufstiegshöhe eine Blasenfraktion mit einem mittleren Durchmesser von ca. 7 mm und einer breiten Verteilung der Blasengrößen bis D_B >140 mm.

Die Blasengrößenverteilungen für Messreihe III ($J_G = 0,219 \text{ m/s}$) bei einer relativen Testreckenhöhe von L/D = 39,7 und unterschiedlichen Flüssig-Leerrohrgeschwindigkeiten J_L , sind in Bild 2-12 dargestellt. Im Gegensatz zu den Messreihen I und II können keine Änderungen der charakteristischen Strömungsformen nachgewiesen werden.

Bild 2-12 Verteilung des Blasendurchmessers für unterschiedliche Flüssig-Leerrohrgeschwindigkeiten J_L (Messreihe III, $J_G = 0,219$ m/s, jeweils bei L/D = 39,7 und $D_{Offnung} = 1$ mm)

Es herrscht bei allen Messpunkten eine unterschiedlich stark entwickelte turbulentaufgewühlte Strömung, die neben der Blasengrößenverteilung durch den Zentralschnitt sowie der virtuellen Seitenansicht der Gasverteilung beschrieben wird (Bild 2-13).

An Hand der Blasengrößenverteilung ist ersichtlich, dass selbst am Messpunkt 119 mit der höchsten Flüssig-Leerrohrgeschwindigkeit J_L noch keine reine Blasenströmung mit einem $D_{B,max}$ < 50 mm vorherrscht. Bild 2-12 zeigt eine rechts-schiefe Häufigkeitsverteilung mit einem maximalen Blasendurchmesser von D_{B.max} ca. 100 mm. Größere Blasenstrukturen. bei geringerer wie sie Flüssia-Leerohrgeschwindigkeit entstehen (Messpunkt 111-115, 0,0405 m/s \leq J_L \leq 0,255 m/s), können jedoch sowohl in der Blasendurchmesserverteilung (Bild 2-12) als auch bei der Ansicht des Zentralschnittes und der virtuellen Seitenansicht der Gasverteilung beim Messpunkt 119 nicht nachgewiesen werden (Bild 2-13, J_L = 1,611 m/s).

Ein Übergang in Richtung einer Ringsträhnenströmung findet aufgrund der dafür zu geringen Gas-Leerohrgeschwindigkeit J_G bei keinem der Messpunkte statt.

0.0405 0.102 0.255 0.641 1.611

J_L [m/s]

b)

Bild 2-13 a) Ansicht des Zentralschnitts und b) virtuelle Seitenansicht der Gasverteilung bei Messreihe III ($J_G = 0,219 \text{ m/s}$, jeweils bei L/D = 39,7 und $D_{Offnung} = 1 \text{ mm}$). Vertikaler zu horizontaler Maßstab = 1:1

Modifikationen der Strömungsform entlang der Blasenaufstiegshöhe treten nur bei Messpunkten mit höherer Flüssig-Leerohrgeschwindigkeit $J_L > 0,405$ m/s (Messpunkt 117-119) auf. Diese Änderungen werden durch die Blasengrößenverteilung und die virtuellen Seitenansichten der Gasverteilung, wie es am Beispiel des Messpunktes 118 zum Bild 2-6 und Bild 2-7 diskutiert wurde, beschrieben.

Die Gas-Leerrohrgeschwindigkeit von $J_G = 0,0096$ m/s der Messreihe IV verursacht unabhängig von den Flüssig-Leerrohrgeschwindigkeiten (0,0405 m/s $\leq J_L \leq 1,611$ m/s) oder der Blasenaufstiegshöhe bei allen Messpunkten, eine Blasenströmung ohne Übergang zu einer turbulent-aufgewühlte Strömung (Bild 2-14).

Bild 2-14 Monomodale Verteilung des Blasendurchmessers für unterschiedliche Flüssig-Leerrohrgeschwindigkeiten J_L (Messreihe IV, $J_G = 0,0096$ m/s, jeweils bei L/D = 39,7)

2.1.6 Zusammenfassung der beobachteten Strömungsformen

An Hand der Ergebnisse lässt sich die Messmatrix in Regionen unterschiedlicher Strömungsformen einteilen (Tabelle 5). Während im linken Bereich der Matrix die Blasenströmung bei eher geringem J_G vorherrscht, tritt im mittleren und rechten Bereich verstärkt die turbulent-aufgewühlte und ausschließlich am rechten Rand der Matrix die Ringsträhnenströmung auf. Nur bei den Messpunkten 094-107 sowie 117-119 und beim Messpunkt 151 ändert sich die Strömungsform auch entlang der Blasenaufstiegshöhe. So ändert sich die Strömungsform bei den Messpunkten 094-107 sowie 117-119 von der Blasenströmung im Bereich von L/D = 1,1 zur turbulent-aufgewühlten Strömung bei L/D = 39,9.

Am Messpunkt 151 werden bei L/D = 1,1 Gasstrukturen mit einem kugeläquivalenten Durchmesser von $D_B > 500$ mm nachgewiesen. Diese entstehen jedoch nicht als Folge der Ausbildung einer Ringsträhnenströmung, sondern ausschließlich als Resultat der Randeinspeisung des Gases. Im Rohrzentrum bilden sich bei L/D= 1,1 keine für die Ringsträhnenströmung typischen Gasstrukturen.

-																						
		0.0025	0.0040	0.0062	0.0096	0.0151	0.0235	0.0368	0.0574	0.0898	0.140	0.219	0.342	0.534	0.835	1.305	2.038	3.185	4.975	7.772	12.14	18.97
inconi descriminangren der nurse	4.047	011	022	033	044	055	066	077	088	099	110	121	132	143	154	165	176	187	198	209	220	231
	2.554	010	021	032	043	054	065	076	087	098	109	120	131	142	153	164	175	186	197	208	219	230
	1.611	009	020	031	042	053	064	075	086	097	108	<mark>119</mark>	130	141	152	163	174	185	196	207	218	229
	1.017	008	019	030	041	052	063	074	085	<mark>096</mark>	<mark>107</mark>	<mark>118</mark>	129	140	151	162	173	184	195	206	217	228
	0.641	007	018	029	040	051	062	073	084	095	106	<mark>117</mark>	128	139	150	161	172	183	194	205	216	227
	0.405	006	017	028	039	050	061	072	083	<mark>094</mark>	<mark>105</mark>	116	127	138	149	1 60	171	182	193	204	215	226
	0.255	005	016	027	038	049	060	071	082	093	104	115	126	137	148	159	170	181	192	203	214	225
	0.161	004	015	026	037	048	059	070	081	092	103	114	125	136	147	158	169	180	191	202	213	224
	0.102	003	014	025	036	047	058	069	080	091	102	113	124	135	146	157	168	179	190	201	212	223
	0.0641	002	013	024	035	046	057	068	079	090	101	112	123	134	145	156	167	178	189	200	211	222
Ľ	0.0405	001	012	023	034	045	056	067	078	089	100	111	122	133	144	155	166	177	188	199	210	221

Tabelle 5 Messmatrix, farblich unterteilt in Regionen der vorherrschenden Strömungsformen. Farblich unterlegte Messpunkte: Änderung der Strömungsform entlang des Blasenaufstieges.

Leerohrgeschwindigkeit der Gasphase J_G [m/s]

Blasenströmung

Turbulent-aufgewühlte Strömung

Ringsträhnenströmung

-

2.2 Plausibilität der integralen Gasgehaltswerte

2.2.1 Driftgeschwindigkeit zur Validierung experimenteller Ergebnisse

Mit Hilfe der beiden übereinander positionierten Gittersensoren wird die Gasgeschwindigkeit durch Berechnung der Kreuzkorrelationsfunktionen aus den Zeitverläufen der lokalen momentanen Gasgehaltsanteile an gleichen Gitterpunkten der Messebene beider Sensoren bestimmt (Kapitel 1.5.3). Die so ermittelten radialen Profile der Gasgeschwindigkeit sind lokale Mittelwerte für die Geschwindigkeit aller Blasen. Zusätzlich zur Abhängigkeit der Geschwindigkeit der Blasen von der radialen Position ist aber auch eine Abhängigkeit von der Blasengröße zu erwarten. Diese könnte bei einer Auswertung zwar prinzipiell berücksichtigt werden, allerdings wäre dann die statistische Unsicherheit zu groß. Für eine zuverlässige Ermittlung von Gasgeschwindigkeiten in Abhängigkeit vom Radius und von der Blasengröße wären deutlich höhere Messzeiten erforderlich.

Die im Kapitel 1.7 diskutierten Abweichungen der aus den Messungen abgeleiteten Gasvolumenstromdichten von den entsprechenden Vorgabewerten resultieren sowohl aus Fehlern der gemessenen Gasgehalte als auch der Geschwindigkeiten. Da davon ausgegangen werden kann, dass die größeren Fehler bei der Geschwindigkeitsmessung liegen, werden im Folgenden theoretisch zu erwartende Gasgehalte auf Basis von in der Literatur verfügbaren Korrelationen zur Driftgeschwindigkeit ermittelt und mit den Messwerten verglichen.

Aus der Definition der Driftgeschwindigkeit

$$U_{\rm D} = U_{\rm G} - J = J_{\rm G} / \varepsilon - (J_{\rm G} + J_{\rm L})$$
(2.39)

mit den Volumenstromdichten (= Leerrohrgeschwindigkeiten) J folgt für den Gasgehalt unmittelbar:

$$\varepsilon = \frac{J_G}{J_G + J_L + U_D}$$
(2.40)

Für die Plausibilitätsüberprüfung werden drei verschiedene Annahmen für die Driftgeschwindigkeit herangezogen:

- a) ein konstanter Wert $U_D = 0,235$ m/s, der für Einzelblasen mit einem Äquivalenzdurchmesser von ca. 6,5 mm gilt, aber typisch für Blasen in einem Größenbereich von ca. 4 mm bis 10 mm ist,
- b) ein "experimenteller" Wert, der nach Gleichung (2.39) aus den Messwerten für den jeweils (1 mm und 4 mm Bohrungen) größten Abstand zwischen Gaseinspeisung und Messebene berechnet wird, und
- c) ein "gewichteter" Wert, der sowohl die gemessenen radialen Gasgehaltsprofile als auch die Blasengrößenverteilungen berücksichtigt (s. Kapitel 2.2.2).

Die so berechneten Gasgehaltswerte werden zusammen mit den gemessenen Werten in Abhängigkeit des Abstandes zwischen Gaseinspeisung und der Messebene im Anhang I ab Seite 101 dargestellt.

Eine Abhängigkeit des Gasgehalts von L/D tritt einerseits auf Grund des veränderlichen Drucks und andererseits auf Grund einer Veränderung der Driftgeschwindigkeit auf. Für die Vergleiche a) und b) wird nur der erste Effekt berücksichtigt. Dafür wird die Druckabhängigkeit der Gasvolumenstromdichte berücksichtigt:

$$J_{G}(p) = J_{G,Soll} \frac{p_{Soll}}{p}, \qquad (2.41)$$

wobei p der gemessene Druck in Sensornähe (an der Druckmessstelle PI4-07.1), p_{Soll} der Druck an der Einspeisung (0,25 MPa) und $J_{G,Soll}$ der jeweilige Volumenstrom entsprechend der Messmatrix, Kapitel 1.3, ist.

Daraus resultiert eine annähernd lineare Zunahme des Gasgehalts über die Rohrhöhe. Der Gradient ist dabei für große L/D bei beiden Methoden meist in guter Übereinstimmung mit den experimentellen Werten. Im Fall a) zeigt sich jedoch eine Verschiebung zwischen experimentellen und berechneten Kurven. Diese wird durch den Bezug auf den experimentellen Wert für das maximale L/D-Verhältnis (Annahme b) vermieden. Dennoch gibt es deutliche Abweichungen im Bereich kleiner L/D, die auf Einlaufeffekte, d.h. auf die begrenzte Gültigkeit der Annahme des konstanten Wertes für die Driftgeschwindigkeit, zurückzuführen sind. Um diese genauer zu untersuchen, wurden die "gewichteten Driftgeschwindigkeiten" entsprechend Annahme c) genutzt. Deren Berechnung ist im folgenden Kapitel genauer beschrieben.

2.2.2 Berechnung der gewichteten Driftgeschwindigkeiten

Das Drift-Flux-Modell beruht auf der Annahme, dass die querschnittsgemittelte (eindimensionale) Driftgeschwindigkeit durch zwei wesentliche Effekte verursacht wird:

- Unterschiede im radialen Gasgehalts- und Gasgeschwindigkeitsprofil beeinflussen die mittlere Gasgeschwindigkeit. Dieser Effekt wird durch einen s. g. Profilfaktor C₀ berücksichtigt.
- Geschwindigkeitsunterschiede zwischen den Phasen an einem festen Punkt der Strömung, die im Wesentlichen von den Blasengrößen und der Blasendichte (Schwarmeffekt) abhängen. Das wird durch die lokale Driftgeschwindigkeit U_{GL} berücksichtigt.

Die querschnittsgemittelte Driftgeschwindigkeit wird dementsprechend nach:

$$\mathbf{U}_{\mathsf{D}} = \mathbf{U}_{\mathsf{G}} - \mathbf{J} = (\mathbf{C}_{0} - 1)\mathbf{J} + \overline{\mathbf{U}}_{\mathsf{GI}}$$
(2.42)

berechnet.

Zur Bestimmung der Parameter C_0 und U_{GL} wird zunächst die querschnittsgemittelte Gasgeschwindigkeit betrachtet. Diese ergibt sich entsprechend

$$\overline{U}_{G} = \frac{2}{\langle \epsilon \rangle \cdot R^{2}} \int_{0}^{R} u_{G}(r) \cdot \epsilon(r) r dr$$
(2.43)

mit dem über den Rohrquerschnitt gemittelten Gasanteil

$$\langle \epsilon \rangle = \frac{2}{R^2} \int_{0}^{R} \epsilon(\mathbf{r}) \cdot \mathbf{r} \, d\mathbf{r}$$
 (2.44)

Die lokale Gasgeschwindigkeit $u_G(r)$ hängt nun wiederum von den dort vorliegenden Blasengrößen und dem Schwarmeinfluss ab. Betrachtet man diskrete Blasengrößenverteilungen durch Einführung von Blasengrößenklassen i, folgt damit die Geschwindigkeit:

$$\overline{U}_{G} = \frac{2}{\langle \epsilon \rangle \cdot R^{2}} \int_{0}^{R} \sum_{i} (u_{G,i}(r) \cdot \epsilon_{i}(r)) r dr$$
(2.45)

Die orts- und blasengrößenabhängige Gasgeschwindigkeit $u_{G,i}(r)$ könnte prinzipiell aus den experimentellen Daten ermittelt werden, jedoch ist dafür die Statistik nicht ausreichend. Daher wird die Geschwindigkeit zunächst unter Berücksichtigung der lokalen Driftgeschwindigkeit der Blasenklasse i und der lokalen Volumenstromdichte j durch:

$$u_{G,i}(r) = j(r) + u_{D,i}^{lokal}$$
 (2.46)

beschrieben. Aus Gleichung (2.45) und (2.46) folgt:

$$\overline{U}_{G} = \frac{2}{\langle \epsilon \rangle R^{2}} \int_{0}^{R} j(r) \cdot \epsilon(r) r dr + \frac{2}{\langle \epsilon \rangle R^{2}} \int_{0}^{R} \sum_{i} (u_{D,i}^{\text{lokal}} \cdot \epsilon_{i}(r)) r dr$$

Durch Einführung der Parameter C_0 und U_{GL} entsprechend Gleichung (2.42) ergibt sich:

$$\overline{U}_{G} = C_{0} J + \overline{U}_{GI}$$
(2.47)

mit

$$C_{0} = \frac{2}{\langle \epsilon \rangle R^{2} \langle j \rangle} \int_{0}^{R} j(r) \cdot \epsilon(r) r dr$$
(2.48)

und

$$\overline{U}_{GI} = \frac{2}{\langle \epsilon \rangle R^2} \int_{0}^{R} \sum_{i} (u_{D,i}^{\text{lokal}} \cdot \epsilon_i(r)) r dr$$
(2.49)

Für die Berechnung der Parameter C₀ und \overline{U}_{GI} sind bei Kenntnis der experimentellen Werte des Gasanteils $\varepsilon(r)$, die Leerohrgeschwindigkeit des Zweiphasengemisches j (r) und die lokale Driftgeschwindigkeit der Blasenklasse i $u_{D,i}^{lokal}$ zu ermitteln.

> Berechnung der lokalen Driftgeschwindigkeit der Blasenklasse i $u_{D,i}^{lokal}$

Die lokale Driftgeschwindigkeit der Blasenklasse i kann näherungsweise aus der Aufstiegsgeschwindigkeit der Einzelblase, ihrer entsprechenden Größe und einem Schwarmfaktor,

$$f_{Schwarm}(r) = (1 - \varepsilon(r))^{0.25}$$
, (2.50)

berechnet werden:

$$\mathbf{u}_{\text{D,i}}^{\text{lokal}} = (1 - \varepsilon(\mathbf{r}))\mathbf{u}_{\text{ter min al, i}} \cdot \mathbf{f}_{\text{Schwarm}}(\mathbf{r}).$$
(2.51)

Die Aufstiegsgeschwindigkeit der Einzelblase ergibt sich aus dem Widerstandsbeiwert C_D nach:

$$u_{\text{terminal,i}} = \sqrt{\frac{4}{3} \cdot \frac{D_{\text{B}} \cdot g}{C_{\text{D}}}} .$$
(2.52)

Der Widerstandsbeiwert C_D , der für Einzelblasen größer als 2,6 mm ist, lässt sich mit Hilfe der Eötvös-Zahl:

$$Eo = \frac{g(\rho_f - \rho_B)D_B^2}{\sigma}$$
(2.53)

unter Verwendung der Korrelation (u.a. Sokolichin, 2004):

$$C_{D} = \frac{0,622}{\frac{1}{Eo} + 0,235}$$
 berechnen. (2.54)

Berechnung der lokalen Volumenstromdichte j (r)

Die lokale Volumenstromdichte ergibt sich entsprechend:

$$\mathbf{j}(\mathbf{r}) = \mathbf{j}_{\mathrm{L}}(\mathbf{r}) + \mathbf{j}_{\mathrm{G}}(\mathbf{r}) = \mathbf{u}_{\mathrm{L}}(\mathbf{r})(1 - \varepsilon(\mathbf{r})) + \mathbf{u}_{\mathrm{G}}(\mathbf{r})\varepsilon(\mathbf{r}).$$
(2.55)

Der Wert für die Liquidgeschwindigkeit $u_L(r)$ ist unbekannt. Daher wird er aus dem gemessenen radialen Profil der Gasgeschwindigkeit berechnet. Die dafür benötigte Relativgeschwindigkeit in Abhängigkeit vom Rohrradius ergibt sich entsprechend:

$$u_{rel}(r) = \frac{f_{Schwarm}(r)}{\epsilon(r)} \sum_{i} (\epsilon_{i}(r) \cdot u_{terminal,i}(r))$$
(2.56)

Da diese Berechnungsmethode nur eine Näherung darstellt, wird zur Gewährleistung der Massenerhaltung noch ein Korrekturfaktor K eingeführt. Das radiale Profil der Flüssigkeitsgeschwindigkeit wird dann nach:

$$u_{L}(r) = (u_{G}(r) - u_{rel}(r)) \cdot K$$
 (2.57)

berechnet. Mit der über den Rohrquerschnitt integrierten Leerrohrgeschwindigkeit des Wassers:

$$J_{L} = \frac{2}{R^{2}} \int_{0}^{R} u_{L}(r) \cdot (1 - \varepsilon(r)) r dr = \frac{2}{R^{2}} \int_{0}^{R} (u_{G}(r) - u_{rel}(r)) \cdot K(1 - \varepsilon(r)) r dr$$
(2.58)

ergibt sich für den Korrekturfaktor:

$$K = \frac{J_{L}R^{2}}{2\int_{0}^{R} (u_{G}(r) - u_{rel}(r))(1 - \varepsilon(r))r dr}$$
(2.59)

Mit den Gleichungen (2.42) bis (2.59) kann nun die Berechnung der gewichteten Driftgeschwindigkeit für alle Messungen, bei denen die Messwerte der Gasgeschwindigkeit für alle radialen Positionen vorliegen, erfolgen.

Für alle Messpunkte, bei denen die Gasgeschwindigkeit im Zentrum des Rohres auf Grund fehlender Blasen nicht bestimmt werden konnte, wurde für die Berechnung der Gleichung (2.59) ein konstanter Wert der Gasgeschwindigkeit für die fehlenden radialen Positionen angenommen. Dieser Wert wird aus den Gasgeschwindigkeiten gebildet, die an den radialen Position r_i , r_{i-1} und r_{i+1} gemessen wurden. Hierbei ist r_i der Radius, bei dem noch 1 % des maximalen radialen Gasgehalts $\epsilon(r)$ nachzuweisen ist.

Es ist zu beachten, dass die verwendeten gemessenen Gasgehaltsprofile und Blasengrößenverteilungen als normierte Verteilungen verwendet werden, d.h. die gemessenen Absolutwerte haben kaum Einfluss auf die Ergebnisse.

2.2.3 Interpretation der Entwicklung des Gasgehalts mit zunehmendem L/D

Neben der bereits erwähnten Zunahme des Gasgehalts mit wachsendem L/D auf Grund des sinkenden Druckes ist für viele Messpunkte ein Abknicken der Kurven für kleine L/D nach oben (Bild 2-15 a) oder nach unten (Bild 2-15 b) zu beobachten.

Bei kleinen mittleren Gasgehalten (d. h. Matrixpunkten mit kleinen Gas- und großen Flüssigkeits-Leerrohrgeschwindigkeiten) ist vom sonst annähernd linearen Verlauf des Gasgehalts, eine Erhöhung des Gasgehaltes bei kleinen L/D zu beobachten. Diese resultiert aus der Randeinspeisung der Blasen. Bei geringem Gasgehalt wird das Profil der Flüssigkeitsgeschwindigkeit nur wenig beeinflusst, d. h. im
Wandbereich ist die Flüssigkeitsgeschwindigkeit weit geringer als im Zentrum. Mit Annahme einer nur von der Blasengröße abhängigen Relativgeschwindigkeit sind folglich auch die Gasgeschwindigkeit und die querschnittsgemittelte Driftgeschwindigkeit klein. Das führt zu einer Erhöhung des Gasgehalts.

Bei großen Gasgehalten (d. h. Matrixpunkten mit großen Gas- und kleinen Flüssigkeits-Leerrohrgeschwindigkeiten) gibt es hingegen einen erheblichen Einfluss des eingespeisten Gases auf das Profil der Flüssigkeitsgeschwindigkeit. Die Flüssigkeitsgeschwindigkeit am Rand wird erhöht und die Gasgeschwindigkeiten haben ein Maximum am Rand, welches sich mit wachsenden L/D abflacht. Das ist in den entsprechenden Messwerten für die Gasgeschwindigkeit deutlich zu erkennen. Daher ist die querschnittsgemittelte Driftgeschwindigkeit nahe der Einspeisung groß und der Gasgehalt klein.

Diese Effekte werden durch die Berechnung der gewichteten Driftgeschwindigkeiten, die die o.g. Effekte berücksichtigen, qualitativ richtig wiedergegeben. Da in die Berechnung Messwerte eingehen, gibt es auch eine Abhängigkeit von ihnen. Da die Messwerte im Wesentlichen aber nur für die Wichtung genutzt werden, ist dieser Vergleich trotzdem sinnvoll. Die Entwicklung der mittleren Gasgehalte über die Rohrhöhe kann mit den o.g. Effekten erklärt werden. Allerdings zeigt der Vergleich auch, dass im Bereich der Blasenströmungen offenbar eine systematische Überschätzung des gemessenen Gasgehalts vorliegt.

Eine Berechnung der gewichteten Driftgeschwindigkeiten nach dem oben dargestellten Formalismus erfolgte für alle Messpunkte, obwohl er eigentlich nur für Blasenströmungen gültig ist. Für die Messungen, bei denen eine turbulentaufgewühlte oder eine Ringsträhnenströmung vorlagen, hat der Vergleich daher nur eingeschränkte Gültigkeit.

b)

Bild 2-15 Verlauf des gemessenen und des berechneten Gasgehaltes (unterschiedliche Driftgeschwindigkeiten wie Kapitel in 2.2.1 beschrieben) in Abhängigkeit von L/D. Beispiel für das Abknicken der Kurve im Bereich kleiner L/D a) nach oben beim Messpunkt 074 mit D_{Öffnung} = 1 mm und b) nach unten beim Messpunkt 118 mit D_{Öffnung} = 1 mm

2.3 Verteilung des Blasendurchmessers

2.3.1 Öffnungsdurchmesser der Gaseinspeisung

Das Begasungssystem der vertikalen Teststrecke ermöglicht eine Gaseinspeisung über Bohrungen mit einem Durchmesser von $D_{Offnung} = 1$ und 4 mm, um die Blasengrößenverteilung an der Einspeisung zu variieren. Des Weiteren sind die 4 mm großen Öffnungen der Begasungseinrichtung erforderlich, damit bei einer Gas-Leerohrgeschwindigkeit von $J_G \ge 2,038$ m/s der notwendige hohe Volumenstrom an Luft realisiert werden kann (Kapitel 1.3). Um die Reichweite des Einflusses des Öffnungsdurchmessers auf die sich bildende Blasendurchmesserverteilung bei maximalen Verhältnis von L/D beurteilen zu können, werden im Folgenden die dafür notwendigen experimentellen Ergebnisse vorgestellt.

unterschiedliche Im Bild 2-16 sind die Blasengrößenverteilungen für Bohrungsdurchmesser der Teststreckenhöhe R (L/D = 39.9 und $D_{Offnung} = 1$ mm) und Q (L/D = 39,7 und $D_{Offnung} = 4$ mm) für Messpunkte der Messreihe I dargestellt. Während sich signifikante Abweichungen zwischen den Verteilungen bei geringen Gas-Leerrohrgeschwindigkeiten (J_G bis maximal 0,015 m/s) zeigen, verschwinden diese ab einem Wert von $J_G = 0,14$ m/s (Messpunkt 107) vollständig. Für vorangegangene vergleichbare Experimente ($D_{Offnung} = 0.8$ und 6 mm, $J_L = 1.02$ m/s, L/D = 39,2) wurde ein Grenzwert von J_G > 0,2 m/s angegeben, ab dem bei maximaler Teststreckenlänge keine signifikante Änderung der Blasengrößenverteilung für die verschiedenen Einspeisedurchmesser zu beobachten ist (Prasser 2002).

Im Gegensatz zur Messreihe I treten bei der Messreihe II Differenzen in den Verteilungen nur bis zu einer Gas-Leerrohrgeschwindigkeit von $J_G = 0,0151$ m/s auf und verschwinden fast vollständig ab einer Geschwindigkeit von $J_G \ge 0,0368$ m/s (Bild 2-17). Steigt die Gas-Leerrohrgeschwindigkeit weiter an, kann somit von einer Gleichverteilung der Blasengröße bei unterschiedlichen Öffnungsdurchmessern (D_{Öffnung} = 1 mm und 4 mm bei maximalem L/D) ausgegangen werden.

Bild 2-16 Blasengrößenverteilungen bei unterschiedlichen Öffnungsdurchmessern der Begasungseinrichtung (Teststreckenhöhe R bei L/D = 39,9 mit $D_{Offnung} = 1 \text{ mm}$ und Q bei L/D = 39,7 mit $D_{Offnung} = 4 \text{ mm}$) sowie für verschiedene Gas-Leerrohrgeschwindigkeiten J_G von 0,0025 m/s für Messpunkt 008 bis J_G = 0,14 m/s für Messpunkt 107 (Messreihe I)

Bild 2-17 Blasengrößenverteilungen bei unterschiedlichen Öffnungsdurchmessern der Begasungseinrichtung (Testreckenhöhe R bei L/D = 39,9 mit $D_{Offnung} = 1$ mm und Q bei L/D = 39,7 mit $D_{Offnung} = 4$ mm), sowie für verschiedene Gas-Leerrohrgeschwindigkeiten J_G von 0,0025 m/s für Messpunkt 006 bis J_G = 0,0368 m/s für Messpunkt 072 (Messreihe II)

2.3.2 Mittelwerte der Blasengrößenverteilung

Zur Charakterisierung der Blasengrößenverteilung ist die Einführung von Mittelwerten sinnvoll, um vergleichende Aussagen zur Änderung der Blasengröße bei Variation der Betriebsbedingungen oder beim Blasenaufstieg treffen zu können. Im Gegensatz zum einfachen arithmetischen Mittelwert reagiert der Medianwert einer Verteilung gegenüber Ausreißern wesentlich robuster und soll im Folgenden neben dem Modalwert im Wesentlichen für die Beschreibung der mittleren Blasengrößen verwendet werden.

Aus den Blasengrößenverteilungen der Messreihen I-IV, wie sie im Kapitel 2.1 vorgestellt sind, lassen sich charakteristische Mittelwerte bestimmen (Stieß 1994):

 \Rightarrow Der *Medianwert D*₅₀ ist diejenige Blasengröße, unterhalb derer 50 % aller Blasengrößen liegen.

 \Rightarrow Der *Modalwert D_M* liegt beim Maximum der Größenverteilung.

Treten bei der Zweiphasenströmung breite Verteilungen mit einem $D_{B,max} > 50$ mm auf, so werden im Folgenden zwei Medianwerte für einen definierten Blasengrößenbereich angegeben:

- \blacktriangleright 2,5 mm < D_B ≤ 50 mm = D_{50,1}
- \succ 50 mm < D_B ≤ 500 mm = D_{50,2}

Die Medianwerte $D_{50,1}$ und $D_{50,2}$ werden aus der Verteilungsfunktion (Verteilungssumme):

$$Q(D_{B}) = \int_{D_{B,min}}^{D_{B}} q(D_{B}) dD_{B} \text{ mit } Q(D_{B,max}) = 1$$
(2.60)

berechnet. Beispielgebend sind im Bild 2-18 die Verteilungsfunktionen Q der Messreihe III und die Ermittlung der Medianwerte dargestellt. Blasengrößen oberhalb von D_B= 500 mm fließen bei allen Messreihen generell nicht in die Berechnung des Medianwertes D_{50,2} ein, da für diesen Größenbereich keine statistisch gesicherte Verteilung vorliegt.

Bild 2-18 Aus der Verteilungsfunktion (Verteilungssumme) wird der Medianwert D_{50,1} bei Q = 0,5 (\pm 0,02) für unterschiedliche Flüssig-Leerrohrgeschwindigkeiten J_L der Messreihe III mit J_G = 0,219 m/s und D_{Öffnung} = 1 mm bei maximalem L/D bestimmt. Der resultierende Medianwert D_{50,1} liegt zwischen 8,0 mm für Messpunkt 119 und 13 mm für Messpunkt 111

Der Modalwert D_M als Maximum der Blasengrößenverteilung wird für alle Messpunkte ausschließlich für den Größenbereich 2,5 mm < D_B < 50 mm angegeben. Im Bereich D_B > 50 mm ist die Streuung der Maximalwerte der Verteilung auf Grund der geringen Anzahldichte zu hoch, um eine statistisch signifikante Beschreibung durch den Modalwert zu ermöglichen.

Bild 2-19 Änderung des Medianwertes D_{50,1} in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G der Messreihe II bei maximalem Verhältnis L/D und unterschiedlichen Durchmessern der Bohrungen für die Gaseinspeisung

Für Messreihe II ist im Bild 2-19 die Änderung des Medianwertes D_{50,1} in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G aufgetragen. Mit Anstieg von J_G wird als Folge der zunehmenden Koaleszenz der Blasen, eine Vergrößerung des D_{50,1} > 12 mm für beide Bohrungsdurchmesser Medianwertes auf der Gaseineinspeisung nachgewiesen. Während sich der Medianwert im Bereich kleinerer Gas-Leerrohrgeschwindigkeiten ($J_G < 0.8$ m/s) sprunghaft ändert, bleibt er ab einem Wert von J_G≈1 m/s nahezu konstant, da eine weitere Erhöhung der Gas-Leerrohrgeschwindigkeit zur vermehrten Bildung größerer Gasstrukturen im Bereich der Ringsträhnenströmung führt, die nicht durch den Medianwert D_{50,1} erfasst werden. Zur detaillierten Beschreibung der Abhängigkeit des Medianwertes von JG im Bereich kleinerer Gas-Leerohrgeschwindigkeiten ist im Bild 2-20 die logarithmische Darstellung gewählt. In Übereinklang mit den vergleichenden Ergebnissen zur Blasengrößenverteilung bei unterschiedlichem Öffnungsdurchmesser Döffnung im Kapitel 2.3.1 zeigt sich nur im Bereich bis $J_G \le 0.015$ m/s ein signifikanter Unterschied in der Größe des jeweiligen Medianwertes D_{50.1}. Aus den Diagrammen im Bild 2-19 und Bild 2-20 sowie in Anlehnung an die im Kapitel 2.1.2 beschriebenen

Bild 2-20 Änderung des Medianwertes $D_{50,1}$ in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G der Messreihe II ($J_L = 0,405$ m/s) bei maximalem Verhältnis L/D

Kriterien zu den charakteristischen Strömungsformen können die Medianwerte wie folgt zugeordnet werden:

- I) Blasenströmung: ca. $D_{50,1} = 5 - 8 \text{ mm} (D_{Offnung} = 1 \text{ mm})$ ca. $D_{50,1} = 7 - 8 \text{ mm} (D_{Offnung} = 4 \text{ mm})$
- II) Turbulent-aufgewühlte Strömung: ca. 8 mm < D_{50,1} < 12 mm
- III)Ringsträhnenströmung: ca. $D_{50.1} \ge 12 \text{ mm}$

Bei der Messreihe I zeigt die Abhängigkeit des Medianwertes $D_{50,1}$ von der Gas-Leerrohrgeschwindigkeit J_G einen ähnlichen Verlauf wie bei der Messreihe II (Bild 2-21). Als Folge der höheren Flüssig-Leerrohrgeschwindigkeit und der damit verbundenen Abnahme der Koaleszenz mit gleichzeitiger Zunahme der Fraugmentation ($\epsilon_{II} > \epsilon_{I}$) ist er ab ca. $J_G \ge 0,1$ m/s in etwa 1,2 mm kleiner als der vergleichbare Medianwert bei Messreihe II (Döffnung = 4 mm).

Bild 2-21 Vergleich der Medianwerte $D_{50,1}$ in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G für Messreihe I und II bei maximalem Verhältnis L/D und $D_{Offnung} = 4$ mm

Bild 2-22 Vergleich der Medianwerte $D_{50,1}$ der Messreihe III ($J_G = 0,219$ m/s) in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L für unterschiedliche Öffnungsdurchmesser der Begasungseinrichtung $D_{Offnung}$ bei maximalem L/D.

Bild 2-23 Vergleich der Medianwerte D_{50,1} in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L für die Messreihe III und IV bei maximalem Verhältnis L/D und D_{Öffnung} = 4 mm

Der Einfluss der fluiden Phase auf die Blasengrößenverteilung und des daraus resultierenden Medianwertes $D_{50,1}$ lässt sich auch an Hand der Medianwerte der Messreihe III (Variation von J_L bei konstantem J_G) beschreiben. Mit Zunahme der Flüssig-Leerrohgeschwindigkeit J_L wird die Reduktion des Medianwertes $D_{50,1}$ beobachtet (Bild 2-22). Dabei sinkt als Folge der Verringerung der Koaleszenz sowie des gleichzeitigen Anstieges der Fragmentation $(\epsilon_{111} > \epsilon_{119})$ bei steigender Flüssig-Leerrohrgeschwindigkeiten J_L der Medianwert von ca. $D_{50,1} = 12$ mm auf ca. $D_{50,1} = 8$ mm ($D_{Offnung} = 4$ mm). Der Einfluss des Öffnungsdurchmessers der Begasungseinrichtung auf den sich bildenden Medianwert bei maximalem L/D begrenzt sich geringfügig auf eine Flüssig-Leerrohrgeschwindigkeit bis maximal $J_L < 0,1$ m/s. Die Messreihe IV zeigt einen tendenziell ähnlichen Verlauf ($\epsilon_{036} > \epsilon_{042}$), jedoch erwartungsgemäß im Bereich kleinerer Medianwert von ca. 6 mm $\leq D_{50,1} \leq 7,3$ mm (Bild 2-23).

Während bei der Messreihe I & II die turbulent-aufgewühlte Strömung maximale Medianwerte von ca. $D_{50,1} = 10 - 12$ mm zur Folge hat, bilden sich bei der turbulent-aufgewühlten Strömung der Messreihe III Medianwerte von bis zu $D_{50,1} = 13$ mm aus. Auf Grund der vergleichsweise geringeren Flüssigleerrohrgeschwindigkeit und der damit verbundenen abnehmenden turbulenten Dispersion, werden die Fragmentationen der Blasen weniger und der Medianwert $D_{50,1}$ steigt an. Der Übergang zur Ringsträhnenströmung wird jedoch nicht erreicht, da dafür die Gas-Leerrohrgeschwindigkeit von $J_G = 0,219$ m/s zu klein ist.

Die Blasenströmung verursacht bei den Messreihen I & II Blasen mit Medianwerten $D_{50,1}$ von maximal ca. 8 mm. In Übereinstimmung zu diesem Grenzwert stehen die

Ergebnisse der Messreihe IV, wo ein maximaler Medianwert bei $J_L = 0,0405$ m/s von $D_{50,1} = 7,2$ mm nachgewiesen werden kann (Bild 2-23).

Bild 2-24 Verlauf des Medianwertes $D_{50,1}$ des Messpunktes 050 (J_L = 0,405 m/s, J_G = 0,0151 m/s) entlang der Aufstiegshöhe bei $D_{Offnung}$ = 4 mm

Im Bild 2-24 ist die Abhängigkeit des Medianwertes D_{50.1} an Hand des Messpunktes 050 dargestellt. Es zeigt die stetige Abnahme von D_{50,1} bei zunehmender Aufstiegshöhe der Blasen als Folge der Turbulenz und der dadurch verursachten Fragmentation. Ab ca. $L/D \ge 25$ kann keine signifikante Änderung des Medianwertes mehr nachgewiesen werden. Die Abhängigkeit des Medianwertes von der Aufstiegshöhe ist nur für einzelne Messpunkte der Messreihen anzuwenden. Ist die Gas-Leerrohrgeschwindigkeit $J_{G} < 0.0151$ m/s. wird die Änderuna der Blasengrößenverteilung zu klein, um diese statistisch sicher zu erfassen. Steigt J_G über 0,0368m/s an, bilden sich im Bereich bis ca. $L/D \le 3,1$ bimodale Geschwindigkeitsverteilungen aus, die durch den Medianwert D_{50.1} statistisch unzureichend genau beschrieben werden.

Auswertung der Blasengrößenverteilung mit einem kugeläquivalenten Die Durchmesser von $D_B > 50$ mm weist bei allen Messreihen eine Vergrößerung des Medianwertes $D_{50,2}$ mit steigender Gasbzw. abnehmender Flüssia-Leerrohrgeschwindigkeit auf. Bei der Messreihe IV entfällt die Auswertung des Medianwertes D_{50.2}, da keinerlei Gasstrukturen oberhalb eines Blasendurchmessers von $D_{50,1}$ > 20 mm (Bild 2-14) als Folge der geringen Koaleszenz bei relativ kleiner Gas-Leerrohrgeschwindigkeit ($J_G = 0,0096$ m/s) nachzuweisen sind. In Bild 2-25 ist die Änderung des Medianwertes D_{50,2} in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L für die Messreihe III in logarithmischer Darstellung abgebildet. Während sich bei $J_{L} < 0.0405$ m/s große Gasstrukturen mit einem kugeläquivalenten Durchmesser von bis zu ca. D_{50.2} = 200 mm ausbilden, verringert sich die Größe dieser Blasen auf ca. $D_{50,2} = 80$ mm bei der Steigerung der Fluidgeschwindigkeit auf $J_{L} > 1.611$ m/s als Folge der zunehmenden Blasenfragmentation (siehe auch Bild 2-12 und Bild 2-13).

Bild 2-25 Änderung des Medianwertes $D_{50,2}$ in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L der Messreihe III bei maximalem Verhältnis L/D und einem $D_{Offnung} = 1 \text{ mm}$

Aus dem Vergleich der Medianwerte $D_{50,2}$ für den Blasengrößenbereich 50 mm < D_B < 500 mm der Messreihen I und II lassen sich nach Bild 2-26 zwei wesentliche Effekte ableiten:

- Im Gegensatz zur Änderung des Medianwertes D_{50,1} (Bild 2-21) folgt mit zunehmender Gas-Leerohrgeschwindigkeit J_G ein nahezu linearer Anstieg von D_{50,2}.
- Die Medianwerte der Messreihe I sind als Folge der geringeren Koaleszenz und der höheren Fragmentation der Blasen generell kleiner als die der Messreihe II. Die Ursache dafür liegt in der größeren Flüssig-Leerrohrgeschwindigkeit J_{L,1} > J_{L,II} (ε_{II} > ε₁).

Signifikante Unterschiede zum Verlauf des Medianwertes $D_{50,2}$ bei einem Öffnungsdurchmesser der Begasungseinrichtung von $D_{Offnung} = 4$ mm treten erwartungsgemäß nicht auf.

Der Verlauf des Modalwertes D_M in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G ähnelt tendenziell bei allen Messreihen denen des Medianwertes $D_{50,1}$. Beispielgebend ist im Bild 2-27 die Änderung des Modalwertes D_M und des Medianwertes $D_{50,1}$ der Messreihe II in Abhängigkeit von J_G aufgetragen. Während sich die Modal- und Medianwerte bis zu einer Gas-Leerohrgeschwindigkeit J_G von ca. 0,05 m/s nur unwesentlich voneinander unterscheiden, treten mit zunehmender Geschwindigkeit J_G Differenzen zwischen den Mittelwerten von bis zu 2,5 cm auf. Die Ursache für diese Differenz liegt in der Form der Häufigkeitsverteilung. Ab ca. $J_G > 0,1$ m/s treten vermehrt Blasen mit einem Durchmesser größer als dem des Modalwertes auf, was zu einer asymmetrischen Blasengrößenverteilung führt. Die resultierende rechts-schiefe Häufigkeitsverteilung, wie sie beispielsweise für den Messpunkt 116 im Bild 2-28 dargestellt ist, verursacht den im Vergleich zum Medianwert D_{50,1} resultierenden kleineren Modalwert D_M.

Für alle vier Messreihen ist die Abhängigkeit des Median- und Modalwertes der Blasengrößenverteilung, bei maximalem Verhältnis L/D, von der Flüssig- bzw. Gas-Leerohrgeschwindigkeit im Anhang II ab Seite 193 dargestellt.

Bild 2-26 Vergleich der Medianwerte $D_{50,2}$ in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G für Messreihe I und II bei maximalem Verhältnis L/D, $D_{Offnung} = 1$ mm

Bild 2-27 Änderung des Modalwertes D_M und des Medianwertes $D_{50,1}$ in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G für Messreihe II bei maximalem Verhältnis L/D und $D_{Offnung} = 4$ mm

Bild 2-28 Beispiel für eine rechts-schiefe Häufigkeitsverteilung des Blasendurchmessers bis zu $D_B \le 50$ mm (Ausschnitt der Verteilung). Messpunkt 116 der Messreihe II bei maximalem Verhältnis L/D und $D_{Offnung} = 4$ mm

3. Schlussfolgerungen

Die im Rahmen dieser Versuchsserie erzielten umfangreichen experimentellen Ergebnisse bilden eine hochwertige Datenbasis für Luft-Wasser-Strömungen in einem vertikalen DN200-Rohr, die für die Entwicklung und Validierung von CFD-Modellen, beispielweise bzgl. Blasenkoaleszenz und -fragmentierung, genutzt werden können. Experimentelle Daten liegen sowohl für Blasenströmungen als auch turbulent-aufgewühlte und Ringströmung vor. Besonderes interessant ist die Untersuchung der Entwicklung der Zweiphasenströmung über der Rohrhöhe. Aus diesem Grund wurden für jede der 92 betrachteten Kombinationen aus Gas- und Wasser-Volumenstromdichten bis zu 18 Messungen mit variablen Abständen zwischen Gaseinspeisung und Messebene durchgeführt. Dabei wurde im Gegensatz zu frühren Versuchsserien der Druck an der Gaseinspeisestelle konstant auf 0,25 MPa(a) gehalten. Diese Randbedingung bietet den Vorteil, dass die so gemessenen Daten die Entwicklung der Strömung über der Rohrhöhe widerspiegeln, d.h. eine Konfiguration beschreiben, bei der das Gas an einer festen Höhenposition eingespeist wird und die Messungen in verschiedenen darüberliegenden Ebenen erfolgen. Die Wassertemperatur, die einen entscheidenden Einfluss auf Blasenkoaleszenz und -fragmentierung hat, wurde für alle Messungen konstant bei 30 ℃ gehalten. Die maximale Abweichung betrug 1 K. Die Primärblasengröße wurde variiert, indem Gas durch 1 bzw. 4 mm Öffnungen in der Rohrwand eingeperlt wurde.

Wesentliche Ergebnisse dieser Messserie sind radiale zeitgemittelte Profile für den Gasgehalt und die Gasgeschwindigkeit sowie zeit- und querschnittsgemittelte Blasengrößenverteilungen. Außerdem liegen blasengrößen- und ortsaufgelöste Gasgehaltsdaten vor. Zur effektiven Auswertung wurden die einzelnen Tests in 4 Messreihen entweder mit konstanter Gas- oder Wasser-Leerrohrgeschwindigkeit gruppiert.

Wie bereits bei früheren Versuchsserien wurden auch in diesem Fall die Strömungsformen analysiert, wobei die Klassifizierung anhand der Blasengröße erfolgte. Um die umfangreichen Blasengrößenverteilungen miteinander vergleichen zu können, wurden Median- und Modalwerte genutzt.

Ein wesentlicher Bestandteil dieser neuen Luft/Wasser-Versuche war die Qualitätsund Plausibilitätsprüfung der Messdaten. Hierzu wurden zunächst die o.g. radialen Profile und Blasengrößenverteilungen für alle Höhenpositionen eines Messpunkts und eines Öffnungsdurchmessers der Gaseinspeisung verglichen (s. Anhang 1). Es konnte festgestellt werden, dass die Daten einen eindeutigen, widerspruchsfreien Trend bzgl. ihrer Entwicklung mit zunehmendem Abstand von der Gaseinspeisung aufweisen. Weiterhin wurden aus den radialen Gasgehalts- und Geschwindigkeitsverteilungen Gas-Leerrohrgeschwindigkeiten rekonstruiert und mit den Vorgabewerten verglichen, wobei größtenteils eine gute Übereinstimmung erzielt werden konnte. Die Gründe für die systematischen Überschätzungen im Bereich kleiner Gasgehalte werden derzeit noch untersucht.

Zur weiteren Plausibilitätsprüfung wurden Vergleiche des Gasgehaltsverlaufes über der Rohrhöhe mit theoretisch zu erwartenden Kurven durchgeführt. Hierzu wurden mittlere Driftgeschwindigkeiten unter Berücksichtigung der Profileffekte und der blasengrößenabhängigen Aufstiegsgeschwindigkeit von Einzelblasen bestimmt. Dabei wurden zwar gemessene radiale Gasgehalts-, Geschwindigkeits- und Blasengrößenverteilungen genutzt, diese wurden aber mit ihren integralen Werten normiert, was den Einfluss der Messwerte auf die berechneten Gasgehalte minimiert. Die mittels dieser gewichteten Driftgeschwindigkeiten berechneten Gasgehalte beschreiben den experimentell bestimmten Verlauf über der Rohrhöhe und hierbei besonders die Effekte beim Einlaufen der Zweiphasenströmung gut. Die vor allem bei geringen Gasgehalten auftretenden leichten Überschätzungen der experimentellen Werte werden derzeit ebenfalls noch analysiert.

Zusätzlich zu diesen Ergebnissen enthält der Bericht eine Einschätzung des Einflusses des Bohrungsdurchmessers an der Gaseinspeisung auf die sich einstellende Strömung. Dabei konnte zum Beispiel nachgewiesen werden, dass bei Wasserleerrohrgeschwindigkeiten von ca. 0,4 m/s ab einer Gasleerrohrgeschwindigkeit > 0,015 m/s keine Unterschiede in der Blasengrößenverteilung bei maximalem L/D mehr zu finden sind.

Da im Rahmen des laufenden TOPFLOW-II Projektes Messungen mit einem schnellen Röntgentomographen, bei dem keine Strömungsbeeinflussung durch die Messung zu erwarten ist, parallel zum Gittersensor geplant sind, kann anhand eines Vergleiches der Daten beider Messmethoden die Genauigkeit der Gittersensoren besser beurteilt werden. Dadurch ist es eventuell auch möglich, die Ursachen für die Gasgehaltsüberschätzung bei der Messung kleiner Gasgehalte und die festgestellten Abweichungen bei der Rekonstruktion der Gasleerrohrgeschwindigkeiten zu ermitteln.

4. Literaturverzeichnis

- 1. Baehr, H. D., Stephan, K. (1996). Wärme-Stoffübergang. Springer Verlag, 2. Auflage, Berlin 1996.
- 2. Beyer, M., Carl, H., Schütz, P., Pietruske, H., Lenk, S. (2004). Betriebshandbuch für die Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW. FZR-405, Juli 2004.
- Gnotke, O. (2004). Experimentelle und theoretische Untersuchungen zur Bestimmung von veränderlichen Blasengrößen und Blasengrößenverteilungen in turbulenten Gas-Flüssigkeits-Strömungen. Dissertation am Fachbereich Maschinenbau an der Technischen Universität Darmstadt, April 2004.
- 4. Gregor, S., Prasser, H.-M., Beyer, M. (2006). Thermohydraulische Modellierung der Kondensation von Dampf in einer unterkühlten Flüssigkeitsströmung. FZR-440, Juli 2006.
- Guet, S., Ooms, G., Oliemans, R. V. A., Mudde, R. F. (2004). Bubble size effect on low liquid input drift-flux parameters. Chemical Engineering Science 59, 3315 – 3329, 2004.
- 6. Hibiki, T., Ishii, M. (2002). Distribution parameter and drift velocity of drift-flux model in bubbly flow. International Journal of Heat and Mass Transfer 45, 707-721, 2002.
- Hibiki, T., Ishii, M. (2003). One-dimensional drift-flux model for two-phase flow in a large diameter pipe. International Journal of Heat and Mass Transfer 46, 1773-1790, 2003.
- 8. Huhn, J., Wolf, J. (1975). Zweiphasenströmung gasförmig/flüssig. Fachbuchverlag Leipzig, 1975.
- 9. Jakobsen, H. A., Sannaes, B. H., Grevskott, S., Svendsen, H. F. (1997). Modeling of Vertical Bubble-Driven Flows. Industrial and Engineering Chemistry Research 36, 4052-4074, 1997.
- 10. Johansen, S. T., Boysan, F. (1988). Fluid Dynamics in Bubble Stirred Ladles: Part II. Mathematical Modeling Metallurgical Transactions B. 19B, 755-764, 1988.
- 11.Lucas, D., Krepper, E. (2007). CFD models for polydispersed bubbly flows. FZD-486, Sept. 2007.
- Manera, A., Prasser, H.-M., Van der Hagen, T. H. J. J., Mudde, R. F., de Kruijf, J. M. (2001). A comparison of void-fraction measurements during flashing-induced instabilities obtained with a wire-mesh sensor and a gamma-transmission set-up. 4th International Conference on Multiphase Flow, paper: 436, New Orleans, Louisiana, USA, May 27-June 1, 2001.
- 13. Matek, W., u. a. (2000). Roloff/Matek Maschinenelemente. Lehr- und Tabellenbuch, Vieweg Verlag, 14. Auflage, Wiesbaden, 2000.

- 14. Mudde, R. F., Simonin, O.(1999). Two- and Three-Dimensional Simulations of a Bubble Plume Using a Two-Fluid Model. Chemical Engineering Science 54, 5061-5069, 1999.
- 15. Ohnuki, A., Akimoto, H. (2000). Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe. Int. Journal of Multiphase Flow 26, 367-386, 2000.
- 16. Pietruske, H., Prasser, H.-M. (2007). Wire-mesh sensors for high-resolving twophase flow studies at high pressures and temperatures. Flow Measurement and Instrumentation 18/2, 87-94, 2007.
- 17. Prasser, H.-M., Böttger, A., Zschau, J. (1998). A new electrode-mesh tomograph for gas/liquid flows. Flow Measurement and Instrumentation 9, 111–119, 1998.
- Prasser, H.-M., Zschau, J., Peters, D., Pietzsch, G., Taubert, W., Trepte, M. (2000a). Wire-mesh sensor-now 10000 frames per second. Annual report of Institute of Safety Research 1999, FZR-284, ISSN 1437-322X.
- 19. Prasser, H.-M. (2000b). High-speed measurement of the void fraction distribution in ducts by wire-mesh sensors. International Meeting on Reactor Noise, Athen, 11.-13.10., 2000.
- 20. Prasser, H.-M., Scholz, D., Zippe, C. (2001). Bubble size measurement using wire-mesh sensors. Flow Measurement and Instrumentation 12, 299-312, 2001.
- 21. Prasser, H.-M., Krepper, E., Lucas, D. (2002). Evolution of the two-phase flow in a vertical tube decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors. International Journal of Thermal Sciences 41, 17-28, 2002.
- 22. Prasser, H.-M. (2004). Influence of the Gas Injection on the Void Fraction Profiles and Bubble Size Distributions of a Air-Water Flow in Vertical Pipes. ICMF 2004, Yokohama, Japan, May-June, 2004.
- 23. Prasser, H.-M., Lucas, D., Krepper, E., Baldauf, D., Böttger, A., Rohde, U., Schütz, P., Weiss, F.-P., Zippe, C., Zippe, W., Zschau, J. (2003). transiente Strömungskarten und Modelle für Zweiphasenströmungen. Abschlußbericht des vom BmWT geförderten zum Forschungsvorhaben 150 1215. Forschungszentrum Dresden-Rossendorf e.V. Institut für Sicherheitsforschung.
- 24. Prasser, H.-M., Misawa, M., Tiseanu, I. (2005). Comparison between Wire-mesh sensor and ultra-fast X-ray tomograph for an air/water flow in a vertical pipe. Flow Measurement and Instrumentation 16, 73-83, 2005.
- 25. Prasser, H.-M., Beyer, M., Carl, H., Manera, A., Pietruske, H., Schütz, P., Weiß, F.-P. (2006). The multipurpose thermalhydraulic test facility TOPFLOW: an overview on experimental capabilities, instrumentation and results. Kerntechnik 71, 163-173, 2006.

- 26. Prasser, H.-M., Beyer, M., Carl, H., Manera, A., Pietruske, H., Schütz, P. (2006). Experimente zu aufwärtsgerichteten Gas/Flüssigkeitsströmungen in vertikalen Rohren. Technischer Fachbericht des vom BmWT geförderten Forschungsvorhaben 150 1265, Forschungszentrum Dresden-Rossendorf e.V., Institut für Sicherheitsforschung.
- 27. Prasser, H.-M., Lucas, D., Beyer, M., Vallèe, C., Krepper, E., Höhne, T., Manera, A., Carl, H., Pietruske, H., Schütz, P., Zaruba, A., Allissa, S., Shi, J.-M., Weiss, F.-P., (2007). Aufbau und Durchführung von Experimenten an der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW für generische Untersuchungen von Zweiphasenströmungen und die Weiterentwicklung und Validierung von CFD-Codes. Abschlußbericht des vom BmWT geförderten zum Forschungsvorhaben 150 1265, Forschungszentrum Dresden-Rossendorf e.V., Institut für Sicherheitsforschung.
- 28. Prasser, H.-M., Beyer, M., Carl, H., Manera, A., Pietruske, H., Schütz, P. (2007a). Experiments on upwards gas/liquid flow in vertical pipes. FZD-482, 2007.
- 29. Prasser, H.-M., (2007b). Evolution of interfacial area concentration in a vertical air-water flow measured by wire-mesh sensors. Nuclear Engineering and Design 237, 1608-1617, 2007.
- 30. Schaffrath, A., Krüssenberg, A.-K., Weiß, F.-P., Hicken, E.-F., Beyer, M., Carl, H., Prasser, H.-M., Schuster, J., Schütz, P., Tamme, M. (2001). TOPFLOW - a new multipurpose thermalhydraulic test facility for the investigation of steady state and transient two-phase flow phenomena. Kerntechnik 66, 2001.
- 31. Scholz, D. (2000). Bewertung der Genauigkeit eines Gittersensors zur Visualisierung einer Zweiphasenströmung durch Vergleich mit optischen Hochgeschwindigkeitsaufnahmen. FZR-300, 2000.
- 32. Sihana, S. (2002). Bestimmung der Strömungsform von Zweiphasenströmungen mittels Absorption von Röntgenstrahlen und Benutzung von neuronalen Netzen. Dissertation am Fachbereich Prozesswissenschaften der Technischen Universität Berlin, 2002.
- 33. Sokolichin, A. (2004). Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmung. Habilitation an der Universität Stuttgart, 2004.
- 34. Stieß, M. (1995). Mechanische Verfahrenstechnik Band I, Springer-Verlag Berlin, Heidelberg, New York.
- 35. Tomiyama, A. (1998). Struggle with Computational Bubble Dynamics. Proceedings of Third Int. Conf. Multiphase Flow, ICMF 1998, Lyon, France, June 8-12, 1998.
- 36. VDI-Wärmeatlas, 5. Auflage (1988a), Lb1-Lb3.
- 37. VDI-Wärmeatlas, 5. Auflage (1988b), Lc5-Lc6.

38. Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mareš, R., Oguchi, K., Sato, H., Stöcker, I., Šifner, O., Takaishi, Y., Tanishita, I., Trübenbach, J., Willkommen, Th. (1997). The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Journal of Engineering for Gas Turbines and Power 122, 150-182, 2000.

5. Verzeichnisse

5.1 Formelverzeichnis

Zeichen	Einheit	Bezeichnung
А	m²	Querschnittsfläche
C _D	-	Widerstandsbeiwert
D	m	Durchmesser
D _M	mm	Modalwert für den Blasengrößenbereich 0 - 50 mm
D _{50,1}	mm	Medianwert für den Blasengrößenbereich 0 - 50 mm
D _{50,2}	mm	Medianwert für den Blasengrößenbereich 50 - 500 mm
Eo	-	Eötvös-Zahl
f	1/s	Messfrequenz
f	-	Schwarmfaktor
F	-	Faktor
g	m/s²	Gravitationsbeschleunigung
H, h	m	Höhe
h	1/mm	Häufigkeit
.l i	m/s	Querschnittsgemittelte und lokale
0, j	11// 0	Leerrohrgeschwindigkeit
k	mm	Rohrrauhigkeit, Druckverlustkoeffizient
ΔL	m	Abstand zwischen Gaseinspeisung und Messebene
m	Kg/s	Massenstrom
n	-	Parameter, Blasennummer
р	Ра	Druck
Q	%	Verteilungsfunktion oder Verteilungssumme
R,r	m	Radius
rm	m	Moment
t	S	Zeit
Т	C	Temperatur
U	V	Spannung
U,u	m/s	Querschnittsgemittelte und lokale Geschwindigkeit
UD	m/s	Driftgeschwindigkeit
D _{D, exp}	m/s	aus experimentellen Werten bestimmte Driftgeschwindigkeit bei maximalem L/D
V	m ³	Volumen
w	m/s	Geschwindigkeit
X _{LM}	-	LOCKHART/MARTINELLI Parameter
<x></x>		über den Strömungsquerschnitt gemittelter Wert X
X		über Blasengröße gemittelter Wert; arithmetischer Mittelwert

х	m	Koordinate
У	m	Koordinate
z	m	Koordinate
α	-	Anteil
Φ		Zweiphasenmultiplikator nach LOCKHART/MARTINELLI
Δ	-	Differenz
ε	%	Volumetrischer Gasgehalt
λ	-	Rohrreibungsbeiwert
ν	m²/s	kinematische Viskosität
ρ	kg/m³	Dichte
ζ	-	Widerstandsbeiwert
σ	N/m	Oberflächenspannung

5.2 Indizes

Zeichen	Bezeichnung
0	Ursprung
1,2	Bezeichnung der Messebenen
а	Absolutdruck
b	Blasenidentifikationsnummer
В	Bogen, Blase
СМ	Schwerpunkt
D	Drift
ехр	experimentell
F	Fluid (Zweiphasengemisch)
G, g	Gas
ges	gesamt
Н	Hydrostatisch
I, L	flüssig
l,j,k	Innen, Index, Blasengrößenklasse, Klasse
in	Gaseinspeisung
m	Anzahl der konzentrischen Ringdomänen zur azimutalen Mittelung
Min	Minimal
Max	Maximal
meas	Messung
Ν	Norm

Öffnung	Begasungsöffnung
Р	Phase
rel	Relativ
R	Reibung
ü	Überdruck
W,I	Flüssigphase, Wasser

5.3 Abkürzungen

Abkürzung	Bedeutung
BMWi	Bundesministerium für Wirtschaft und Technologie
CFD	Computational Fluid Dynamics
DN	Nenndurchmesser
FZD	ForschungsZentrum Dresden-Rossendorf e.V.
GS	Gittersensor
PI	Druckmessstelle
TOPFLOW	Transient twO Phase FLOW test facility
ТІ	Temperaturmessstelle
FIC	Wasser-Massenstromregler

5.4 Abbildungen

Bild 1-1	Schema der Versuchsanlage TOPFLOW; Teststreckenkreislauf und Druckluftsystem farbig hervorgehoben
Bild 1-2	Variable Gaseinspeisung in die vertikale Teststrecke DN200 14
Bild 1-3	Gaseinspeisemodul
Bild 1-4	Variable Gaseinspeisung mit Position der Temperatur und Druckmessstelle
Bild 1-5	Messprinzip eines Gittersensors mit 4 x 4 Drahtelektroden und Grundkomponenten der Signalerfassung
Bild 1-6	Konstruktionszeichnung des doppelten Niedertemperatur- Gittersensors
Bild 1-7	Montage des Sensors im oberen Bereich der Teststrecke 25
Bild 1-8	Anordnung versuchsrelevanter Messstellen am Teststreckenkreislauf
Bild 1-9	Histogramm des Gitterpunktes 43 x 43 für den Versuchspunkt 140 29
Bild 1-10	Vergleich radial gemittelter Kalibrierprofile für die Versuchspunkte 140 - grün und 182 - rot (Histogrammkalibrierung)
Bild 1-11	Wichtungskoeffizienten für die räumliche Mittelung von lokalen Gasgehalten über dem Messquerschnitt
Bild 1-12	Wichtungsfaktoren zur radialen Querschnittsmittelung des lokalen Gasgehalts
Bild 1-13	Diskretisierungsfehler bei der Bestimmung der lokalen Gasgeschwindigkeiten in Abhängigkeit vom Abstand der Messebenen
Bild 1-14	Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihe I
Bild 1-15	Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihe II
Bild 1-16	& Bild 1-17 Fehler für die Druckrandbedingung oberhalb des Gittersensors für die Messreihen III und IV
Bild 1-18	Vergleich der berechneten Gas-Leerrohrgeschwindigkeit $J_{G,Ein}$ mit dem Sollwert J_G bei maximalem L/D für die Messreihe I ($J_L = 1,017$ m/s) bei unterschiedlicher Einspeisung D _{öffnung} = 1 und 4 mm
Bild 1-19	Änderung von∆J _G der Messreihe I in Abhängigkeit vom Sollwert der Gas-Leerohrgeschwindigkeit für unterschiedliche Durchmesser der Gaseinspeisung bei maximalem L/D
Bild 1-20	Änderung von ΔJ_G entlang der relativen Aufstiegshöhe L/D am Beispiel des Messpunktes 140 der Messreihe I bei D _{Öffnung} = 1 mm 48
Bild 1-21	Änderung der Differenz ∆J _g in Abhängigkeit von der Gas- Leerohrgeschwindigkeit für den Bereich der Gaseinspeisung

	(Messhöhe A) und bei maximaler Testreckenhöhe (Messhöhe R) der Messreihe I (D _{Öffnung} = 1 mm)
Bild 1-22	Vergleich der berechneten Gas-Leerrohrgeschwindigkeit $J_{G,Ein}$ mit dem konstanten Sollwert J_G für Messreihen III (J_G = 0,219 m/s) und IV (J_G = 0,0096 m/s) in Abhängigkeit von J_L bei maximaler relativer Testreckenhöhe L/D
Bild 1-23	Änderung der Differenz ΔJ_G in Abhängigkeit von der Flüssig- Leerohrgeschwindigkeit bei maximaler relativer Testreckenhöhe L/D für die Messreihen III (J_G = 0,219 m/s) und IV (J_G = 0,0096 m/s) 51
Bild 2-1	a) Verteilung des Blasendurchmessers für unterschiedliche Gas- Leerrohrgeschwindigkeiten J _G (Messreihe I J _L = 1,017 m/s, D _{Öffnung} = 1 mm und ab Messpunkt 173 D _{Öffnung} = 4 mm, bei L/D = 39,7), b) Auswahl einiger charakteristischer Verteilungen. Das Auftreten von größeren Blasen und Gasstrukturen ist ein Zeichen für unterschiedliche Strömungsformen
Bild 2-2	a) Ansicht Zentralschnitt und b) virtuelle Seitenansicht der Gasverteilung in der vertikalen Teststrecke; (Luft von rot nach gelb, Wasser = blau). (1) Blasenströmung (2) Turbulent-aufgewühlte Strömung (3) Ringsträhnen-strömung. Messreihe I mit einem D _{öffnung} = 1 mm (D _{öffnung} = 4 mm ab J _G = 2,038m/s) und maximalem L/D. Vertikaler zu horizontaler Maßstab = 1:1
Bild 2-3	Im Vergleich zu Bild 2-2, Messreihe I mit D _{Öffnung} = 4 mm und maximalem L/D (1) Blasenströmung (2) turbulent-aufgewühlte Strömung (3) Ringsträhnenströmung
Bild 2-4	Bildung von Gagsehaltsmaxima bei einer Blasenströmung in Abhängigkeit vom Radius mit unterschiedlichen Gas- Leerohrgeschwindigkeiten und konstantem $J_L = 1,017m/s$ (Messreihe I), jeweils maximale Testreckenhöhe und D _{Öffnung} = 1 mm
Bild 2-5	Änderung des Gasgehaltsmaximum bei einer Blasenströmung entlang der Blasenaufstiegshöhe am Beispiel des Messpunktes 052 ($J_L = 1,017 \text{ m/s}, J_G = 0,0151 \text{ m/s}, D_{Offnung} = 1 \text{ mm}$)
Bild 2-6	Auswahl einiger Durchmesserverteilungen entlang der Aufstiegshöhe am Messpunkt 118. Übergang von der Blasenströmung nach Gaseinspeisung bei $L/D = 1,1$ zur turbulent- aufgewühlten Strömung bei $L/D = 39,9$. D _{Öffnung} = 1 mm
Bild 2-7	a) Ansicht des Zentralschnitts und b) virtuelle Seitenansicht der Gasverteilung bei unterschiedlichen relativen Teststreckenhöhen L/D. Messpunkt 118 mit $J_G = 0,219 \text{ m/s}$ und $J_L = 1,017 \text{ m/s}$. $D_{Offnung} = 1 \text{ mm}$. Entlang der Aufstiegshöhe, Übergang von der Blasen- zur turbulent-aufgewühlten Strömung. Vertikaler zu horizontaler Maßstab = 1:1
Bild 2-8	 a) Verteilung der Blasengrößen und b) virtuelle Seitenansicht der Gasverteilung am Messpunkt 039 im Bereich der Gaseinspeisung bei unterschiedlichen Öffnungsdurchmessern der Gaseinspeisung. Vertikaler zu horizontaler Maßstab = 1:1

- Bild 2-9 a) Verteilung des Blasendurchmessers für unterschiedliche Gas-Leerrohrgeschwindigkeiten J_G (Messreihe II $J_L = 0,405$ m/s, bei L/D = 39,7 und D_{öffnung} = 1 mm und ab Messpunkt 171 $D_{Offnung} = 4 \text{ mm}$), b) Auswahl einiger charakteristischer Verteilungen. Auftreten von größeren Blasen und Gasstrukturen Bild 2-10 a) Verteilung des Blasendurchmessers bei unterschiedlicher Flüssigleerrohrgeschwindigkeit J_I; Messpunkt 151 mit $J_L = 1,017$ m/s und Messpunkt 149 mit $J_L = 0,405$ m/s, bei L/D = 39,7 und D_{Öffnung} = 1 mm. Ansicht des Zentralschnitts und virtuelle Seitenansicht der Gasverteilung bei b) Turbulent-aufgewühlter Strömung und bei c) Ringsträhnenströmung. Vertikaler zu Blasendurchmesserverteilung im Bereich der Gaseinspeisung bei Bild 2-11 L/D = 1,1 und bei vollentwickelter Strömung (L/D = 39,9) am Beispiel des Messpunktes 105 der Messreihe II ($J_L = 0,405$ m/s). Übergang von der Blasenströmung nach Gaseinspeisung zur turbulent-aufgewühlten Strömung; Döffnung = 1 mm. Ansicht des Zentralschnitts und virtuelle Seitenansicht der Gasverteilung. Bild 2-12 Verteilung des Blasendurchmessers für unterschiedliche Flüssig-Leerrohrgeschwindigkeiten J_L (Messreihe III, $J_G = 0,219$ m/s, a) Ansicht des Zentralschnitts und b) virtuelle Seitenansicht der Bild 2-13 Gasverteilung bei Messreihe III ($J_G = 0.219$ m/s, jeweils bei L/D = 39,7 und D_{öffnung} = 1 mm). Vertikaler zu horizontaler Maßstab = 1:1 ... 64 Bild 2-14 Monomodale Verteiluna des Blasendurchmessers für unterschiedliche Flüssig-Leerrohrgeschwindigkeiten J_L (Messreihe Bild 2-15 Verlauf des gemessenen und des berechneten Gasgehaltes (unterschiedliche Driftgeschwindigkeiten wie in Kapitel 2.2.1 beschrieben) in Abhängigkeit von L/D. Beispiel für das Abknicken der Kurve im Bereich kleiner L/D a) nach oben beim Messpunkt 074 mit D_{Öffnung} = 1 mm und b) nach unten beim Messpunkt 118 Bild 2-16 Blasengrößenverteilungen unterschiedlichen bei Öffnungsdurchmessern der Begasungseinrichtung

Bild 2-18	Aus der Verteilungsfunktion (Verteilungssumme) wird der Medianwert $D_{50,1}$ bei $Q = 0,5 (\pm 0,02)$ für unterschiedliche Flüssig-Leerrohrgeschwindig-keiten J_L der Messreihe III, mit $J_G = 0,219$ m/s und $D_{Offnung} = 1$ mm, bei maximalem L/D bestimmt. Der resultierende Medianwert $D_{50,1}$ liegt zwischen 8,0 mm für Messpunkt 119 und 13 mm für Messpunkt 111
Bild 2-19	Änderung des Medianwertes $D_{50,1}$ in Abhängigkeit von der Gas- Leerrohrgeschwindigkeit J_G der Messreihe II bei maximalem Verhältnis L/D und unterschiedlichen Durchmessern der Bohrungen für die Gaseinspeisung
Bild 2-20	Änderung des Medianwertes $D_{50,1}$ in Abhängigkeit von der Gas- Leerrohrgeschwindigkeit J_G der Messreihe II (J_L = 0,405 m/s) bei maximalem Verhältnis L/D
Bild 2-21	Vergleich der Medianwerte $D_{50,1}$ in Abhängigkeit von der Gas- Leerrohrgeschwindigkeit J_G für Messreihe I und II bei maximalem Verhältnis L/D und D _{Öffnung} = 4 mm
Bild 2-22	Vergleich der Medianwerte $D_{50,1}$ der Messreihe III ($J_G = 0,219$ m/s) in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L für unterschiedliche Öffnungsdurchmesser der Begasungseinrichtung $D_{Offnung}$ bei maximalem L/D
Bild 2-23	Vergleich der Medianwerte $D_{50,1}$ in Abhängigkeit von der Flüssig- Leerrohrgeschwindigkeit J_L für Messreihe III und IV bei maximalem Verhältnis L/D und D _{öffnung} = 4 mm
Bild 2-24	Verlauf des Medianwertes $D_{50,1}$ des Messpunktes 050 (J_L = 0,405 m/s, J_G = 0,0151 m/s) entlang der Aufstiegshöhe bei $D_{Offnung}$ = 4 mm
Bild 2-25	Änderung des Medianwertes $D_{50,2}$ in Abhängigkeit von der Flüssig-Leerrohrgeschwindigkeit J_L der Messreihe III bei maximalem Verhältnis L/D und einem $D_{Offnung} = 1 \text{ mm} \dots 83$
Bild 2-26	Vergleich der Medianwerte $D_{50,2}$ in Abhängigkeit von der Gas- Leerrohrgeschwindigkeit J_G für Messreihe I und II bei maximalem Verhältnis L/D, $D_{Offnung} = 1 \text{ mm}$
Bild 2-27	Änderung des Modalwertes D_M und des Medianwertes $D_{50,1}$ in Abhängigkeit von der Gas-Leerrohrgeschwindigkeit J_G für Messreihe II bei maximalem Verhältnis L/D und D _{öffnung} = 4 mm 85
Bild 2-28	Beispiel für eine rechts-schiefe Häufigkeitsverteilung des Blasendurchmessers bis zu $D_B \leq 50 \text{ mm}$ (Ausschnitt der Verteilung). Messpunkt 116 der Messreihe II bei maximalem Verhältnis L/D und D _{Öffnung} = 4 mm

5.5 Tabellen

	Gaseinspeisung	. 15
Tabelle 2:	Allgemeine Versuchsmatrix des FZD für vertikale Rohrströmungen, Versuchspunkte der aktuellen Serie farbig markiert	. 21
Tabelle 3:	Messstellen im Teststreckenkreislauf, die für die Durchführung und zur Datenauswertung der Luft/Wasser-Versuchsserie L12 verwendet wurden	. 27
Tabelle 4	Anzahl der interpolierten azimutal gemittelten Gasgeschwindigkeiten pro Matrixpunkt und Einlauflänge bezogen auf 80 Radiusscheiben	. 43
Tabelle 5	Messmatrix, farblich unterteilt in Regionen der vorherrschenden Strömungsformen. Farblich unterlegte Messpunkte: Änderung der Strömungsform entlang des Blasenaufstieges.	. 66

6. Anhang

Ab Seite 101 erfolgt die Zusammenstellung der Ergebnisse aller Messpunkte:

I)	Profile der Messpunkte101
II)	Median- und Modalwerte193
III)	Zusätzliche Abhängigkeiten zur Genauigkeitsprüfung nach Kapitel 1.7197
IV)	Betriebsdaten199
V)	Kalibrierungsprotokolle217
VI)	Beschreibung der zur Luft/Wasser-Messserie L12 verfügbaren Datenfiles245

Hinweise zu den dargestellten Diagrammen bei den Profilen der Messpunkte im Anhang I

Diagramme sind wie folgt angeordnet

- a) Links oben: Vergleich des gemessenen und des berechneten Gasgehaltes bei drei unterschiedliche Annahmen zur Bestimmung der Driftgeschwindigkeit (Seite 67).
- $\circ\,$ b) Rechts oben: Abhängigkeit des Gasgehalts vom Strömungsquerschnitt $\epsilon\,$ (r) für unterschiedliche Blasenaufstiegshöhen.
- o c) Links unten: Verteilung der Blasengrößen (D_B).
- o d) Rechts unten: Radiale Abhängigkeit der Gasgeschwindigkeit U_G

Dazu ist die Differenz der Gas-Leerrohrgeschwindigkeit zum Sollwert (ΔJ_G nach Gleichung (1.38)) für die relativen Testreckenhöhen angegeben.

I. Profile der Messpunkte

101

Pkt. 006 (J_L = 0,405 m/s; J_G = 0,0025 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 008 (J_L = 1,017 m/s; J_G = 0,0025 m/s; $D_{Offnung}$ = 1 mm)

Pkt. 008 (J_L = 1,017 m/s; J_G = 0,0025 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 017 (J_L = 0,405 m/s; J_G = 0,0040 m/s; $D_{Offnung}$ = 1 mm)

Pkt. 017 (J_L = 0,405 m/s; J_G = 0,0040 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 019 (J_L = 1,017 m/s; J_G = 0,0040 m/s; $D_{Offnung}$ = 1 mm)

Pkt. 019 (J_L = 1,017 m/s; J_G = 0,0040 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 028 (J_L = 0,405 m/s; J_G = 0,0062 m/s; $D_{Offnung}$ = 1 mm)

Pkt. 028 (J_L = 0,405 m/s; J_G = 0,0062 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 030 (J_L= 1,017 m/s; J_G= 0,0062 m/s; D_{Öffnung} = 1 mm)

- O

P

R

0

P

- R

100

. 80

100

Pkt.030 (J_L = 1,017 m/s; J_G = 0,0062 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 034 (J_L = 0,0405 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.034 (J_L = 0,0405 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 035 (J_L = 0,0641 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.035 (J_L = 0,0641 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 036 (J_L = 0,102 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.036 (J_L = 0,102 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 037 (J_L = 0,161 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.037 (J_L = 0,161 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 038 (J_L= 0,255 m/s; J_G= 0,0096 m/s; D_{Öffnung} = 1 mm)

Pkt.038 (J_L = 0,255 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 039 (J_L = 0,405 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.039 (J_L = 0,405 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 040 (J_L= 0,641 m/s; J_G= 0,0096 m/s; D_{Öffnung} = 1 mm)

Pkt.040 (J_L = 0,641 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 041 (J_L = 1,017 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 1 mm)

Pkt.041 (J_L = 1,017 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 042 (J_L= 1,611 m/s; J_G= 0,0096 m/s; D_{Öffnung} = 1 mm)

Pkt.042 (J_L = 1,611 m/s; J_G = 0,0096 m/s; $D_{Offnung}$ = 4 mm)

Pkt.050 (J_L = 0,405 m/s; J_G = 0,0151 m/s; $D_{Offnung}$ = 1 mm)

Pkt.050 (J_L = 0,405 m/s; J_G = 0,0151 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 052 (J_L = 1,017 m/s; J_G = 0,0151 m/s; $D_{Offnung}$ = 1 mm)

Pkt.052 (J_L= 1,017 m/s; J_G= 0,0151 m/s; D_{Öffnung} = 4 mm)

Pkt. 061 (J_L = 0,405 m/s; J_G = 0,0235 m/s; $D_{Offnung}$ = 1 mm)

Pkt.061 (J_L = 0,405 m/s; J_G = 0,0235 m/s; $D_{Offnung}$ = 4 mm)

Pkt. $063(J_L = 1,017 \text{ m/s}; J_G = 0,0235 \text{ m/s}; D_{Offnung} = 1 \text{ mm})$

Pkt.063 (J_L = 1,017 m/s; J_G = 0,0235 m/s; $D_{Offnung}$ = 4 mm)

Pkt. $072(J_L = 0,405 \text{ m/s}; J_G = 0,0368 \text{ m/s}; D_{Offnung} = 1 \text{ mm})$

28 T

Pkt.072 (J_L= 0,405 m/s; J_G= 0,0368 m/s; D_{Öffnung} = 4 mm)

Pkt. 074 (J_L = 1,017 m/s; J_G = 0,0368 m/s; $D_{Offnung}$ = 1 mm)

Pkt.074 (J_L = 1,017 m/s; J_G = 0,0368 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 083 (J_L = 0,405 m/s; J_G = 0,0574 m/s; $D_{Offnung}$ = 1 mm)

Pkt.083 (J_L = 0,405 m/s; J_G = 0,0574 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 085 (J_L = 1,017 m/s; J_G = 0,0574 m/s; $D_{Offnung}$ = 1 mm)

R

Pkt.085 (J_L = 1,017 m/s; J_G = 0,0574 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 094 (J_L = 0,405 m/s; J_G = 0,0898 m/s; $D_{Offnung}$ = 1 mm)

Pkt.094 (J_L= 0,405 m/s; J_G= 0,0898 m/s; D_{Öffnung} = 4 mm)

Pkt. 096 (J_L = 1,017 m/s; J_G = 0,0898 m/s; $D_{Offnung}$ = 1 mm)

Pkt.096 (J_L = 1,017 m/s; J_G = 0,0898 m/s; $D_{Offnung}$ = 4 mm)

r [mm]

20

60

80

100

150

0,20 -

0,00

ò

Pkt. 105 (J_L = 0,405 m/s; J_G = 0,140 m/s; $D_{Offnung}$ = 1 mm)

Pkt.105 (J_L= 0,405 m/s; J_G= 0,140 m/s; D_{Öffnung} = 4 mm)

Pkt. 107 (J_L = 1,017 m/s; J_G = 0,140 m/s; $D_{Offnung}$ = 1 mm)

Pkt.107 (J_L = 1,017 m/s; J_G = 0,140 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 111 (J_L= 0,0405 m/s; J_G= 0,219 m/s; D_{Öffnung} = 1 mm)

Pkt.111 (J_L = 0,0405 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 112 (J_L = 0,0641 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.112 (J_L = 0,0641 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 113(J_L = 0,102 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.113 (J_L = 0,102 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 114 (J_L = 0,161 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.114 (J_L = 0,161 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 115 (J_L = 0,255 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.115 (J_L = 0,255 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 116 (J_L = 0,405 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.116 (J_L = 0,405 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 117 (J_L = 0,641 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 1 mm)

Pkt.117 (J_L= 0,641 m/s; J_G= 0,219 m/s; D_{Öffnung} = 4 mm)

Pkt. 118 (J_L= 1,017 m/s; J_G= 0,219 m/s; D_{Öffnung} = 1 mm)

Pkt.118 (J_L = 1,017 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 119 (J_L= 1,611 m/s; J_G= 0,219 m/s; D_{Öffnung} = 1 mm)

1,611 m/s; J_G = 0,219 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 127 (J_L = 0,405 m/s; J_G = 0,342 m/s; $D_{Offnung}$ = 1 mm)

- C

Г

C

O P

R

Pkt.127 (J_L= 0,405 m/s; J_G= 0,342 m/s; D_{Öffnung} = 4 mm)

Pkt. 129 (J_L= 1,017 m/s; J_G= 0,342 m/s; D_{Öffnung} = 1 mm)

Pkt.129 (J_L = 1,017 m/s; J_G = 0,342 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 138 (J_L = 0,405 m/s; J_G = 0,534 m/s; $D_{Offnung}$ = 1 mm)

Pkt.138 (J_L = 0,405 m/s; J_G = 0,534 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 140 (J_L = 1,017 m/s; J_G = 0,534 m/s; $D_{Offnung}$ = 1 mm)

Pkt.140 (J_L = 1,017 m/s; J_G = 0,534 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 149 (J_L = 0,405 m/s; J_G = 0,835 m/s; $D_{Offnung}$ = 1 mm)

Pkt.149 (J_L= 0,405 m/s; J_G= 0,835 m/s; D_{Öffnung} = 4 mm)

Pkt. 151 (J_L = 1,017 m/s; J_G = 0,835 m/s; $D_{Offnung}$ = 1 mm)

Pkt.151 (J_L = 1,017 m/s; J_G = 0,835 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 160 (J_L = 0,405 m/s; J_G = 1,305 m/s; $D_{Offnung}$ = 1 mm)

Pkt.160 (J_L= 0,405 m/s; J_G= 1,305 m/s; D_{Öffnung} = 4 mm)

Pkt. 162 (J_L= 1,017 m/s; J_G= 1,305 m/s; D_{Öffnung} = 1 mm)

Pkt.162 (J_L = 1,017 m/s; J_G = 1,305 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 171 (J_L= 0,405 m/s; J_G= 2,038 m/s; D_{Öffnung} = 4 mm)

Pkt. 173 (J_L = 1,017 m/s; J_G = 2,038 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 182 (J_L = 0,405 m/s; J_G = 3,185 m/s; $D_{Offnung}$ = 4 mm)

Pkt. 184 (J_L = 1,017 m/s; J_G = 3,185 m/s; $D_{Offnung}$ = 4 mm)

II. Median- und Modalwerte

Messreihe I (J_L = 1,017 m/s)

Messreihe II ($J_L= 0,405 \text{ m/s}$)

Messreihe III (J_G= 0,219 m/s)

Messreihe IV (J_G= 0,0096 m/s)

Ш.

Zusätzliche Abhängigkeiten zur Genauigkeitsprüfung nach Kapitel 1.7

Anhang IV

Betriebsdaten

IV. Betriebsdaten

In den nachfolgenden Tabellen sind die Betriebsdaten zu den Messungen dieser Serie aufgelistet. Die Spalten enthalten folgende Informationen:

Matrixpunkt	Versuchspunkt entsprechend der Versuchsmatrix des FZD (Tab. 2)
Höhenposition	Buchstabe, der den Abstand zwischen Gaseinperlung und 1. Messebene des Gittersensors charakterisiert (Bild. 2, Tab. 1)
Druck am GS (ü) PI4- 07 [kPa]	Überdruck-Sollwert, der an der Messstelle PI4-07 oberhalb des Gittersensors einzustellen ist, um an der Gaseinspeiseposition einen konstanten Druck von 0,25 MPa zu erhalten
J _{Gas} [m/s] Einspeisung	Sollwert der Leerrohrgeschwindigkeit der Gasphase an der Gaseinspeiseposition (Tab. 2)
J _{Wasser} [m/s]	Sollwert der Leerrohrgeschwindigkeit der Wasserphase
V _{Gas} [nm³/h]	Sollwert des Gasvolumenstroms an der Einspeisestelle (0,25 MPa), berechnet auf Normbedingungen (vgl. Abschnitt 1.3, Gl. 14)
m _{Wasser} [kg/s]	Sollwert des Wassermassenstroms
Datum	Datum der Messung
File 1 (x)	Messdatenfile der in Strömungsrichtung 1. Messebene
File 2 (y)	Messdatenfile der in Strömungsrichtung 2. Messebene
DIAdem	Interne Nummer zur Synchronisation der Gittersensor- messdaten mit den Betriebsdaten
Betriebsdaten (Mittelwerte über 10 s)	arithmetische Mittelwerte über 10 s Messzeit für die realen Betriebsdaten:
V _{Gas} [nm³/h]	Istwert des Gasvolumenstroms an der Einspeisestelle (Normbedingungen)
m _{Wasser} [kg/s]	Istwert des Wassermassenstroms
t GS [℃]	Istwert der Temperatur (TI4-08) oberhalb des Gittersensors
p(ü) GS [kPa]	Istwert des Überdrucks an der Messstelle PI4-07 oberhalb des Gittersensors

				Matrix für Luftversuche TOPFLOW	
Normbedingungen:	pN [bar]	1.013	D _{innen} :	0.1953 m	
	TN [K]	273.15	Fläche:	0.0300 m ²	Versuchsserie L12
Einspeisung:	Luft pa [bar]	2.5	Dichte _w :	995.7 kg/m³	Doppelgittersensor in VGE
	Medium t [°C]	30.0	Dichte _G :	2.882 kg/m ³	1 bzw. 4 mm Randeinspeisung

					D . 1 .					I				
			Medium t [°C]	30.0	Dichte _G :	2.882	kg/m³		1 bzw. 4 mm Randeinspeisung			Betriebs	daten	
											(1	Mittelwerte	über 10 s)	1
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kg/s]	t GS [°C]	p(ü) GS [kPa]
006	A	139.2	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_A_r01_t30_x.2x64x64.006.mes	L12_195_VGE_A_r01_t30_y.2x64x64.006.mes	5	0.600	12.076	30.4	139.2
006	В	138.7	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_B_r04_t30_x.2x64x64.006.mes	L12_195_VGE_B_r04_t30_y.2x64x64.006.mes	6	0.599	12.089	30.4	138.7
006	С	138.1	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_C_r01_t30_x.2x64x64.006.mes	L12_195_VGE_C_r01_t30_y.2x64x64.006.mes	7	0.599	12.066	30.5	138.1
006	D	136.6	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_D_r01_t30_x.2x64x64.006.mes	L12_195_VGE_D_r01_t30_y.2x64x64.006.mes	4	0.600	12.079	30.3	136.6
006	E	136.0	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_E_r04_t30_x.2x64x64.006.mes	L12_195_VGE_E_r04_t30_y.2x64x64.006.mes	8	0.599	12.080	30.6	135.9
006	F	135.4	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_F_r01_t30_x.2x64x64.006.mes	L12_195_VGE_F_r01_t30_y.2x64x64.006.mes	10	0.600	12.086	31.0	135.3
006	G	127.3	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_G_r01_t30_x.2x64x64.006.mes	L12_195_VGE_G_r01_t30_y.2x64x64.006.mes	11	0.600	12.074	29.4	127.3
006	Н	126.8	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_H_r04_t30_x.2x64x64.006.mes	L12_195_VGE_H_r04_t30_y.2x64x64.006.mes	12	0.599	12.049	29.1	126.8
006	I	126.2	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_I_r01_t30_x.2x64x64.006.mes	L12_195_VGE_I_r01_t30_y.2x64x64.006.mes	13	0.599	12.078	29.3	126.2
006	J	117.2	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_J_r01_t30_x.2x64x64.006.mes	L12_195_VGE_J_r01_t30_y.2x64x64.006.mes	14	0.600	12.060	29.4	117.2
006	K	116.6	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_K_r04_t30_x.2x64x64.006.mes	L12_195_VGE_K_r04_t30_y.2x64x64.006.mes	18	0.599	12.074	29.7	116.6
006	L	116.0	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_L_r01_t30_x.2x64x64.006.mes	L12_195_VGE_L_r01_t30_y.2x64x64.006.mes	17	0.600	12.083	29.6	116.1
006	M	98.2	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_M_r01_t30_x.2x64x64.006.mes	L12_195_VGE_M_r01_t30_y.2x64x64.006.mes	20	0.599	12.078	29.7	98.2
006	N	97.7	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_N_r04_t30_x.2x64x64.006.mes	L12_195_VGE_N_r04_t30_y.2x64x64.006.mes	21	0.600	12.083	29.8	97.6
006	0	97.1	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_O_r01_t30_x.2x64x64.006.mes	L12_195_VGE_O_r01_t30_y.2x64x64.006.mes	22	0.599	12.082	29.9	97.0
006	Р	66.3	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_P_r01_t30_x.2x64x64.006.mes	L12_195_VGE_P_r01_t30_y.2x64x64.006.mes	23	0.599	12.069	29.9	66.2
006	Q	65.8	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.006.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.006.mes	24	0.600	12.074	30.0	65.7
006	R	65.2	0.0025	0.405	0.600	12.081	11.01.2007	L12_195_VGE_R_r01_t30_x.2x64x64.006.mes	L12_195_VGE_R_r01_t30_y.2x64x64.006.mes	25	0.599	12.078	30.0	65.3
008	A	138.8	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.008.mes	L12_195_VGE_A_r01_t30_y.2x64x64.008.mes	1	0.600	30.327	29.4	138.8
008	В	138.3	0.0025	1.017	0.600	30.336	15.06.2007	L12_195_VGE_B_r04_t30_x.2x64x64.008.mes	L12_195_VGE_B_r04_t30_y.2x64x64.008.mes	18	0.600	30.326	30.3	138.2
008	С	137.7	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.008.mes	L12_195_VGE_C_r01_t30_y.2x64x64.008.mes	6	0.600	30.318	30.6	137.8
008	D	136.1	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.008.mes	L12_195_VGE_D_r01_t30_y.2x64x64.008.mes	7	0.600	30.328	31.0	136.1
008	E	135.5	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.008.mes	L12_195_VGE_E_r04_t30_y.2x64x64.008.mes	8	0.600	30.335	29.5	135.4
008	F	135.0	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.008.mes	L12_195_VGE_F_r01_t30_y.2x64x64.008.mes	9	0.600	30.330	29.0	135.1
008	G	126.7	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.008.mes	L12_195_VGE_G_r01_t30_y.2x64x64.008.mes	12	0.600	30.325	30.2	126.7
008	Н	126.2	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.008.mes	L12_195_VGE_H_r04_t30_y.2x64x64.008.mes	11	0.600	30.328	29.9	126.2
008		125.6	0.0025	1.017	0.600	30.336	15.06.2007	L12_195_VGE_I_r01_t30_x.2x64x64.008.mes	L12_195_VGE_I_r01_t30_y.2x64x64.008.mes	26	0.600	30.324	29.5	125.7
008	J	116.3	0.0025	1.017	0.600	30.336	15.06.2007	L12_195_VGE_J_r01_t30_x.2x64x64.008.mes	L12_195_VGE_J_r01_t30_y.2x64x64.008.mes	27	0.600	30.341	29.7	116.2
008	ĸ	115.8	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.008.mes	L12_195_VGE_K_r04_t30_y.2x64x64.008.mes	16	0.600	30.337	29.2	115.7
008	L	115.2	0.0025	1.017	0.600	30.336	15.06.2007	L12_195_VGE_L_r01_t30_x.2x64x64.008.mes	L12_195_VGE_L_r01_t30_y.2x64x64.008.mes	28	0.600	30.328	29.9	115.2
008	M	97.1	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_M_r01_t30_x.2x64x64.008.mes	L12_195_VGE_M_r01_t30_y.2x64x64.008.mes	19	0.600	30.319	30.2	97.2
800	N	96.5	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.008.mes	L12_195_VGE_N_r04_t30_y.2x64x64.008.mes	23	0.600	30.332	30.1	96.5
800	0	96.0	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_0_r01_t30_x.2x64x64.008.mes	L12_195_VGE_O_r01_t30_y.2x64x64.008.mes	26	0.600	30.360	29.3	95.9
800	P	64.6	0.0025	1.017	0.600	30.336	07.03.2007	L12_195_VGE_P_r01_t30_x.2x64x64.008.mes	L12_195_VGE_P_r01_t30_y.2x64x64.008.mes	27	0.600	30.325	29.5	64.6
008	Q P	64.0	0.0025	1.017	0.600	30.336	07.03.2007	L12_193_VGE_Q_104_130_X.2X64X64.008.mes	L12_195_VGE_Q_104_130_9.2X64X64.008.mes	<u>∠</u> δ	0.600	30.336	29.8	63.9
008	κ Δ	63.4	0.0025	1.017	0.600	30.336	07.03.2007		L12_190_VGE_K_U1_00_Y.2X04X04.008.Mes	29	0.000	30.335	30.0	03.5
017	A	139.2	0.0040	0.405	0.959	12.081	08.06.2007	L12_193_VGE_A_01_t30_X.2X64X64.017.mes	L12_195_VGE_A_101_130_9.2X64X64.017.Mes	1	0.958	12.091	29.1	139.2
017		138./	0.0040	0.405	0.959	12.081		L12_133_VGE_D_104_130_X.2X04X04.017.Mes	L12_190_VGE_D_104_100_9.2X04X04.017.Mes	3	0.959	12.007	29.3	130./
017		100.1	0.0040	0.405	0.959	12.081		L12_135_VGE_0_101_130_X.2X04X04.017.11105	L12_195_VGE_C_101_130_y.2X04X04.017.Mes	4	0.900	12.094	29.4	130.2
017		130.0	0.0040	0.405	0.959	12.081	08.06.2007	12 105 VGE_D_101_00_X.2X04X04.017.mes	L12_195_VGE_D_101_60_y.2X04X04.017.mes	/ 2	0.900	12.077	29.0	130.7
017		130.0	0.0040	0.405	0.909	12.001	08.06.2007	12 195 VGE E r01 t30 x 2x64x64.017 mag	12 105 VGE E r01 t30 v 2v64v64.017 mcc	10	0.000	12.000	30.0	125 5
017	G	100.0	0.0040	0.405	0.959	12.001	08.06.2007	12 195 VGE G r01 t30 x 2x64x64.017 mag	12 195 VGE G r01 t30 v 2v6/v6/ 017 mos	11	0.900	12.073	30.1	127.4
017	<u></u> Ц	127.4	0.0040	0.405	0.959	12.001	08.06.2007	12 195 VGE H r04 t30 x 2x64x64.017 mes	L12_195_VGE_U_101_130_y.2x64x64.017.mes	12	0.900	12.000	30.3	126.8
017		120.0	0.0040	0.405	0.959	12.001	08.06.2007	12 195 VGE r01 t30 v 2v64v64 017 mgs	12 195 VGE r01 t30 v 2v64v64.017 mgs	12	0.000	12.003	30.4	126.0
017		117.0	0.0040	0.405	0.959	12.001	08.06.2007	12 195 VGE J r01 t30 x 2x64x64 017 mes	12 195 VGF J r01 t30 v 2x64x64 017 mes	14	0.900	12.092	29.8	117 2
017	ĸ	116.7	0.0040	0.405	0.009	12.001	08.06.2007	12 195 VGE K r04 t30 x 2x64x64 017 mes	12 195 VGE K r04 t30 v 2x64x64 017 mes	18	0.000	12.000	20.0	116.8
017		116.1	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE L r01 t30 x 2x64x64.017 mes	L12 195 VGE L r01 t30 v.2x64x64.017 mes	17	0.960	12.069	29.2	116.2
017	M	98.4	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE M r01 t30 x 2x64x64.017 mes	L12 195 VGE M r01 t30 v 2x64x64.017 mes	22	0.960	12.065	29.6	98.4
017	N	97.8	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE N r04 t30 x.2x64x64.017.mes	L12 195 VGE N r04 t30 v.2x64x64.017.mes	23	0.960	12.068	29.8	97.8
017	0	97.3	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE O r01 t30 x.2x64x64.017 mes	L12 195 VGE O r01 t30 v.2x64x64.017.mes	24	0.960	12.068	29.9	97.4
017	P	66.5	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE P r01 t30 x.2x64x64.017.mes	L12 195 VGE P r01 t30 v.2x64x64.017.mes	25	0.960	12.071	30.0	66.5
017	Q	65.9	0.0040	0.405	0.959	12.081	08.06.2007	L12 195 VGE Q r04 t30 x.2x64x64.017.mes	L12 195 VGE Q r04 t30 v.2x64x64.017.mes	26	0.960	12.079	30.1	65.9
017	R	65.4	0.0040	0.405	0.959	12.081	08.06.2007	L12_195_VGE_R_r01_t30_x.2x64x64.017.mes	L12_195_VGE_R_r01_t30_y.2x64x64.017.mes	28	0.960	12.079	30.3	65.3
P								—						

												Betriebs	daten	
											(N	littelwerte	über 10	s)
Matrix-	Höhen-	Druck am GS (ü)	J _{Gas} [m/s]	l [m/e]	V. [nm³/b]	m. [ka/s]	Datum	File 1 (x)		DIAdom	V_{Gas}	m _{Wasser}	t GS	p(ü) GS
punkt	position	PI4-07 [kPa]	Einspeisung	J _{Wasser} [III/5]	V Gas [IIII-711]	IIIWasser [Kg/5]	Datum	File I (X)	File 2 (y)	DIAdem	[m³/h]	[kg/s]	[°C]	[kPa]
019	А	138.8	0.0040	1.017	0.959	30.336	15.06.2007	L12_195_VGE_A_r01_t30_x.2x64x64.019.mes	L12_195_VGE_A_r01_t30_y.2x64x64.019.mes	10	2.295	19.110	29.92	139.2
019	В	138.3	0.0040	1.017	0.959	30.336	15.06.2007	L12_195_VGE_B_r04_t30_x.2x64x64.019.mes	L12_195_VGE_B_r04_t30_y.2x64x64.019.mes	12	2.296	19.119	30.0	138.6
019	С	137.7	0.0040	1.017	0.959	30.336	18.06.2007	L12_195_VGE_C_r01_t30_x.2x64x64.019.mes	L12_195_VGE_C_r01_t30_y.2x64x64.019.mes	6	0.959	30.342	30.0	137.7
019	D	136.1	0.0040	1.017	0.959	30.336	18.06.2007	L12 195 VGE D r01 t30 x.2x64x64.019.mes	L12 195 VGE D r01 t30 y.2x64x64.019.mes	8	0.960	30.339	30.1	136.0
019	E	135.6	0.0040	1.017	0.959	30.336	18.06.2007	L12 195 VGE E r04 t30 x.2x64x64.019.mes	L12 195 VGE E r04 t30 v.2x64x64.019.mes	9	0.960	30.340	30.3	135.7
019	F	135.0	0.0040	1.017	0.959	30.336	15.06.2007	L12 195 VGE F r01 t30 x.2x64x64.019.mes	L12 195 VGE F r01 t30 v.2x64x64.019.mes	25	2.295	19,114	29.6	135.4
019	G	126.7	0.0040	1.017	0.959	30.336	18.06.2007	L12 195 VGE G r01 t30 x.2x64x64.019.mes	L12 195 VGE G r01 t30 v.2x64x64.019.mes	15	0.959	30.340	29.5	126.7
019	H	126.2	0.0040	1.017	0.959	30,336	18.06.2007	12 195 VGF H r04 t30 x 2x64x64.019 mes	12 195 VGF H r04 t30 v 2x64x64.019 mes	16	0.959	30.338	29.1	126.2
019	1	125.6	0.0040	1.017	0.959	30,336	18.06.2007	12 195 VGF L r01 t30 x 2x64x64 019 mes	12 195 VGF r01 t30 v 2x64x64.019 mes	19	0.959	30.317	29.4	125.6
019	J	116.4	0.0040	1.017	0.959	30.336	18.06.2007	L12 195 VGE J r01 t30 x.2x64x64.019.mes	L12 195 VGE J r01 t30 v.2x64x64.019.mes	21	0.960	30.330	29.6	116.4
019	ĸ	115.8	0.0040	1.017	0.959	30,336	18.06.2007	12 195 VGF K r04 t30 x 2x64x64.019 mes	12 195 VGF K r04 t30 v 2x64x64.019 mes	22	0.959	30.336	29.8	115.8
019	1	115.3	0.0040	1.017	0.959	30,336	18 06 2007	12 195 VGE 1 r01 t30 x 2x64x64 019 mes	$12_{12} 195_{\text{VGF}} = 1212_{10} 1210_{10} 1$	23	0.959	30,355	30.0	115.3
010	M	97.1	0.0040	1.017	0.000	30 336	18.06.2007	$12_{12} 195 \text{ VGE} M r01 t30 x 2x64x64 019 mes$	12 195 VGE M r01 t30 v 2x64x64.019 mes	24	0.000	30 329	30.2	97.1
010	N	96.6	0.0040	1.017	0.000	30.336	18.06.2007	L12_195_VGE_N_r04_t30_x_2x64x64.019 mes	12 195 VGE N r04 t30 v 2x64x64.019 mes	25	0.000	30.320	30.2	96.6
013	0	90.0	0.0040	1.017	0.959	30.336	18.06.2007	12_{195} VGE_N_104_130_x.2x64x64.019.mes	$12_{12} 195_{CE} \cap 104_{130} y 2x64x64.019$ mes	25	0.900	30.333	30.5	96.0
019	D	90.0	0.0040	1.017	0.959	30.330	18.06.2007	L12_195_VGE_0_101_t30_x.2x64x64.019.tilles	L12_195_VGE_0_101_t30_y.2x64x64.019.mes	20	0.900	20.342	30.5	90.0
019	F	64.0	0.0040	1.017	0.959	20.330	18.06.2007	L12_195_VGE_F_101_130_X.2x64x64.019.111es	L12_195_VGE_F_101_130_y.2x64x64.019.11les	21	0.939	20.255	20.0	64.0
019		04.1 62.5	0.0040	1.017	0.959	30.330	18.06.2007	L12_195_VGE_Q_104_130_X.2X04X04.019.111es	L12_195_VGE_Q_104_130_y.2x64x64.019.111es	20	0.900	20.300	20.0	62.5
019	ĸ	03.3	0.0040	1.017	0.959	30.330	16.00.2007	L12_195_VGE_R_101_130_x.2x04x04.019.11les	L12_195_VGE_R_101_130_y.2x04x04.019.11les	29	0.900	30.331	30.9	03.5
028	A	139.3	0.0062	0.405	1.487	12.081	15.06.2007	L12_195_VGE_A_r01_t30_x.2x64x64.028.mes	L12_195_VGE_A_r01_t30_y.2x64x64.028.mes	8	1.485	12.081	29.9	139.4
028	В	138.7	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.028.mes	L12_195_VGE_B_r04_t30_y.2x64x64.028.mes	7b	1.486	12.078	30.0	138.6
028	C	138.2	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.028.mes	L12_195_VGE_C_r01_t30_y.2x64x64.028.mes	6b	1.486	12.075	30.2	138.2
028	D	136.6	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.028.mes	L12_195_VGE_D_r01_t30_y.2x64x64.028.mes	5b	1.486	12.074	30.2	136.6
028	E	136.1	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.028.mes	L12_195_VGE_E_r04_t30_y.2x64x64.028.mes	4b	1.486	12.079	30.3	136.2
028	F	135.5	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_F_r01_t30_x.2x64x64.028.mes	L12_195_VGE_F_r01_t30_y.2x64x64.028.mes	3b	1.486	12.085	30.3	135.5
028	G	127.5	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_G_r01_t30_x.2x64x64.028.mes	L12_195_VGE_G_r01_t30_y.2x64x64.028.mes	16a	1.486	12.073	29.9	127.5
028	Н	126.9	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_H_r04_t30_x.2x64x64.028.mes	L12_195_VGE_H_r04_t30_y.2x64x64.028.mes	14a	1.486	12.069	29.9	126.8
028	I	126.4	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_I_r01_t30_x.2x64x64.028.mes	L12_195_VGE_I_r01_t30_y.2x64x64.028.mes	13a	1.486	12.096	30.0	126.4
028	J	117.3	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_J_r01_t30_x.2x64x64.028.mes	L12_195_VGE_J_r01_t30_y.2x64x64.028.mes	12a	1.486	12.073	30.0	117.2
028	K	116.8	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.028.mes	L12_195_VGE_K_r04_t30_y.2x64x64.028.mes	11a	1.486	12.079	30.1	116.9
028	L	116.2	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.028.mes	L12_195_VGE_L_r01_t30_y.2x64x64.028.mes	10a	1.486	12.076	30.0	116.2
028	М	98.5	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_M_r01_t30_x.2x64x64.028.mes	L12_195_VGE_M_r01_t30_y.2x64x64.028.mes	6a	1.486	12.082	29.6	98.5
028	N	98.0	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_N_r04_t30_x.2x64x64.028.mes	L12_195_VGE_N_r04_t30_y.2x64x64.028.mes	5a	1.486	12.080	29.5	98.0
028	0	97.4	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_O_r01_t30_x.2x64x64.028.mes	L12_195_VGE_O_r01_t30_y.2x64x64.028.mes	4a	1.486	12.071	29.5	97.4
028	Р	66.8	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_P_r01_t30_x.2x64x64.028.mes	L12_195_VGE_P_r01_t30_y.2x64x64.028.mes	3a	1.486	12.103	29.2	66.8
028	Q	66.2	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.028.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.028.mes	2a	1.486	12.084	29.2	66.2
028	R	65.7	0.0062	0.405	1.487	12.081	27.02.2007	L12_195_VGE_R_r01_t30_x.2x64x64.028.mes	L12_195_VGE_R_r01_t30_y.2x64x64.028.mes	1a	1.485	12.091	29.1	65.8
030	А	138.9	0.0062	1.017	1.487	30.336	06.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.030.mes	L12_195_VGE_A_r01_t30_y.2x64x64.030.mes	29	1.486	30.317	31.0	138.9
030	В	138.3	0.0062	1.017	1.487	30.336	06.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.030.mes	L12_195_VGE_B_r04_t30_y.2x64x64.030.mes	28	1.486	30.338	30.7	138.4
030	С	137.7	0.0062	1.017	1.487	30.336	06.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.030.mes	L12_195_VGE_C_r01_t30_y.2x64x64.030.mes	27	1.486	30.330	30.4	137.6
030	D	136.1	0.0062	1.017	1.487	30.336	06.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.030.mes	L12_195_VGE_D_r01_t30_y.2x64x64.030.mes	24	1.486	30.348	30.2	136.1
030	E	135.6	0.0062	1.017	1.487	30.336	06.03.2007	L12_195_VGE_E_r04_t30 x.2x64x64.030.mes	L12_195_VGE_E_r04_t30_v.2x64x64.030.mes	22	1.486	30.345	29.9	135.5
030	F	135.0	0.0062	1.017	1.487	30.336	06.03.2007	L12 195 VGE F r01 t30 x.2x64x64.030.mes	L12 195 VGE F r01 t30 v.2x64x64.030.mes	21	1.486	30.344	29.6	135.1
030	G	126.8	0.0062	1.017	1.487	30.336	06.03.2007	L12 195 VGE G r01 t30 x.2x64x64.030.mes	L12 195 VGE G r01 t30 v.2x64x64.030.mes	16	1.486	30.319	29.7	126.9
030	H	126.2	0.0062	1.017	1.487	30,336	06.03.2007	12 195 VGE H r04 t30 x 2x64x64.030 mes	12 195 VGF H r04 t30 v 2x64x64.030 mes	15	1.486	30.320	31.0	126.3
030	1	125.7	0.0062	1 017	1 487	30,336	06.03.2007	12 195 VGE 1 r01 t30 x 2x64x64 030 mes	12 195 VGE 1 r01 t30 v 2x64x64 030 mes	14	1 486	30,337	30.7	125.8
030	J	116.4	0.0062	1.017	1,487	30.336	06.03.2007	L12 195 VGE J r01 t30 x 2x64x64.030 mes	L12 195 VGE J r01 t30 v 2x64x64.030 mes	13	1.486	30.345	30.2	116.5
030	ĸ	115.9	0.0062	1 017	1 487	30,336	06.03 2007	12 195 VGE K r04 t30 x 2x64x64 030 mes	12 195 VGE K r04 t30 v 2x64x64 030 mes	11	1.486	30 334	29.9	115.8
030	1	115.3	0.0062	1 017	1 487	30,336	06.03 2007	12 195 VGE r01 t30 x 2x64x64 030 mes	12 195 VGE r01 t30 v 2x64x64 030 mes	10	1.486	30 331	29.7	115.4
030	M	97.2	0.0002	1 017	1 487	30 336	06.03.2007	12 195 VGE M r01 t30 x 2x64x64 030 mes	12 195 VGE M r01 t30 v 2x64x64 030 mes	9	1 486	30 341	29.3	97 3
030	N	96.7	0.0002	1 017	1 487	30 336	06.03.2007	12 195 VGE N r04 t30 x 2x64x64 030 mes	12 195 VGE N r04 t30 v 2x64x64 030 mes	8	1 486	30 309	29.7	96.7
030	0	00.7 QR 1	0.0002	1 017	1 497	20.000	06.03.2007	12 195 VGE 0 r01 t30 x 2x64x64 030 mag	12 195 VGE 0 r01 t30 v 2v64v64 030 mes	6	1 486	30 332	30.0	96.1
030	P	50.1 6/ 9	0.0002	1.017	1 /07	20.000	06.03.2007	12 195 VGE P r01 t30 v 2v6/v6/ 030 mag	12 195 VGE P r01 t20 v 2v6/v6/ 030 mos	5	1 /196	30.332	30.9	64.7
030	0	64.0 64.2	0.0002	1.017	1 /07	20.000	06.03.2007	12 195 VGE 0 r04 t30 x 2x64x64 030 mos	12 195 VGE 0 r04 t30 v 2v64v64 030 mos		1 /196	30.330	30.7	6/ 2
030	R	04.2 63 6	0.0002	1.017	1.407	20.000	06.03.2007	12 195 VGE R r01 t30 v 2v6/v6/ 030 mag	12 195 VGE R r01 t30 v 2v6/v6/ 030 mos	-+	1 /196	30.340	30.3	63.6
030	11	03.0	0.0002	1.017	1.407	30.330	00.03.2007	L12_100_VOL_IV_I01_00_X.2X04X04.000.IIIES	L12_100_VOL_IN_I01_00_y.2X04X04.000.IIIES	1	1.400	00.009	JU. I	05.0

											(Betriebsdaten					
					1	1					(N	littelwerte	über 10	s)			
Matrix-	Höhen-	Druck am GS (ü)	J _{Gas} [m/s]	Jwassar [m/s]	V _{Gas} [nm³/h]	m _{wassar} [kɑ/s]	Datum	File 1 (x)	File 2 (v)	DIAdem	V _{Gas}	m _{Wasser}	t GS	p(ü) GS			
punkt	position	PI4-07 [kPa]	Einspeisung	- wasser []		wasser [3]					[m³/h]	[kg/s]	[°C]	[kPa]			
034	A	139.6	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.034.mes	L12_195_VGE_A_r01_t30_y.2x64x64.034.mes	1	2.296	1.206	29.23	139.5			
034	В	139.0	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.034.mes	L12_195_VGE_B_r04_t30_y.2x64x64.034.mes	3	2.296	1.208	29.4	138.9			
034	С	138.5	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.034.mes	L12_195_VGE_C_r01_t30_y.2x64x64.034.mes	5	2.296	1.207	29.4	138.4			
034	D	137.0	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.034.mes	L12_195_VGE_D_r01_t30_y.2x64x64.034.mes	6	2.296	1.209	29.4	136.9			
034	E	136.5	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.034.mes	L12_195_VGE_E_r04_t30_y.2x64x64.034.mes	1	2.296	1.206	29.5	136.4			
034	F	135.9	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.034.mes	L12_195_VGE_F_r01_t30_y.2x64x64.034.mes	9	2.296	1.208	29.6	135.9			
034	G	128.1	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.034.mes	L12_195_VGE_G_r01_t30_y.2x64x64.034.mes	10	2.296	1.207	29.6	128.2			
034	H	127.5	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.034.mes	L12_195_VGE_H_r04_t30_y.2x64x64.034.mes	11	2.296	1.206	29.7	127.0			
034		127.0	0.0096	0.041	2.302	1.208	20.03.2007	L12_195_VGE_1_r01_t30_x.2x64x64.034.mes	L12_195_VGE_1_r01_t30_y.2x64x64.034.mes	13	2.296	1.208	29.8	127.0			
034	J	110.2	0.0096	0.041	2.302	1.200	20.03.2007	L12_195_VGE_J_101_130_X.2X64x64.034.11les	L12_195_VGE_J_101_130_y.2x64x64.034.11les	14	2.290	1.205	29.9	110.1			
034		117.1	0.0096	0.041	2.302	1.200	20.03.2007	L12_195_VGE_K_104_(30_x.2x04x04.034.111es	L12_195_VGE_K_104_130_y.2x64x64.034.mes	10	2.290	1.207	29.9	117.0			
034	M	00.0	0.0090	0.041	2.302	1.200	20.03.2007	L12_195_VGE_L_101_t30_x.2x64x64.034.moc	$L12_195_VGE_L_101_130_y.2x64x64.034.mes$	10	2.290	1.200	30.0	00.7			
034	N	99.9	0.0090	0.041	2.302	1.200	20.03.2007	L12_195_VGE_N_r04_t30_x_2x64x64.034.mes	$L12_195_VGE_N r04_t30_V2x64x64.034.mes$	18	2.290	1.204	30.5	99.7			
034	0	08.8	0.0090	0.041	2.302	1.200	20.03.2007	12_{195} VGE_N_104_100_x.2x64x64.034.mes	12_{195} VGE O r01 t30 v 2x64x64.034 mes	10	2.230	1.200	30.5	08.8			
034	P	90.0 69.0	0.0090	0.041	2.302	1.200	20.03.2007	$12_{12} 195_{CE} P r01_{30} x 2x64x64.034.005$	12_{195} VGE_0_101_130_y.2x64x64.034.mes	20	2.230	1.207	30.8	69.0			
034	0	68.4	0.0000	0.041	2.302	1.200	20.03.2007	L12_195_VGE_0_r04_t30_x_2x64x64.034_mes	L12_195_VGE_0_r04_t30_v_2x64x64.034.mes	20	2.200	1 1 9 8	31.0	68.4			
034	R	67.9	0.0090	0.041	2.302	1.200	20.03.2007	12_{195} VGE <u>R</u> r01 t30 x 2x64x64.034 mes	12_{195} VGE R r01 t30 v 2x64x64.034 mes	21	2.230	1.130	31.0	67.8			
035	A	139.6	0.0000	0.041	2.302	1.200	28.06.2007	$12_{12} 195_{CE} \Lambda r01_{130} \times 2x64x64.035 mes$	$12_{12} 195_{CE} \Lambda r01_{130} V2 r04 r04.035 mes$	17	2.200	1 907	30.0	139.6			
035	B	139.0	0.0090	0.004	2.302	1.912	28.06.2007	12 195 VGE B r04 t30 x 2x64x64.035 mes	L12_195_VGE_R_r04_t30_v_2x64x64.035_mes	16	2.230	1.907	20.0	139.0			
035	C	138.5	0.0090	0.004	2.302	1.912	28.06.2007	L12_195_VGE_D_104_130_x.2x64x64.035.mes	L12_195_VGE_D_104_130_y.2x64x64.035.mes	10 Q	2.230	1.900	20.0	138.4			
035	D	130.0	0.0000	0.004	2.302	1.012	28.06.2007	L12_195_VGE_0_101_t30_x.2x64x64.035 mes	L12_195_VGE_0_101_t30_v_2x64x64.035 mes	8	2.200	1 011	30.6	136.9			
035	F	136.4	0.0000	0.004	2.302	1.012	28.06.2007	$12_{12} 195_{0} = 101_{0} 120_{0} 200_{0} = 100_{0} 120_{0} = 10$	$12_{12} 195_{VGE} = r04_{130} + 2x64x64_{035} mes$	7	2.200	1.912	30.5	136.3			
035	F	135.9	0.0000	0.004	2.302	1.012	28.06.2007	L12_195_VGE_E_104_130_x 2x64x64.035 mes	12_{12} 195_VGE_E_104_100_9.2x04x04.000.1110	5	2.230	1 9/12	30.4	135.0			
035	ſ	133.5	0.0000	0.004	2.302	1.012	28.06.2007	L12_195_VGE_1_101_130_x.2x64x64.035 mes	L12_195_VGE_1_101_t30_v2x64x64.035 mes	4	2.204	1 904	30.3	128.0			
035	с н	120.0	0.0096	0.064	2.002	1.012	28.06.2007	L12_195_VGE_H_r04_t30_x_2x64x64.035 mes	L12_195_VGE_H_r04_t30_v_2x64x64_035_mes	3	2 296	1 908	30.2	120.0			
035		127.3	0.0000	0.004	2.302	1.012	28.06.2007	L12_195_VGE_L_104_006_X2X04X04.000.mes	L12_195_VGE_I_r01_t30_v_2x64x64.035 mes	2	2.200	1 913	30.1	126.8			
035		118.1	0.0096	0.064	2.002	1.012	28.06.2007	12 195 VGE 1 r01 t30 x 2x64x64 035 mes	L12_195_VGE_L_r01_t30_v 2x64x64.035 mes	1	2 295	1.010	30.1	118.1			
035	ĸ	117.6	0.0096	0.064	2.002	1.012	25.05.2007	12 195 VGE K r04 t30 x 2x64x64 035 mes	L12_195_VGE_K_r04_t30_v_2x64x64_035_mes	12a	2 296	1.012	29.8	117.7			
035	1	117.1	0.0096	0.064	2.302	1.912	25.05.2007	12 195 VGE r01 t30 x 2x64x64.035 mes	12 195 VGE r01 t30 v 2x64x64.035 mes	13a	2.296	1.913	29.9	117.1			
035	M	99.8	0.0096	0.064	2.302	1 912	25.05.2007	L12_195_VGE_M_r01_t30_x_2x64x64.035 mes	L12_195_VGE_M_r01_t30_v2x64x64.035 mes	1b	2 296	1 914	30.2	99.8			
035	N	99.2	0.0096	0.064	2.302	1.912	25.05.2007	12 195 VGF N r04 t30 x 2x64x64.035 mes	12 195 VGE N r04 t30 v 2x64x64.035 mes	2b	2.296	1.911	30.3	99.3			
035	0	98.7	0.0096	0.064	2.302	1.912	25.05.2007	12 195 VGE O r01 t30 x 2x64x64.035 mes	12 195 VGE O r01 t30 v 2x64x64.035 mes	 3b	2.296	1.911	30.4	98.8			
035	P	68.8	0.0096	0.064	2.302	1.912	25.05.2007	L12 195 VGE P r01 t30 x.2x64x64.035.mes	L12 195 VGE P r01 t30 v.2x64x64.035.mes	4b	2.296	1.910	30.6	68.8			
035	Q	68.2	0.0096	0.064	2.302	1.912	25.05.2007	L12 195 VGE Q r04 t30 x.2x64x64.035.mes	L12 195 VGE Q r04 t30 v.2x64x64.035.mes	5b	2.296	1.911	30.8	68.4			
035	R	67.7	0.0096	0.064	2.302	1.912	25.05.2007	L12 195 VGE R r01 t30 x.2x64x64.035.mes	L12 195 VGE R r01 t30 v.2x64x64.035.mes	6b	2.296	1.911	30.9	67.8			
036	А	139.5	0.0096	0.102	2.302	3.043	28.06.2007	L12 195 VGE A r01 t30 x.2x64x64.036.mes	L12 195 VGE A r01 t30 v.2x64x64.036.mes	18	2.296	3.044	30.1	139.7			
036	В	139.0	0.0096	0.102	2.302	3.043	28.06.2007	L12 195 VGE B r04 t30 x.2x64x64.036.mes	L12 195 VGE B r04 t30 v.2x64x64.036.mes	14	2.296	3.050	29.8	139.1			
036	С	138.4	0.0096	0.102	2.302	3.043	28.06.2007	L12 195 VGE C r01 t30 x.2x64x64.036.mes	L12 195 VGE C r01 t30 v.2x64x64.036.mes	11	2.296	3.040	29.6	138.4			
036	D	136.9	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE D r01 t30 x.2x64x64.036.mes	L12 195 VGE D r01 t30 v.2x64x64.036.mes	5	2.296	3.042	29.5	137.0			
036	E	136.4	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE E r04 t30 x.2x64x64.036.mes	L12 195 VGE E r04 t30 y.2x64x64.036.mes	6	2.296	3.042	29.6	136.3			
036	F	135.8	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE F r01 t30 x.2x64x64.036.mes	L12 195 VGE F r01 t30 v.2x64x64.036.mes	7	2.296	3.045	29.7	135.7			
036	G	127.9	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE G r01 t30 x.2x64x64.036.mes	L12 195 VGE G r01 t30 y.2x64x64.036.mes	8	2.296	3.040	29.8	127.7			
036	Н	127.4	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE H r04 t30 x.2x64x64.036.mes	L12 195 VGE H r04 t30 v.2x64x64.036.mes	10	2.296	3.044	29.9	127.4			
036	I	126.9	0.0096	0.102	2.302	3.043	21.03.2007	L12 195 VGE I r01 t30 x.2x64x64.036.mes	L12 195 VGE I r01 t30 y.2x64x64.036.mes	11	2.296	3.042	30.0	126.9			
036	J	118.0	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_J_r01_t30 x.2x64x64.036.mes	L12_195_VGE_J_r01_t30_v.2x64x64.036.mes	15	2.296	3.043	30.2	118.0			
036	K	117.5	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.036.mes	L12_195_VGE_K_r04_t30_y.2x64x64.036.mes	13	2.296	3.042	30.1	117.6			
036	L	116.9	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.036.mes	L12_195_VGE_L_r01_t30_y.2x64x64.036.mes	18	2.296	3.043	30.4	116.9			
036	М	99.6	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_M_r01_t30_x.2x64x64.036.mes	L12_195_VGE_M_r01_t30_y.2x64x64.036.mes	19	2.296	3.041	29.3	99.7			
036	Ν	99.1	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.036.mes	L12_195_VGE_N_r04_t30_y.2x64x64.036.mes	20	2.296	3.042	29.6	99.2			
036	0	98.5	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_O_r01_t30_x.2x64x64.036.mes	L12_195_VGE_O_r01_t30_y.2x64x64.036.mes	21	2.296	3.042	29.7	98.5			
036	Р	68.5	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_P_r01_t30_x.2x64x64.036.mes	L12_195_VGE_P_r01_t30_y.2x64x64.036.mes	23	2.296	3.043	30.0	68.5			
036	Q	68.0	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.036.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.036.mes	24	2.296	3.042	30.2	68.1			
036	R	67.4	0.0096	0.102	2.302	3.043	21.03.2007	L12_195_VGE_R_r01_t30_x.2x64x64.036.mes	L12_195_VGE_R_r01_t30_y.2x64x64.036.mes	25	2.296	3.044	30.3	67.3			

											(N	Betriebs	sdaten) s)
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kg/s]	t GS [°C]	p(ü) GS [kPa]
037	А	139.5	0.0096	0.161	2.302	4.802	28.06.2007	L12_195_VGE_A_r01_t30_x.2x64x64.037.mes	L12_195_VGE_A_r01_t30_y.2x64x64.037.mes	19	2.296	4.793	30.2	139.5
037	В	138.9	0.0096	0.161	2.302	4.802	28.06.2007	L12_195_VGE_B_r04_t30_x.2x64x64.037.mes	L12_195_VGE_B_r04_t30_y.2x64x64.037.mes	13	2.295	4.798	29.7	138.9
037	С	138.4	0.0096	0.161	2.302	4.802	28.06.2007	L12_195_VGE_C_r01_t30_x.2x64x64.037.mes	L12_195_VGE_C_r01_t30_y.2x64x64.037.mes	12	2.296	4.800	29.6	138.5
037	D	136.9	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_D_r01_t30_x.2x64x64.037.mes	L12_195_VGE_D_r01_t30_y.2x64x64.037.mes	6	2.296	4.797	30.0	136.8
037	E	136.3	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_E_r04_t30_x.2x64x64.037.mes	L12_195_VGE_E_r04_t30_y.2x64x64.037.mes	7	2.296	4.795	30.1	136.2
037	F	135.8	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_F_r01_t30_x.2x64x64.037.mes	L12_195_VGE_F_r01_t30_y.2x64x64.037.mes	8	2.296	4.801	30.3	135.9
037	G	127.9	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_G_r01_t30_x.2x64x64.037.mes	L12_195_VGE_G_r01_t30_y.2x64x64.037.mes	9	2.296	4.805	30.5	127.9
037	Н	127.3	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_H_r04_t30_x.2x64x64.037.mes	L12_195_VGE_H_r04_t30_y.2x64x64.037.mes	12	2.296	4.795	30.7	127.4
037	I	126.8	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_I_r01_t30_x.2x64x64.037.mes	L12_195_VGE_I_r01_t30_y.2x64x64.037.mes	13	2.296	4.806	30.8	126.8
037	J	117.9	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_J_r01_t30_x.2x64x64.037.mes	L12_195_VGE_J_r01_t30_y.2x64x64.037.mes	14	2.296	4.807	29.2	118.0
037	К	117.3	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_K_r04_t30_x.2x64x64.037.mes	L12_195_VGE_K_r04_t30_y.2x64x64.037.mes	15	2.296	4.794	29.4	117.3
037	L	116.8	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_L_r01_t30_x.2x64x64.037.mes	L12_195_VGE_L_r01_t30_y.2x64x64.037.mes	16	2.296	4.804	29.6	116.9
037	М	99.4	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_M_r01_t30_x.2x64x64.037.mes	L12_195_VGE_M_r01_t30_y.2x64x64.037.mes	17	2.296	4.797	29.9	99.5
037	Ν	98.9	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_N_r04_t30_x.2x64x64.037.mes	L12_195_VGE_N_r04_t30_y.2x64x64.037.mes	18	2.296	4.801	30.1	99.0
037	0	98.3	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_O_r01_t30_x.2x64x64.037.mes	L12_195_VGE_O_r01_t30_y.2x64x64.037.mes	19	2.296	4.802	30.3	98.3
037	Р	68.2	0.0096	0.161	2.302	4.802	31.05.2007	L12_195_VGE_P_r01_t30_x.2x64x64.037.mes	L12_195_VGE_P_r01_t30_y.2x64x64.037.mes	20	2.296	4.801	30.4	68.2
037	Q	67.6	0.0096	0.161	2.302	4.802	31.05.2007	L12 195 VGE Q r04 t30 x.2x64x64.037.mes	L12 195 VGE Q r04 t30 y.2x64x64.037.mes	21	2.296	4.809	30.6	67.6
037	R	67.1	0.0096	0.161	2.302	4.802	31.05.2007	L12 195 VGE R r01 t30 x.2x64x64.037.mes	L12 195 VGE R r01 t30 y.2x64x64.037.mes	24	2.296	4.808	30.7	67.1
038	А	139.4	0.0096	0.255	2.302	7.606	23.03.2007	L12 195 VGE A r01 t30 x.2x64x64.038.mes	L12 195 VGE A r01 t30 v.2x64x64.038.mes	1	2.296	7.608	29.1	139.3
038	B	138.9	0.0096	0.255	2.302	7,606	23.03.2007	12 195 VGF B r04 t30 x 2x64x64.038 mes	12 195 VGE B r04 t30 v 2x64x64.038 mes	3	2.296	7.606	29.2	138.9
038	C	138.3	0.0096	0.255	2.302	7,606	23.03.2007	12 195 VGF C r01 t30 x 2x64x64.038 mes	12 195 VGE C r01 t30 v 2x64x64.038 mes	4	2.296	7.616	29.3	138.4
038	D	136.8	0.0096	0.255	2 302	7 606	23 03 2007	12 195 VGE D r01 t30 x 2x64x64 038 mes	12 195 VGE D r01 t30 v 2x64x64 038 mes	5	2 296	7 616	29.4	136.8
038	F	136.2	0.0096	0.255	2.302	7.606	23.03.2007	12 195 VGF F r04 t30 x 2x64x64.038 mes	12 195 VGE F r04 t30 v 2x64x64.038 mes	6	2.296	7.607	29.4	136.2
038	F	135.7	0.0096	0.255	2 302	7.606	23.03.2007	12 195 VGE E r01 t30 x 2x64x64 038 mes	$12_{12} 195 \text{ VGE} = 101_{100} 1200 \text{ y} 2x64x64.038 \text{ mes}$	7	2 296	7 606	29.5	135.7
038	Ġ	100.7	0.0096	0.200	2.002	7.606	23.03.2007	12 195 VGE G r01 t30 x 2x64x64 038 mes	L12_195_VGE_G_r01_t30_v_2x64x64.038 mes	8	2 296	7.597	29.6	127.7
038	с н	127.7	0.0096	0.200	2.002	7.606	23.03.2007	L12_195_VGE_H_r04_t30_x_2x64x64.038 mes	L12_195_VGE_H_r04_t30_v_2x64x64_038_mes	10	2 296	7.611	20.0	127.2
038	1	126.6	0.0096	0.200	2.002	7.606	23.03.2007	12 195 VGE r01 t30 x 2x64x64 038 mes	L12_195_VGE_L_r01_t30_v 2x64x64.038 mes	10	2 296	7 599	29.7	126.5
038		117 7	0.0096	0.255	2.302	7.606	23 03 2007	12 195 VGE 1 r01 t30 x 2x64x64 038 mes	12 195 VGE 1 r01 t30 v 2x64x64 038 mes	12	2 296	7 600	30.3	117.6
038	ĸ	117.2	0.0096	0.200	2.002	7.606	23.03.2007	12 195 VGE K r04 t30 x 2x64x64 038 mes	L12_195_VGE_K_r04_t30_v_2x64x64.038 mes	12	2 296	7.604	30.4	117.0
038		116.6	0.0096	0.200	2.002	7.000	23.03.2007	12 195 VGE 1 r01 t30 x 2x64x64.038 mes	L12_195_VGE_L_r01_t30_v2x64x64.038 mes	15	2 296	7.611	30.5	116.6
038	M	99.1	0.0096	0.200	2.002	7.606	23.03.2007	L12_195_VGE_M_r01_t30_x_2x64x64_038_mes	L12_195_VGE_M_r01_t30_v_2x64x64.038 mes	16	2 296	7.603	30.6	99.0
038	N	98.6	0.0096	0.200	2.002	7.000	23.03.2007	12 195 VGE N r04 t30 x 2x64x64 038 mes	L12_195_VGE_N_r04_t30_v_2x64x64.038 mes	17	2 296	7.604	30.6	98.6
038	0	98.0	0.0096	0.255	2 302	7.606	23.03.2007	L12_195_VGE_0_r01_t30_x_2x64x64.038 mes	L12_195_VGE_0_r01_t30_v_2x64x64.038 mes	18	2 296	7 601	30.7	98.0
038	P	67.7	0.0096	0.200	2.002	7.000	23.03.2007	L12_195_VGE_P_r01_t30_x_2x64x64_038_mes	$12_{12} 195_{\text{VGE}} = 101_{100} - 2264x64.038 \text{ mes}$	20	2 296	7.604	30.8	67.8
038		67.2	0.0096	0.255	2 302	7.606	23.03.2007	L12_195_VGE_0_r04_t30_x_2x64x64.038 mes	L12_195_VGE_0_r04_t30_v_2x64x64.038 mes	21	2 296	7 604	30.9	67.2
038	R	66.6	0.0096	0.200	2.002	7.000	23.07.2007	L12_195_VGE_8_r01_t30_x_2x64x64.038 mes	L12_195_VGE_R_r01_t30_v2x64x64.038 mes	22	2 296	7.608	30.9	66.6
030	Δ	130.3	0.0096	0.200	2 302	12 081	01.06.2007	112 195 VGE A r01 t30 x 2x64x64 039 mes	112 195 VGE a r01 t30 y 2y64y64 039 mes	1	2 296	12 075	30.4	130.2
039	B	138.5	0.0030	0.405	2.302	12.001	01.06.2007	12 195 VGF B r04 t30 x 2x64x64.039 mas	12 195 VGF B r04 t30 v 2x64x64.039 mes	2	2 296	12.073	30.4	138.8
030	<u>с</u>	138.2	0.0000	0.405	2.002	12.001	01.00.2007	L12_105_VGE_D_104_100_x.2x64x64.030 mes	L12_195_VGE_D_104_100_J.2x04x04.039.mes	2	2.200	12.000	30.5	138.3
039		136.2	0.0030	0.405	2.302	12.001	01.00.2007	L12_195_VGE_C_101_t30_x.2x64x64.039.mes	$L12_195_VGE_0_101_130_y.2x64x64.039.mes$	3	2.230	12.000	30.5	136.8
039	E	130.7	0.0090	0.405	2.302	12.001	01.06.2007	$L12_195_VGE_D_101_130_x.2x64x64.039.11es$	$L12_195_VGE_D_101_130_y.2x64x64.039.11es$	4 5	2.290	12.001	30.7	136.0
039	E	130.1	0.0090	0.405	2.302	12.001	01.06.2007	L12_195_VGE_E_104_130_x.2x64x64.039.mes	$L12_195_VGE_L_104_130_y.2x64x64.039.111es$	5	2.290	12.073	30.7	130.0
039	G	135.0	0.0090	0.405	2.302	12.001	01.06.2007	L12_195_VGE_1_101_130_x.2x64x64.039.111es	$L12_195_VGE_1_101_130_y.2x64x64.039.11es$	7	2.290	12.003	30.0	127.6
039	- G ц	127.0	0.0090	0.405	2.302	12.001	01.06.2007	L12_195_VGE_G_101_(30_x.2x04x04.039.mes	$L12_195_VGE_0101_00_y.2x04x04.039.000$	7 Q	2.290	12.001	30.9	127.0
039		127.0	0.0090	0.405	2.302	12.001	01.06.2007	L12_195_VGE_I_r01_t30_x 2x64x64.039.mes	$L12_195_VGE_11_104_130_y.2x04x04.039.11es$	0	2.290	12.004	20.5	127.1
039		120.3	0.0090	0.405	2.302	12.001	01.00.2007	12 105 V/CE r01 t20 x 2x64x64.030 mon	12 105 VCE 1 r01 t20 v 2v64v64 020 mon	9 11	2.230	12.090	29.0	117 /
039	J K	117.0	0.0096	0.405	2.302	12.001	01.00.2007	12 195 VGE K r04 t20 v 2v64v64.039.1118	12 195 VGE K r04 t30 v 2v64v64 030 mag	10	2.290	12.000	29.0	116.0
039		110.9	0.0090	0.405	2.302	12.001	01.00.2007	12 105 V/CE r01 t20 x 2x64x64.039.1185	12 105 VGE L r01 t20 V 2v64v64 020 mag	12	2.230	12.000	29.9	116.4
039		ו וס.4 מס ס	0.0096	0.405	2.302	12.001	01.00.2007	12 195 VGE M r01 t30 v 2v6/v6/ 030 moo	L12 195 VGE_L_101_00_y.2x04x04.039.1185	13	2.290	12.077	30.0	02 7
039	N	0.05 0 0	0.0090	0.405	2.302	12.001	01.00.2007	112 105 V/CE N r04 t20 v 2v64v64.039.11185	12 105 VGE N r04 t20 v 2v64v64 020 moo	14	2.290	12.000	20.1	90.7 02.2
039		90.2 07 7	0.0096	0.405	2.302	12.001	01.00.2007	12 195 VGE 0 r01 t30 v 2v6/v6/ 030 moo	12 195 VGE 0 r01 t30 v 2v64v64.039.000	10	2.290	12.074	30.2	90.3
039	Þ	51.1 670	0.0090	0.400	2.302	12.001	01.00.2007	12 105 V/CE D r01 t20 v 2v64v64 020 moo	12 105 V/CE P r01 t20 y 2x64x64 020 moo	17	2.290	12.070	30.3	51.10
039		07.2 66.6	0.0096	0.405	2.302	12.001	01.00.2007	12 195 VGE O r04 t30 v 2v64v64 039 mos	$12_{30} \sqrt{GE} = 101_{30} \sqrt{2x64x64.039}$ (112) 195 VGE O r04 t30 v 2x64x64.039 mos	10	2.290	12.003	30.0	2.10 66.6
039	R	66 1	0.0090	0.405	2.302	12.001	01.00.2007	12 195 VGE R r01 t30 v 2v64v64.039.11185	12 195 VGF R r01 t30 v 2v6/v6/ 030 mos	20	2.230	12.079	30.7	66 1
009	1 \	00.1	0.0030	0.403	2.502	12.001	01.00.2007	LIZ_100_VOL_IV_101_00_A.2A04A04.009.IIIE8	L12_100_00L_11_101_100_9.2A04A04.008.IIIes	20	2.230	12.000	50.0	00.1

												Betrieb	sdaten	
					1	1		T			(N	littelwerte	über 10	s)
Matrix-	Höhen-	Druck am GS (ü)	J _{Gas} [m/s]	Jwassar [m/s]	V _{cac} [nm³/h]	mwassar [kɑ/s]	Datum	File 1 (x)	File 2 (v)	DIAdem	V _{Gas}	m _{Wasser}	t GS	p(ü) GS
punkt	position	PI4-07 [kPa]	Einspeisung	• Wasser [,•]	Gas [···wasser [···ອ·•]	Dutum			Dirtuoini	[m³/h]	[kg/s]	[°C]	[kPa]
040	A	139.2	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.040.mes	L12_195_VGE_A_r01_t30_y.2x64x64.040.mes	26	2.296	19.133	30.4	139.2
040	В	138.6	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.040.mes	L12_195_VGE_B_r04_t30_y.2x64x64.040.mes	25	2.296	19.118	30.2	138.6
040	С	138.1	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.040.mes	L12_195_VGE_C_r01_t30_y.2x64x64.040.mes	23	2.296	19.110	30.1	138.0
040	D	136.5	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.040.mes	L12_195_VGE_D_r01_t30_y.2x64x64.040.mes	22	2.296	19.123	30.0	136.5
040	E	136.0	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.040.mes	L12_195_VGE_E_r04_t30_y.2x64x64.040.mes	21	2.296	19.114	29.9	136.0
040	F	135.4	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.040.mes	L12_195_VGE_F_r01_t30_y.2x64x64.040.mes	19	2.296	19.121	29.7	135.4
040	G	127.3	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.040.mes	L12_195_VGE_G_r01_t30_y.2x64x64.040.mes	17	2.296	19.130	30.5	127.3
040	<u> </u>	126.8	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.040.mes	L12_195_VGE_H_r04_t30_y.2x64x64.040.mes	15	2.296	19.120	30.4	120.8
040	- 1	120.2	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_1_r01_t30_x.2x64x64.040.mes	L12_195_VGE_1_r01_t30_y.2x64x64.040.mes	14	2.296	19.120	30.3	120.2
040	J	117.2	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_J_101_130_X.2X64X64.040.11105	L12_195_VGE_J_101_130_y.2x64x64.040.111es	12	2.290	19.120	30.2	117.2
040		110.0	0.0090	0.041	2.302	19.120	27.03.2007	L12_195_VGE_K_104_(30_x.2x04x04.040.111es	L12_195_VGE_K_104_t30_y.2x64x64.040.tiles	9	2.290	19.120	20.0	116.0
040	L	110.0	0.0090	0.041	2.302	19.120	27.03.2007	$L12_195_VGE_L_101_130_x.2x64x64.040.000$	$L12_195_VGE_L_101_t30_y.2x64x64.040.mes$	7	2.290	10 122	29.9	110.0
040	IVI N	90.3	0.0096	0.641	2.302	19.120	27.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.040 mes	L12_195_VGE_N_r04_t30_v_2x64x64.040.mes	6	2.290	19.132	29.7	90.3
040	0	97.7	0.0090	0.041	2.302	19.120	27.03.2007	12_{195} VGE O r01 t30 x 2x64x64 040 mes	12_{195} VGE O r01 t30 v 2x64x64.040 mes	5	2.230	10.123	29.0	97.7
040	P	97.2	0.0090	0.041	2.302	19.120	27.03.2007	$L12_195_VGE_0_101_130_x.2x04x04.040.00$	$L12_195_VGE_0_101_130_y.2x04x04.040.00$	3	2.290	10 12/	29.3	97.2
040	0	65.9	0.0090	0.041	2.302	19.120	27.03.2007	12_{195} VGE_1_101_130_x2x64x64.040 mes	12_{195} VGE_1_101_130_y.2x64x64.040.mes	4	2.230	10.124	29.2	65.0
040	R	65.3	0.0090	0.041	2.302	19.120	27.03.2007	$L12_195_VGE_Q_104_130_x.2x04x04.040.mes$	$L12_195_VGE_Q_104_130_y.2x64x64.040.mes$	2	2.290	10 122	29.1	65.3
040	Λ	138.0	0.0090	1 017	2.302	30.336	14.06.2007	L12_195_VGE_K_101_t30_x.2x64x64.040.mes	L12_195_VGE_1_101_t30_y.2x64x64.040.mes	16	2.230	20.240	20.5	120.0
041	R	130.9	0.0090	1.017	2.302	30.330	14.00.2007	L12_195_VGE_A_101_130_x.2x64x64.041.mes	$L12_195_VGE_A_{101_130_y}$ 2x64x64.041.mes	40	2.295	20 225	20.0	139.0
041	Б С	130.3	0.0090	1.017	2.302	30.330	14.06.2007	L12_195_VGE_B_104_t30_x.2x64x64.041.mes	L12_195_VGE_B_104_t30_y.2x64x64.041.tiles	42	2.290	30.323	29.0	130.3
041		137.0	0.0090	1.017	2.302	30.330	14.06.2007	L12_195_VGE_C_101_t30_x.2x04x04.041.mes	L12_195_VGE_C_101_t30_y.2x64x64.041.mes	41	2.290	20.347	29.4	137.9
041		130.2	0.0090	1.017	2.302	30.330	14.06.2007	$L12_195_VGE_D_101_130_x.2x04x04.041.111es$	$L12_195_VGE_D_101_t30_y.2x64x64.041.mes$	40	2.290	30.320	29.3	130.1
041		135.0	0.0090	1.017	2.302	20.330	14.00.2007	$L12_195_VGE_L_104_130_x.2x04x04.041.mes$	$L12_195_VGE_L_104_130_y.2x64x64.041.mes$	27	2.290	20.224	29.0	135.0
041	г С	100.1	0.0090	1.017	2.302	30.330	14.06.2007	L12_195_VGE_F_101_t30_x.2x64x64.041.tiles	L12_195_VGE_F_101_t30_y.2x64x64.041.mes	31	2.290	30.331	29.0	135.0
041	G L	120.0	0.0090	1.017	2.302	20.330	14.00.2007	$L12_195_VGE_G_101_130_x.2x04x04.041.mes$	$L12_195_VGE_G_101_130_y.2x04x04.041.mes$	20	2.290	20.331	20.4	120.7
041		120.3	0.0090	1.017	2.302	30.330	14.06.2007	$L12_195_VGE_{\Pi_104_130_x.2x04x04.041.111es}$	$L12_195_VGE_\Pi_104_t30_y.2x64x64.041.mes$	20	2.290	30.320	30.4	120.2
041	1	116.5	0.0090	1.017	2.302	30.330	14.00.2007	L12_195_VGE_1_101_130_x.2x64x64.041.mes	L12_195_VGE_1_101_130_y_2x64x64.041.mes	29	2.290	20.340	20.4	120.7
041	J	110.0	0.0090	1.017	2.302	30.330	14.06.2007	L12_195_VGE_J_101_130_X.2X04X04.041.111es	L12_195_VGE_5_101_130_y.2x64x64.041.mes	24	2.290	20.340	29.4	116.0
041		110.0	0.0090	1.017	2.302	30.330	14.06.2007	L12_195_VGE_K_104_130_x.2x04x04.041.11les	L12_195_VGE_K_104_130_y.2x64x64.041.11les	19	2.290	30.332	29.1	115.0
041	L	07.4	0.0090	1.017	2.302	30.330	14.00.2007	$L12_195_VGE_L_101_130_x.2x64x64.041.mes$	$L12_195_VGE_L_101_130_y.2x64x64.041.mes$	10	2.290	20 225	29.5	07.4
041	N	97.4	0.0090	1.017	2.302	30.330	14.06.2007	$L12_195_VGE_N r04_t30_x 2x64x64.041.mes$	$L12_195_VGE_N r04_t30_v2x64x64.041.mes$	12	2.290	30.333	29.0	97.4
041	N 0	90.0	0.0090	1.017	2.302	30.330	14.00.2007	$L12_195_VGE_N_104_130_x.2x64x64.041.mes$	$L12_195_VGE_N_104_130_y.2x64x64.041.mes$	10	2.290	20.337	29.0	90.0
041	P	90.2	0.0090	1.017	2.302	30.330	14.06.2007	$L12_195_VGE_0_101_130_x.2x04x04.041.mes$	$L12_195_VGE_0_101_130_y.2x04x04.041.mes$	0	2.290	30.343	29.0	90.2
041	0	64.4	0.0090	1.017	2.302	30.336	14.06.2007	12_{195} VGE_1_101_130_x2x64x64.041.mes	12_{195} VGE_1_101_130_y.2x64x64.041 mes	8	2.230	30.322	29.7	64.0
041	R	63.9	0.0090	1.017	2.302	30.336	14.06.2007	12_{195} VGE R r01 t30 x 2x64x64.041 mes	12_{195} VGE <u>R</u> r01 t30 v 2x64x64.041 mes	3	2.230	30.332	29.7	64.0
041	Λ	138.2	0.0090	1.017	2.302	48.054	19.06.2007	L12_195_VGE_1C_101_t30_x.2x64x64.042 mos	L12_105_VGE_A_r01_t30_v_2x64x64.042 mos	5 6b	2.200	48.063	20.0	128.2
042	B	130.2	0.0090	1.011	2.302	48.054	19.00.2007	$L12_195_VGE_A_{101_130_x.2x04x04.042.111es}$	$L12_195_VGE_A_{101_130_y}$ 2x64x64.042.mes	00 5b	2.290	40.003	30.2	130.2
042	C	137.0	0.0090	1.011	2.302	40.054	19.00.2007	L12_195_VGE_D_104_00_X2X04X04.042.mes	$L12_195_VGE_D_104_130_y.2x64x64.042$ mes	30 1h	2.235	40.023	30.0	137.1
042		137.0	0.0090	1.011	2.302	40.054	19.00.2007	12_{195} VGE_0_101_130_x.2x64x64.042 mes	12_{195} VGE D r01_t30 v 2x64x64.042 mes	302	2.235	40.043	30.4	135./
042	F	130.4	0.0030	1.011	2.302	40.034	19.00.2007	12_{195} VGE_D_101_130_x.2x04x04.042.mes	12_{195} VGE E r04 t30 v 2x64x64.042 mes	25a	2.230	48.061	30.7	13/ 0
042	E F	134.0	0.0090	1.011	2.302	40.054	19.00.2007	$L12_195_VGE_E_104_130_x.2x64x64.042.mes$	$L12_195_VGE_E_104_130_y.2x64x64.042.mes$	2/2	2.230	48.001	30.4	134.3
042	G	104.2	0.0030	1.011	2.302	40.034	29.06.2007	12_{195} VGE_1_101_130_x.2x64x64.042 mes	12_{195} VGE_1_101_130_y.2x64x64.042 mes	24a 6	2.230	48.038	30.0	125.8
042	<u> </u>	125.0	0.0090	1.011	2.302	40.054	29.06.2007	12_{195} VGE H r04 t30 x 2x64x64.042 mes	12_{195} VGE H r04 t30 v 2x64x64.042 mes	5	2.234	48.048	20.8	125.0
042		123.2	0.0090	1.011	2.302	48.054	29.06.2007	L12_195_VGE_I_104_00_x.2x04x04.042.mes	12_{195} VGE 1 r01 t30 v 2x64x64 042 mes	3	2.235	48.040	29.0	123.1
042		124.0	0.0090	1.011	2.302	40.054	19.06.2007	$12_{195} VGE_{101} 130 \times 2x64x64.042 mes$	12_{195} VGE 1 r01 t30 v 2x64x64.042 mes	172	2.235	48.053	20.0	115 1
042	ĸ	11/ 5	0.0090	1 611	2.302	40.054	19.00.2007	12 195 VGE K r04 t30 v 2v64v64 042 mes	12 195 VGE K r04 t30 v 2v64v64 042 mes	149	2.230	48 056	30.5	114 /
042		112.0	3000.0 3000.0	1 611	2.302	40.004	19.06.2007	12 195 VGE 101 130 v 2v64v64 042 mag	12 195 VGE 101 t30 v 2v64v64 042 mag	139	2.230	48 073	30.7	113.0
042	M	05 2	3000.0 3000 0	1 611	2.302	48.054	19.06.2007	12 195 VGF M r01 t30 v 2v64v64 042 mes	12125 VGF M r01 t30 v 2v64v64 042 mes	129	2.230	48 040	30.9	05.3
042	N	00.0 0/ 7	0.0030	1 611	2.302	48.054	19.06.2007	12 195 VGE N 101 130 x 2 x 64 x 64 042 mes	$1212_{100}VGE_{101}01_{100}_{100}$	102	2 206	48.040	20.0	0 <u>4</u> 7
042	0	94.7	0.0096	1 611	2.302	48 054	19.06 2007	12 195 VGF 0 r01 t30 x 2x64x64 042 mes	12 195 VGF 0 r01 t30 v 2x64x64 042 mes	62	2,296	48 065	29.6	94.2
042	P	61 9	<u> </u>	1 611	2.302	48 054	19.06 2007	12 195 VGF P r01 t30 x 2x64x64 042 mes	12 195 VGF P r01 t30 v 2x64x64 042 mes	5a	2,296	48 052	29.8	61 9
042	0	61.3	0.0096	1.611	2.302	48.054	19.06.2007	L12 195 VGE Q r04 t30 x 2x64x64.042 mes	L12 195 VGE Q r04 t30 v 2x64x64.042 mes	3a	2,296	48.061	30.1	61.3
042	R	60.7	0.0096	1 611	2.302	48 054	19.06.2007	L12 195 VGE R r01 t30 x 2x64x64 042 mes	L12 195 VGE R r01 t30 v 2x64x64 042 mes	1a	2.295	48.057	30.8	60.7
U.2		50.1	5.0000		2.502	10.004					00	.5.007	55.5	00.1

												Betriebs	sdaten	
											(N	littelwerte	über 10	: s)
Matrix-	Höhen-	Druck am GS (ü)	J _{Gas} [m/s]	Jwaaa [m/s]	V _{cas} [nm³/h]	mwaaa [ka/s]	Datum	File 1 (x)	File 2 (v)	DIAdem	V _{Gas}	m _{Wasser}	t GS	p(ü) GS
punkt	position	PI4-07 [kPa]	Einspeisung	• wasser [•]	Gas [···wasser [···ອ·•]	Dutum	1.10 1 (X)		Diritioni	[m³/h]	[kg/s]	[°C]	[kPa]
050	A	139.4	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_A_r01_t30_x.2x64x64.050.mes	L12_195_VGE_A_r01_t30_y.2x64x64.050.mes	25	3.611	12.094	29.6	139.2
050	B	138.9	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.050.mes	L12_195_VGE_B_r04_t30_y.2x64x64.050.mes	24	3.611	12.095	29.6	138.8
050	C	138.3	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.050.mes	L12_195_VGE_C_r01_t30_y.2x64x64.050.mes	23	3.611	12.081	29.5	138.2
050	D	136.8	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.050.mes	L12_195_VGE_D_r01_t30_y.2x64x64.050.mes	21	3.611	12.079	29.3	136.8
050	E	136.3	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.050.mes	L12_195_VGE_E_r04_t30_y.2x64x64.050.mes	19	3.611	12.084	29.2	136.4
050	F	135.7	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_F_r01_t30_x.2x64x64.050.mes	L12_195_VGE_F_r01_t30_y.2x64x64.050.mes	17	3.611	12.087	29.1	135.6
050	G	127.8	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_G_f01_t30_x.2x64x64.050.mes	L12_195_VGE_G_r01_t30_y.2x64x64.050.mes	16	3.611	12.104	29.0	127.9
050	<u> </u>	127.2	0.0151	0.405	3.621	12.081	23.02.2007	L12_195_VGE_H_104_t30_x.2x64x64.050.mes	L12_195_VGE_H_104_t30_y.2x64x64.050.mes	10	3.011	12.080	29.9	127.3
050	- 1	120.7	0.0151	0.405	3.021	12.001	23.02.2007	L12_195_VGE_1_101_t30_x.2x64x64.050.mes	L12_195_VGE_1_101_t30_y.2x64x64.050.mes	14	3.011	12.002	30.5	120.0
050	J	117.0	0.0151	0.405	3.021	12.001	23.02.2007	L12_195_VGE_J_101_130_X.2X04X04.050.mes	L12_195_VGE_J_101_130_y.2x64x64.050.mes	10	2.611	12.077	30.4	117.7
050		117.2	0.0151	0.405	3.021	12.001	23.02.2007	L12_195_VGE_K_104_130_x.2x04x04.050 mes	L12_195_VGE_K_104_130_y.2X04X04.050.mes	12	3.011	12.007	30.3	117.3
050	M	00.2	0.0151	0.405	3.021	12.001	23.02.2007	L12_195_VGE_L_101_t30_x.2x64x64.050 mes	$L12_195_VGE_L_101_t30_y.2x04x04.050$ mes	0 0	3.010	12.079	20.0	00.2
050	N	99.2	0.0151	0.405	3.621	12.001	23.02.2007	12 195 VGE_N r04 t30 x 2x64x64.050 mes	12 195 VGE N r04 t30 v 2x64x64.050 mes	8	3 611	12.077	29.9	99.2
050	0	98.1	0.0151	0.405	3 621	12.001	23.02.2007	L12_195_VGE_0_r01_t30_x.2x64x64.050 mes	L12_195_VGE_N_104_100_9.2x04x04.050.mcs	6	3 611	12.004	20.0	98.1
050	P	67.9	0.0151	0.405	3 621	12.001	23.02.2007	L12_195_VGE_P_r01_t30_x_2x64x64.050 mes	L12_195_VGE_P_r01_t30_v_2x64x64.050 mes	5	3 611	12.074	29.6	68.1
050	0	67.3	0.0151	0.100	3 621	12.001	23 02 2007	12 195 VGE Q r04 t30 x 2x64x64 050 mes	12 195 VGE Q r04 t30 v 2x64x64 050 mes	4	3 611	12.085	29.4	67.5
050	R	66.8	0.0151	0.405	3.621	12.081	23.02.2007	12 195 VGF R r01 t30 x 2x64x64.050 mes	12 195 VGF R r01 t30 v 2x64x64.050 mes	1	3.610	12.003	29.3	66.9
052	A	138.9	0.0151	1.017	3.621	30.336	22.02.2007	12 195 VGF A r01 t30 x 2x64x64.052 mes	12 195 VGF A r01 t30 v 2x64x64.052 mes	27	3.611	30,331	30.9	138.9
052	B	138.4	0.0151	1.017	3.621	30.336	22.02.2007	L12 195 VGE B r04 t30 x.2x64x64.052.mes	L12 195 VGE B r04 t30 v.2x64x64.052.mes	26	3.611	30.334	30.5	138.5
052	C	137.8	0.0151	1.017	3.621	30.336	22.02.2007	L12 195 VGE C r01 t30 x.2x64x64.052.mes	L12 195 VGE C r01 t30 v.2x64x64.052.mes	25	3.611	30.330	30.0	137.8
052	D	136.2	0.0151	1.017	3.621	30.336	15.06.2007	L12 195 VGE D r01 t30 x.2x64x64.052.mes	L12 195 VGE D r01 t30 v.2x64x64.052.mes	22	3.609	30.346	30.0	136.2
052	E	135.7	0.0151	1.017	3.621	30.336	22.02.2007	L12 195 VGE E r04 t30 x.2x64x64.052.mes	L12 195 VGE E r04 t30 y.2x64x64.052.mes	23	3.611	30.326	29.5	135.8
052	F	135.1	0.0151	1.017	3.621	30.336	15.06.2007	L12_195_VGE_F_r01_t30_x.2x64x64.052.mes	L12_195_VGE_F_r01_t30_y.2x64x64.052.mes	24	3.611	30.353	29.7	135.2
052	G	126.9	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_G_r01_t30_x.2x64x64.052.mes	L12_195_VGE_G_r01_t30_y.2x64x64.052.mes	16	3.611	30.339	30.0	126.9
052	Н	126.4	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_H_r04_t30_x.2x64x64.052.mes	L12_195_VGE_H_r04_t30_y.2x64x64.052.mes	14	3.611	30.335	29.4	126.3
052	Ι	125.8	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_I_r01_t30_x.2x64x64.052.mes	L12_195_VGE_I_r01_t30_y.2x64x64.052.mes	13	3.611	30.338	29.0	125.7
052	J	116.6	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_J_r01_t30_x.2x64x64.052.mes	L12_195_VGE_J_r01_t30_y.2x64x64.052.mes	12	3.611	30.338	29.8	116.7
052	К	116.1	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.052.mes	L12_195_VGE_K_r04_t30_y.2x64x64.052.mes	11	3.611	30.332	30.6	116.1
052	L	115.5	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.052.mes	L12_195_VGE_L_r01_t30_y.2x64x64.052.mes	8	3.611	30.363	30.3	115.5
052	М	97.6	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_M_r01_t30_x.2x64x64.052.mes	L12_195_VGE_M_r01_t30_y.2x64x64.052.mes	7	3.611	30.340	29.6	97.7
052	N	97.0	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_N_r04_t30_x.2x64x64.052.mes	L12_195_VGE_N_r04_t30_y.2x64x64.052.mes	6	3.611	30.330	29.4	97.0
052	0	96.4	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_O_r01_t30_x.2x64x64.052.mes	L12_195_VGE_O_r01_t30_y.2x64x64.052.mes	4	3.611	30.342	29.5	96.3
052	Р	65.3	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_P_r01_t30_x.2x64x64.052.mes	L12_195_VGE_P_r01_t30_y.2x64x64.052.mes	3	3.611	30.332	30.4	65.3
052	Q	64.8	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.052.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.052.mes	2	3.611	30.353	29.6	64.9
052	R	64.2	0.0151	1.017	3.621	30.336	22.02.2007	L12_195_VGE_R_r01_t30_x.2x64x64.052.mes	L12_195_VGE_R_r01_t30_y.2x64x64.052.mes	1	3.610	30.348	29.2	64.3
061	A	139.5	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_A_r01_t30_x.2x64x64.061.mes	L12_195_VGE_A_r01_t30_y.2x64x64.061.mes	9b	5.655	12.077	30.4	139.6
061	В	139.0	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_B_r04_t30_x.2x64x64.061.mes	L12_195_VGE_B_r04_t30_y.2x64x64.061.mes	8b	5.652	12.081	30.3	139.1
061	C	138.5	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_C_r01_t30_x.2x64x64.061.mes	L12_195_VGE_C_r01_t30_y.2x64x64.061.mes	7b	5.653	12.085	30.2	138.6
061	D	137.0	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_D_r01_t30_x.2x64x64.061.mes	L12_195_VGE_D_r01_t30_y.2x64x64.061.mes	6b	5.652	12.087	30.1	137.0
061	E	136.4	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_E_r04_t30_x.2x64x64.061.mes	L12_195_VGE_E_r04_t30_y.2x64x64.061.mes	50	5.656	12.087	29.9	136.5
061		135.9	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_F_r01_t30_x.2x64x64.061.mes	L12_195_VGE_F_r01_t30_y.2x64x64.061.mes	4b	5.656	12.0/2	29.7	136.0
061	G	128.0	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_G_r01_t30_x.2x64x64.061.mes	L12_195_VGE_G_r01_t30_y.2x64x64.061.mes	30	5.652	12.079	30.6	128.2
061	H	127.5	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_H_r04_t30_x.2x64x64.061.mes	L12_195_VGE_H_r04_t30_y.2x64x64.061.mes	20	5.647	12.053	30.5	127.6
001		126.9	0.0235	0.405	5.636	12.081	16.05.2007	L12_195_VGE_1_r01_t30_x.2x64x64.061.mes	L12_195_VGE_1_r01_t30_y.2x64x64.061.mes	10	5.651	12.082	30.4	120.8
061	J	118.2	0.0235	0.405	5.030	12.081	16.05.2007	L12_193_VGE_J_101_130_X.2X04X04.001.Mes	L12_193_VGE_J_101_130_Y.2X04X04.001.Mes	110	5.005	12.072	30.3	110.5
061		117.0	0.0235	0.405	5.030	12.001	16.05.2007	12 195 VGE 1 r01 t30 x 2x64x64.001.11185	12 195 VGE 1 r01 t30 v 2v64v64 061 mag	100	5.652	12.004	30.1	117.0
061	∟ M	00 R	0.0235	0.405	5.030	12.001	16.05.2007	12 195 VGE M r01 t30 v 2v64v64.061 mes	12 195 VGE M r01 t30 v 2v64v64.061 mes	Q2	5.002	12.000	30.1	00 R
061	N	00 S	0.0235	0.405	5.030	12.001	16.05.2007	12 195 VGE N r04 t30 v 2v64v64 061 mag	$12 195 \text{ VGE N } 101 100 \text{ y} 2x04x04.001.11105}$	79 79	5 651	12.104	20.0	00.0 00.2
061	0	08.7	0.0235	0.405	5 636	12.001	16.05 2007	12 195 VGE () r01 t30 x 2x64x64 061 mes	12 195 VGF O r01 t30 v 2x64x64.061 mes	6a	5 653	12.079	29.9	98.7
061	P	68 Q	0.0235	0.405	5 636	12.001	16.05 2007	12 195 VGF P r01 t30 x 2x64x64 061 mes	12 195 VGF P r01 t30 v 2x64x64 061 mes	5a	5.656	12 033	29.7	68.8
061	0	68.3	0.0235	0.405	5.636	12.081	16.05.2007	L12 195 VGE Q r04 t30 x 2x64x64.061 mes	L12 195 VGE Q r04 t30 v 2x64x64.061 mes	4a	5.654	12.093	29.6	68.2
061	R	67.8	0.0235	0.405	5.636	12.081	16.05.2007	L12 195 VGE R r01 t30 x.2x64x64.061.mes	L12 195 VGE R r01 t30 v.2x64x64.061.mes	1a	5.653	12.071	29.5	67.8
		1.10		200										

												Betriebs	daten	
											(N	littelwerte	über 10	s)
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kg/s]	t GS [°C]	p(ü) GS [kPa]
063	А	139.0	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_A_r01_t30_x.2x64x64.063.mes	L12_195_VGE_A_r01_t30_y.2x64x64.063.mes	25b	5.652	30.318	29.9	139.0
063	В	138.4	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_B_r04_t30_x.2x64x64.063.mes	L12_195_VGE_B_r04_t30_y.2x64x64.063.mes	24b	5.651	30.341	29.7	138.5
063	С	137.9	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_C_r01_t30_x.2x64x64.063.mes	L12_195_VGE_C_r01_t30_y.2x64x64.063.mes	22b	5.651	30.343	29.5	137.9
063	D	136.3	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_D_r01_t30_x.2x64x64.063.mes	L12_195_VGE_D_r01_t30_y.2x64x64.063.mes	21b	5.655	30.350	29.2	136.4
063	E	135.8	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_E_r04_t30_x.2x64x64.063.mes	L12_195_VGE_E_r04_t30_y.2x64x64.063.mes	20b	5.654	30.342	29.4	135.9
063	F	135.2	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_F_r01_t30_x.2x64x64.063.mes	L12_195_VGE_F_r01_t30_y.2x64x64.063.mes	18b	5.653	30.347	29.6	135.2
063	G	127.1	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_G_r01_t30_x.2x64x64.063.mes	L12_195_VGE_G_r01_t30_y.2x64x64.063.mes	17b	5.652	30.354	30.2	127.2
063	Н	126.5	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_H_r04_t30_x.2x64x64.063.mes	L12_195_VGE_H_r04_t30_y.2x64x64.063.mes	13b	5.650	30.344	30.7	126.5
063	I	126.0	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_I_r01_t30_x.2x64x64.063.mes	L12_195_VGE_I_r01_t30_y.2x64x64.063.mes	11b	5.650	30.313	30.8	125.9
063	J	116.8	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_J_r01_t30_x.2x64x64.063.mes	L12_195_VGE_J_r01_t30_y.2x64x64.063.mes	10b	5.652	30.330	29.6	116.8
063	К	116.3	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_K_r04_t30_x.2x64x64.063.mes	L12_195_VGE_K_r04_t30_y.2x64x64.063.mes	9b	5.652	30.338	29.4	116.5
063	L	115.7	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_L_r01_t30_x.2x64x64.063.mes	L12_195_VGE_L_r01_t30_y.2x64x64.063.mes	8b	5.652	30.343	29.2	115.6
063	М	97.9	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_M_r01_t30_x.2x64x64.063.mes	L12_195_VGE_M_r01_t30_y.2x64x64.063.mes	7b	5.651	30.334	29.6	97.9
063	Ν	97.3	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_N_r04_t30_x.2x64x64.063.mes	L12_195_VGE_N_r04_t30_y.2x64x64.063.mes	6b	5.653	30.335	29.9	97.3
063	0	96.8	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_O_r01_t30_x.2x64x64.063.mes	L12_195_VGE_O_r01_t30_y.2x64x64.063.mes	5b	5.648	30.336	30.2	96.8
063	Р	65.8	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_P_r01_t30_x.2x64x64.063.mes	L12_195_VGE_P_r01_t30_y.2x64x64.063.mes	4b	5.652	30.339	30.9	65.9
063	Q	65.3	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.063.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.063.mes	3b	5.652	30.339	30.7	65.4
063	R	64.7	0.0235	1.017	5.636	30.336	06.06.2007	L12_195_VGE_R_r01_t30_x.2x64x64.063.mes	L12_195_VGE_R_r01_t30_y.2x64x64.063.mes	1a	5.653	30.344	30.4	64.7
072	А	139.7	0.0368	0.405	8.825	12.081	20.02.2007	L12 195 VGE A r01 t30 x.2x64x64.072.mes	L12 195 VGE A r01 t30 v.2x64x64.072.mes	22	8.977	12.073	31.0	139.7
072	В	139.2	0.0368	0.405	8.825	12.081	20.02.2007	L12 195 VGE B r04 t30 x.2x64x64.072.mes	L12 195 VGE B r04 t30 v.2x64x64.072.mes	19	8.981	12.088	30.8	139.2
072	C	138.7	0.0368	0.405	8.825	12.081	20.02.2007	L12 195 VGE C r01 t30 x.2x64x64.072.mes	L12 195 VGE C r01 t30 v.2x64x64.072.mes	18	8.983	12.071	30.8	138.6
072	D	137.2	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF D r01 t30 x 2x64x64.072 mes	12 195 VGF D r01 t30 v 2x64x64 072 mes	17	8,981	12.091	30.7	136.9
072	F	136.7	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGE E r04 t30 x 2x64x64.072 mes	12 195 VGF F r04 t30 v 2x64x64.072 mes	16	8.983	12.092	30.6	136.5
072	F	136.1	0.0368	0 405	8 825	12 081	20.02.2007	12 195 VGE E r01 t30 x 2x64x64 072 mes	12295 VGE E r01 t30 v 2x64x64 072 mes	15	8 982	12 082	30.3	136.1
072	G	128.4	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF G r01 t30 x 2x64x64.072 mes	12 195 VGF G r01 t30 v 2x64x64 072 mes	14	8.981	12.084	30.1	128.2
072	H	127.9	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF H r04 t30 x 2x64x64.072 mes	12 195 VGF H r04 t30 v 2x64x64.072 mes	13	8.981	12.080	30.0	127.6
072	1	127.4	0.0368	0.405	8.825	12.081	20.02.2007	L12 195 VGE r01 t30 x.2x64x64.072.mes	L12 195 VGE r01 t30 v.2x64x64.072.mes	12	8.981	12.084	29.9	127.2
072	J	118.7	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF J r01 t30 x 2x64x64.072 mes	12 195 VGF J r01 t30 v 2x64x64.072 mes	11	8,981	12.064	29.8	118.7
072	ĸ	118.2	0.0368	0 405	8 825	12 081	20.02.2007	12 195 VGE K r04 t30 x 2x64x64 072 mes	12 195 VGE K r04 t30 v 2x64x64 072 mes	10	8 981	12 083	29.5	118.0
072	1	117.7	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF L r01 t30 x 2x64x64.072 mes	12 195 VGF 1 r01 t30 v 2x64x64.072 mes	9	8.983	12.087	29.4	117.6
072	M	100.8	0.0368	0 405	8 825	12 081	20.02.2007	12 195 VGE M r01 t30 x 2x64x64 072 mes	12 195 VGE M r01 t30 v 2x64x64 072 mes	8	8 983	12 073	29.3	100.8
072	N	100.2	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF N r04 t30 x 2x64x64.072 mes	12 195 VGF N r04 t30 v 2x64x64.072 mes	6	8.983	12.083	29.1	100.2
072	0	99.7	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGE O r01 t30 x 2x64x64.072 mes	12 195 VGE O r01 t30 v 2x64x64 072 mes	5	8.983	12.068	29.0	99.7
072	P	70.4	0.0368	0.405	8.825	12.081	20.02.2007	12 195 VGF P r01 t30 x 2x64x64.072 mes	12 195 VGF P r01 t30 v 2x64x64.072 mes	4	8.979	12.087	30.7	70.6
072	0	69.9	0.0368	0.405	8 825	12.001	20.02.2007	12 195 VGE Q r04 t30 x 2x64x64 072 mes	12 195 VGE Q r04 t30 v 2x64x64 072 mes	3	8 982	12.001	30.4	70.0
072	R	69.3	0.0368	0.405	8 825	12.001	20.02.2007	12 195 VGE R r01 t30 x 2x64x64 072 mes	12 195 VGF R r01 t30 v 2x64x64.072 mes	2	8.982	12.090	30.2	69.0
074	A	139.1	0.0368	1 017	8 825	30 336	15.06.2007	12 195 VGE A r01 t30 x 2x64x64 074 mes	12 195 VGE A r01 t30 v 2x64x64 074 mes	6	8 850	30 348	30.0	139.1
074	B	138.5	0.0000	1.017	8 825	30 336	21 02 2007	12 195 VGE B r04 t30 x 2x64x64.074 mes	$12_{12} 195_{0} VGE_{101_{0}} 130_{0} 2x64x64.074 mes$	27	8 982	30 349	30.1	138.5
074	C	138.0	0.0368	1.017	8 825	30 336	21.02.2007	12 195 VGE C r01 t30 x 2x64x64 074 mes	12 195 VGE C r01 t30 v 2x64x64 074 mes	25	8 981	30 339	29.8	137.8
074	D	136.4	0.0000	1.017	8 825	30 336	21.02.2007	12 195 VGE D r01 t30 x 2x64x64.074 mes	12 195 VGE D r01 t30 v 2x64x64 074 mes	24	8 982	30 353	20.0	136.2
074	F	135.9	0.0368	1.017	8 825	30,336	21.02.2007	12 195 VGE E r04 t30 x 2x64x64.074 mes	$12_{12} 195_{0} VGE_{101_{100}} 130_{0} 2x64x64.074 mes$	23	8 980	30 350	29.0	136.1
074	E	135.3	0.0000	1.017	8 825	30,336	21.02.2007	12 195 VGE E r01 t30 x 2x64x64.074 mes	12_{12} 195_VGE_E_104_100_3.2x04x04.074.mes	20	8 980	30.330	29.1	135.3
074	G	100.0	0.0300	1.017	8 825	30.336	21.02.2007	12 195 VGE G r01 t30 x 2x64x64.074 mes	12 195 VGE G r01 t30 v 2x64x64.074 mes	21	8 984	30.333	29.7	127.1
074		127.2	0.0368	1.017	8 825	30.336	21.02.2007	12 105 VGE H r04 t30 x 2x64x64.074 mes	112 195 VGE H r04 t30 v 2x64x64 074 mes	20	8 083	30.344	30.4	126.6
074	11	120.7	0.0300	1.017	0.020 8 825	30.330	21.02.2007	12 195 VGE I r01 t30 v 2v64v64.074 mes	12 195 VGE I r01 t30 v 2v64v64.074 mes	19	8 0.903	30.344	30.4	120.0
074		117 1	0.0000	1.017	0.02J 8 825	30.330	21.02.2007	12 195 VGE 1 r01 t30 x 2x64x64 074 mag	12 195 VGE 1 r01 t30 v 2v64v64 074 mag	17	8 08/	30.332	20.2	117 2
074	ĸ	116.6	0.0300	1.017	0.020 8 825	30.330	21.02.2007	12 195 VGE K r04 t30 v 2v64v64 074 mag	12 195 VGE K r04 t30 v 2v64v64.074 mes	15	8 082	30.333	29.9 20.6	116.4
074		116.0	0.0000	1 017	0.02J 8 825	30.330	21.02.2007	12 195 VGE 1 r01 t30 v 2v64v64.074 mes	12 195 VGF r01 t30 v 2v64v64.074 mag	13	8 086	30 330	32.0	115.4
074	M	0.0 QR 2	0.0000	1.017	0.02J 8 825	30.330	21.02.2007	12 195 VGE M r01 t30 x 2x64x64 074 mag	1212 195 VGE M r01 t30 v 2v64v64 074 mes	12	8 980	30 325	30.0	08.6
074	N	00.5 Q7 Q	0.0000	1 017	8 825	30.336	21.02.2007	12 195 VGE N r04 t30 v 2v64v64 074 mes	12 195 VGE N r04 t30 v 2v64v64 074 mes	10	8 981	30 341	30.6	07 R
074	0	07 2	0.0000	1.017	0.02J 8 825	30.330	21.02.2007	12 195 VGE 0 r01 t30 v 2v64v64.074 mes	12 195 VGE 0 r01 t30 v 2v64v64 074 mes	a	8 984	30 348	30.5	07.1
074	P	66 5	0.0000	1 017	8 825	30.336	21.02.2007	12 195 VGE P 101 130 v 2v64v64 074 mes	12 195 VGE P r01 t30 v 2v64v64 074 mes	8	8 083	30 33/	30.1	A AA
074	0	6.00 66 0	0.0368	1 017	8 825	30,336	21.02.2007	12 195 VGE, 101 100 x2x64x64.074 mes	12 195 VGE Q r04 t30 v 2x64x64 074 mes	7	8 981	30 325	29.5	66.1
074	R	65.4	0.0368	1 017	8 825	30 336	21.02 2007	12 195 VGE R r01 t30 x 2x64x64 074 mes	12 195 VGE R r01 t30 v 2x64x64 074 mes	6	8,984	30 320	29.2	65.3
014	1 \$	00.4	0.0000	1.017	0.020	50.550	21.02.2001	L.L00_00L_(_01_00002.00+.014.11163	vo_vovvvvvv+.vv+.vv+.iilea	5	0.004	00.020	20.2	00.0

											()	Betriebs	sdaten	(s)
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kq/s]	t GS [°C]	p(ü) GS [kPa]
083	A	140.0	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_A_r01_t30_x.2x64x64.083.mes	L12_195_VGE_A_r01_t30_y.2x64x64.083.mes	25	13.897	12.078	30.4	140.1
083	В	139.5	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_B_r04_t30_x.2x64x64.083.mes	L12_195_VGE_B_r04_t30_y.2x64x64.083.mes	24	13.896	12.085	30.4	139.6
083	С	139.0	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_C_r01_t30_x.2x64x64.083.mes	L12_195_VGE_C_r01_t30_y.2x64x64.083.mes	22	13.896	12.072	30.3	138.8
083	D	137.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_D_r01_t30_x.2x64x64.083.mes	L12_195_VGE_D_r01_t30_y.2x64x64.083.mes	21	13.898	12.072	30.2	137.7
083	E	137.0	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_E_r04_t30_x.2x64x64.083.mes	L12_195_VGE_E_r04_t30_y.2x64x64.083.mes	20	13.893	12.086	30.0	136.7
083	F	136.5	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_F_r01_t30_x.2x64x64.083.mes	L12_195_VGE_F_r01_t30_y.2x64x64.083.mes	18	13.897	12.080	30.0	136.6
083	G	129.0	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_G_r01_t30_x.2x64x64.083.mes	L12_195_VGE_G_r01_t30_y.2x64x64.083.mes	17	13.896	12.075	29.8	128.9
083	Н	128.5	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_H_r04_t30_x.2x64x64.083.mes	L12_195_VGE_H_r04_t30_y.2x64x64.083.mes	16	13.896	12.079	30.7	128.6
083		128.0	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_I_r01_t30_x.2x64x64.083.mes	L12_195_VGE_I_r01_t30_y.2x64x64.083.mes	14	13.897	12.075	30.5	128.0
083	J	119.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_J_r01_t30_x.2x64x64.083.mes	L12_195_VGE_J_r01_t30_y.2x64x64.083.mes	13	13.898	12.079	30.5	119.4
083	K	119.1	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_K_r04_t30_x.2x64x64.083.mes	L12_195_VGE_K_r04_t30_y.2x64x64.083.mes	12	13.897	12.074	30.4	119.2
083	L	118.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_L_r01_t30_x.2x64x64.083.mes	L12_195_VGE_L_r01_t30_y.2x64x64.083.mes	11	13.893	12.066	30.3	118.7
083	М	102.2	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_M_r01_t30_x.2x64x64.083.mes	L12_195_VGE_M_r01_t30_y.2x64x64.083.mes	8	13.893	12.087	30.2	102.1
083	N	101.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_N_r04_t30_x.2x64x64.083.mes	L12_195_VGE_N_r04_t30_y.2x64x64.083.mes	6	13.894	12.073	30.2	101.6
083	0	101.1	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_O_r01_t30_x.2x64x64.083.mes	L12_195_VGE_O_r01_t30_y.2x64x64.083.mes	5	13.894	12.074	30.1	101.3
083	Р	72.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_P_r01_t30_x.2x64x64.083.mes	L12_195_VGE_P_r01_t30_y.2x64x64.083.mes	4	13.895	12.104	29.4	72.6
083	Q	72.1	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.083.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.083.mes	2	13.894	12.080	29.4	71.8
083	R	71.6	0.0574	0.405	13.765	12.081	14.05.2007	L12_195_VGE_R_r01_t30_x.2x64x64.083.mes	L12_195_VGE_R_r01_t30_y.2x64x64.083.mes	1	13.891	12.088	29.3	71.4
085	A	139.2	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_A_r01_t30_x.2x64x64.085.mes	L12_195_VGE_A_r01_t30_y.2x64x64.085.mes	41	13.898	30.346	30.6	139.3
085	В	138.7	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_B_r04_t30_x.2x64x64.085.mes	L12_195_VGE_B_r04_t30_y.2x64x64.085.mes	37	13.897	30.325	29.8	138.8
085	С	138.1	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_C_r01_t30_x.2x64x64.085.mes	L12_195_VGE_C_r01_t30_y.2x64x64.085.mes	31	13.894	30.331	30.8	137.9
085	D	136.6	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_D_r01_t30_x.2x64x64.085.mes	L12_195_VGE_D_r01_t30_y.2x64x64.085.mes	30	13.893	30.335	30.6	136.6
085	E	136.1	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_E_r04_t30_x.2x64x64.085.mes	L12_195_VGE_E_r04_t30_y.2x64x64.085.mes	25	13.893	30.329	30.1	136.2
085	F	135.5	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_F_r01_t30_x.2x64x64.085.mes	L12_195_VGE_F_r01_t30_y.2x64x64.085.mes	24	13.894	30.323	29.9	135.6
085	G	127.6	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_G_r01_t30_x.2x64x64.085.mes	L12_195_VGE_G_r01_t30_y.2x64x64.085.mes	19	13.892	30.347	29.6	127.5
085	Н	127.0	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_H_r04_t30_x.2x64x64.085.mes	L12_195_VGE_H_r04_t30_y.2x64x64.085.mes	18	13.895	30.348	29.4	127.1
085	I	126.5	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_I_r01_t30_x.2x64x64.085.mes	L12_195_VGE_I_r01_t30_y.2x64x64.085.mes	17	13.896	30.320	29.3	126.6
085	J	117.6	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_J_r01_t30_x.2x64x64.085.mes	L12_195_VGE_J_r01_t30_y.2x64x64.085.mes	16	13.890	30.317	30.1	117.6
085	K	117.0	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_K_r04_t30_x.2x64x64.085.mes	L12_195_VGE_K_r04_t30_y.2x64x64.085.mes	15	13.896	30.320	30.0	116.9
085	L	116.5	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_L_r01_t30_x.2x64x64.085.mes	L12_195_VGE_L_r01_t30_y.2x64x64.085.mes	14	13.894	30.347	29.8	116.2
085	М	99.0	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_M_r01_t30_x.2x64x64.085.mes	L12_195_VGE_M_r01_t30_y.2x64x64.085.mes	13	13.895	30.341	29.1	98.9
085	N	98.5	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_N_r04_t30_x.2x64x64.085.mes	L12_195_VGE_N_r04_t30_y.2x64x64.085.mes	12	13.886	30.330	29.0	98.5
085	0	97.9	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_O_r01_t30_x.2x64x64.085.mes	L12_195_VGE_O_r01_t30_y.2x64x64.085.mes	8	13.893	30.340	29.9	97.9
085	Р	67.7	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_P_r01_t30_x.2x64x64.085.mes	L12_195_VGE_P_r01_t30_y.2x64x64.085.mes	6	13.894	30.329	30.5	67.6
085	Q	67.2	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.085.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.085.mes	7	13.895	30.348	30.6	67.1
085	R	66.6	0.0574	1.017	13.765	30.336	05.06.2007	L12_195_VGE_R_r01_t30_x.2x64x64.085.mes	L12_195_VGE_R_r01_t30_y.2x64x64.085.mes	1	13.895	30.342	30.0	66.8
094	A	140.4	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_A_r01_t30_x.2x64x64.094.mes	L12_195_VGE_A_r01_t30_y.2x64x64.094.mes	23	21.609	12.074	30.2	139.9
094	В	139.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.094.mes	L12_195_VGE_B_r04_t30_y.2x64x64.094.mes	21	21.592	12.070	30.2	140.0
094	С	139.5	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.094.mes	L12_195_VGE_C_r01_t30_y.2x64x64.094.mes	20	21.608	12.085	30.0	140.0
094	D	138.1	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.094.mes	L12_195_VGE_D_r01_t30_y.2x64x64.094.mes	19	21.593	12.082	29.9	138.1
094	E	137.6	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.094.mes	L12_195_VGE_E_r04_t30_y.2x64x64.094.mes	18	21.610	12.078	29.6	136.9
094	F	137.1	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_F_r01_t30_x.2x64x64.094.mes	L12_195_VGE_F_r01_t30_y.2x64x64.094.mes	17	21.609	12.094	29.6	136.6
094	G	129.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_G_r01_t30_x.2x64x64.094.mes	L12_195_VGE_G_r01_t30_y.2x64x64.094.mes	15	21.606	12.079	29.3	129.9
094	Н	129.4	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_H_r04_t30_x.2x64x64.094.mes	L12_195_VGE_H_r04_t30_y.2x64x64.094.mes	14	21.609	12.074	29.2	130.0
094	I	128.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_I_r01_t30_x.2x64x64.094.mes	L12_195_VGE_I_r01_t30_y.2x64x64.094.mes	13	21.610	12.071	29.1	129.3
094	J	120.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_J_r01_t30_x.2x64x64.094.mes	L12_195_VGE_J_r01_t30_y.2x64x64.094.mes	12	21.608	12.074	29.0	121.0
094	ĸ	120.4	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.094.mes	L12_195_VGE_K_r04_t30_y.2x64x64.094.mes	11	21.610	12.076	30.0	120.8
094	L	119.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.094.mes	L12_195_VGE_L_r01_t30_y.2x64x64.094.mes	9	21.611	12.089	29.8	120.1
094	M	104.2	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_M_r01_t30_x.2x64x64.094.mes	L12_195_VGE_M_r01_t30_y.2x64x64.094.mes	8	21.608	12.0/1	29.7	103.7
094	N O	103.7	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_N_I04_t30_X.2X64X64.094.mes	L12_195_VGE_N_I04_I30_9.2X64X64.094.mes	6	21.610	12.068	29.5	103.3
094		103.2	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_U_101_130_X.2X64X64.094.mes	L12_195_VGE_U_101_t30_y.2X64X64.094.mes	/ 	21.609	12.080	29.6	103.2
094	۲ 0	75.9	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_P_101_130_X.2X64X64.094.Mes	L12_195_VGE_P_101_130_9.2X64X64.094.mes	5	21.606	12.097	29.4	75.9
094		75.4	0.0898	0.405	21.535	12.081	15.02.2007	L12_195_VGE_Q_104_130_X.2X04X04.094.Mes	L12_193_VGE_Q_104_130_y.2X04X04.094.Mes	3	21.008	12.000	29.1	71.0
094	л	75.0	0.0898	0.405	∠1.535	12.001	10.02.2007	LIZ_190_VGE_R_101_I30_X.ZX04X04.094.MeS	LIZ_190_VGE_R_101_130_9.2X64X64.094.MeS		∠1.008	12.084	29.1	74.9

Nation Division B0(0) Less 1000 Numer (high Less 1000 File 1 (a) File 2 (b) Division B1 (b) Division B1 (c) Division B1 (()	Betrieb	sdaten über 10	s)
m m	Matrix-	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kɑ/s]	t GS	p(ü) GS
998 1	096	A	139.4	0.0898	1.017	21.535	30.336	15.06.2007	L12 195 VGE A r01 t30 x.2x64x64.096.mes	L12 195 VGE A r01 t30 v.2x64x64.096.mes	3	21.605	30.330	30.4	139.4
PDB C 198.5 D0889 1.017 21.828 30.338 10.2207 12.18 VE_D 30.28 10.202 10.21 10.21 10.21 10.21 10.21 10.21 10.21 10.22 10.21 1	096	В	138.9	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE B r04 t30 x.2x64x64.096.mes	L12 195 VGE B r04 t30 v.2x64x64.096.mes	40	21.611	30.324	29.8	138.9
00 1568 0.089 107 71337 2003 107 108 107 107 108 107 108 107 108 107 108 107 108 107 108 10	096	С	138.3	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE C r01 t30 x.2x64x64.096.mes	L12 195 VGE C r01 t30 y.2x64x64.096.mes	39	21.609	30.344	29.9	138.0
098 E 198.3 0.088 1.017 21:85 30:38 192.2007 12:18 VCE_LPULES_2007	096	D	136.8	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE D r01 t30 x.2x64x64.096.mes	L12 195 VGE D r01 t30 v.2x64x64.096.mes	38	21.608	30.322	30.6	136.7
998 F 158.5 0.0388 1.017 21.55.5 30.248 192.2000 1/2.190, VSE_F, 0.116, 0.2, 2444440 (0.08, mes.) 1/2.111, 0.2, 2444440 (0.04, m	096	E	136.3	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE E r04 t30 x.2x64x64.096.mes	L12 195 VGE E r04 t30 v.2x64x64.096.mes	36	21.609	30.332	30.4	136.2
988 G 1260 0.0888 1.017 21:85 30:338 1982/2007 L1:189 V/2E G (1) 22:84 V/2E G (1) 22:84 V/2E G (1) 22:84 V/2E G (1) 22:84 V/2E G (1) 22:85 V/2E G (2) 22:85 V/2E C (2) 22:85 V/2E C (2) 22:85 V/2E C (2) 22:85 V/2E 22:85 V/	096	F	135.8	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE F r01 t30 x.2x64x64.096.mes	L12 195 VGE F r01 t30 v.2x64x64.096.mes	34	21.607	30.324	29.9	135.6
006 H 117.7 0.0088 1.017 21.58 90.22007 Lig, 106, 2204 kd, 107, med. 21.58 90.22007 Lig, 106, 2204 kd, 107, med. 90.2100 107, 21.58 90.2100 107, 21.58 90.338 100.22007 Lig, 106, 2204 kd, 106, med. 108, 21.50 21.58 90.53 21.58 90.53 21.58 90.53 100.22007 Lig, 106, 2204 kd, 106, med. 117.2 108, 20.53 101.2007 113.5 90.53 100.2007 112.55 90.53 101.2007 113.57 90.55 113.57 100.2007 112.55 90.53 100.2007 112.55 90.53 100.2007 112.55 90.53 100.2007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007 112.55 90.336 100.22007	096	G	128.0	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE G r01 t30 x.2x64x64.096.mes	L12 195 VGE G r01 t30 v.2x64x64.096.mes	33	21.609	30.339	29.6	128.0
096 1 178.6 0.068 1.07 215.8 093.03 192.2007 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 192.0 121.05 003.05 121.05 003.05 121.05 003.05 121.05 003.05 121.05 003.05 121.05 003.05 121.05 003	096	Н	127.5	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE H r04 t30 x.2x64x64.096.mes	L12 195 VGE H r04 t30 v.2x64x64.096.mes	30	21.609	30.340	29.1	127.5
Open J 118.2 0.088 1.017 21.583 30.388 30.22007 12.195 VCE_L 107.107 22.4664.088.me. 19 21.188 30.31 15.3 066 K 1177 0.0881 1.017 21.553 30.338 30.22007 12.153 VCE_L 10.107 22.4664.088.me. 13.155 VCE_L 10.107 22.4664.088.me. 14.111 30.338 30.31 35.35 30.338 30.31 35.35 VCE_L 10.107 22.4664.088.me. 14.111 30.338 30.338 30.31 30.338 30.33 30.338 30.33	096		126.9	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE r01 t30 x.2x64x64.096.mes	L12 195 VGE r01 t30 v.2x64x64.096.mes	28	21.609	30.335	29.6	126.8
Bes K 117.7 0.088 1.017 21.83 30.336 19.22.207 12.185 Vice L (r) 18.7 Vice L (096	J	118.2	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE J r01 t30 x.2x64x64.096.mes	L12 195 VGE J r01 t30 y.2x64x64.096.mes	16	21.608	30.336	30.1	118.5
006 L 117.2 0.088 1.017 21.36 30.38 100.2207 L12_106_VCE_LOT_20155_VCE_LOT_2015_VCE_LOT_20155_VCE_LOT_20155_VCE_LOT_201	096	К	117.7	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE K r04 t30 x.2x64x64.096.mes	L12 195 VGE K r04 t30 y.2x64x64.096.mes	15	21.609	30.336	29.9	117.5
068 M 1001 0.0888 1017 21:58 VGE ALL VGE VGE ALL	096	L	117.2	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE L r01 t30 x.2x64x64.096.mes	L12 195 VGE L r01 t30 y.2x64x64.096.mes	14	21.610	30.350	29.8	117.1
068 N 966 0.0888 1.017 21:55 30:328 192:207 112:2185 VCEI_ORIZ VCEI_VSEV_CEI_ORIZ VCEI_VSEV_CEI_VSEV_CEI_VSEV_CEI_VSEV_CEI_ORIZ VCEI_VSEV_CEI_VS	096	М	100.1	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE M r01 t30 x.2x64x64.096.mes	L12 195 VGE M r01 t30 v.2x64x64.096.mes	10	21.607	30.336	30.7	100.2
066 0 99.1 0.0886 1.017 21:538 30:338 10:2007 L12 19: VEE 0.01 30.22007 L12 19: VEE 0.01 10: 20: VEE 10: 20: VEE <th< td=""><td>096</td><td>Ν</td><td>99.6</td><td>0.0898</td><td>1.017</td><td>21.535</td><td>30.336</td><td>19.02.2007</td><td>L12 195 VGE N r04 t30 x.2x64x64.096.mes</td><td>L12 195 VGE N r04 t30 v.2x64x64.096.mes</td><td>9</td><td>21.612</td><td>30.332</td><td>30.5</td><td>99.7</td></th<>	096	Ν	99.6	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE N r04 t30 x.2x64x64.096.mes	L12 195 VGE N r04 t30 v.2x64x64.096.mes	9	21.612	30.332	30.5	99.7
066 P 60.5 0.0888 1.017 21582 30.338 10.2207 11.2 12.165 02.266444 00.888 12.195 02.066 0.688 1.017 21.558 30.338 10.02207 11.2 15.05 0.014 22.56444 0.0888 11.2 15.05 0.014 22.56444 0.0588 11.2 19.05 A 14.10 0.1400 0.0408 33.574 12.015 10.2 12.95 VEE A.0130 22.66444 0.0588 11.2 19.05 A 11.01 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444 10.0180 22.66444	096	0	99.1	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE O r01 t30 x.2x64x64.096.mes	L12 195 VGE O r01 t30 v.2x64x64.096.mes	8	21.607	30.332	30.4	99.5
006 0 66.9 0.0698 1.017 21.153 30.386 190.22071 112.195 VGE 0.101 21.195 VGE 0.113 21.201 30.347 22.86 61.1 105 A 141.0 0.4400 0.4603 33.574 12.081 100.2207 112.195 VGE A.014.00 22.87 440.0 105 B 140.0 0.4603 33.574 12.081 100.52007 112.195 VGE A.014.00 22.46644.050.mes 31 33.3569 12.082 23.1400 105 D 138.8 0.4400 0.4663 33.574 12.081 100.52007 112.195 VGE P.01 100.2246464 100.58.207 12.195 VGE P.01 100.2246464 100.58.207 12.195 VGE P.01 100.2246464 100.58.207 12.995 28.1 13.33.99 12.095 28.1 13.33.99 12.095 28.1 13.33.99 12.095 28.1 13.33.99 12.095 28.1	096	P	69.5	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE P r01 t30 x.2x64x64.096.mes	L12 195 VGE P r01 t30 y.2x64x64.096.mes	5	21.609	30.327	30.0	69.8
0968 F 66.4 0.0698 1.117 21.165 30.336 190.22007 1/12 195 VEE A 11.115 X 21.05 X A 1.115 X 1.115 X 1.115 X 21.115 X/GE A 1.115 X/GE A	096	Q	68.9	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE Q r04 t30 x.2x64x64.096.mes	L12 195 VGE Q r04 t30 v.2x64x64.096.mes	3	21.609	30.347	29.8	69.1
166 A 1410 0.1400 0.406 33.574 12.08 10.05 207 12.1 10.05 207 12.0 10.05 207 10.05 207	096	R	68.4	0.0898	1.017	21.535	30.336	19.02.2007	L12 195 VGE R r01 t30 x.2x64x64.096.mes	L12 195 VGE R r01 t30 v.2x64x64.096.mes	1	21.610	30.341	29.5	68.1
105 B 140.6 0.4400 0.405 33.574 12.081 1005.2007 112.185 VGE 1.0130 22.64464.105.mes 12.185 VGE 2.07130 22.64464.105.mes 133.585 12.082 22.67 140.6 105 D 138.8 0.1400 0.405 33.574 12.081 1005.2007 112.185 VGE 2.071.130 22.64464.105.mes 13 33.595 12.081 20.6207 11.195 VGE 2.644.105.mes 13.03 23.598 12.081 20.6207 11.195 VGE 2.674.105.00 22.64464.105.mes 13 33.598 12.081 20.6207 11.195 VGE 2.671.105 24.6446.105.mes 12.195 VGE 6.71.103 22.64464.105.mes 12.35.584 12.061 22.63.588 12.061 22.63.586 12.061 22.63.588 12.061 23.558 12.061 22.64464.105.mes 12.35.586 12.061 23.5584 12.061 22.64464.105.mes 12.35.586 12.061 23.5586 12.061 23.5586 12.061 23.5586 12.061 23.5586 12.061 <td< td=""><td>105</td><td>А</td><td>141.0</td><td>0.1400</td><td>0.405</td><td>33.574</td><td>12.081</td><td>10.05.2007</td><td>L12 195 VGE A r01 t30 x.2x64x64.105.mes</td><td>L12 195 VGE A r01 t30 v.2x64x64.105.mes</td><td>36</td><td>33.596</td><td>12.076</td><td>29.8</td><td>140.9</td></td<>	105	А	141.0	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE A r01 t30 x.2x64x64.105.mes	L12 195 VGE A r01 t30 v.2x64x64.105.mes	36	33.596	12.076	29.8	140.9
105 C 140.1 0.1400 0.405 33.574 12.081 105.9207 112.195 VGE C, 01.302 22.644644.105.mes 12.195 VGE E, 01.4030 22.644644.105.mes 12.201 10.05 22.91 13.20 14.000 0.405 33.574 12.081 10.05 20.071 12.195 VGE E, 01.4030 22.644644.105.mes 12.195 VGE E, 01.4030 22.644644.105.mes 12.33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.009 22.61 33.598 12.081 33.598 12.081 33.598 12.081 33.598 12.081 33.598 12.081 33.598 12.081 33.598 12.081 33.598 <	105	B	140.6	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGF B r04 t30 x 2x64x64 105 mes	12 195 VGF B r04 t30 v 2x64x64 105 mes	34	33,595	12.082	29.7	140.6
105 D 138.8 0.1400 0.408 33.574 12.081 12.185 VGE Dot 12.185 VGE Dot 13.3 0.1400 0.406 33.574 12.081 0.062 12.185 VGE 12.185	105	C	140.1	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE C r01 t30 x.2x64x64.105.mes	L12 195 VGE C r01 t30 v.2x64x64.105.mes	33	33.595	12.085	29.6	140.3
100 E 138.3 0.1400 0.406 33.574 12.081 109.5207 121.185 VCE F. 01.30 22.844844.105.mes 30 33.593 12.079 29.1 106 F 137.2 0.1400 0.406 33.574 12.081 VCE F. 01.30 22.844644.105.mes 28 33.594 12.091 22.9 73.0 105 H 1302 0.1400 0.406 33.574 12.081 VCE 11.2195 VCE 1.01.30 22.84464.105.mes 28 33.592 12.087 22.01 130.2 20.84464.105.mes 12.195 VCE 1.01.30 22.84464.105.mes 12.33 12.095 VCE 1.01.30 22.84464.105.mes 12.33 33.592 12.085 12.081 12.195 VCE 1.01.30 22.84464.105.mes 12.33 13.208 12.085 12.195 VCE 1.01.30 22.84464.105.mes 12.33 12.195 VCE 1.01.30 22.84464.105.mes 12.33 12.085 12.085 12.085	105	D	138.8	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGE D r01 t30 x 2x64x64 105 mes	12 195 VGF D r01 t30 v 2x64x64 105 mes	31	33,594	12.081	29.5	138.4
105 F 137 9 0.1400 0.405 33.574 12.191 10.65 2007 12.12 195 VGE F. not 130 2.264464 105.mes 29 33.594 12.081 20.82 137.9 105 G 1312 0.1400 0.405 33.574 12.081 10.65 2007 12.185 VGE F. not 130 2.264464 105.mes 28 33.598 12.081 2.08 13.09 2.244464 105.mes 28 33.598 12.087 2.201 130.2 2.1400 0.406 40.05 33.574 12.081 10.65 2007 12.185 VGE 1.0130 2.264464 105.mes 12.185 VGE 1.0130 2.2644644 105.mes </td <td>105</td> <td>F</td> <td>138.3</td> <td>0.1400</td> <td>0.405</td> <td>33.574</td> <td>12.081</td> <td>10.05.2007</td> <td>12 195 VGE F r04 t30 x 2x64x64 105 mes</td> <td>12 195 VGE F r04 t30 v 2x64x64 105 mes</td> <td>30</td> <td>33,593</td> <td>12.079</td> <td>29.4</td> <td>138.2</td>	105	F	138.3	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGE F r04 t30 x 2x64x64 105 mes	12 195 VGE F r04 t30 v 2x64x64 105 mes	30	33,593	12.079	29.4	138.2
105 G 131.2 0.1400 0.405 33.724 12.081 10.05.2007 12.105 16.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 17.2 19.5 19.5 17.2 19.5 17.2 19.5 19.5 17.2 19.5 17.2 19.5 17.2 19.5 19.5 11.2 19.5	105	F	137.9	0 1400	0 405	33 574	12 081	10.05.2007	12 195 VGE E r01 t30 x 2x64x64 105 mes	12 195 VGF F r01 130 y 2x64x64 105 mes	29	33 594	12 081	29.2	137.7
106 H 1307 0.1400 0.446 33.574 12.08 VGE H, rdt 30, x2.444-41.05.mes 12.19 VGE 10.10 x2.444-41.05.mes 12.19	105	G	131.2	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGE G r01 t30 x 2x64x64 105 mes	12 195 VGF G r01 t30 v 2x64x64 105 mes	26	33,594	12.090	29.1	130.9
106 1 1302 0.1400 0.446 33.574 12.08 105 101 12.195 VGE 1.01 100 2.264464.105 mes 112.195 VGE 1.01 0.01 0.264464.105 mes 112.195 VGE 1.01 0.01 0.02 2.264464.105 mes 112.195 VGE 1.01 0.01 0.02 2.264464.105 mes 112.195 VGE 1.01 0.02 2.264464.105 mes 12.195 VGE 1.01 0.02 2.264464.105 mes 12.195 VGE 1.01 0.02 2.264464.105 mes 12.195 VGE 1.01	105	н Н	130.7	0 1400	0 405	33 574	12 081	10.05.2007	12 195 VGE H r04 t30 x 2x64x64 105 mes	12 195 VGF H r04 t30 v 2x64x64 105 mes	25	33 598	12 087	29.0	130.8
105 J 1227 0.1400 0.405 33.574 12.081 1005.2007 12.195 VGE J. 101 127 23.503 12.085 012 122.081 1005.2007 12.195 VGE J. 101 22.264/84/105 mes 17 33.503 12.085 02.272 12.08 VGE J. 101 22.264/84/105 mes 14 33.595 12.095 VGE J. 101 22.264/84/105 mes 14 33.595 12.071 22.92 12.18 VGE J. 101 22.264/84/105 mes 14 33.595 12.071 22.92 12.18 VGE J. 101 22.664/84/105 mes 14 33.594 12.071 22.5 106.5 105 0 1061 0.1400 0.405 33.574 12.081 10.05.2007 12.195 VGE J. 105 VGE J. 105 2.264/44/105 mes 12.195 VGE J. 105 Z.264/44/105 mes 12.195 VGE J. 105 Z.264/44/105 mes 12.195 VGE J. 105 Z.264/44/105 mes 13.592	105	1	130.2	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGF r01 t30 x 2x64x64 105 mes	12 195 VGF 1 r01 t30 v 2x64x64 105 mes	23	33,592	12.085	29.1	130.4
105 K 122.3 0.1400 0.465 33.574 12.081 10.05.2007 12.12 195 VE K. rod 130 x2x64x64.105.mes 11.2 195 VE 11.2 11.5 VE 11.2 11.5 VE 11.2 11.5 VE 11.0 11.2 11.5 VE 11.2 11.2 11.5 VE 11.0 11.2 11.5 VE 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	105	J	122.7	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGF J r01 t30 x 2x64x64 105 mes	12 195 VGF J r01 t30 v 2x64x64 105 mes	17	33,593	12.069	30.1	122.8
105 L 121.8 0.1400 0.405 33.574 12.081 105.2007 Li2.195 VCE Lor1.130 y.2x64x64.105.mes 14 33.585 12.077 29.9 121.8 105 M 107.0 0.1400 0.405 33.574 12.081 10.05.2007 Li2.195 VCE Lor1.130 y.2x64x64.105.mes 9 33.584 12.071 29.7 107.2 105 N 106.6 0.1400 0.405 33.574 12.081 10.05.2007 Li2.195 VCE NCE P.1130 y.2x64x64.105.mes 9 33.584 12.079 29.5 106.5 105 P 80.5 0.1400 0.405 33.574 12.081 10.05.2007 Li2.195 VCE P.01.130 y.2x64x64.105.mes 8 33.581 12.079 29.5 106.5 105 Q 80.1 0.1400 0.405 33.574 12.081 10.05.2007 Li2.195 VCE P.01.130 .2x64x64.105.mes 13 <td< td=""><td>105</td><td>ĸ</td><td>122.3</td><td>0 1400</td><td>0 405</td><td>33 574</td><td>12 081</td><td>10.05.2007</td><td>12 195 VGE K r04 t30 x 2x64x64 105 mes</td><td>12 195 VGE K r04 t30 v 2x64x64 105 mes</td><td>20</td><td>33 592</td><td>12 085</td><td>30.2</td><td>122.2</td></td<>	105	ĸ	122.3	0 1400	0 405	33 574	12 081	10.05.2007	12 195 VGE K r04 t30 x 2x64x64 105 mes	12 195 VGE K r04 t30 v 2x64x64 105 mes	20	33 592	12 085	30.2	122.2
105 M 107.0 0.1400 0.405 33.574 12.081 106.2007 L12 195 VGE M. 101.30 22464464.105.mes 12 33.594 12.071 29.7 107.2 105 N 106.6 0.1400 0.405 33.574 12.081 106.2007 L12.195 VGE N. 104.30 x2.864464.105.mes L12.195 VGE N. 104.00 x2.864464.107.mes L12.195 VGE N. 104.00 x2.864464.107.mes L12.195 VGE N. 104.00 x2.864464.107.mes L12.195 VGE X2.864464.107.mes L12.195 VGE x2.864464.107.mes L2.195 VGE X2.864464.107.mes L3.95.292 R0.5 X3.859 X3.8	105	L	121.8	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE L r01 t30 x.2x64x64.105.mes	L12 195 VGE L r01 t30 v.2x64x64.105.mes	14	33.595	12.079	29.9	121.8
105 N 106.6 0.1400 0.405 33.574 12.081 10.05.2007 Li2 195 VGE N N/d 130 y.2x64x64.105.mes 9 33.594 12.078 29.5 1065 105 O 1061 0.1400 0.405 33.574 12.081 100.52007 Li2 195 VGE P no1.130 x.2x64x64.105.mes Li2 195 VGE P no1.130 x.2x64x64.107.mes Li3 0.yz64x64.105 Li3 3.552 30.337 30.551 120.8 100 Li3 0.yz64x64.107.mes Li3 0.y	105	М	107.0	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE M r01 t30 x.2x64x64.105.mes	L12 195 VGE M r01 t30 v.2x64x64.105.mes	12	33.595	12.071	29.7	107.2
105 O 106:1 0.1400 0.405 33.574 12.081 1005.2007 112 195 VGE O 01 130 x2x84x84.105.mes Li 112 195 VGE O 01 130 x2x84x84.105.mes Li 1130 x2x84x84.107.mes Li	105	N	106.6	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE N r04 t30 x.2x64x64.105.mes	L12 195 VGE N r04 t30 v.2x64x64.105.mes	9	33.594	12.078	29.5	106.6
105 P 80.5 0.1400 0.405 33.574 12.081 10.05 2007 L12 195 VGE P rol 130 x 2x64x64.105 mes L12 195 VGE P rol 130 y 2x64x64.105 mes 3 33.591 12.085 29.2 80.5 105 Q 80.1 0.1400 0.406 33.574 12.081 10.05.2007 L12 195 VGE P rol 130 x 2x64x64.105 mes 12 190 x264x64.106 mes 2 33.591 12.085 29.2 80.5 107 A 139.7 0.1400 1.017 33.574 30.336 0.406.2007 L12 195 VGE P rol 130 x 2x64x64.107 mes L12 195 VGE P rol 130 x 2x64x64.107 mes 28 33.589 30.332 29.7 139.3 107 C 138.7 0.1400 1.017 33.574 30.336 0.406.2007 L12 195 VGE P rol 130 x 2x64x64.107 mes L12 195 VGE P rol 130 x 2x64x64.107 mes 28 33.589 30.315 30.2 138.7 107 D 137.3 0.1400 1.017 33.574 30.336 0.406.2007 L12 195 VGE P rol 130 x 2x64x64.107 mes L12 195 VGE P rol 130 x 2x64x64.107 mes L	105	0	106.1	0.1400	0.405	33.574	12.081	10.05.2007	12 195 VGE O r01 t30 x 2x64x64 105 mes	12 195 VGE O r01 t30 v 2x64x64 105 mes	8	33,595	12.079	29.5	106.3
105 Q 80.1 0.1400 0.405 33.574 12.081 10.5.2007 L12_195_VGE_Q_r04_130_x.2x64x64.105.mes L12_195_VGE_Q_r04_130_y.2x64x64.105.mes 2 33.592 12.080 29.1 80.1 105 R 79.6 0.1400 0.405 33.574 12.081 10.65.2007 L12_195_VGE_Ar01_30_x.2x64x64.105.mes L12_195_VGE_Ar01_30_y.2x64x64.107.mes 13 33.592 12.088 29.1 78.6 107 A 139.7 0.1400 1.017 33.574 30.336 0.406.2007 L12_195_VGE_Ar01_30_x.2x64x64.107.mes L12_195_VGE_B_04_130_y.2x64x64.107.mes 28 33.589 30.332 29.7 139.3 107 C 133.7 0.1400 1.017 33.574 30.336 0.406.2007 L12_195_VGE_Dr01_30_x.2x64x64.107.mes L12_195_VGE_C_0.0130_y.2x64x64.107.mes 28 33.589 30.321 29.2 138.7 107 D 137.3 0.1400 1.017 33.574 30.336 0.406.2007 L12_195_VGE_E_r01_130_x.2x64x64.107.mes L12_195_VGE_F_r01.430_y.2x64x64.107.mes 24	105	P	80.5	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE P r01 t30 x.2x64x64.105.mes	L12 195 VGE P r01 t30 v.2x64x64.105.mes	3	33.591	12.085	29.2	80.5
105 R 79.6 0.1400 0.405 33.574 12.081 10.05.2007 L12.195_VGE_R.rol.130_V.2x64x64.105.mes 1 33.592 12.088 29.1 79.6 107 A 139.7 0.1400 1.017 33.574 30.336 04.06.2007 L12.195_VGE_B.rol.130_V.2x64x64.107.mes 13.092 2x64x64.107.mes 33.592 30.337 30.51 139.4 107 B 139.2 0.1400 1.017 33.574 30.336 04.06.2007 L12.195_VGE_B.rol.130_V.2x64x64.107.mes L12 135.5489 30.335 30.21 136.7 107 C 138.7 0.1400 1.017 33.574 30.336 04.06.2007 L12.195_VGE_D.rol.130_V.2x64x64.107.mes L12 33.592 30.328 29.2 137.7 107 E 136.7 0.1400 1.017 33.574 30.336 04.06.2007 L12.195_VGE_C.rol.130_V.2x64x64.107.mes L12 35.592 30.328 29.2 136.7 107 F 136.2 0.1400 1.017 <	105	Q	80.1	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE Q r04 t30 x.2x64x64.105.mes	L12 195 VGE Q r04 t30 v.2x64x64.105.mes	2	33.592	12.080	29.1	80.1
107 A 139.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_A_r01_130_x2x64x64.107.mes L12_195_VGE_A_r01_130_y2x64x64.107.mes 33 33.589 30.337 30.5 139.4 107 B 139.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_B_r04_130_x2x64x64.107.mes L12_195_VGE_C_r01_130_y2x64x64.01.07.mes 28 33.589 30.3312 29.7 139.3 107 D 137.3 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_D_r01_130_x2x64x64.107.mes L12_195_VGE_D_r01_130_x2x64x64.0107.mes L12_195_VGE_F_r01_130_y2x64x64.0107.mes 24 33.592 30.332 29.2 137.2 107 E 138.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_r01_130_x2x64x64.0107.mes L12_195_VGE_F_r01_130_y2x64x64.0107.mes L12_195_VGE_F_r01_130_y2x64x64.0107.mes L12_135_502 30.349 30.348 24.83.592 30.328 30.340 30.49 136.2 107 G 128.7 0.1400 1.017	105	R	79.6	0.1400	0.405	33.574	12.081	10.05.2007	L12 195 VGE R r01 t30 x.2x64x64.105.mes	L12 195 VGE R r01 t30 v.2x64x64.105.mes	1	33.592	12.088	29.1	79.6
107 B 139.2 0.1400 1.017 33.574 30.336 04.06.2007 112 195 VGE B 104 SUS	107	А	139.7	0.1400	1.017	33.574	30,336	04.06.2007	12 195 VGF A r01 t30 x 2x64x64 107 mes	12 195 VGF A r01 t30 v 2x64x64 107 mes	33	33,592	30.337	30.5	139.4
107 C 138.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_C_r01_130_x.2x64x64.107.mes L12_195_VGE_C_r01_130_y.2x64x64.107.mes 25 33.593 30.315 30.22 138.7 107 D 137.3 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_C_r01_130_x.2x64x64.107.mes L12_195_VGE_C_r01_130_y.2x64x64.107.mes 25 33.591 30.326 29.2 138.7 107 E 136.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_r01_130_x.2x64x64.107.mes L12_195_VGE_G_r01_130_y.2x64x64.107.mes 21 33.592 30.329 29.0 138.7 107 F 136.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_r01_130_y.2x64x64.107.mes L12_195_VGE_G_r01_130_y.2x64x64.107.mes 18 33.592 30.328 30.87 128.9 107 H 128.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_r01_130_y.2x64x64.107.mes L12_195_VGE_G_r01_130_y.2x64x64.107.mes	107	В	139.2	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE B r04 t30 x.2x64x64.107.mes	L12 195 VGE B r04 t30 v.2x64x64.107.mes	28	33.589	30.332	29.7	139.3
107 D 137.3 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_D_10_130_x2x64x64.107.mes L12_195_VGE_C_10_130_y2x64x64.107.mes 24 33.591 30.326 29.2 137.2 107 E 136.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_101_130_x2x64x64.107.mes L12_195_VGE_F_101_130_y2x64x64.107.mes 24 33.592 30.329 29.0 136.7 107 F 136.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_101_130_x2x64x64.107.mes L12_195_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L12_135_VGE_F_101_130_x2x64x64.107.mes L13_13594 30.333 30.7 L28.3 107 H 122.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_101_130_x2x64x64.107.mes L12_195_VGE_F_101_130_x2x64x64.107.mes L13_1592 30.338 30.5 127.8 107<	107	C	138.7	0.1400	1.017	33.574	30.336	04.06.2007	12 195 VGF C r01 t30 x 2x64x64 107 mes	12 195 VGF C r01 t30 v 2x64x64 107 mes	30	33,593	30.315	30.2	138.7
107 E 136.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_r04_130_x2x64x64.107.mes L12_195_VCE_r04_130_y.2x64x64.107.mes 24 33.592 30.329 29.0 136.7 107 F 136.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_r01_130_x2x64x64.107.mes L12_195_VGE_r01_130_y2x64x64.107.mes 21 33.593 30.340 28.9 136.2 107 G 128.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_G_r01_130_x2x64x64.107.mes L12_195_VGE_G_r01_430_y2x64x64.107.mes 18 33.592 30.328 30.8 128.9 107 H 128.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_r01_130_x2x64x64.107.mes L12_195_VGE_r01_130_y2x64x64.107.mes 18 33.594 30.333 30.7 127.8 107 J 119.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_r01_130_x2x64x64.107.mes L12_195_VGE_r01_130_x2x64x64.107.mes 14	107	D	137.3	0.1400	1.017	33.574	30.336	04.06.2007	12 195 VGF D r01 t30 x 2x64x64 107 mes	12 195 VGF D r01 t30 v 2x64x64 107 mes	25	33,591	30.326	29.2	137.2
107 F 138.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_F_r01_t30_x.2x64x64.107.mes L12_195_VGE_G_r01_t30_y.2x64x64.107.mes 21 33.593 30.340 28.9 162. 107 G 128.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_G_r01_t30_x.2x64x64.107.mes L12_195_VGE_G_r01_t30_y.2x64x64.107.mes 18 33.592 30.338 30.7 128.3 107 H 128.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_H_r04_t30_x.2x64x64.107.mes L12_195_VCE_H_r04_t30_y.2x64x64.107.mes 17 33.594 30.338 30.7 128.3 107 I 127.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_H_r01_t30_x.2x64x64.107.mes L12_195_VGE_H_r01_t30_y.2x64x64.107.mes 16 33.592 30.338 30.4 128.9 107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_H_r01_t30_x.2x64x64.107.mes L12_195_VGE_H_r01_t30_y.2x64x64.107.mes	107	F	136.7	0.1400	1.017	33.574	30.336	04.06.2007	12 195 VGE F r04 t30 x 2x64x64 107 mes	12 195 VGF F r04 t30 v 2x64x64 107 mes	24	33,592	30.329	29.0	136.7
100 101 0.1	107	F	136.2	0 1400	1.017	33 574	30,336	04.06.2007	12 195 VGE E r01 t30 x 2x64x64 107 mes	12 195 VGE E r01 t30 v 2x64x64 107 mes	21	33 593	30,340	28.9	136.2
107 H 128.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_d3_x.2x64x64.107.mes L12_195_VGE_L_r01_d3_y.2x64x64.107.mes 17 33.594 30.338 30.7 128.3 107 1 127.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_d3_v.2x64x64.107.mes L12_195_VGE_L_r01_d3_v.2x64x64.107.mes 16 33.592 30.338 30.5 127.8 107 J 119.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_d3_v.2x64x64.107.mes L12_195_VGE_L_r01_d3_v.2x64x64.107.mes 15 33.598 30.340 30.4 119.4 107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_d3_v.2x64x64.107.mes L12_195_VGE_L_r01_d3_v.2x64x64.107.mes 14 33.598 30.327 30.3 10.4 118.6 10.33.594 30.336 04.06.2007 L12_195_VGE_L_r01_d3_v.2x64x64.107.mes L12_195_VGE_L_r01_d3_v.2x64x64.107.mes 13.598 30.327 30.3 10.2 12.195_VGE_L_r01_	107	G	128.7	0.1400	1.017	33.574	30.336	04.06.2007	12 195 VGE G r01 t30 x 2x64x64 107 mes	12 195 VGF G r01 t30 v 2x64x64 107 mes	18	33,592	30.328	30.8	128.9
107 1 127.7 0.1400 1.017 33.574 30.336 04.06.2007 112_195_VGEr01_130_x.2x64x64.107.mes L12_195_VGEr01_130_y.2x64x64.107.mes 16 33.592 30.338 30.4 119.4 107 J 119.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGEr01_130_x.2x64x64.107.mes L12_195_VGEr01_130_y.2x64x64.107.mes 15 33.598 30.340 30.4 119.4 107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGEr04_130_x.2x64x64.107.mes L12_195_VGEr04_130_y.2x64x64.107.mes 14 33.590 30.327 30.3 118.6 107 L 118.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGEr01_130_x.2x64x64.107.mes L12_195_VGEr01_130_y.2x64x64.107.mes 11 33.592 30.334 30.2 118.2 107 M 101.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGEr01_130_y.2x64x64.107.mes L12_195_VGEr01_130_y.2x64x64.107.mes 10 <td>107</td> <td>H</td> <td>128.2</td> <td>0.1400</td> <td>1.017</td> <td>33.574</td> <td>30.336</td> <td>04.06.2007</td> <td>12 195 VGF H r04 t30 x 2x64x64 107 mes</td> <td>12 195 VGF H r04 t30 v 2x64x64 107 mes</td> <td>17</td> <td>33.594</td> <td>30.333</td> <td>30.7</td> <td>128.3</td>	107	H	128.2	0.1400	1.017	33.574	30.336	04.06.2007	12 195 VGF H r04 t30 x 2x64x64 107 mes	12 195 VGF H r04 t30 v 2x64x64 107 mes	17	33.594	30.333	30.7	128.3
107 119.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_J_r01_d30_x.2x64x64.107.mes L12_195_VGE_J_r01_t30_y.2x64x64.017.mes 15 33.598 30.340 30.4 119.4 107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r04_t30_y.2x64x64.0107.mes 14 33.598 30.340 30.4 119.4 107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r04_t30_y.2x64x64.107.mes 14 33.599 30.327 30.3 118.6 107 L 118.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r04_t30_y.2x64x64.107.mes 11 33.589 30.334 30.2 118.2 107 M 101.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r04_t30_y.2x64x64.107.mes L12_195_VGE_M_r04_t30_y.2x64x64.107.mes 11 33.592 30.336 29.9 101.2 107 N 101.2	107		120.2	0.1400	1.017	33.574	30,336	04.06.2007	L12 195 VGE r01 t30 x 2x64x64 107 mes	L12 195 VGE r01 t30 v 2x64x64 107 mes	16	33,592	30.338	30.5	127.8
107 K 118.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_K_r04_t30_x.2x64x64.107.mes L12_195_VGE_K_r04_t30_y.2x64x64.107.mes 14 33.590 30.327 30.33 118.6 107 L 118.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_K_r04_t30_x.2x64x64.107.mes L12_195_VGE_K_r04_t30_y.2x64x64.107.mes 14 33.590 30.327 30.33 118.6 107 L 118.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r01_t30_y.2x64x64.107.mes 11 33.599 30.334 30.2 118.2 107 M 01.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r04_t30_y.2x64x64.107.mes 10 33.592 30.336 20.9 101.2 107 N 010.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes	107		119.2	0.1400	1 017	33 574	30,336	04.06.2007	L12 195 VGE J r01 t30 x.2x64x64 107 mes	L12 195 VGE J r01 t30 v.2x64x64 107 mes	15	33,598	30.340	30.4	119.4
107 L 118.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_t30_x.2x64x64.107.mes L12_195_VGE_L_r01_t30_y.2x64x64.107.mes 13 33.589 30.334 30.2 118.2 107 M 101.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_L_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r01_t30_y.2x64x64.107.mes 11 33.592 30.339 30.0 101.4 107 N 101.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r01_t30_y.2x64x64.107.mes 10 33.592 30.336 29.9 101.2 107 N 101.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 10 33.592 30.336 29.9 101.2 107 O 100.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes	107	ĸ	118 7	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE K r04 t30 x.2x64x64.107.mes	L12 195 VGE K r04 t30 v.2x64x64.107 mes	14	33.590	30.327	30.3	118.6
107 M 101.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r01_t30_y.2x64x64.107.mes 11 33.592 30.339 30.0 101.4 107 N 101.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_M_r01_t30_x.2x64x64.107.mes L12_195_VGE_M_r04_t30_y.2x64x64.107.mes 11 33.592 30.339 30.0 101.4 107 N 101.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_N_r04_t30_y.2x64x64.107.mes L10 33.592 30.336 29.9 101.2 107 O 100.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_y.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 8 33.590 30.346 29.8 100.9 107 O 100.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_P_r01_t30_y.2x64x64.107.mes L12_195_VGE_P_r01_t30_y.2x64x64.107.mes 33.590 30.341 29.3	107	L	118 2	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE L r01 t30 x.2x64x64.107 mes	L12 195 VGE L r01 t30 v.2x64x64.107 mes	13	33.589	30.334	30.2	118.2
107 N 101.2 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_N_r04_130_x.2x64x64.107.mes L12_195_VGE_N_r04_t30_y.2x64x64.107.mes 10 33.592 30.336 29.9 101.2 107 0 100.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_N_r04_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 10 33.592 30.336 29.9 101.2 107 O 100.7 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 8 33.590 30.346 29.8 100.9 107 P 72.1 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_P_r01_t30_y.2x64x64.107.mes L12_195_VGE_P_r01_t30_y.2x64x64.107.mes 5 33.592 30.341 29.3 72.1 107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 33.589 30.342 30.2	107	M	101 7	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE M r01 t30 x.2x64x64.107 mes	L12 195 VGE M r01 t30 v.2x64x64.107.mes	11	33.592	30.339	30.0	101.4
107 0 1007 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 8 33.590 30.346 29.8 100.9 107 P 72.1 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_O_r01_t30_x.2x64x64.107.mes L12_195_VGE_O_r01_t30_y.2x64x64.107.mes 8 33.590 30.346 29.8 100.9 107 P 72.1 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_P_r01_t30_y.2x64x64.107.mes 5 33.592 30.341 29.3 72.1 107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 5 33.592 30.341 29.3 72.1 107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 33.589 30.342 30.2	107	N	101.7	0.1400	1 017	33 574	30,336	04.06.2007	L12 195 VGE N r04 t30 x 2x64x64 107 mes	L12 195 VGE N r04 t30 v 2x64x64 107 mes	10	33,592	30,336	29.9	101 2
107 P 72.1 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_P_r01_t30_x.2x64x64.107.mes L12_195_VGE_P_r01_t30_y.2x64x64.107.mes 5 33.592 30.341 29.3 72.1 107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_P_r01_t30_y.2x64x64.107.mes 5 33.592 30.341 29.3 72.1 107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 3 33.589 30.342 30.2 71.6 107 R 71.0 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_R_r01_t30_y.2x64x64.107.mes 3 33.589 30.342 30.2 71.6 107 R 71.0 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_R_r01_t30_y.2x64x64.107.mes L12_195_VGE_R_r01_t30_y.2x64x64.107.mes 1 33.589 30.360 30.0 71.1	107	0	101.2	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE O r01 t30 x.2x64x64.107.mes	L12 195 VGE O r01 t30 v.2x64x64.107.mes	8	33.590	30.346	29.8	100.9
107 Q 71.5 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 3 33.589 30.342 30.2 71.6 107 R 71.0 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_Q_r04_t30_x.2x64x64.107.mes L12_195_VGE_Q_r04_t30_y.2x64x64.107.mes 3 33.589 30.342 30.2 71.6	107	P	72 1	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE P r01 t30 x.2x64x64.107 mes	L12 195 VGE P r01 t30 v.2x64x64.107 mes	5	33.592	30.341	29.3	72.1
107 R 71.0 0.1400 1.017 33.574 30.336 04.06.2007 L12_195_VGE_R_r01_t30_x.2x64x64.107.mes L12_195_VGE_R_r01_t30_y.2x64x64.107.mes 1 33.589 30.360 30.0 71.1	107	Q	71.5	0.1400	1.017	33.574	30.336	04.06.2007	L12 195 VGE Q r04 t30 x.2x64x64.107.mes	L12 195 VGE Q r04 t30 v.2x64x64.107.mes	3	33.589	30.342	30.2	71.6
	107	R	71.0	0.1400	1.017	33.574	30.336	04.06.2007	L12_195_VGE_R_r01_t30_x.2x64x64.107.mes	L12_195_VGE_R_r01_t30_y.2x64x64.107.mes	1	33.589	30.360	30.0	71.1

											(1)	Betriebs	daten	
Matrix-	Höhen-	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Finspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	(N V _{Gas} [m³/h]	m _{Wasser}	t GS	s) p(ü) GS [kPa]
111	A	143.9	0.2190	0.041	52.519	1.208	09.03.2007	L12 195 VGE A r01 t30 x.2x64x64.111.mes	L12 195 VGE A r01 t30 v.2x64x64.111.mes	22	52.525	1.208	30.3	143.5
111	В	143.5	0.2190	0.041	52.519	1.208	09.03.2007	L12 195 VGE B r04 t30 x.2x64x64.111.mes	L12 195 VGE B r04 t30 y.2x64x64.111.mes	21	52.528	1.208	30.2	143.6
111	С	143.2	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.111.mes	L12_195_VGE_C_r01_t30_y.2x64x64.111.mes	20	52.377	1.206	30.1	143.4
111	D	142.3	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.111.mes	L12_195_VGE_D_r01_t30_y.2x64x64.111.mes	19	52.528	1.208	30.0	141.8
111	Е	142.0	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.111.mes	L12_195_VGE_E_r04_t30_y.2x64x64.111.mes	18	52.538	1.207	30.0	142.5
111	F	141.7	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.111.mes	L12_195_VGE_F_r01_t30_y.2x64x64.111.mes	17	52.473	1.209	29.9	141.1
111	G	137.1	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.111.mes	L12_195_VGE_G_r01_t30_y.2x64x64.111.mes	16	52.535	1.208	29.8	137.0
111	Н	136.7	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.111.mes	L12_195_VGE_H_r04_t30_y.2x64x64.111.mes	15	52.527	1.206	29.7	136.1
111	Ι	136.4	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_I_r01_t30_x.2x64x64.111.mes	L12_195_VGE_I_r01_t30_y.2x64x64.111.mes	14	52.527	1.210	29.7	136.3
111	J	131.2	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_J_r01_t30_x.2x64x64.111.mes	L12_195_VGE_J_r01_t30_y.2x64x64.111.mes	12	52.523	1.209	29.6	130.9
111	K	130.9	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.111.mes	L12_195_VGE_K_r04_t30_y.2x64x64.111.mes	11	52.517	1.207	29.5	131.0
111	L	130.6	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.111.mes	L12_195_VGE_L_r01_t30_y.2x64x64.111.mes	9	52.477	1.209	29.4	130.6
111	М	120.4	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_M_r01_t30_x.2x64x64.111.mes	L12_195_VGE_M_r01_t30_y.2x64x64.111.mes	7	52.535	1.210	29.2	120.9
111	Ν	120.1	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.111.mes	L12_195_VGE_N_r04_t30_y.2x64x64.111.mes	5	52.483	1.206	29.5	120.5
111	0	119.8	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_O_r01_t30_x.2x64x64.111.mes	L12_195_VGE_O_r01_t30_y.2x64x64.111.mes	4	52.520	1.215	30.6	119.5
111	Р	102.2	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_P_r01_t30_x.2x64x64.111.mes	L12_195_VGE_P_r01_t30_y.2x64x64.111.mes	3	52.543	1.202	30.5	102.0
111	Q	101.8	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.111.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.111.mes	2	52.538	1.213	30.3	101.5
111	R	101.5	0.2190	0.041	52.519	1.208	09.03.2007	L12_195_VGE_R_r01_t30_x.2x64x64.111.mes	L12_195_VGE_R_r01_t30_y.2x64x64.111.mes	1	52.525	1.200	30.2	101.3
112	А	143.6	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_A_r01_t30_x.2x64x64.112.mes	L12_195_VGE_A_r01_t30_y.2x64x64.112.mes	25	52.542	1.913	30.0	143.9
112	В	143.3	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_B_r04_t30_x.2x64x64.112.mes	L12_195_VGE_B_r04_t30_y.2x64x64.112.mes	24	52.538	1.912	29.9	143.2
112	С	143.0	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_C_r01_t30_x.2x64x64.112.mes	L12_195_VGE_C_r01_t30_y.2x64x64.112.mes	23	52.535	1.910	29.9	143.4
112	D	142.1	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_D_r01_t30_x.2x64x64.112.mes	L12_195_VGE_D_r01_t30_y.2x64x64.112.mes	22	52.535	1.913	29.9	142.0
112	E	141.7	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_E_r04_t30_x.2x64x64.112.mes	L12_195_VGE_E_r04_t30_y.2x64x64.112.mes	21	52.545	1.911	29.9	141.6
112	F	141.4	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_F_r01_t30_x.2x64x64.112.mes	L12_195_VGE_F_r01_t30_y.2x64x64.112.mes	20	52.535	1.912	29.8	141.2
112	G	136.6	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_G_r01_t30_x.2x64x64.112.mes	L12_195_VGE_G_r01_t30_y.2x64x64.112.mes	19	52.403	1.913	29.8	137.0
112	Н	136.3	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_H_r04_t30_x.2x64x64.112.mes	L12_195_VGE_H_r04_t30_y.2x64x64.112.mes	18	52.545	1.913	29.8	136.7
112	I	136.0	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_I_r01_t30_x.2x64x64.112.mes	L12_195_VGE_I_r01_t30_y.2x64x64.112.mes	17	52.537	1.912	29.8	136.0
112	J	130.6	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_J_r01_t30_x.2x64x64.112.mes	L12_195_VGE_J_r01_t30_y.2x64x64.112.mes	15	52.530	1.914	29.8	130.6
112	K	130.3	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_K_r04_t30_x.2x64x64.112.mes	L12_195_VGE_K_r04_t30_y.2x64x64.112.mes	14	52.538	1.913	29.8	130.0
112	L	129.9	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_L_r01_t30_x.2x64x64.112.mes	L12_195_VGE_L_r01_t30_y.2x64x64.112.mes	13	52.535	1.912	29.7	130.0
112	М	119.4	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_M_r01_t30_x.2x64x64.112.mes	L12_195_VGE_M_r01_t30_y.2x64x64.112.mes	11	52.548	1.911	29.7	119.4
112	Ν	119.1	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_N_r04_t30_x.2x64x64.112.mes	L12_195_VGE_N_r04_t30_y.2x64x64.112.mes	9	52.523	1.914	29.7	118.9
112	0	118.8	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_O_r01_t30_x.2x64x64.112.mes	L12_195_VGE_O_r01_t30_y.2x64x64.112.mes	5	52.485	1.912	29.7	119.0
112	Р	100.6	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_P_r01_t30_x.2x64x64.112.mes	L12_195_VGE_P_r01_t30_y.2x64x64.112.mes	3	52.542	1.909	29.7	100.6
112	Q	100.2	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.112.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.112.mes	2	52.538	1.915	29.7	100.0
112	R	99.9	0.2190	0.064	52.519	1.912	02.04.2007	L12_195_VGE_R_r01_t30_x.2x64x64.112.mes	L12_195_VGE_R_r01_t30_y.2x64x64.112.mes	1	52.515	1.906	29.6	99.7
113	А	143.3	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.113.mes	L12_195_VGE_A_r01_t30_y.2x64x64.113.mes	28	52.523	3.043	30.6	143.0
113	В	143.0	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.113.mes	L12_195_VGE_B_r04_t30_y.2x64x64.113.mes	26	52.507	3.043	30.5	143.1
113	С	142.7	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.113.mes	L12_195_VGE_C_r01_t30_y.2x64x64.113.mes	24	52.518	3.043	30.4	142.3
113	D	141.7	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.113.mes	L12_195_VGE_D_r01_t30_y.2x64x64.113.mes	23	52.535	3.043	30.3	141.7
113	E	141.4	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.113.mes	L12_195_VGE_E_r04_t30_y.2x64x64.113.mes	20	52.525	3.042	30.2	141.3
113	F	141.0	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.113.mes	L12_195_VGE_F_r01_t30_y.2x64x64.113.mes	18	52.523	3.043	30.1	140.8
113	G	136.0	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.113.mes	L12_195_VGE_G_r01_t30_y.2x64x64.113.mes	17	52.522	3.041	30.0	136.2
113	Н	135.7	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.113.mes	L12_195_VGE_H_r04_t30_y.2x64x64.113.mes	16	52.535	3.044	29.9	135.3
113	I	135.3	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_I_r01_t30_x.2x64x64.113.mes	L12_195_VGE_I_r01_t30_y.2x64x64.113.mes	15	52.535	3.042	29.8	135.0
113	J	129.7	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_J_r01_t30_x.2x64x64.113.mes	L12_195_VGE_J_r01_t30_y.2x64x64.113.mes	14	52.518	3.043	29.7	130.0
113	K	129.4	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.113.mes	L12_195_VGE_K_r04_t30_y.2x64x64.113.mes	13	52.532	3.041	29.6	129.2
113	L	129.0	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.113.mes	L12_195_VGE_L_r01_t30_y.2x64x64.113.mes	12	52.532	3.044	29.3	128.9
113	М	118.0	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_M_r01_t30_x.2x64x64.113.mes	L12_195_VGE_M_r01_t30_y.2x64x64.113.mes	11	52.522	3.044	30.1	118.6
113	Ν	117.7	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.113.mes	L12_195_VGE_N_r04_t30_y.2x64x64.113.mes	7	52.525	3.045	29.9	117.5
113	0	117.3	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_O_r01_t30_x.2x64x64.113.mes	L12_195_VGE_O_r01_t30_y.2x64x64.113.mes	6	52.540	3.044	29.9	117.5
113	Р	98.3	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_P_r01_t30_x.2x64x64.113.mes	L12_195_VGE_P_r01_t30_y.2x64x64.113.mes	5	52.520	3.045	29.8	98.7
113	Q	97.9	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.113.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.113.mes	3	52.518	3.046	29.6	97.5
113	R	97.6	0.2190	0.102	52.519	3.043	29.03.2007	L12_195_VGE_R_r01_t30_x.2x64x64.113.mes	L12_195_VGE_R_r01_t30_y.2x64x64.113.mes	1	52.397	3.045	29.5	97.7

											Betriebsdaten (Mittelwerte über 10)				
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{wasser} [kɑ/s]	t GS [°C]	s) p(ü) GS [kPa]	
114	A	142.9	0.2190	0.161	52.519	4.802	30.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.114.mes	L12_195_VGE_A_r01_t30_y.2x64x64.114.mes	33	52.538	4.803	30.3	142.8	
114	В	142.6	0.2190	0.161	52.519	4.802	30.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.114.mes	L12_195_VGE_B_r04_t30_y.2x64x64.114.mes	31	52.522	4.801	30.2	142.3	
114	С	142.2	0.2190	0.161	52.519	4.802	30.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.114.mes	L12_195_VGE_C_r01_t30_y.2x64x64.114.mes	30	52.540	4.802	30.1	141.9	
114	D	141.2	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE D r01 t30 x.2x64x64.114.mes	L12 195 VGE D r01 t30 y.2x64x64.114.mes	29	52.533	4.801	30.0	141.4	
114	Е	140.8	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE E r04 t30 x.2x64x64.114.mes	L12 195 VGE E r04 t30 y.2x64x64.114.mes	25	52.548	4.804	29.8	140.8	
114	F	140.5	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE F r01 t30 x.2x64x64.114.mes	L12 195 VGE F r01 t30 y.2x64x64.114.mes	23	52.528	4.802	29.8	140.6	
114	G	135.2	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE G r01 t30 x.2x64x64.114.mes	L12 195 VGE G r01 t30 v.2x64x64.114.mes	22	52.107	4.802	30.7	135.3	
114	Н	134.8	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE H r04 t30 x.2x64x64.114.mes	L12 195 VGE H r04 t30 y.2x64x64.114.mes	19	52.528	4.802	30.6	134.8	
114	1	134.4	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE r01 t30 x.2x64x64.114.mes	L12 195 VGE r01 t30 v.2x64x64.114.mes	18	52.527	4.803	30.4	134.5	
114	J	128.5	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE J r01 t30 x.2x64x64.114.mes	L12 195 VGE J r01 t30 v.2x64x64.114.mes	17	52.527	4.802	30.4	128.5	
114	K	128.1	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE K r04 t30 x.2x64x64.114.mes	L12 195 VGE K r04 t30 v.2x64x64.114.mes	16	52.528	4.802	30.2	128.2	
114	L	127.8	0.2190	0.161	52.519	4.802	30.03.2007	L12 195 VGE L r01 t30 x.2x64x64.114.mes	L12 195 VGE L r01 t30 v.2x64x64.114.mes	15	52.525	4.803	30.2	127.8	
114	М	116.1	0.2190	0.161	52,519	4.802	30.03.2007	12 195 VGF M r01 t30 x 2x64x64 114 mes	12 195 VGE M r01 t30 v 2x64x64 114 mes	11	52,508	4.802	29.9	116.5	
114	N	115.8	0.2190	0.161	52.519	4.802	30.03.2007	12 195 VGF N r04 t30 x 2x64x64.114 mes	12 195 VGE N r04 t30 v 2x64x64 114 mes	10	52,248	4.803	29.8	115.8	
114	0	115.4	0.2190	0.161	52.519	4.802	30.03.2007	12 195 VGE O r01 t30 x 2x64x64 114 mes	12 195 VGE O r01 t30 v 2x64x64 114 mes	9	52.518	4.802	29.8	115.5	
114	P	95.2	0.2190	0.161	52.519	4.802	30.03.2007	12 195 VGF P r01 t30 x 2x64x64 114 mes	12 195 VGE P r01 t30 v 2x64x64 114 mes	3	52.518	4.802	29.5	95.5	
114	0	94.8	0 2190	0 161	52 519	4 802	30.03.2007	12 195 VGE Q r04 t30 x 2x64x64 114 mes	12 195 VGE Q r04 t30 v 2x64x64 114 mes	2	52 537	4 801	29.3	94.8	
114	R	94.5	0.2190	0.161	52 519	4 802	30.03.2007	12 195 VGE R r01 t30 x 2x64x64 114 mes	L12_195_VGE_R_r01_t30_v2x64x64_114_mes	1	52 527	4 803	29.2	94.1	
115	Δ	142.4	0.2190	0.161	52.510	7.606	16.03.2007	12 195 VGE A r01 t30 x 2x64x64 115 mes	L12_195_VGE_A_r01_t30_v_2x64x64_115_mes	26	52 543	7 610	30.2	142.2	
115	B	1/2.4	0.2100	0.255	52.510	7.000	16.03.2007	112 105 VGE B r04 t30 x 2x64x64 115 mes	L12_195_VGE_A_101_100_J.2x04x04.115.mes	25	52.578	7.606	30.2	1/2 1	
115	C	142.0	0.2190	0.255	52.513	7.000	16.03.2007	12 195 VGE C r01 t30 x 2x64x64 115 mes	L12_195_VGE_D_104_130_y.2x64x64.115.mes	23	52.520	7.000	29.8	141.6	
115	D	141.7	0.2100	0.255	52.510	7.000	16.03.2007	12 105 VGE D r01 t30 x 2x64x64 115 mes	L12_195_VGE_0_101_t30_y.2x64x64.115_mes	27	52.211	7.000	20.0	1/0.8	
115	E	140.0	0.2190	0.255	52 510	7.000	16.03.2007	$L12_195_VGE_D_101_130_x.2x04x04.115.111es$	$L12_195_VGE_D_101_130_y.2x64x64.115.111es$	23	52 537	7.012	29.0	140.0	
115	E	120.2	0.2190	0.255	52,519	7.000	16.03.2007	12_{195} VGE_E_104_130_x.2x64x64.115 mos	$L12_195_VGE_E_104_100_y.2x64x64.115.mes$	20	52.557	7.022	29.5	140.1	
115	G	134.1	0.2190	0.255	52 510	7.000	16.03.2007	12 195 VGE G r01 t30 x 2x64x64 115 mes	L12_195_VGE_1_101_130_y.2x64x64.115.mes	10	52 542	7.029	29.1	140.1	
115	- G ц	134.1	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_G_101_130_x.2x64x64.115.mes	L12_195_VGE_G_101_t30_y.2x64x64.115.mes	19	52 527	7.003	30.4	134.2	
115	11	133.7	0.2190	0.255	52 510	7.000	16.03.2007	L12_195_VGE_L104_00_X2X04X04.115.111es	L12_195_VGE_I_r04_t30_y.2x64x64.115.mes	17	52 527	7.579	30.3	133.4	
115		100.0	0.2190	0.255	52,519	7.000	16.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.115.mes	L12_195_VGE_1_101_130_y.2x64x64.115.mes	10	52.521	7.503	30.1	102.3	
115	J	127.0	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_5_101_130_X.2X04X04.115.111es	L12_195_VGE_5_101_(30_y.2x64x64.115.mes	12	52.555	7.507	20.0	127.3	
115	N I	120.0	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_K_104_130_x.2x64x64.115.mes	L12_195_VGE_K_104_130_y.2x64x64.115.111es	0	52 522	7.500	20.8	120.9	
115	M	112 7	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_L_101_130_X.2x64x64.115.mes	L12_195_VGE_L_101_t30_y.2x64x64.115.tiles	9	52.525	7.599	29.0	120.3	
115	N	113.7	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_N_101_130_x.2x04x04.115.111es	L12_195_VGE_N_r04_t30_v_2x64x64.115.mes	0	52,530	7.000	29.0	114.3	
115	0	113.3	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_N_104_130_x.2x64x64.115.mes	L12_195_VGE_N_104_130_y.2x64x64.115.mes	1	52.555	7.004	29.3	113.2	
115		01.2	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_0_101_130_x.2x04x04.115.11les	L12_195_VGE_0_101_t30_y.2x04x04.115.11les	4	52.537	7.009	29.4	01.2	
115	F	91.3	0.2190	0.255	52.519	7.000	16.03.2007	L12_195_VGE_F_101_130_X.2x04x04.115.111es	L12_195_VGE_F_101_130_y.2x04x04.115.11les	3 0	52.520	7.010	29.3	91.3	
CII 115	Q	90.9	0.2190	0.255	52.519	7.606	16.03.2007	L12_195_VGE_Q_104_130_X.2X04X04.115.11105	L12_195_VGE_Q_104_t30_y.2x64x64.115.titles	2 1	52.332	7.012	29.2	91.7	
CI I	R	0.06	0.2190	0.255	52.519	7.000	10.03.2007	L12_195_VGE_R_101_130_X.2X64X64.115.111es	L12_195_VGE_R_101_t30_y.2x04x04.115.tiles	1	52.300	10.000	29.0	90.0	
110	A	141.8	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_A_r01_t30_x.2x64x64.116.mes	L12_195_VGE_A_r01_t30_y.2x64x64.116.mes	20	52.545	12.079	30.1	142.3	
110	В	141.4	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.116.mes	L12_195_VGE_B_r04_t30_y.2x64x64.116.mes	25	52.553	12.068	30.0	141.0	
116	C	141.0	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.116.mes	L12_195_VGE_C_r01_t30_y.2x64x64.116.mes	24	52.557	12.075	29.9	141.3	
116	D	139.8	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.116.mes	L12_195_VGE_D_r01_t30_y.2x64x64.116.mes	21	52.553	12.063	29.7	139.6	
116	E	139.4	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.116.mes	L12_195_VGE_E_r04_t30_y.2x64x64.116.mes	19	52.550	12.081	31.3	139.4	
116	F	139.0	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_F_r01_t30_x.2x64x64.116.mes	L12_195_VGE_F_r01_t30_y.2x64x64.116.mes	18	52.528	12.096	30.6	138.9	
116	G	132.8	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_G_r01_t30_x.2x64x64.116.mes	L12_195_VGE_G_r01_t30_y.2x64x64.116.mes	16	52.543	12.084	30.3	132.9	
116	Н	132.4	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_H_r04_t30_x.2x64x64.116.mes	L12_195_VGE_H_r04_t30_y.2x64x64.116.mes	15	52.533	12.079	30.2	132.8	
116	1	132.0	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_I_r01_t30_x.2x64x64.116.mes	L12_195_VGE_1_r01_t30_y.2x64x64.116.mes	14	52.548	12.081	30.2	132.1	
116	J	125.1	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_J_r01_t30_x.2x64x64.116.mes	L12_195_VGE_J_r01_t30_y.2x64x64.116.mes	12	52.535	12.077	30.1	125.2	
116	ĸ	124.7	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.116.mes	L12_195_VGE_K_r04_t30_y.2x64x64.116.mes	11	52.537	12.063	30.0	123.9	
116	L	124.3	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.116.mes	L12_195_VGE_L_r01_t30_y.2x64x64.116.mes	9	52.547	12.098	29.8	124.3	
116	M	110.8	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_M_r01_t30_x.2x64x64.116.mes	L12_195_VGE_M_r01_t30_y.2x64x64.116.mes	8	52.548	12.082	29.7	110.9	
116	N	110.4	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_N_r04_t30_x.2x64x64.116.mes	L12_195_VGE_N_r04_t30_y.2x64x64.116.mes	7	52.548	12.071	29.6	110.0	
116	0	110.0	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_O_r01_t30_x.2x64x64.116.mes	L12_195_VGE_O_r01_t30_y.2x64x64.116.mes	6	52.548	12.063	29.5	109.8	
116	Р	86.7	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_P_r01_t30_x.2x64x64.116.mes	L12_195_VGE_P_r01_t30_y.2x64x64.116.mes	4	52.558	12.086	29.3	86.9	
116	Q	86.3	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.116.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.116.mes	3	52.523	12.082	29.2	86.1	
116	R	85.8	0.2190	0.405	52.519	12.081	13.02.2007	L12_195_VGE_R_r01_t30_x.2x64x64.116.mes	L12_195_VGE_R_r01_t30_y.2x64x64.116.mes	2	52.515	12.078	29.1	85.6	

											Betriebsdaten (Mittelwerte über 10 s)				
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kg/s]	t GS [°C]	5) p(ü) GS [kPa]	
117	A	141.1	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_A_r01_t30_x.2x64x64.117.mes	L12_195_VGE_A_r01_t30_y.2x64x64.117.mes	26	52.527	19.128	29.9	141.0	
117	В	140.6	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_B_r04_t30_x.2x64x64.117.mes	L12_195_VGE_B_r04_t30_y.2x64x64.117.mes	25	52.540	19.120	29.8	140.8	
117	С	140.2	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_C_r01_t30_x.2x64x64.117.mes	L12_195_VGE_C_r01_t30_y.2x64x64.117.mes	24	52.535	19.116	29.6	140.0	
117	D	138.9	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_D_r01_t30_x.2x64x64.117.mes	L12_195_VGE_D_r01_t30_y.2x64x64.117.mes	23	52.540	19.111	29.5	138.9	
117	E	138.5	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.117.mes	L12_195_VGE_E_r04_t30_y.2x64x64.117.mes	22	52.542	19.139	29.4	138.5	
117	F	138.0	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.117.mes	L12_195_VGE_F_r01_t30_y.2x64x64.117.mes	20	52.538	19.117	29.0	137.8	
117	G	131.4	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.117.mes	L12_195_VGE_G_r01_t30_y.2x64x64.117.mes	19	52.535	19.127	29.3	131.6	
117	Н	130.9	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.117.mes	L12_195_VGE_H_r04_t30_y.2x64x64.117.mes	18	52.393	19.138	29.1	130.9	
117	I	130.5	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_I_r01_t30_x.2x64x64.117.mes	L12_195_VGE_I_r01_t30_y.2x64x64.117.mes	16	52.548	19.124	29.7	130.5	
117	J	123.1	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_J_r01_t30_x.2x64x64.117.mes	L12_195_VGE_J_r01_t30_y.2x64x64.117.mes	15	52.530	19.130	30.2	123.5	
117	K	122.6	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.117.mes	L12_195_VGE_K_r04_t30_y.2x64x64.117.mes	12	52.373	19.113	30.1	122.5	
117	L	122.2	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.117.mes	L12_195_VGE_L_r01_t30_y.2x64x64.117.mes	11	52.525	19.137	30.0	122.2	
117	М	107.6	0.2190	0.641	52.519	19.120	14.03.2007	L12 195 VGE M r01 t30 x.2x64x64.117.mes	L12 195 VGE M r01 t30 y.2x64x64.117.mes	10	52.545	19.117	29.8	107.8	
117	Ν	107.2	0.2190	0.641	52.519	19.120	14.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.117.mes	L12_195_VGE_N_r04_t30_y.2x64x64.117.mes	9	52.517	19.118	29.7	107.2	
117	0	106.7	0.2190	0.641	52.519	19.120	14.03.2007	L12 195 VGE O r01 t30 x.2x64x64.117.mes	L12 195 VGE O r01 t30 v.2x64x64.117.mes	5	52.525	19.121	29.6	107.0	
117	P	81.6	0.2190	0.641	52.519	19.120	14.03.2007	L12 195 VGE P r01 t30 x.2x64x64.117.mes	L12 195 VGE P r01 t30 v.2x64x64.117.mes	4	52.533	19.113	29.5	81.6	
117	Q	81.1	0.2190	0.641	52.519	19.120	14.03.2007	L12 195 VGE Q r04 t30 x.2x64x64.117.mes	L12 195 VGE Q r04 t30 v.2x64x64.117.mes	3	52.520	19.130	29.2	81.3	
117	R	80.7	0.2190	0.641	52.519	19.120	14.03.2007	L12 195 VGE R r01 t30 x.2x64x64.117.mes	L12 195 VGE R r01 t30 v.2x64x64.117.mes	2	52.560	19.127	29.2	80.6	
118	A	140.2	0.2190	1.017	52,519	30.336	14.02.2007	12 195 VGF A r01 t30 x 2x64x64.118 mes	12 195 VGF A r01 t30 v 2x64x64.118 mes	23	52,572	30,335	29.8	140.0	
118	B	139.7	0 2190	1 017	52 519	30,336	14 02 2007	12 195 VGE B r04 t30 x 2x64x64 118 mes	12 195 VGF B r04 t30 v 2x64x64 118 mes	22	52 557	30.328	30.7	139.4	
118	C	139.2	0.2190	1.017	52 519	30,336	14.02.2007	12 195 VGE C r01 t30 x 2x64x64 118 mes	12 195 VGE C r01 t30 v 2x64x64 118 mes	20	52 155	30,330	30.3	138.9	
118	D	137.8	0.2190	1.017	52 519	30 336	14 02 2007	12 195 VGE D r01 t30 x 2x64x64 118 mes	12 195 VGE D r01 t30 v 2x64x64 118 mes	19	52 557	30 349	30.0	137.6	
118	F	137.3	0.2190	1.017	52 519	30 336	14.02.2007	12 195 VGE E r04 t30 x 2x64x64 118 mes	$12_{12} 195_{\text{VGE}} = r04_{130} + 2x64x64_{118} \text{ mes}$	18	52 560	30 343	29.6	137.6	
118	F	136.9	0.2190	1.017	52 519	30 336	14.02.2007	12 195 VGE E r01 t30 x 2x64x64 118 mes	12 195 VGE E r01 t30 v 2x64x64 118 mes	17	52 558	30 328	20.0	136.5	
118	G	120.5	0.2190	1.017	52.519	30,336	14.02.2007	12 195 VGE G r01 t30 x 2x64x64 118 mes	12 195 VGE G r01 t30 v 2x64x64 118 mes	16	52 565	30.320	30.4	129.8	
118	<u></u> н	120.7	0.2190	1.017	52.510	30,336	14.02.2007	12 195 VGE H r04 t30 x 2x64x64 118 mes	$12_{12} 195_{CE} = 0.101_{130} y.2x64x64.118 mes$	15	52 552	30.331	30.4	120.0	
118		123.2	0.2190	1.017	52.510	30.336	14.02.2007	12 195 VGE 1 r01 t30 x 2x64x64 118 mes	L12_195_VGE_I_r01_t30_v_2v64v64_118 mes	14	52 552	30.331	29.9	128.8	
118		120.7	0.2100	1.017	52.510	30.336	14.02.2007	12 105 VGE 1 r01 t30 x 2x64x64 118 mes	12 105 VGE 1 r01 t30 v 2x64x64 118 mes	13	52.552	30.346	20.0	120.0	
110	K J	120.7	0.2190	1.017	52.519	30.330	14.02.2007	12 105 VCE K r04 t30 x 2x64x64 118 mos	112 105 VGE K r04 t30 v 2x64x64 118 mos	10	52.557	20 222	20.5	121.2	
118		110.2	0.2190	1.017	52.519	30.336	14.02.2007	12 105 VGE r01 t30 x 2x64x64 118 mes	12_{195} VGE 1 r01 t30 y 2x64x64 118 mes	12	52.577	30.332	29.5	110.0	
110	M	104.0	0.2190	1.017	52.519	30.330	14.02.2007	L12_195_VGE_L_101_130_x.2x64x64.118 mos	$L12_195_VGE_L_101_130_y.2x64x64.118 mos$	0 0	52,500	20.331	20.7	104.3	
118	N	104.0	0.2190	1.017	52.519	30.336	14.02.2007	12 105 VGE N r04 t30 x 2x64x64 118 mes	$12_{12} 195_{CE} N r04_{130} y 2x64x64.118 mes$	7	52,568	30.343	30.7	104.5	
110	0	103.3	0.2190	1.017	52.519	30.330	14.02.2007	12_{135} VGE O r01 t30 x 2x64x64 118 mos	112 195 VGE 0 r01 t30 v 2x64x64 118 mos	5	52,500	20.242	30.7	103.3	
110	P	75.0	0.2190	1.017	52.519	30.330	14.02.2007	L12_195_VGE_0_101_130_x.2x04x04.110.11les	$L12_195_VGE_0_101_130_y.2x04x04.118.mes$	3	52 555	30.340	20.3	75.8	
110	F	75.9	0.2190	1.017	52.519	30.330	14.02.2007	$L12_195_VGE_P_101_130_x.2x64x64.118$ mos	$L12_195_VGE_F_101_130_y.2x64x64.118.mes$	2	52,535	20.330	29.7	75.0	
110	Q P	73.4	0.2190	1.017	52.519	30.330	14.02.2007	L12_195_VGE_Q_104_130_x.2x64x64.118 mos	$L12_195_VGE_Q_104_00_y.2x04x04.110.11es$	 1	52 567	30.330	29.3	75.2	
110	Γ. Δ	14.9	0.2190	1.017	52.519	49.054	14.02.2007	L12_195_VGE_A_r01_t30_x.2x04x04.110.mes	L12_195_VGE_K_101_t30_y.2x64x64.110.meg	20	52.507	49.040	20.0	10.2	
119	A	130.9	0.2190	1.011	52.519	40.034	08.03.2007	L12_195_VGE_A_101_130_X.2X04X04.119.111es	L12_195_VGE_A_101_130_y.2x64x64.119.11les	32	52.540	40.040	30.0	130.7	
119	Б	100.4	0.2190	1.011	52.519	40.034	08.03.2007	L12_195_VGE_B_104_130_X.2X04X04.119.11les	L12_195_VGE_D_104_t30_y.2x64x64.119.11les	29	52.532	40.040	30.3	130.5	
119	C D	137.8	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_C_101_t30_x.2x64x64.119.mes	L12_195_VGE_C_r01_t30_y.2x64x64.119.ffles	28	52.542	48.060	29.6	137.9	
119	D 5	136.3	0.2190	1.611	52.519	48.054	15.06.2007	L12_195_VGE_D_r01_t30_x.2x64x64.119.mes	L12_195_VGE_D_r01_t30_y.2x64x64.119.mes	21	52.488	48.045	30.6	136.2	
119	E	135.8	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_E_r04_t30_x.2x64x64.119.mes	L12_195_VGE_E_r04_t30_y.2x64x64.119.mes	24	52.530	48.035	30.1	135.7	
119	F	135.3	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_F_r01_t30_x.2x64x64.119.mes	L12_195_VGE_F_r01_t30_y.2x64x64.119.mes	22	52.520	48.045	31.1	135.6	
119	G	127.5	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_G_r01_t30_x.2x64x64.119.mes	L12_195_VGE_G_r01_t30_y.2x64x64.119.mes	21	52.533	48.039	30.7	127.5	
119	н	126.9	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_H_r04_t30_x.2x64x64.119.mes	L12_195_VGE_H_r04_t30_y.2x64x64.119.mes	20	52.520	48.069	30.3	126.8	
119	1	126.4	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_I_r01_t30_x.2x64x64.119.mes	L12_195_VGE_1_r01_t30_y.2x64x64.119.mes	19	52.527	48.047	29.9	126.1	
119	J	117.7	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_J_r01_t30_x.2x64x64.119.mes	L12_195_VGE_J_r01_t30_y.2x64x64.119.mes	16	52.528	48.054	29.3	117.5	
119	ĸ	117.1	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_K_r04_t30_x.2x64x64.119.mes	L12_195_VGE_K_r04_t30_y.2x64x64.119.mes	14	52.530	48.045	29.3	117.2	
119	L	116.6	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_L_r01_t30_x.2x64x64.119.mes	L12_195_VGE_L_r01_t30_y.2x64x64.119.mes	11	52.537	48.041	30.8	116.7	
119	M	99.5	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_M_r01_t30_x.2x64x64.119.mes	L12_195_VGE_M_r01_t30_y.2x64x64.119.mes	10	52.532	48.048	29.6	99.4	
119	N	98.9	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_N_r04_t30_x.2x64x64.119.mes	L12_195_VGE_N_r04_t30_y.2x64x64.119.mes	8	52.527	48.026	29.2	99.1	
119	0	98.4	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_O_r01_t30_x.2x64x64.119.mes	L12_195_VGE_O_r01_t30_y.2x64x64.119.mes	7	52.518	48.042	29.4	98.4	
119	Р	68.7	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_P_r01_t30_x.2x64x64.119.mes	L12_195_VGE_P_r01_t30_y.2x64x64.119.mes	4	52.527	48.046	30.2	68.5	
119	Q	68.2	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.119.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.119.mes	3	52.447	48.044	29.7	68.3	
119	R	67.6	0.2190	1.611	52.519	48.054	08.03.2007	L12_195_VGE_R_r01_t30_x.2x64x64.119.mes	L12_195_VGE_R_r01_t30_y.2x64x64.119.mes	2	52.532	48.067	29.4	67.6	

											Betriebsdate			
											(N	littelwerte	über 10	s)
Matrix-	Höhen-	Druck am GS (ü)	J _{cas} [m/s]	1 5	V Frame 2/1, 1				574.0()		V _{Gas}	m _{Wasser}	t GS	p(ü) GS
punkt	position	PI4-07 [kPa]	Einspeisung	J _{Wasser} [m/s]	v _{Gas} [nm³/n]	m _{Wasser} [kg/s]	Datum	File 1 (X)	File 2 (y)	DIAdem	[m³/h]	[ka/s]	[°C]	[kPa]
127	Α	142.8	0.3420	0 405	82 016	12 081	23 04 2007	1 12 195 VGE A r01 t30 x 2x64x64 127 mes	1 12 195 VGE A r01 t30 v 2x64x64 127 mes	25	81 927	12 076	30.5	142.6
127	B	142.4	0 3420	0 405	82 016	12 081	23 04 2007	12 195 VGE B r04 t30 x 2x64x64 127 mes	112 195 VGE B r04 t30 v 2x64x64 127 mes	24	81 932	12 077	30.4	142.8
127	C	142.4	0.3420	0.405	82.016	12.001	23.04.2007	L12_195_VGE_D_104_130_x.2x64x64.127.mcs	12_105_VGE_D_104_00_y.2x64x64.127.mcs	27	81 010	12.076	30.4	1/2.0
127		142.0	0.3420	0.405	82.010	12.001	23.04.2007	L12_195_VGE_0_101_t30_x.2x64x64.127.mes	L12_195_VGE_0_101_t30_y.2x64x64.127.mes	20	81 008	12.070	20.4	142.1
127	D F	141.0	0.3420	0.405	02.010	12.001	23.04.2007	L12_195_VGE_D_101_t30_x.2x04x04.127.titles	L12_195_VGE_D_101_t30_y.2x04x04.127.titles	22	01.900	12.000	30.3	141.2
127	E	140.6	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_E_r04_t30_x.2x64x64.127.mes	L12_195_VGE_E_r04_t30_y.2x64x64.127.mes	21	81.913	12.076	30.3	140.7
127	F	140.3	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_F_r01_t30_x.2x64x64.127.mes	L12_195_VGE_F_r01_t30_y.2x64x64.127.mes	20	81.908	12.079	30.2	140.5
127	G	134.9	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_G_r01_t30_x.2x64x64.127.mes	L12_195_VGE_G_r01_t30_y.2x64x64.127.mes	19	81.908	12.070	30.1	134.5
127	Н	134.5	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_H_r04_t30_x.2x64x64.127.mes	L12_195_VGE_H_r04_t30_y.2x64x64.127.mes	18	81.918	12.095	30.1	134.4
127	I	134.1	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_I_r01_t30_x.2x64x64.127.mes	L12_195_VGE_I_r01_t30_y.2x64x64.127.mes	17	81.920	12.102	30.0	134.2
127	J	128.1	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_J_r01_t30_x.2x64x64.127.mes	L12_195_VGE_J_r01_t30_y.2x64x64.127.mes	13	81.920	12.076	29.7	128.6
127	K	127.7	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_K_r04_t30_x.2x64x64.127.mes	L12_195_VGE_K_r04_t30_y.2x64x64.127.mes	12	81.898	12.079	29.7	127.6
127	L	127.4	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_L_r01_t30_x.2x64x64.127.mes	L12_195_VGE_L_r01_t30_y.2x64x64.127.mes	11	81.918	12.077	29.6	127.8
127	М	115.5	0.3420	0.405	82.016	12.081	23.04.2007	L12_195_VGE_M_r01_t30_x.2x64x64.127.mes	L12_195_VGE_M_r01_t30_y.2x64x64.127.mes	10	81.918	12.068	29.5	115.7
127	Ν	115.2	0.3420	0.405	82.016	12.081	23.04.2007	L12 195 VGE N r04 t30 x.2x64x64.127.mes	L12 195 VGE N r04 t30 v.2x64x64.127.mes	9	81.900	12.082	29.5	115.6
127	0	114.8	0.3420	0.405	82.016	12.081	23.04.2007	L12 195 VGE O r01 t30 x.2x64x64.127.mes	L12 195 VGE O r01 t30 v.2x64x64.127.mes	8	81.903	12.080	29.4	115.1
127	P	94.3	0.3420	0.405	82.016	12.081	23.04.2007	12 195 VGE P r01 t30 x 2x64x64 127 mes	12 195 VGE P r01 t30 v 2x64x64 127 mes	7	81,905	12.089	29.3	94.1
127	0	93.9	0 3420	0 405	82 016	12 081	23 04 2007	12 195 VGE O r04 t30 x 2x64x64 127 mes	12 195 VGE 0 r04 t30 v 2x64x64 127 mes	6	81 907	12 094	29.3	94.0
127	R	93.6	0.3420	0.405	82.016	12.001	23.04.2007	L12_105_VGE_&_104_100_X.2x64x64.127.mcs	12_{105} VGE R r01 t30 v 2x64x64 127 mes	2	81 003	12.004	20.0	03.7
127		04.2	0.3420	0.405	02.010	12.001	25.04.2007	L12_195_VOE_R_101_130_X.2x04x04.127.mes	L12_195_VOL_R_101_130_y.2x04x04.127.mes	2 5	01.000	12.071	29.5	04.1
127	F	94.3	0.3420	0.405	02.010	12.001	20.07.2007	L12_195_VGE_F_101_130_X.2x04x04.127.11les	L12_195_VGE_F_101_130_y.2x04x04.127.11les	5	01.900	12.004	29.3	94.1
127	Q	93.9	0.3420	0.405	82.016	12.081	26.07.2007	L12_195_VGE_Q_F04_t30_x.2x64x64.127.mes	L12_195_VGE_Q_f04_t30_y.2x64x64.127.mes	2	82.002	12.089	29.2	93.7
127	R	93.6	0.3420	0.405	82.016	12.081	26.07.2007	L12_195_VGE_R_r01_t30_x.2x64x64.127.mes	L12_195_VGE_R_r01_t30_y.2x64x64.127.mes	4	82.020	12.076	29.3	93.5
129	A	140.8	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_A_r01_t30_x.2x64x64.129.mes	L12_195_VGE_A_r01_t30_y.2x64x64.129.mes	30	81.963	30.334	30.4	140.6
129	В	140.4	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_B_r04_t30_x.2x64x64.129.mes	L12_195_VGE_B_r04_t30_y.2x64x64.129.mes	27	81.958	30.362	30.1	140.5
129	С	139.9	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_C_r01_t30_x.2x64x64.129.mes	L12_195_VGE_C_r01_t30_y.2x64x64.129.mes	25	81.927	30.308	29.8	139.6
129	D	138.6	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_D_r01_t30_x.2x64x64.129.mes	L12_195_VGE_D_r01_t30_y.2x64x64.129.mes	24	81.922	30.343	29.5	138.6
129	Е	138.2	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_E_r04_t30_x.2x64x64.129.mes	L12_195_VGE_E_r04_t30_y.2x64x64.129.mes	22	81.953	30.355	29.4	138.3
129	F	137.7	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_F_r01_t30_x.2x64x64.129.mes	L12_195_VGE_F_r01_t30_y.2x64x64.129.mes	21	81.953	30.323	29.7	137.7
129	G	131.1	0.3420	1.017	82.016	30.336	21.05.2007	L12 195 VGE G r01 t30 x.2x64x64.129.mes	L12 195 VGE G r01 t30 v.2x64x64.129.mes	20	81.952	30.351	30.3	131.7
129	Н	130.6	0.3420	1.017	82.016	30.336	21.05.2007	L12 195 VGE H r04 t30 x.2x64x64.129.mes	L12 195 VGE H r04 t30 v.2x64x64.129.mes	17	81.943	30.335	30.8	130.5
129	1	130.2	0.3420	1 017	82 016	30,336	21 05 2007	12 195 VGE r01 t30 x 2x64x64 129 mes	12 195 VGE 1 r01 t30 v 2x64x64 129 mes	19	81 982	30,340	30.7	130.3
120		122.7	0.3420	1.017	82.016	30 336	21.05.2007	L12_195_VGE_L_r01_t30_x 2x64x64_129_mes	12 195 VGE 1 r01 t30 v 2x64x64 129 mes	15	81 925	30 347	30.4	122.7
120	S S	122.7	0.3420	1.017	82.010	30.330	21.05.2007	L12_195_VGE_5_101_130_x.2x64x64.129.mes	L12_195_VGE_6_101_(30_y)2x64x64.129.mes	14	01.323 91.043	20 220	20.4	122.7
120		122.3	0.3420	1.017	02.010	20.330	21.05.2007	L12_195_VGE_R_104_100_X2x64x64.129.mes	L12_105_VCE_t_r01_t20_y_2x64x64_120_moo	14	01.045	20.320	20.0	122.0
129		121.0	0.3420	1.017	02.010	30.330	21.05.2007	L12_195_VGE_L_101_130_X.2x04x04.129.11les	L12_195_VGE_L_101_t30_y.2x64x64.129.11les	10	01.900	30.300	29.9	122.1
129	IVI	107.2	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_W_f01_t30_x.2x64x64.129.mes	L12_195_VGE_IVI_f01_f30_y.2x64x64.129.mes	12	81.943	30.332	29.6	107.6
129	N	106.8	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_N_r04_t30_x.2x64x64.129.mes	L12_195_VGE_N_r04_t30_y.2x64x64.129.mes	11	81.952	30.341	29.3	106.9
129	0	106.3	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_O_r01_t30_x.2x64x64.129.mes	L12_195_VGE_O_r01_t30_y.2x64x64.129.mes	10	81.950	30.339	29.3	106.5
129	Р	81.0	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_P_r01_t30_x.2x64x64.129.mes	L12_195_VGE_P_r01_t30_y.2x64x64.129.mes	5	81.942	30.346	29.4	81.3
129	Q	80.6	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.129.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.129.mes	1	81.947	30.335	30.9	80.6
129	R	80.1	0.3420	1.017	82.016	30.336	21.05.2007	L12_195_VGE_R_r01_t30_x.2x64x64.129.mes	L12_195_VGE_R_r01_t30_y.2x64x64.129.mes	3	81.955	30.330	30.3	80.2
138	A	143.9	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_A_r01_t30_x.2x64x64.138.mes	L12_195_VGE_A_r01_t30_y.2x64x64.138.mes	25	128.207	12.072	30.2	144.5
138	В	143.6	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.138.mes	L12_195_VGE_B_r04_t30_y.2x64x64.138.mes	24	128.243	12.065	30.2	144.8
138	С	143.3	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.138.mes	L12_195_VGE_C_r01_t30_y.2x64x64.138.mes	23	128.078	12.082	30.1	142.9
138	D	142.4	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.138.mes	L12_195_VGE_D_r01_t30_y.2x64x64.138.mes	22	127.953	12.073	30.1	142.8
138	Е	142.1	0.5340	0.405	128.06	12.081	12.02.2007	L12 195 VGE E r04 t30 x.2x64x64.138.mes	L12 195 VGE E r04 t30 v.2x64x64.138.mes	20	128.467	12.092	30.0	142.4
138	F	141 8	0.5340	0.405	128.06	12.081	12.02.2007	L12 195 VGE F r01 t30 x 2x64x64 138 mes	L12 195 VGE F r01 t30 v 2x64x64 138 mes	19	128.048	12.084	30.0	141.4
138	G	137.0	0.5340	0.405	128.00	12.001	12.02.2007	112 195 VGE G r01 t30 v 2v64v64 138 mes	12 195 VGE G r01 t30 v 2v64v64 138 mes	17	128 205	12 004	20.0	136.1
120	ц Ц	137.2	0.5340	0.405	120.00	12.001	12.02.2007	12 105 VGE H r04 t30 v 2v64v64 138 mon	12 105 VGE H r04 t20 v 2v64v64 128 mon	16	128 060	12.034	20.0	126.6
100		100.9	0.0040	0.400	120.00	12.001	12.02.2007	L12_100_VOE_I_I04_00_X.2X04X04.100.IIIES	L12_130_VOL_11_104_130_y.2X04X04.130.11105	10	120.000	12.073	23.0	100.0
138	1	100.0	0.5340	0.405	120.00	12.081	12.02.2007	L12_133_VGE_I_101_130_X.2X04X04.136.Mes	L12_133_VGE_1_101_130_y.2X04X04.136.IIIES	11 14	120.190	12.000	29.7	100.1
138	J	131.5	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_J_101_13U_X.2X04X04.138.Mes	L12_195_VGE_J_101_130_Y.2X64X64.138.Mes	14	121.130	12.087	29.0	132.1
138	ĸ	131.2	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_K_r04_t30_X.2X64X64.138.mes	L12_195_VGE_K_r04_t30_y.2x64x64.138.mes	13	128.087	12.069	29.6	131.8
138	L	130.9	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.138.mes	L12_195_VGE_L_r01_t30_y.2x64x64.138.mes	12	128.187	12.085	29.6	130.4
138	М	120.9	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_M_r01_t30_x.2x64x64.138.mes	L12_195_VGE_M_r01_t30_y.2x64x64.138.mes	11	128.352	12.075	29.5	121.4
138	Ν	120.6	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_N_r04_t30_x.2x64x64.138.mes	L12_195_VGE_N_r04_t30_y.2x64x64.138.mes	10	128.250	12.088	29.5	120.8
138	0	120.3	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_O_r01_t30_x.2x64x64.138.mes	L12_195_VGE_O_r01_t30_y.2x64x64.138.mes	9	128.242	12.082	29.5	120.3
138	Р	103.0	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_P_r01_t30_x.2x64x64.138.mes	L12_195_VGE_P_r01_t30_y.2x64x64.138.mes	6	128.227	12.080	29.2	102.9
138	Q	102.7	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.138.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.138.mes	5	127.975	12.091	29.2	102.9
138	R	102.4	0.5340	0.405	128.06	12.081	12.02.2007	L12_195_VGE_R_r01_t30_x.2x64x64.138.mes	L12_195_VGE_R_r01_t30_y.2x64x64.138.mes	2	128.233	12.076	29.2	102.6

											Betriebsdaten (Mittelwerte über 10 s)				
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{Wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{wasser} [kg/s]	t GS [°C]	p(ü) GS [kPa]	
140	А	141.6	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_A_r01_t30_x.2x64x64.140.mes	L12_195_VGE_A_r01_t30_y.2x64x64.140.mes	35	127.835	30.340	30.3	141.8	
140	В	141.2	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.140.mes	L12_195_VGE_B_r04_t30_y.2x64x64.140.mes	32	127.535	30.324	29.8	141.1	
140	С	140.8	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_C_r01_t30_x.2x64x64.140.mes	L12_195_VGE_C_r01_t30_y.2x64x64.140.mes	30	127.492	30.316	29.5	140.8	
140	D	139.7	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_D_r01_t30_x.2x64x64.140.mes	L12_195_VGE_D_r01_t30_y.2x64x64.140.mes	28	127.488	30.327	30.3	140.3	
140	E	139.3	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.140.mes	L12_195_VGE_E_r04_t30_y.2x64x64.140.mes	25	127.373	30.338	30.4	139.7	
140	F	138.8	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_F_r01_t30_x.2x64x64.140.mes	L12_195_VGE_F_r01_t30_y.2x64x64.140.mes	24	127.507	30.342	30.2	138.7	
140	G	132.8	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_G_r01_t30_x.2x64x64.140.mes	L12_195_VGE_G_r01_t30_y.2x64x64.140.mes	23	127.515	30.328	30.0	133.6	
140	н	132.4	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_H_r04_t30_x.2x64x64.140.mes	L12_195_VGE_H_r04_t30_y.2x64x64.140.mes	22	127.370	30.348	29.8	132.5	
140		132.0	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_I_r01_t30_x.2x64x64.140.mes	L12_195_VGE_I_r01_t30_y.2x64x64.140.mes	20	127.502	30.338	29.6	132.0	
140	J	125.3	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_J_r01_t30_x.2x64x64.140.mes	L12_195_VGE_J_r01_t30_y.2x64x64.140.mes	19	127.433	30.320	29.4	125.3	
140	ĸ	124.9	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.140.mes	L12_195_VGE_K_r04_t30_y.2x64x64.140.mes	18	127.340	30.343	29.3	124.3	
140		124.5	0.5340	1.017	128.06	30.336	01.02.2007	L12_195_VGE_L_r01_t30_x.2x64x64.140.mes	L12_195_VGE_L_r01_t30_y.2x64x64.140.mes	10	127.482	30.329	29.0	124.5	
140	IVI N	111.3	0.5340	1.017	120.00	30.330	01.02.2007	L12_195_VGE_N_101_130_X.2X64X64.140.11105	L12_195_VGE_N_101_130_y.2x64x64.140.11105	14	120.000	30.332	30.0	110.9	
140	N	110.9	0.5340	1.017	128.00	30.336	01.02.2007	L12_195_VGE_N_104_130_x.2x64x64.140.mes	12_{195} VGE O r01 t30 v 2x64x64 140 mes	12	127.575	30.320	30.4	10.0	
140	P	87.7	0.5340	1.017	120.00	30.336	01.02.2007	L12_195_VGE_0_101_t30_x.2x04x04.140.tiles	L12_195_VGE_0_101_130_y.2x04x04.140.mes	10	127.323	30.342	29.7	87.3	
140	0	87.2	0.5340	1.017	128.00	30,336	01.02.2007	12 195 VGE 0 r04 t30 x 2x64x64 140 mes	12 195 VGE O r04 t30 v 2x64x64 140 mes	9	127.403	30.329	29.7	87.3	
140	R	86.8	0.5340	1.017	128.00	30,336	01.02.2007	L12_195_VGE_R_r01_t30_x_2x64x64_140_mes	L12_195_VGE_&_101_t30_v 2x64x64_140 mes	5	127.400	30.321	29.5	86.8	
149	A	145.0	0.8350	0.405	200.24	12 081	11 05 2007	12 195 VGE AC r01 t30 x 2x64x64 149 mes	12 195 VGE AC r01 t30 v 2x64x64 149 mes	16	200.045	12 089	29.7	144.9	
149	B	144.8	0.8350	0.405	200.24	12.081	11.05.2007	12 195 VGE B r04 t30 x 2x64x64 149 mes	12 195 VGE B r04 t30 v 2x64x64 149 mes	17	200.222	12.000	29.7	144.4	
149	C	144.5	0.8350	0.405	200.24	12.081									
149	D	143.8	0.8350	0.405	200.24	12.081	11.05.2007	L12 195 VGE DF r01 t30 x.2x64x64.149.mes	L12 195 VGE DF r01 t30 v.2x64x64.149.mes	12	200.392	12.071	29.6	144.1	
149	E	143.6	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_E_r04_t30_x.2x64x64.149.mes	L12_195_VGE_E_r04_t30_y.2x64x64.149.mes	13	200.297	12.088	29.6	143.7	
149	F	143.3	0.8350	0.405	200.24	12.081									
149	G	139.7	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_GI_r01_t30_x.2x64x64.149.mes	L12_195_VGE_GI_r01_t30_y.2x64x64.149.mes	9	200.443	12.073	29.5	139.3	
149	Н	139.4	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_H_r04_t30_x.2x64x64.149.mes	L12_195_VGE_H_r04_t30_y.2x64x64.149.mes	11	200.303	12.074	29.6	139.0	
149	I	139.2	0.8350	0.405	200.24	12.081									
149	J	135.1	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_JL_r01_t30_x.2x64x64.149.mes	L12_195_VGE_JL_r01_t30_y.2x64x64.149.mes	6	200.425	12.074	29.5	134.4	
149	K	134.8	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_K_r04_t30_x.2x64x64.149.mes	L12_195_VGE_K_r04_t30_y.2x64x64.149.mes	7	200.015	12.077	29.5	135.7	
149	L	134.6	0.8350	0.405	200.24	12.081							<u> </u>		
149	М	126.6	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_MO_r01_t30_x.2x64x64.149.mes	L12_195_VGE_MO_r01_t30_y.2x64x64.149.mes	4	200.030	12.080	29.3	126.8	
149	N	126.3	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_N_r04_t30_x.2x64x64.149.mes	L12_195_VGE_N_r04_t30_y.2x64x64.149.mes	5	200.340	12.089	29.3	126.9	
149	0	126.1	0.8350	0.405	200.24	12.081									
149	P	112.2	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_PR_r01_t30_x.2x64x64.149.mes	L12_195_VGE_PR_r01_t30_y.2x64x64.149.mes	1	200.453	12.088	29.3	112.5	
149	Q	111.9	0.8350	0.405	200.24	12.081	11.05.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.149.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.149.mes	2	200.207	12.087	29.3	111.9	
149	ĸ	111.7	0.8350	0.405	200.24	12.081	45.05.000-				000.007	00.00-		4.40.0	
151	A	142.6	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_AC_r01_t30_x.2x64x64.151.mes	L12_195_VGE_AC_r01_t30_y.2x64x64.151.mes	23	200.235	30.327	30.1	142.9	
151	В	142.2	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_B_r04_t30_x.2x64x64.151.mes	L12_195_VGE_B_f04_t30_y.2x64x64.151.mes	24	199.980	30.336	30.1	142.3	
161		141.9	0.0350	1.017	200.24	30.330	15.05.2007	112 105 VCE DE r01 +20 x 2x64x64 151 moo	112 105 VCE DE r01 +20 y 2y64y64 151 mon	10	200 429	20 222	20.6	140.9	
151	E D	140.9	0.8350	1.017	200.24	30.330	15.05.2007	L12_195_VGE_DF_101_t30_x.2x64x64.151.11les	L12_195_VGE_DF_101_(30_y.2x64x64.151.11les	20	200.420	30.332	29.0	140.0	
151	F	140.3	0.0000	1.017	200.24	30.336	13.03.2007	L12_195_VGL_L_104_150_X.2x04x04.151.11les	L12_195_VOL_L_104_100_y.2x04x04.151.illes	20	200.232	30.331	23.1	140.4	
151	G	134.9	0.0000	1.017	200.24	30,336	15 05 2007	12 195 VGE GL r01 t30 x 2x64x64 151 mes	12 195 VGE GL r01 t30 v 2x64x64 151 mes	15	200 342	30 336	29.3	134.4	
151	н	134.6	0.8350	1.017	200.24	30,336	15.05.2007	L12_195_VGE_H_r04_t30_x 2x64x64_151 mes	12 195 VGE H r04 t30 v 2x64x64 151 mes	10	200.042	30.341	29.4	134.8	
151	1	134.2	0.8350	1.017	200.24	30.336	10.00.2001				200.110	00.011	20.1	101.0	
151	J	128.4	0.8350	1.017	200.24	30.336	15.05.2007	L12 195 VGE JL r01 t30 x.2x64x64.151.mes	L12 195 VGE JL r01 t30 v.2x64x64.151.mes	11	200.008	30.338	30.7	128.3	
151	K	128.0	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_K_r04_t30_x.2x64x64.151.mes	L12_195_VGE_K_r04_t30_y.2x64x64.151.mes	14	199.973	30.337	30.7	128.2	
151	L	127.6	0.8350	1.017	200.24	30.336				1					
151	М	116.2	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_MO_r01_t30_x.2x64x64.151.mes	L12_195_VGE_MO_r01_t30_y.2x64x64.151.mes	6	199.977	30.330	30.2	116.5	
151	Ν	115.8	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_N_r04_t30_x.2x64x64.151.mes	L12_195_VGE_N_r04_t30_y.2x64x64.151.mes	8	200.315	30.331	30.4	115.8	
151	0	115.4	0.8350	1.017	200.24	30.336									
151	Р	95.5	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_PR_r01_t30_x.2x64x64.151.mes	L12_195_VGE_PR_r01_t30_y.2x64x64.151.mes	1	200.410	30.306	29.9	95.6	
151	Q	95.2	0.8350	1.017	200.24	30.336	15.05.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.151.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.151.mes	3	200.085	30.347	30.1	95.4	
151	R	94.8	0.8350	1.017	200.24	30.336			I				1 7		

											Betriebsdaten				
Motrix	Hähon	Druck om CS (ii)	I [m/a]								(10	m		s)	
nunkt	nosition	PI4-07 [kPa]	J _{Gas} [M/S] Finspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{Wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	lli _{Wasser}	r GS	p(u) GS [kPa]	
160	A	146.1	1.3050	0.405	312.95	12.081	30.01.2007	L12 195 VGE AC r01 t30 x.2x64x64.160.mes	L12 195 VGE AC r01 t30 v.2x64x64.160.mes	11b	310.595	12.066	29.7	146.1	
160	В	145.9	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_B_r04_t30_x.2x64x64.160.mes	L12_195_VGE_B_r04_t30_y.2x64x64.160.mes	12b	312.612	12.083	29.7	145.2	
160	С	145.7	1.3050	0.405	312.95	12.081									
160	D	145.2	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_DF_r01_t30_x.2x64x64.160.mes	L12_195_VGE_DF_r01_t30_y.2x64x64.160.mes	9b	310.645	12.059	29.5	145.4	
160	E	145.0	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_E_r04_t30_x.2x64x64.160.mes	L12_195_VGE_E_r04_t30_y.2x64x64.160.mes	10b	312.580	12.076	29.6	144.7	
160	F	144.8	1.3050	0.405	312.95	12.081									
160	G	142.0	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_GI_r01_t30_x.2x64x64.160.mes	L12_195_VGE_GI_r01_t30_y.2x64x64.160.mes	6b	310.570	12.057	29.5	142.3	
160	Н	141.8	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_H_r04_t30_x.2x64x64.160.mes	L12_195_VGE_H_r04_t30_y.2x64x64.160.mes	7b	312.848	12.072	29.5	143.1	
160	1	141.6	1.3050	0.405	312.95	12.081									
160	J	138.4	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_JL_r01_t30_x.2x64x64.160.mes	L12_195_VGE_JL_r01_t30_y.2x64x64.160.mes	4b	310.622	12.073	29.4	138.7	
160	ĸ	138.2	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_K_r04_t30_x.2x64x64.160.mes	L12_195_VGE_K_r04_t30_y.2x64x64.160.mes	5b	312.528	12.072	29.4	138.9	
160	L	138.0	1.3050	0.405	312.95	12.081	00.04.0007			4-	044 000	40.004	00.0	400.0	
160	M	131.8	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_MO_r01_t30_x.2x64x64.160.mes	L12_195_VGE_MO_r01_t30_y.2x64x64.160.mes	1a	311.982	12.061	29.3	130.3	
160	N	131.6	1.3050	0.405	312.95	12.081	30.01.2007	L12_195_VGE_N_f04_t30_X.2X64X64.160.ffles	L12_195_VGE_N_f04_t30_y.2x64x64.160.mes	Za	312.797	12.080	29.3	132.0	
160	0 B	131.3	1.3050	0.405	312.90	12.001	30.01.2007	112 105 VGE PP r01 t20 x 2x64x64 160 mos	112 105 VGE PP r01 t30 v 2x64x64 160 mos	40	212 208	12.065	20.3	110.0	
160	F	120.7	1.3050	0.405	312.90	12.001	30.01.2007	L12_195_VGE_FR_101_130_x.2x64x64.160.mos	L12_195_VGE_FR_101_130_y.2x64x64.160.11les	4d 2h	312.300	12.005	29.3	119.0	
160	R	120.3	1.3050	0.405	312.95	12.001	30.01.2007	L12_195_VGL_Q_104_130_X.2X04X04.100.111es	L12_195_VGL_Q_104_130_y.2x04x04.100.illes	30	512.012	12.007	29.5	119.0	
162	A	1/3.6	1.3050	1 017	312.00	30 336	20.01.2007	112 195 VGE AC r01 t30 x 2x64x64 162 mes	112 105 VGE AC r01 t30 v 2x64x64 162 mes	1/	312 727	30 325	30.1	144.0	
162	B	143.3	1.3050	1.017	312.95	30.336	29.01.2007	12 195 VGE B r04 t30 x 2x64x64 162 mes	12 195 VGE B r04 t30 v 2x64x64 162 mes	15	312.727	30.323	30.1	144.0	
162	C	143.0	1 3050	1.017	312.00	30 336	20.01.2007	L12_100_VOL_D_104_000_X.2x04x04.102.11103	L12_105_VOL_D_104_00_9.2x04x04.102.iiic3	10	512.750	50.521	50.1	140.0	
162	D	142.0	1.3050	1.017	312.95	30 336	29 01 2007	12 195 VGE DE r01 t30 x 2x64x64 162 mes	12 195 VGE DE r01 t30 v 2x64x64 162 mes	11	311 215	30 327	29.7	141 2	
162	F	141.9	1.3050	1.017	312.95	30.336	29.01.2007	12 195 VGE F r04 t30 x 2x64x64 162 mes	12 195 VGE F r04 t30 v 2x64x64.162 mes	12	312,800	30.336	29.8	142.2	
162	F	141.6	1.3050	1.017	312.95	30.336	20.01.2001				012.000	00.000	20.0	11212	
162	G	137.2	1.3050	1.017	312.95	30.336	29.01.2007	L12 195 VGE GI r01 t30 x.2x64x64.162.mes	L12 195 VGE GI r01 t30 v.2x64x64.162.mes	9	312.497	30.324	29.4	136.0	
162	H	136.9	1.3050	1.017	312.95	30.336	29.01.2007	L12 195 VGE H r04 t30 x.2x64x64.162.mes	L12 195 VGE H r04 t30 v.2x64x64.162.mes	10	312.530	30.322	29.6	135.6	
162	I	136.6	1.3050	1.017	312.95	30.336									
162	J	131.6	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_JL_r01_t30_x.2x64x64.162.mes	L12_195_VGE_JL_r01_t30_y.2x64x64.162.mes	7	312.223	30.325	29.5	131.5	
162	К	131.3	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_K_r04_t30_x.2x64x64.162.mes	L12_195_VGE_K_r04_t30_y.2x64x64.162.mes	8	312.765	30.328	29.6	132.4	
162	L	131.0	1.3050	1.017	312.95	30.336									
162	М	121.4	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_MO_r01_t30_x.2x64x64.162.mes	L12_195_VGE_MO_r01_t30_y.2x64x64.162.mes	5	312.158	30.311	29.3	122.8	
162	Ν	121.1	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_N_r04_t30_x.2x64x64.162.mes	L12_195_VGE_N_r04_t30_y.2x64x64.162.mes	6	312.508	30.327	29.4	120.7	
162	0	120.8	1.3050	1.017	312.95	30.336									
162	Р	104.0	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_PR_r01_t30_x.2x64x64.162.mes	L12_195_VGE_PR_r01_t30_y.2x64x64.162.mes	2	312.452	30.299	29.1	103.8	
162	Q	103.7	1.3050	1.017	312.95	30.336	29.01.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.162.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.162.mes	4	312.748	30.335	29.2	102.2	
162	R	103.4	1.3050	1.017	312.95	30.336									
171	A	147.0	2.0380	0.405	488.74	12.081									
171	В	146.9	2.0380	0.405	488.74	12.081	02.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.171.mes	L12_195_VGE_B_r04_t30_y.2x64x64.171.mes	22	485.362	12.054	29.9	146.6	
171	C	146.7	2.0380	0.405	488.74	12.081	-								
171	ט ר	146.3	2.0380	0.405	488.74	12.081	00.00.0007			47	405 000	40.000		4 45 0	
1/1	E	146.2	2.0380	0.405	488.74	12.081	02.02.2007	L12_195_VGE_E_f04_t30_x.2x64x64.1/1.mes	L12_195_VGE_E_f04_t30_y.2x64x64.171.mes	1/	485.303	12.068	29.7	145.6	
171	F	146.0	2.0380	0.405	488.74	12.081									
171	G	143.9	2.0380	0.405	488.74	12.081	02 02 2007			16	405 767	12.000	20.7	1 4 2 2	
171	1	143.8	2.0300	0.405	400.74 188 74	12.081	02.02.2007	L12_190_VGE_T_104_130_X.2X04X04.171.Mes	L12_150_VGE_T_104_60_y.2X04X04.171.Mes	10	400.707	12.090	29.7	143.3	
171	1	143.0	2.0300	0.405	400.74	12.001									
171	ĸ	141.2	2.0300	0.405	488 74	12.001	02 02 2007	12 195 VGF K r04 t30 x 2x64x64 171 mes	12 195 VGF K r04 t30 v 2x64x64 171 mes	Q	485 220	12 067	29.6	142.0	
171		1 <u>4</u> 1.1	2.0000	0.405	488 74	12.001	52.02.2007			5	100.220	12.007	20.0	172.0	
171	M	136.3	2,0380	0.405	488 74	12.001									
171	N	136.1	2.0380	0.405	488.74	12.081	02.02.2007	L12 195 VGE N r04 t30 x.2x64x64.171.mes	L12 195 VGE N r04 t30 v.2x64x64.171.mes	8	485.835	12.092	29.6	134.7	
171	0	136.0	2.0380	0.405	488.74	12.081									
171	P	127.9	2.0380	0.405	488.74	12.081									
171	Q	127.8	2.0380	0.405	488.74	12.081	02.02.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.171.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.171.mes	2	485.825	12.093	29.6	127.9	
171	R	127.6	2.0380	0.405	488.74	12.081		_							
											(N	Betrieb	sdaten) ()	
------------------	--------------------	---------------------------------	---------------------------------------	---------------------------	--------------------------	----------------------------	-------------	---	---	--------	----------------------------	-------------------------------	--------------	------------------	
Matrix- punkt	Höhen- position	Druck am GS (ü) PI4-07 [kPa]	J _{Gas} [m/s] Einspeisung	J _{Wasser} [m/s]	V _{Gas} [nm³/h]	m _{Wasser} [kg/s]	Datum	File 1 (x)	File 2 (y)	DIAdem	V _{Gas} [m³/h]	m _{Wasser} [kg/s]	t GS [°C]	p(ü) GS [kPa]	
173	A	144.6	2.0380	1.017	488.74	30.336									
173	В	144.3	2.0380	1.017	488.74	30.336	02.02.2007	L12_195_VGE_B_r04_t30_x.2x64x64.173.mes	L12_195_VGE_B_r04_t30_y.2x64x64.173.mes	21	485.818	30.361	29.9	143.0	
173	С	144.1	2.0380	1.017	488.74	30.336							 '		
1/3	D	143.4	2.0380	1.017	488.74	30.336	00.00.0007			10	405 040	20.222	20.0	4 4 0 4	
173	F	143.1	2.0380	1.017	488.74	30.336	02.02.2007	L12_195_VGE_E_r04_t30_x.2x64x64.173.mes	L12_195_VGE_E_104_t30_y.2x64x64.173.mes	19	485.313	30.323	29.8	143.1	
173	G	139.3	2.0380	1.017	488 74	30,336							'		
173	H	139.0	2.0380	1.017	488.74	30.336	02.02.2007	L12 195 VGE H r04 t30 x.2x64x64.173.mes	L12 195 VGE H r04 t30 v.2x64x64.173.mes	12	485.790	30.350	29.8	138.4	
173	I	138.8	2.0380	1.017	488.74	30.336									
173	J	134.7	2.0380	1.017	488.74	30.336									
173	K	134.5	2.0380	1.017	488.74	30.336	02.02.2007	L12_195_VGE_K_r04_t30_x.2x64x64.173.mes	L12_195_VGE_K_r04_t30_y.2x64x64.173.mes	10	485.318	30.338	29.7	134.9	
173	L	134.2	2.0380	1.017	488.74	30.336							 '		
173	M	126.3	2.0380	1.017	488.74	30.336					405.000	00.044		400.5	
173	N	126.1	2.0380	1.017	488.74	30.336	02.02.2007	L12_195_VGE_N_r04_t30_x.2x64x64.173.mes	L12_195_VGE_N_r04_t30_y.2x64x64.173.mes	6	485.293	30.314	29.8	126.5	
173	D	120.0	2.0380	1.017	400.74	30.330							 '		
173	0	112.1	2.0380	1.017	488 74	30,336	02 02 2007	12 195 VGE Q r04 t30 x 2x64x64 173 mes	1 12 195 VGE Q r04 t30 v 2x64x64 173 mes	4	485 285	30 345	29.7	111.6	
173	R	111.6	2.0380	1.017	488.74	30.336	02.02.2001			· ·	100.200	00.010	20.1		
182	А	147.7	3.1850	0.405	763.80	12.081									
182	В	147.5	3.1850	0.405	763.80	12.081	26.01.2007	L12_195_VGE_B_r04_t30_x.2x64x64.182.mes	L12_195_VGE_B_r04_t30_y.2x64x64.182.mes	7b	763.957	12.096	29.3	148.5	
182	С	147.4	3.1850	0.405	763.80	12.081									
182	D	147.1	3.1850	0.405	763.80	12.081							<u> </u>		
182	E	147.0	3.1850	0.405	763.80	12.081	26.01.2007	L12_195_VGE_E_r04_t30_x.2x64x64.182.mes	L12_195_VGE_E_r04_t30_y.2x64x64.182.mes	6b	763.887	12.059	29.4	147.7	
182	F	146.9	3.1850	0.405	763.80	12.081							 '		
182	G	145.3	3.1850	0.405	763.80	12.081	20.04.2007			46	702.000	40.000	20.0	445.0	
182	H	145.2	3.1850	0.405	763.80	12.081	26.01.2007	L12_195_VGE_H_r04_t30_x.2x64x64.182.mes	L12_195_VGE_H_r04_t30_y.2x64x64.182.mes	dr	763.923	12.086	30.0	145.8	
182		145.1	3 1850	0.405	763.80	12.001									
182	K S	143.2	3.1850	0.405	763.80	12.081	26.01.2007	12 195 VGF K r04 t30 x 2x64x64 182 mes	1 12 195 VGE K r04 t30 v.2x64x64.182 mes	10a	763,953	12.088	29.1	143.0	
182	L	143.1	3.1850	0.405	763.80	12.081	2010 112001					.2.000			
182	М	139.6	3.1850	0.405	763.80	12.081									
182	N	139.5	3.1850	0.405	763.80	12.081	26.01.2007	L12_195_VGE_N_r04_t30_x.2x64x64.182.mes	L12_195_VGE_N_r04_t30_y.2x64x64.182.mes	6a	763.763	12.078	29.4	139.2	
182	0	139.4	3.1850	0.405	763.80	12.081							<u> </u>		
182	P	133.4	3.1850	0.405	763.80	12.081									
182	Q	133.3	3.1850	0.405	763.80	12.081	26.01.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.182.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.182.mes	5a	764.033	12.051	30.0	133.2	
182	R	133.2	3.1850	0.405	763.80	12.081							 '		
184	A	145.3	3.1850	1.017	763.80	30.330	26.01.2007	112 105 VGE B r04 t20 x 2x64x64 184 mos	1 12 105 VGE B r04 t30 v 2x64x64 184 mos	8h	762 652	20.226	20.5	1471	
184	C	143.1	3 1850	1.017	763.80	30.336	20.01.2007	L12_195_VGL_B_104_130_3.2804804.104.11les	L12_195_VGL_D_104_130_y.zx04x04.104.iiles	00	703.033	30.330	29.5	147.1	
184	D	144.3	3.1850	1.017	763.80	30.336									
184	E	144.1	3.1850	1.017	763.80	30.336	26.01.2007	L12_195_VGE_E_r04_t30_x.2x64x64.184.mes	L12_195_VGE_E_r04_t30_y.2x64x64.184.mes	3b	763.920	30.349	30.0	145.4	
184	F	143.9	3.1850	1.017	763.80	30.336									
184	G	140.9	3.1850	1.017	763.80	30.336									
184	Н	140.7	3.1850	1.017	763.80	30.336	26.01.2007	L12_195_VGE_H_r04_t30_x.2x64x64.184.mes	L12_195_VGE_H_r04_t30_y.2x64x64.184.mes	2b	763.817	30.330	30.0	140.9	
184	l	140.5	3.1850	1.017	763.80	30.336							 '		
184	J	137.2	3.1850	1.017	763.80	30.336	26.01.0007			0-	762 700	20.007		100.4	
184	ĸ	137.0	3.1850	1.017	763.80	30.336	26.01.2007	L12_195_VGE_K_r04_t30_x.2x64x64.184.mes	L12_195_VGE_K_r04_t30_y.2x64x64.184.mes	yа	763.763	30.307	29.3	138.4	
104	L M	130.8	3.1000	1.017	763.80	30.330 30.336							'		
184	N	130.4	3.1850	1.017	763.80	30.336	26.01.2007	L12 195 VGE N r04 t30 x 2x64x64 184 mes	L12 195 VGE N r04 t30 v 2x64x64 184 mes	8a	763.580	30.328	29.4	130.4	
184	0	130.0	3.1850	1.017	763.80	30.336						20.020			
184	Р	118.8	3.1850	1.017	763.80	30.336									
184	Q	118.6	3.1850	1.017	763.80	30.336	26.01.2007	L12_195_VGE_Q_r04_t30_x.2x64x64.184.mes	L12_195_VGE_Q_r04_t30_y.2x64x64.184.mes	4a	763.697	30.325	30.4	118.6	
184	R	118.4	3.1850	1.017	763.80	30.336									

Anhang V

Kalibrierprotokolle

POLYNOMIAL FUNCTIONS

= Calculation method =====

The polynomial functions are calculated using the collection of measuring points listed in the results on the calibration certificate as a source, excluding the result at zero flow (0%).

The "Least Square method" is used for the polynomial fit, resulting in a polynomial of the 3rd degree that will accurately describe the calibration curve.

= Identifications ==

Serial number : Model number : Certificate no. : Flow (*) :	M1206151A F-106CI-FZD-0 BHTG04/38787 1000 m3n/h AiF	3-V 3 R CF1C4-10]	
— Polynomial desc	ription		
Scaled polynomial fo Scaled polynomial fo	or flow or setpoint	(only applicable for controllers)	: $y = A + Bx + Cx^{2} + Dx^{3}$: $z = E + Fy + Gy^{2} + Hy^{3}$
	in which:	x = output signal [mA] y = flow [m3n/h] z = setpoint signal [mA] A / H = calculated parameters	
Unscaled polynomia Unscaled polynomia	al for flow al for setpoint	(only applicable for FLOW-BUS devices) (only applicable for FLOW-BUS controllers)	: $y = A + Bx + Cx^{2} + Dx^{3}$: $z = E + Fy + Gy^{2} + Hy^{3}$
	in which:	x = output signal [%FS/100] y = flow [%FS/100] z = setpoint signal [%FS/100] A / H = calculated parameters	
= Calculated polyn	omial parameters	3	

Scaled polynomial: Unscaled polynomial: A = -2.4012E + 02E = +4.0057E+00A = -3.0726E - 04E = +3.5784E - 04B = +5.8618E + 01F = +1.6347E - 02B = +9.7793E - 01F = +1.0217E + 00C = +3.7567E - 01G = -1.0136E - 06C = +6.3994E - 02G = -6.3348E - 02D = -1.0474E - 02H = +6.8095E - 10D = -4.2903E - 02H = +4.2559E - 02

= Notes =

* Reference conditions of flow unit: 0.00 °C, 1013.25 hPa (a).

CALIBRATION CERTIFICATE

We herewith certify that the instrument mentioned below has been calibrated in accordance with the stated values and conditions. The calibration standards used are traceable to national standards of the Dutch Weights & Measures (NMi).

= Identifications						
	Calibrated Instrument		Calibration Standard			F1C4-10
Type : Serial number : Model number : Certificate no. :	Flow meter M1206151A F-106CI-FZD BHTG04/387	-03-V 873	Turbine me 80038 FTM T-160 NMi/G1S3	eter 10-TD 760	-	
= Conditions =	=					
	Customer				Calibration	
Fluid : Pressure : Temperature : Flow (*) : Output range :	AiR 5.5 1525 1000 4 - 20	5 bar (g) 5 °C) m3n/h) mA	Fluid Pressur Temper Room te Atm. pre	e : ature : emperature : essure :	AiR 0.0 20.9 20.9 1003	bar (g) °C °C hPa
= Results -						
Nominal Flow Setting	Calibra Output S	ted ignal	Customer Flow(*)			
0.0 % 10.0 % 20.0 % 40.0 % 60.0 % 80.0 % 95.0 %	4.032 5.601 7.201 10.402 13.599 16.804 19.078	mA mA mA mA mA mA	0.0000 98.01 197.8 398.4 600.0 801.5 942.1	m3n/h m3n/h m3n/h m3n/h m3n/h m3n/h m3n/h		

= Notes =

* Reference conditions of flow units: 0.00 °C, 1013.25 hPa (a).

Maximum calibrated flow is 95%.	A -	
Calibrator : H.V.	Date : 02-10-2006	
Signed :	QC :	
CalSys V5.81	FLUIDAT® V5.50 (database: 05-05-1999)	V2.04

POLYNOMIAL FUNCTIONS

= Calculation method =====

The polynomial functions are calculated using the collection of measuring points listed in the results on the calibration certificate as a source, excluding the result at zero flow (0%).

The "Least Square method" is used for the polynomial fit, resulting in a polynomial of the 3rd degree that will accurately describe the calibration curve.

= Identifications = Serial number : M1206032A Model number : F-206BI-FGD-99-V Certificate no. : BHTG04/388850 (EIC4-11) Flow (*) : 500 m3n/h AiR — Polynomial description = Scaled polynomial for flow $y = A + Bx + Cx^{2} + Dx^{3}$ Scaled polynomial for setpoint $z = E + Fy + Gy^{2} + Hy^{3}$ (only applicable for controllers) in which: x = output signal [mA] y = flow [m3n/h]z = setpoint signal [mA] A / H = calculated parameters Unscaled polynomial for flow $y = A + Bx + Cx^{2} + Dx^{3}$ (only applicable for FLOW-BUS devices) (only applicable for FLOW-BUS controllers) $z = E + Fy + Gy^2 + Hy^3$ Unscaled polynomial for setpoint in which: x = output signal [%FS/100] y = flow [%FS/100]z = setpoint signal [%FS/100] A / H = calculated parameters = Calculated polynomial parameters =

Scaled polynomial:		Unscaled polynomial	:
A = -9.5306E+01	E = +3.9682E+00	A = +2.1354E - 03	E = -1.9882E - 03
B = +1.9912E+01	F = +3.5682E - 02	B = +8.8605E - 01	F = +1.1151E+00
C = +1.1916E+00	G = -2.5106E - 05	C = +3.8531E - 01	G = -3.9228E - 01
D = -3.6590E-02	H = +3.9282E - 08	D = -2.9974E - 01	H = +3.0689E - 01

— Notes =

* Reference conditions of flow unit: 0.00 °C, 1013.25 hPa (a).

CALIBRATION CERTIFICATE

We herewith certify that the instrument mentioned below has been calibrated in accordance with the stated values and conditions. The calibration standards used are traceable to national standards of the Dutch Weights & Measures (NMi).

— Identifications — — — — —						
	Calibrated Instrument	Calibration Standard	ı		FIC 4-11	
Type : Serial number : Model number : Certificate no. :	Flow controller M1206032A F-206BI-FGD-99-V BHTG04/388850	Turbine m 80038 FTM T-160 NMi/G1S3	Turbine meter 80038 FTM T-1600-TD NMi/G1S3760			
= Conditions =						
	Customer			Ca	alibration	
Fluid :	AiR	Fluid		: Ail	R	
Pressure :	5.5 bar (g	g) Pressui	re	÷	0.0 bar (g)	
Temperature :	1525 °C	Temper	rature	÷	22.9 °C	
Output range	4 - 20 mA	Atm. pr	emperature essure	;	1007 hPa	
— Results -						
Nominal Flow Setting	Calibrated Output Signal	Customer Flow(*)				
0.0 %	4.032 mA	0.0000	m3n/h			
10.0 %	5.596 mA	46.67	m3n/h			
20.0 %	7.198 mA	96.78	m3n/h			
40.0 %	10.399 MA 13.597 mA	199.2	m3n/n m3n/h			
80.0 %	16.804 mA	402.9	m3n/h			
90.0 %	18.400 mA	446.2	m3n/h			

= Notes ====

* Reference conditions of flow units: 0.00 °C, 1013.25 hPa (a).

Maximum calibrated flow is 90%.	Att
Calibrator : H.V.	Date : 04-10-2006
Signed :	QC :
CalSys V5.81	FLUIDAT® V5.50 (database: 05-05-1999)

POLYNOMIAL FUNCTIONS

= Calculation method =

The polynomial functions are calculated using the collection of measuring points listed in the results on the calibration certificate as a source, excluding the result at zero flow (0%).

The "Least Square method" is used for the polynomial fit, resulting in a polynomial of the 3rd degree that will accurately describe the calibration curve.

Identifications _____ Serial number : M1206032B Model number : F-203AC-FGB-44-V Certificate no. BHTG22/384269 : (EIC 4-12) Flow (*) 50 m3n/h AiR — Polynomial description _____ Scaled polynomial for flow $y = A + Bx + Cx^{2} + Dx^{3}$ Scaled polynomial for setpoint $z = E + Fy + Gy^2 + Hy^3$ (only applicable for controllers) in which: x = output signal [mA] y = flow [m3n/h]z = setpoint signal [mA] A / H = calculated parameters Unscaled polynomial for flow $: y = A + Bx + Cx^{2} + Dx^{3}$ (only applicable for FLOW-BUS devices) Unscaled polynomial for setpoint $z = E + Fy + Gy^{2} + Hy^{3}$ (only applicable for FLOW-BUS controllers) in which: x = output signal [%FS/100] y = flow [%FS/100]z = setpoint signal [%FS/100] A / H = calculated parameters — Calculated polynomial parameters —

Scaled polynomial:		Unscaled polynomial	:
A = -1.4008E+01 B = +3.6846E+00	E = +4.0280E+00 F = +3.0453E-01	A = -2.2335E - 03 B = +1.0538E + 00	E = +1.7476E-03 F = +9.5167E-01
C = -5.9982E - 02	G = +1.1509E - 03	C = -1.9394E - 01	G = +1.7983E - 01
D = +1.8419E - 03	H = -1.8030E - 05	D = +1.5089E - 01	H = -1.4086E-01

= Notes =

* Reference conditions of flow unit: 0.00 °C, 1013.25 hPa (a).

CALIBRATION CERTIFICATE

We herewith certify that the instrument mentioned below has been calibrated in accordance with the stated values and conditions. The calibration standards used are traceable to national standards of the Dutch Weights & Measures (NMi).

= Identifications	s <u></u>				
	Calibrated Instrument	Calibration Standard		F	104-12
Type :	Flow controller	Rotor mete	r	-	
Model number :	F-203AC-FGB-44-V	60236 FRM R-100	D-TD		
Certificate no. :	BHTG22/384269	Nmi/G1S32	283		
= Conditions =					
	Customer			Calibration	
Fluid :	AiR	Fluid	:	AiR	
Pressure :	5.5 bar (g)	Pressure	e :	6.	5 bar (a)
Temperature :	1525 °C	Tempera	ature :	23.	5 °C
Flow (*) :	50 m3n/h	Room te	emperature :	23.	5 °C
Output range :	4 - 20 mA	Atm. pre	essure :	100	5 hPa
= Results -					
Nominal	Calibrated	Customer			
Flow Setting	Output Signal	Flow(*)			
0.0 %	4.032 mA	0.0000	m3n/h		
10.0 %	5.606 mA	5.079	m3n/h		
20.0 %	7.201 mA	10.12	m3n/h		
40.0 %	10.401 mA	19.88	m3n/h		
60.0 %	13.602 mA	29.66	m3n/h		
80.0 %	16.802 mA	39.70	m3n/h		
100.0 %	20.001 mA	50.43	m3n/h		

= Notes ====

* Reference conditions of flow units: 0.00 °C, 1013.25 hPa (a).

· · /	(The second seco
Calibrator: M.Se.	Date : 15-09-2006
Signed :	QC :
CalSys V5.81	223 FLUIDAT® V5.50 (database: 05-05-1999)

POLYNOMIAL FUNCTIONS

The polynomial functions are calculated using the collection of measuring points listed in the results on the calibration certificate as a source, excluding the result at zero flow (0%).

The "Least Square method" is used for the polynomial fit, resulting in a polynomial of the 3rd degree that will accurately describe the calibration curve.

Identifications			
Serial number Model number Certificate no. Flow (*)	M1206032C F-202AC-FGB- WAGNER/0129 5 m3n/h AiR	33-V 943 (F-1C4-13)	
Polynomial des	scription	/	Services (1999) and (1999) and (1999) and (1999) and (1999)
Scaled polynomial Scaled polynomial	for flow for setpoint	(only applicable for controllers)	: $y = A + Bx + Cx^{2} + Dx^{3}$: $z = E + Fy + Gy^{2} + Hy^{3}$
	in which:	x = output signal [mA] y = flow [m3n/h] z = setpoint signal [mA] A / H = calculated parameters	
Unscaled polynom Unscaled polynom	ial for flow ial for setpoint	(only applicable for FLOW-BUS devices) (only applicable for FLOW-BUS controllers)	: $y = A + Bx + Cx^{2} + Dx^{3}$: $z = E + Fy + Gy^{2} + Hy^{3}$
	in which:	x = output signal [%FS/100] y = flow [%FS/100] z = setpoint signal [%FS/100] A / H = calculated parameters	
- Calculated poly	nomial parameter	S	

Scaled polynomial:		Unscaled polynomial:	
A = -1.4053E+00	E = +4.0310E +00	A = -2.1057E -03	E = +1.9405E - 03
B = +3.6894E - 01	F = +3.0160E +00	B = +1.0597E +00	F = +9.4251E - 01
C = -5.7328E - 03	G = +1.1765E -01	C = -1.8998E -01	G = +1.8382E - 01
D = +1.6851E - 04	H = -1.7083E -02	D = +1.3805E -01	H = -1.3346E - 01

Notes

* Reference conditions of flow unit: 0.00 °C, 1013.25 hPa (a).

Calsys version: V5.40 Fluidat version: V5.50 (database: 5/5/1999)

CALIBRATION CERTIFICATE

We herewith certify that the instrument mentioned below has been calibrated in accordance with the stated values and conditions. The calibration standards used are traceable to national standards of the Dutch Weights & Measures (NMi).

					-
Type : Serial number : Model number : Certificate no. :	CalibratedCaliInstrumentStarFlow controllerRotoM1206032C972F-202AC-FGB-33-VFRMWAGNER/012943NMi		Calibration <u>Standard</u> Rotor meter 9721314D FRM R-025-TD NMi/G1S5817		FIC 4-13
- Conditions					anga katanan kata tahun katana
Fluid Pressure Temperature Flow (*) Output range	<u>AiR</u> 5.5 bar (g) 25 °C 5 m3n/h 4 - 20 mA	Fluid Pressu Tempe Room t Atm. pr	re : rature : temperature : ressure :	<u>Calibration</u> AiR 4.0 22.2 22.2 1009	bar (g) °C °C hPa
Results					
Nominal Flow Setting	Calibrated Output Signal	Customer Flow(*)	-		
0.0 % 10.0 % 20.0 % 40.0 % 60.0 % 80.0 % 100.0 %	4.032 mA 5.600 mA 7.200 mA 10.400 mA 13.600 mA 16.800 mA 20.000 mA	0.0000 0.5093 1.019 2.000 2.975 3.975 5.028	m3n/h m3n/h m3n/h m3n/h m3n/h m3n/h m3n/h		
Notes	the second		A CONTRACTOR OF A CONTRACTOR O		

* Reference conditions of flow units: 0.00 °C, 1013.25 hPa (a).

Λ	
Calibrator : F.J.	Date : 10/10/2006
Signed :	QC :
Calsys version: V5.40 Fluidat version: V5.50 (database: 5/5/1999)	

1

.

Prüfprotokoll

Messumformer-Typ:	Smar LD 301
Serien-Nr.:	51131
Serien-Nr.Messzelle:	60906
Messbereich:	-2486,42 kPa bis 2486,42 kPa
Messgrenze (Untere/Obere):	-2486,42 kPa / 2486,42 kPa
Messspanne (Min/Max)	62,16 kPa bis 2486,42
Eingestellter Messanfang:	0,00 kPa
Eingestelltes Messende:	250,0 kPa
Eingestellte Messspanne:	250,0 kPa
Ausgangssignal:	4-20 mA linear
Gerätebezeichnung:	PI 4-07.1
Vergleichsgerät/Messgerät/Gerätenumme	UNOMAT MCX/1910
Vergleichsgerät/Druckmodul/Gerätenumm	MCX-PM/1194
Kalibrierdatum:Vergleichsgerät	20.06.2006

Ausgang: 4-20 mA (2....10VDC über 220 Ω Prüfwiderstand)

Prüf- Druck	Prüf- Druck	Soll	lst	Messabweichung
kPa	%	mA	mA	%
0,000	0	4,000	4,051	1,28
50,000	20	7,200	7,231	0,43
100,000	40	10,400	10,440	0,38
150,000	60	13,600	13,645	0,33
200,000	80	16,800	16,834	0,20
250,000	100	20,000	19,956	-0,22

Prüf- Druck	Prüf- Druck	Soll	lst	Messabweichung
kPa	%	mA	mA	%
250,000	100	20,000	19,947	-0,27
200,000	80	16,800	16,822	0,13
150,000	60	13,600	13,641	0,30
100,000	40	10,400	10,425	0,24
50,000	20	7,200	7,241	0,57
0,000	0	4,000	4,062	1,55

Kalibrierdatum: Kalibriert von: Bemerkung: 07.02.2007 Lindner,Klaus

Prüfprotokoll

Messaufnehmer Serien-Nr.: Messbereich: Messstellenbezeichnung: Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Vergleichsgerät: Temperaturgeber/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Analog / Digitawandler Kalibrierdatum:Vergleichsgerät-Temperaturgeber

Thermoelement Typ K **367** -270°C bis +1200°C **TI 4-08** Metallblochkalibrator Jupiter 650SN / 181031/2 Platinthermoelement / 181031/2 10.10.2006 MCX / 1910 20.06.2006 PhoenixContact IB IL TEMP 2 UTH / 33268369 20.06.2006

Thermoelement			Analo	Analog/Digitalwandler			
Temperatur in °C			Ten	Temperatur in °C			
Soll	lst	Differenz	Soll	lst	Differenz	°C	
50,0	49,9	-0,1	50,0	49.6	-0,4	-0,5	
100,0	100,2	0,2	100,0	99,7	-0,3	-0,1	
150,0	150,2	0,2	150,0	149,9	-0,1	0,1	
200,0	200,0	0,0	200,0	200,1	0,1	0,1	
250,0	250,2	0,2	250,0	250,1	0,1	0,3	
300,0	300,1	0,1	300,0	300,2	0,2	0,3	

Kalibrierdatum: A/D Wandler	
Kalibrierdatum:Thermoelemen	

18.10.2006 18.10.2006

Kalibriert von: Bemerkung:

Prüfprotokoll

Messaufnehmer Serien-Nr.: Messbereich: Messstellenbezeichnung: Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Analog / Digitawandler

Thermoelement Typ K 897 -270°C bis +1200°C TI 4-410 Metallblochkalibrator Jupiter 650SN / 181031/2 Platinthermoelement / 181031/2 10.10.2006 MCX / 1910 20.06.2006 PhoenixContact IB IL TEMP 2 UTH / 33277813

	n mit max. Ab- weichung		
Tem	peratur ir	∩ °C	
Soll	lst D	oifferenz	°C
35,0	35,0	0,0	0,0
40,0	40,0	0,0	0,0
50,0	50,0	0,0	0,0

Kalibrierdatum: A/D Wandler 16.11.2006 Kalibrierdatum:Thermoelement

Kalibriert von: Bemerkung:

Prüfprotokoll

Messaufnehmer Serien-Nr.: Messbereich: Messstellenbezeichnung: Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Analog / Digitawandler

Thermoelement Typ K **873** -270°C bis +1200°C **TI 4-411** Metallblochkalibrator Jupiter 650SN / 181031/2 Platinthermoelement / 181031/2 10.10.2006 MCX / 1910 20.06.2006 PhoenixContact IB IL TEMP 2 UTH / 33277486

0,0

	max. Ab- weichung		
Tem	peratur	in °C	
Soll	Ist	Differenz	°C
35,0	35,0	0,0	0,0
40,0	40,0	0,0	0,0

Kalibrierdatum: A/D Wandler 16.11.2006 Kalibrierdatum: Thermoelement

0,0

Kalibriert von: Bemerkung:

50.0

50,0

Prüfprotokoll

.

Messaufnehmer Serien-Nr.: Messbereich: Messstellenbezeichnung: Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Analog / Digitawandler Thermoelement Typ K **895** -270°C bis +1200°C **TI 4-412** Metallblochkalibrator Jupiter 650SN / 181031/2 Platinthermoelement / 181031/2 10.10.2006 MCX / 1910 20.06.2006 PhoenixContact IB IL TEMP 2 UTH / 33277486

	max. Ab- weichung			
Tem	peratur	in °C		
Soll	lst	Differenz		°C
35,0	35,1	0,1		0,1
40,0	39,9	-0,1		-0,1
50,0	49,9	-0,1		-0,1

Kalibrierdatum: A/D Wandler Kalibrierdatum:Thermoelement 16.11.2006

Kalibriert von: Bemerkung:

Prüfprotokoll

Messaufnehmer Serien-Nr.: Messbereich: Messstellenbezeichnung: Vergleichsgerät: Temperaturgeber/Gerätenummer Vergleichsgerät: Thermometer/Gerätenummer Kalibrierdatum:Vergleichsgerät-Temperatur Vergleichsgerät: Temperaturgeber/Gerätenummer Kalibrierdatum: Thermometer/Gerätenummer Analog / Digitawandler

Thermoelement Typ K 894 -270°C bis +1200°C TI 4-413 Metallblochkalibrator Jupiter 650SN / 181031/2 Platinthermoelement / 181031/2 16.11.2006 MCX / 1910 20.06.2006 PhoenixContact IB IL TEMP 2 UTH / 33277185

	max. Ab- weichung		
Tem	peratur	in °C	-
Soll	Ist	Differenz	°C
35,0	35,0	0,0	0,0
40,0	40,0	0,0	0,0
50,0	50,1	0,1	0,1

Kalibrierdatum: A/D Wandler Kalibrierdatum:Thermoelement 16.1

16.11.2006

Kalibriert von: Bemerkung:

CALIBRATION

CERTIFICATE

GE infrastructure Sensing

Druck Nederland B.V. Zuideinde 37, 2991 LJ Postbus 232, 2990 AE, Barendrecht, The Netherlands

T 0180 - 611 555, F 0180 - 618 131 druck.nl@druck.com, www.gesensing.com

Page 1 of 3

Certificate Number: 20060036 D

Custon	Name	Forschungszentrum Rossendorf			
	Address	01314	DRESD	EN	
Your reference Our order number		n.a. 4008659			
Instrument Manufacturer Type Serial Number Identification Number		GE Druck MCX 1910 n.a.			
Reference Standard Manufacturer and type Serial Number Calibration Due		Druck DPI 5 51500850 12 Oct. 200	15 6	Druck DPI 150 2252346 18 Jan. 2007	
Enviror	nmental conditions Temperature Relative Humidity	20 °C <u>+</u> 1 °C 40-70%			

Date of calibration: 20 June 2006

cle GREP P. de Greef

Deputy head of laboratory

The measurements have previous an order lower to measure which are transmission or testing and transmission

ي. د يې تې يې يې مې د. پر يې د د يې Date of signing : 20 June 2006

A.G. v.d. Berghe Head of laboratory

GE Infrastructure Sensing

Certificate Number: 20060036 D

Page 2 of 3

Range 0

0 to 10000 mbar g.

Type SensorPMSerial number sensor1194

As Found / Left

Applied pressure	Instrument reading	Deviation
mbar g.	mbar g.	mbar g.
0.00	0.0	0.00
2000.00	2001.5	1.50
4000.00	4001.2	1.20
6000.00	5998.1	-1.90
8000.00	7995.4	-4.60
10000.00	9994.3	-5.70
8000.00	7996.6	-3.40
6000.00	5999.8	-0.20
4000.00	4002.6	2.60
2000.00	2002.0	2.00
0.00	0.0	0.00

Max. deviation 0.050 % of Reading

Comment:

GE Infrastructure Sensing

Page 3 of 3

Certificate Number: 20060036 D

Range 0 to 120 bar g.

Type SensorPMSerial number sensor1194

As Found

As Left

Applied pressure	Instrument reading	Deviation
bar g.	bar g.	bar g.
0.0000	0.000	0.0000
20.0000	19.977	-0.0230
40.0000	39.955	-0.0450
60.0000	59.934	-0.0660
80.0000	79.922	-0.0780
100.0000	99.889	-0.1110
120.0000	119.866	-0.1340
100.0000	99.894	-0.1060
80.0000	79.929	-0.0710
60.0000	59.942	-0.0580
40.0000	39.965	-0.0350
20.0000	19.985	-0.0150
0.0000	0.005	0.0050

Applied pressure	Instrument reading	Deviation
bar g.	bar g.	bar g.
0.0000	0.000	0.0000
20.0000	20.003	0.0030
40.0000	40.003	0.0030
60.0000	60.006	0.0060
80.0000	80.014	0.0140
100.0000	100.035	0.0350
120.0000	120.027	0.0270
100.0000	100.038	0.0380
80.0000	80.030	0.0300
60.0000	60.026	0.0260
40.0000	40.013	0.0130
20.0000	20.006	0.0060
0.00000	0.004	0.0040

Max. deviation 0.102 % of Reading

Max. deviation 0.026 % of Reading

Comment:

CALIBRATION CERTIFICATE

Page 1 of 6

Customer

GE Industrial Sensing

Druck Nederland B.V. Zuideinde 37, 2991 LJ Postbus 232, 2990 AE, Barendrecht, The Netherlands

T 0180 - 611 555, F 0180 - 618 131 druck.nl@druck.com, www.gesensing.com

Certificate Number: 20060057 E

Name	Forschungszentrum Rossendorf
Address	01314 DRESDEN
Your reference Our ordernumber	N.A. 4008659
Instrument Manufacturer Type Serial number ID number	GE Druck MCX 1910 N.A.
Results	AS-LEFT
Remarks	

Environmental conditions Temperature 20 °C ± 1 °C Relative Humidity 40-70 %

Date of calibration: 20 June 2006

Approval

ile GRA P. de Greef-

P. de Greet Deputy head of laboratory

The measurements have been executed using standards which are traceable to (inter)national standards.

This certificate is issued provided that Druck Nederland B V does not assume ony liability

Page 2 of 6

Certificate Number: 20060057 E

1

Reference Standards

Manufacturer	Model	<u>Serial Number</u>	Certificate Number	Due Date
ALMEMO	2290-3 TEMPERATURE INDICATOR	942599	2003/020	10/6/2008
DATRON	1281 DIGITAL MULTIMETER	43394	06-1030	24/1/2007
FLUKE	5500 CALIBRATOR	7820027	F1282003	26/3/2007
FLUKE	PM6680B COUNTER	SM785650	645446	6/1/2009

est Results

Range	Out	out	Measur	red	Lower lin	mit	Upper limit
CURRENT ME	CASURE						
52mA Range	9						
_	0.0000	mA	0.001	mA	-0.006	mA	0.006 mA
	3.9999	mA	4.001	mA	3.994	mA	4.006 mA
	7.9998	mA	8.002	mA	7.993	mA	8.006 mA
	11.9998	mA	12.002	mA	11.993	mA	1.2.006 mA
	15.9997	mA	16.002	mA	15.993	mA	16.007 mA
	20.0003	mA	20.003	mA	19.993	mA	20.007 mA
	35.0013	mA	35.003	mA	34.994	mA	35.009 mA
	50.0017	mA	50.004	mA	49.993	mA	50.010 mA
CURRENT GE	INERATE						
24 mA Rang	re						
	0.0000	mA	0.001	mA	-0.007	mA	0.007 mA
	4.0000	mA	4.000	mA	3.993	mA	4.007 mA
	8.0000	mA	8.000	mA	7.993	mA	8.007 mA
	12.0000	mA	12.000	mA	11.993	mA	12.007 mA
	16.0000	mA	16.000	mA	15.993	mA	16.007 mA
	20.0000	mA	20.001	mA	19.993	mA	20.007 mA
DC VOLTAGE	MEASURE						
100mV Rang	re						
	0.0005	mV	0.000	mV	-0.005	mV	0.005 mV
	24.9997	mV	24.999	mV	24.994	mV	25.006 mV
	49.9991	mV	49.999	mV	49.992	mV	50.006 mV
	74.9988	mV	75.000	mV	74.991	mV	75.007 mV
	98.9984	mV	99.000	mV	98.989	mV	99.007 mV
DC VOLTAGE	MEASURE						
600mV Rang	e						
	199.999	mV	200.00	mV	199.94	mV	200.06 mV
	399.998	mV	400.01	mV	399.92	mV	400.08 mV
	589.997	mV	590.01	mV	589.90	mV	590.10 mV

DC VOLTAGE MEASURE

, he measurements have been executed using standards which are traceable to (inter)national standards.

This certificate is issued provided that Druck Nederland BV does not assume any liability.

Page 3 of 6

Test Results

GE Industrial Sensing

.

Certificate Number: 20060057 E

Range	Output		Measured	Lower limit	Upper limit
6V Range					
	0.00000 V		0.0000 V	-0.0004 V	0.0004 V
	1.99999 V		2.0000 V	1.9994 V	2.0005 V
	3.99999 V		4.0001 V	3.9993 V	4.0007 V
	5.89997 V		5.9001 V	5.8991 V	5.9008 V
DC VOLTAG	E MEASURE				
60V Range					
	6.1000 V		6.100 V	6.095 V	6.105 V
	9.9999 V		10.000 V	9.994 V	10.005 V
	29.9998 V		30.000 V	29.993 V	30.007 V
	59.0003 V		59.002 V	58.990 V	59.010 V
DC VOLTAG	E GENERATE				
100 mV Ra	nge				
	0.0000 mV		-0.000 mV	-0.005 mV	0.005 mV
	25.0000 mV		25.000 mV	24.994 mV	25.006 mV
	50.0000 mV		50.001 mV	49.993 mV	50.007 mV
	75.0000 mV		75.000 mV	74.992 mV	75.008 mV
	99.0000 mV		98.999 mV	98.991 mV	99.009 mV
DC VOLTAG	E GENERATE				
12 V Rang	e				
	0.00000 V		0.0001 V	-0.0004 V	0.0004 V
	2.00000 V		2.0000 V	1.9995 V	2.0005 V
	4.00000 V		4.0001 V	3.9994 V	4.0006 V
	8.00000 V		8.0001 V	7.9993 V	8.0007 V
	10.00000 V		10.0001 V	9.9992 V	10.0008 V
	11.50000 V		11.5000 V	11.4991 V	11.5009 V
REQUENCY	MEASURE				
655Hz Ran	ge at 1 Volt				
	1.001 Hz	1.00 Hz	1.00 Hz	0.99 Hz	1.01 Hz
	5.999 Hz	6.00 Hz	6.00 Hz	5.99 Hz	6.01 Hz
	59.999 Hz	60.00 Hz	60.00 Hz	59.99 Hz	60.01 Hz
	649.992 Hz	650.00 Hz	650.00 Hz	649.94 Hz	650.04 Hz
FREQUENCY	MEASURE				
1310Hz Ra	nge at 1 Volt				
	659.99 Hz	660.0 Hz	660.0 Hz	659.9 Hz	660.1 Hz
	899.98 Hz	900.0 Hz	900.0 Hz	899.9 Hz	900.1 Hz
	1299.98 Hz	1300.0 Hz	1300.0 Hz	1299.9 Hz	1300.1 Hz
FREQUENCY	MEASURE				
10000Hz R	ange at 1 Volt				
	1499.9725 kHz	1500 Hz	1500.000 kHz	1498.973 kHz	1500.973 kHz
	2999.9465 kHz	3000 Hz	3000.000 kHz	2998.947 kHz	3000.947 kHz

The measurements have been executed using standards which are traceable to (inter)national standards.

This certificate is issued provided that Druck Nederland B V does not assume any vability

×

Page 4 of 6

Test Results

Certificate Number: 20060057 E

Range Measured Lower limit Output Upper limit 5998.898 kHz 5999,8976 kHz 6000 Hz 6000.000 kHz 6000.898 kHz 9989.8356 kHz 9990 Hz 9990.000 kHz 9988.836 kHz 9990.836 kHz PULSE GENERATE 100 Hz Range at 1 Volt 1.00 Hz 1.000 Hz 1.00 Hz 0.99 Hz 1.01 Hz 25.000 Hz 25.00 Hz 25.00 Hz 24.99 Hz 25.01 Hz 50.000 Hz 50.00 Hz 50.00 Hz 49.99 Hz 50.01 Hz 75.000 Hz 75.00 Hz 75.00 Hz 74.99 Hz 75.01 Hz 99.00 Hz 99.00 Hz 99.000 Hz 98.99 Hz 99.01 Hz PULSE GENERATE 10000 Hz Range at 1 Volt 110.0000 kHz 110 Hz 110.036 kHz 109.000 kHz 111.000 kHz 1000.0000 kHz 1000 Hz 999.977 kHz 999.000 kHz 1001.000 kHz 5000.0000 kHz 5000 Hz 4999.758 kHz 4999.000 kHz 5001.000 kHz 9990 Hz 9990.0000 kHz 9989.159 kHz 9989.000 kHz 9991.000 kHz RESISTANCE MEASURE 400 Ohm Range 10.000 Ohm 9.98 Ohm 9.93 Ohm 10.07 Ohm 90.07 Ohm 90.000 Ohm 89.98 Ohm 89.93 Ohm 200.000 Ohm 199.98 Ohm 199.93 Ohm 200.07 Ohm 300.000 Ohm 299.99 Ohm 299.93 Ohm 300.07 Ohm 390.000 Ohm 389.99 Ohm 389.93 Ohm 390.07 Ohm RESISTANCE MEASURE 2000 Ohm Range 500.00 Ohm 500.0 Ohm 499.4 Ohm 500.6 Ohm 1000.00 Ohm 1000.0 Ohm 999.4 Ohm 1000.6 Ohm 1500.00 Ohm 1500.0 Ohm 1499.4 Ohm 1500.6 Ohm 1990.00 Ohm 1990.1 Ohm 1989.4 Ohm 1990.6 Ohm RESISTANCE GENERATE 400 Ohm Range 10.00 Ohm 9.91 Ohm 10.09 Ohm 10.000 Ohm 90.000 Ohm 90.00 Ohm 89.91 Ohm 90.09 Ohm ·200.000 Ohm 200.01 Ohm 199.91 Ohm 200.09 Ohm 300.000 Ohm 300.00 Ohm 299.91 Ohm 300.09 Ohm 390.000 Ohm 389.99 Ohm 389.91 Ohm 390.09 Ohm RESISTANCE GENERATE 2000 Ohm Range 500.00 Ohm 500.1 Ohm 499.4 Ohm 500.6 Ohm 1000.00 Ohm 1000.1 Ohm 999.4 Ohm 1000.6 Ohm 1500.00 Ohm 1500.2 Ohm 1499.4 Ohm 1500.6 Ohm 1990.00 Ohm 1990.1 Ohm 1989.4 Ohm 1990.6 Ohm

The measurements have been executed using standards which are traceable to (inter)national standards.

This certificate is issued provided that Druck Nederland B V ages not assume any liability

Certificate Number: 20060057 E

1

Page 5 of 6

Test Results

Range	Out	out			Measur	red	Lower lin	nit	Upper limi	it
RTD Pt100 MEAS	URE ITS	5-90	1							
850 °C Range										
-	190.000	°C	190.00 d	egC	-189.97	°C	-190.23	°C	-189.77	C
	0.000	°C	0.00 d	egC	-0.05	°C	-0.23	°C	0.23	°C
	100.000	°C	100.00 d	egC	99.94	°C	99.77	°C	100.23	۶C
	500.000	°C	500.00 d	egC	500.13	°C	499.77	°C	500.23	°C
	800.000	°C	800.00 d	egC	800.12	°C	799.77	°C	800.23	°C
RTD Pt100 GENE	RATE II	"S - 9	0							
50 °C Range,	true and	l nc	ominal val	ue	are in °C					
-	190.000	°C	22.83 0	hms	-190.08	°C	-190.28	°C	-189.72 9	°C
	0.000	°C	100 0	hms	-0.03	°C	-0.28	°C	0.28	C
	20.000	°C	107.79 0	hms	19.98	°C	19.72	°C	20.28	°C
	160.000	°C	161.05 O	hms	159.95	°C	159.72	°C	160.28	°C
	500.000	°C	280.98 0	hms	499.84	°C	499.72	°C	500.28	°C
	830.000	°C	384.6 0	hms	829.95	°C	829.72	°C	830.28	°C
THERMOCOUPLE T	YPE K ME	ASU	RE ITS-9	0						
1372 °C Range										
	-220.00	°C	-220.0	°C	-220.1	°C	-220.5	°C	-219.5 9	°C
	0.00	°C	0.0	°C	0.0	°C	-0.2	°C	0.2 4	°C
	300.00	°C	300.0	°C	300.0	°C	299.8	°C	300.2	°C
	900.00	°C	900.0	°C	900.0	°C	899.8	°C	900.2	°C
	1360.00	°C	1360.0	°C	1360.0	°C	1359.8	°C	1360.2	C
THERMOCOUPLE T	YPE J ME	ASU	RE ITS-9	0						
1200 °C Range										
	-200.00	°C	-200.0	°C	-200.0	°C	-200.2	°C	-199.8	C
	0.00	°C	0.0	°C	0.0	°C	-0,2	°C	0.2	°C
	300.00	°C	300.0	°C	300.0	°C	299.8	°C	300.2	°C
	600.00	°C	600.0	°C	600.0	°C	599.8	°C	600.2	C
	1180.00	°C	1180.0	°C	1180.0	°C	1179.8	°C	1180.2	C
THERMOCOUPLE T	YPE T ME	ASU	RE ITS-9	0						
400 °C Range										
	-240.00	°C	-240.0	°C	-240.1	°C	-240.6	°C	-239.4	°C
	-180.00	°C	-180.0	°C	-180.1	°C	-180.6	°C	-179.4	°C
	0.00	°C	0.0	°C	0.0	°C	-0.2	°C	0.2	°C
	100.00	°C	100.0	°C	100.0	°C	99.8	°C	100.2	°C
	390.00	°C	390.0	°C	389.9	°C	389.8	°C	390.2 4	°C
THERMOCOUPLE T	YPE K GE	NER	ATE ITS-	90						
1372 °C Range,	true an	d n	ominal va	lue	are in °C					
2	-190.00	°C	-5730	μV	-189.9	°C	-190.5	۰C	-189.5 9	°C
	0.00	°C	0	μV	-0.0	°C	-0.5	°C	0.5 4	°C
	300.00	°C	12209	μV	299.9	°C	299.8	°C	300.2	°C

The measurements have been executed using $s \mbox{tandards}$ which are traceable to (inter)national standards

This certificate is issued provided that Druck Nederland B V does not assume any liability

Certificate Number: 20060057 E

Page 6 of 6

Test Results

Range Output Measured Lower limit Upper limit 900.00 °C 37326 µV 900.0 °C 899.8 °C 900.2 °C 1370.00 °C 54819 µV 1369.9 °C 1369.8 °C 1370.2 °C THERMOCOUPLE TYPE J GENERATE ITS-90 1200 °C Range, true and nominal value are in °C -200.0 °C -200.00 °C -7890 μV -200.2 °C -199.8 °C 0.00 °C -0.0 °C 0 µV -0.2 °C 0.2 °C 300.00 °C 16326 µV 300.0 °C 299.8 °C 300.2 °C 600.00 °C 33102 µV 600.0 °C 599.8 °C 600.2 °C 1180.00 °C 68406 µV 1180.0 °C 1179.8 °C 1180.2 °C THERMOCOUPLE TYPE T GENERATE ITS-90 400 °C Range, true and nominal value are in °C -240.00 °C -6105 µV -240.0 °C -240.6 °C -239.4 °C -170.00 °C -5070 µV -169.9 °C -170.3 °C -169.7 °C 0.00 °C 0 µV -0.0 °C -0.2 °C 0.2 °C 100.00 °C 4279 μV 99.9 °C 99.8 °C 100.2 °C 390.00 °C 20255 µV 390.0 °C 389.8 °C 390.2 °C INTERNAL COLD JUNCTION Measure T/C 23.760 °C 23.76 °C 23.70 °C 23.36 °C 24.16 °C Simulation T/C 23.455 °C 23.455 °C 23.40 °C 23.06 °C 23.85 °C

The measurements have been executed using standards which are traceable to (interhational standards

This certificate is issued provided that Druck Nederland B V does not assume any liability

DEUTSCHER KALIBRIERDIENST

Kalibrierlaboratorium für Temperatur Calibration laboratory for temperature

Akkreditiert durch die / accredited by the

Akkreditierungsstelle des DKD bei der

PHYSIKALISCH-TECHNISCHEN BUNDESANSTALT (PTB)

Klasmeier

Kalibrier- und Messtechnik GmbH Browertsraße 39 36039 Fulda

036

DKD

Kalibrierzeichen	DKD-K- 19001
Calibration label	2006-10
	Kalibrierzeichen Calibration label

Gegenstand Object	Metallblock-Kalib	rator	Dieser Kalibrierschein dokumentiert die Rückführung auf nationale Normale zur Darstellung der Einheiten in Über-
Hersteller Manufacturer Typ Type	ISOTECH Isothermal Techn Jupiter 650SN	ology Ltd.	heitensystem (SI). Der DKD ist Unterzeichner der multi- latera- len Übereinkommen der European co- operation for Accreditation (EA) und der International Laboratory Accreditation Coo- peration (ILAC) zur gegenseitigen Aner- kennung der Kalibrierscheine
Fabrikat/Serien-Nr. Serial number	181031/2 + 18103 ⁻	1/2	Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kalibrierung ist
Auftraggeber Customer	Forschungszentre Postfach 510119 D-01314 Dresden	um Rossendorf e.V.	der Benutzer verantwortlich. This calibration certificate documents the traceability to national standards, which realize the units of measurement according to the International System of Units (SI).
Auftragsnummer Order No.		4537/06	The DKD is signatory to the multilateral agreements of the European co-operation for Accreditation (EA) and of the Interna-
Anzahl der Seiten des K Number of pages of the certif	alibrierscheines icate	4	(ILAC) for the mutual recognition of calibra- tion certificates.
Datum der Kalibrierung Date of calibration		10.10.2006	The user is obliged to have the object re- calibrated at appropriate intervals.

Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung sowohl der Akkreditierungsstelle des DKD als auch des ausstellenden Kalibrierlaboratoriums. Kalibrierscheine ohne Unterschrift und Stempel haben keine Gültigkeit.

This calibration certificate may not be reproduced other than in full except with the permission of both the Accreditation Body of the DKD and the issuing laboratory. Calibration certificates without signature and seal are not valid.

1asmeier Kalibrier- und Messtechnik GmbH, Browerstraße 39, 36039 Fulda, Tel./Fax 0661-55011 / 57498

Seite Page 2

1. Kalibriergegenstand

Der Kalibriergegenstand ist ein Block-Kalibrator für den Temperaturbereich von 50 bis 650 °C. Der Metallblock (Einsatz) enthält verschiedene Bohrungen mit unterschiedlichen Durchmessern zur Aufnahme der Thermometer, die kalibriert werden sollen, und eine Bohrung mit 3,5 mm Durchmesser zur Aufnahme des zum Kalibrator gehörenden Normal-Thermometers. Das Normalthermometer wird in 4-Leiter-Schaltung angeschlossen. Die maximale Einbautiefe der Thermometer beträgt 140 mm.

2. Meßbedingungen

Bei der Kalibrierung wurden folgende Bedingungen eingehalten:

- Am Regler wurden keine Offsets eingestellt.
- Am Temperatur-Indikator wurden keine Offsets eingestellt.
- Alle Thermometer sind maximal eingetaucht.

Die im DKD-Kalibrierlaboratorium benutzte Temperaturskala ist die Internationale Temperaturskala von 1990 (ITS-90).

Das zur Kalibrierung verwendete Normal-Widerstandsthermometer Ser.-Nr. 25582/3 ist rückführbar auf nationale Normale, ebenso die Widerstandsmeßeinrichtung T.T.I. 2 Ser.-Nr. 141162/1.

2.1 Umgebungsbedingungen

Die Umgebungstemperatur betrug 23 °C ± 5 °C. Die Netzspannung, an der der Kalibrator angeschlossen war, betrug 230 V (Wechselspannung 50 Hz). Seite Page 3

3. Kalibrierverfahren

Grundlage für die Kalibrierung ist die DKD-Richtlinie für die Kalibrierung von Temperatur-Block-Kalibratoren (DKD-R-5-4, und der ISOTECH-Jupiter Untersuchungsbericht).

Entsprechend o. gen. Richtlinie wurden die Kalibrierung an 5 Temperaturwerten vorgenommen, die beginnend bei 100 °C sich in Schritten bis 600°C und wieder fallend auf 100°C erstreckten. Die Messungen erfolgten nach Temperaturstabilisierung am jeweiligen Kalibrierpunkt über einen Zeitraum von 10 min (siehe Meßschrieb).

4. Kalibrierergebnisse

Die Kalibrierergebnisse sind in der nachfolgenden Tabelle angegeben. Dabei sind in den ersten beiden Spalten die Sollund Ist-Werte des Temperatur-Reglers aufgeführt, in der dritten Spalte die mit einem Normal-Widerstandsthermometer gemessene richtige Temperatur am Boden einer Bohrung des Blocks (Kalibriertemperatur) und in der vierten Spalte die Anzeige des Temperatur-Indikators des Kalibrators in Verbindung mit dem zugehörenden Thermometer. Die Meßwerte, die für die Kalibrierpunkte in den beiden Meßzyklen erhalten wurden, sind als Mittelwert angegeben. Die fünfte Spalte enthält die Meßunsicherheit der Kalibrierung.

Re	gler	Kalibrier- Temperatur	angezeigte Temperatur TempIndik. in Verb. mit Thermometer SerNr. 181031/2	Mess- unsicherheit
Sollwert in°C	Istwert in °C	in °C	in °C	in ±K
100	100	99,972	100,0	0,2
200	200	199,804	199,8	0,3
400	400	399,763	400,0	0,5
500	500	499,78	500,2	1,0
600	600	599,869	600,3	1,0

5. Messunsicherheit

Die angegebenen Messunsicherheiten setzen sich zusammen aus den Messunsicherheiten des verwendeten Normals, des Kalibrierverfahrens und den über Voruntersuchungen bekannten Meßunsicherheitsanteilen, die aus der Temperaturverteilung im Block, den Wärmeübergangsbedingungen in den Bohrungen des Blocks, der Länge des Widertandselements im Widerstandsthermometer, der thermischen Belastung durch unterschiedliche Anzahl von Prüflingen und der Kurzzeitstabilität des Thermometers Ser.-Nr. 181031/2 in Verbindung mit dem Temperatur-Indikator des Block-Kalibrators resultieren.

Angegeben ist die erweiterte Messunsicherheit, die sich aus der Standardmessunsicherheit durch Multiplikation mit dem Erweiterungsfaktor k = 2 ergibt. Sie wurde gemäß DKD-3 ermittelt. Der Wert der Messgröße liegt mit einer Wahrscheinlichkeit von 95% im zugeordneten Werteintervall. Seite Page 4

Hinweise zum Einsatz von Temperatur-Blockkalibratoren

Durch den Kalibrierschein eines DKD-Kalibrierlabors wird bestätigt, daß der Temperatur-Blockkalibrator die hohen Anforderungen an die Kalibrierbarkeit eines solchen Gerätes erfüllt, wie sie in der DKD-Richtlinie R5-4 festgelegt sind. Dennoch sind beim Einsatz des Kalibrators die folgenden Punkte zu beachten:

Die Kalibrierung von Temperatur Blockkalibratoren bezieht sich vorwiegend auf die Temperatur des Festkörperblocks. Die Temperatur des im Block zu kalibrierenden Thermometers kann von dieser Temperatur abweichen. Der kalibrierte Metallblockkalibrator ist ein Arbeitsnormal mit einer zertifizierten Messunsicherheit. Die Kalibrierung fand in einem DKD-Kalibrierlaboratorium unter optimalen Bedingungen statt. Der Einsatz des Kalibrators zur Kalibrierung von Temperaturfühlern führt daher zu einer Erhöhung der Meßunsicherheit. Falls im Kalibrierschein nichts anderes angegeben ist, muß sichergestellt sein, daß

- das Meßelement sich in der homogenen Temperaturzone befindet.
- der Innendurchmesser der im Kalibrator benutzten Bohrung (evt. der Hülse) im Temperaturbereich -80°C bis 660°C maximal 0,5 mm und im Temperaturbereich 660°C bis 1300°C maximal 1,0 mm größer ist als der Außendurchmesser des zu kalibrierenden Thermometers.
- die Eintauchtiefe des zu kalibrierenden Thermometers mindestens das 15-fache des Außendurchmessers des zu kalibrierenden Thermometers beträgt.
- das zu kalibrierende Thermometer einen Außendurchmesser d ≤ 6mm hat.

Bitte achten Sie besonders darauf, ob bei der Kalibrierung Ihres Temperatur-Blockkalibrators ein Wärmeträgermittel eingesetzt wurde. Wenn dies der Fall ist, so gilt die Kalibrierung nur bei Einsatz des Kalibrators mit einem entsprechenden Wärmeträgermittel.

Bei der Kalibrierung von Thermometern mit Außendurchmesser d > 6mm ist eine zusätzliche Meßabweichung durch Wärmeableitung zu berücksichtigen. Falls solche Messungen durchgeführt werden sollen, so kann die zusätzliche Wärmeableitung für den bei Ihnen untersuchten Thermometertyp von Ihrem DKD-Kalibrierlabor bestimmt werden. Ein guter Test auf mögliche Wärmableitfehler besteht darin, zu kontrollieren, ob sich die Anzeige des prüfenden Thermometers ändert, wenn es um 20mm angehoben wird. Beiträge zur Meßunsicherheit, die durch das von Ihnen zu kalibrierende Thermometer bedingt sind. (z.B. Inhomogenitäten von Thermoelementen), sind ebenfalls nicht in der Meßunsicherheit des Kalibrators enthalten.

Maßgeblich für die Kalibrierung sind die Angaben im Kalibrierschein, nicht die Herstellerangaben. Sprechen Sie bitte unbedingt vor der Kalibrierung die Einsatz- und Kalibrierbedingungen mit Ihrem DKD-Kalibrierlabor ab.

Wenn im Kalibrierschein nichts anderes angegeben ist, muß (unabhängig von Herstellerangaben) sichergestellt sein, daß

- der Kalibrator in vertikaler Stellung betrieben wird.
- keine zusätzlichen thermischen Isolierungen benutzt werden
- die Umgebungstemperatur (23 ± 5)°C beträgt.

Zur Überprüfung von Temperatur-Blockkalibratoren wird empfohlen, regelmäßige Kontrollmessungen mit einem kalibrierten Thermometer vorzunehmen. Ohne Kontrollmessungen mit einem kalibrierten Thermometer wird eine jährliche Rekalibrierung des Temperatur-Blockkalibrators dringend empfohlen.

ISOTECH-Untersuchungsberichte können unter: www.klasmeier.com/untersuchungsberichte runtergeladen werden.

Anhang VI

Beschreibung der zur Luft/Wasser-Messserie L12 verfügbaren Datenfiles

VI. Beschreibung der zur Luft/Wasser-Messserie L12 verfügbaren Datenfiles

VI.1 Namenskonvention der Datenfiles

Die Messdaten und die Ergebnisse der Auswertung werden in Files mit der folgenden Struktur abgespeichert:

NNN_DDD_VVV_YY_rzz_tcc_d.1x64x64.pkt.typ;

Die Buchstabenkombinationen haben folgende Bedeutung:

- NNN Identifikationsnummer der Messserie (L12 Luft/Wasser-Experimente in der Teststrecke Variable Gaseinspeisung),
- DDD Innendurchmesser der Teststrecke in mm 195 steht für 195.3 mm,
- VVV Bauform der Teststrecke, in diesem Fall VGE für Variable Gaseinspeisung,
- YY Gaseinspeiseposition ein bzw. zwei Buchstaben sind möglich, vgl. Bild 2, Tab. 1 und Abschnitt 1.3,
- rzz Randeinspeisung mit 72 x 1 mm Bohrungen oder 32 x 4 mm Bohrungen, zz ist der Durchmesser in mm,
- t30 Wassertemperatur in der Teststrecke: 30 $^{\circ}$ C ± 1 K,
- d entweder x für die Daten der in Strömungsrichtung ersten Messebene oder y für die Zweite,
- 2x64x64 ein Zweiebenensensor mit 64 x 64 Drahtelektroden wurden eingesetzt,
- pkt Versuchs- oder Matrixpunkt entsprechend Tab. 2,
- typ Filetyp, vgl. Tab. VI.1.

VI.2 Beschreibung der Datenfiles

Tab. VI.1: Für die Versuchsserie L12 verfügbare Filetypen

Filetyp	Beschreibung	Format
*.a	Geometrische Eigenschaften aller identifizierten Blasen (Abschnitt: 1.5.4, Kurzinformation: VI.3)	text
*.b	Matrix mit Blasenidentifikationsnummern (Abschnitt: 1.5.4)	binary
*.epsr	Zeitgemittelte Gasgehalte für alle Kreuzungspunkte des Gittersensors, dargestellt als Wertepaare, bestehend aus dem Abstand des Punktes vom Zentrum des Rohres und dem jeweiligen Gasgehalt (Abschnitt: 1.5.2, Filestruktur: VI.4)	text
*.epsrad_80	Zeit- und azimutal (innerhalb von 80 Radiusdomänen) gemittelte Gasgehalte (Abschnitt: 1.5.2, Filestruktur: VI.5)	text
*.epsrad_80_bub	In Blasenklassen aufgeteilte Informationen der *.epsrad_80-files (Abschnitt: 1.5.5, Filestruktur: VI.6)	text
*.epsxy	Zeitgemittelte Gasgehalte für alle Kreuzungspunkte des Gittersensors als Matrix (Abschnitt: 1.5.2, Filestruktur: VI.7)	text
*.his_lin	Blasengrößenverteilung bezogen auf lineare Blasenklassen (Abschnitt: 1.5.5, Filestruktur: VI.8)	text

*.his_lin_r	Blasengrößenverteilungen bezogen auf lineare Blasenklassen aufgeteilt auf 80 Radiusdomänen (Abschnitt: 1.5.5, Filestruktur: VI.9)	text
*.his_log	Blasengrößenverteilung bezogen auf logarithmische Blasenklassen (Abschnitt: 1.5.5, Filestruktur: VI.10)	text
*.log	File mit wichtigen Informationen über die Funktion der Auswerteprogramme und über die verwendeten Parameter	text
*.mes	Messdaten, generiert von der Gittersensorelektronik und der Messsoftware	binär
*.ud	Gewichtete Driftgeschwindigkeiten (Kapitel 2.2.1, Filestruktur: VI.11)	text
*.uw	Kalibriermatrix für alle Kreuzungspunkte des Gittersensors (Abschnitt 1.5.1, Filestruktur VI.12)	text
*.uwrad_80	Azimutal (auf 80 Radiusscheiben aufgeteilt) gemittelte Kalibrierwerte aus *.uw (Abschnitt 1.5.1, Filestruktur VI.13)	text
*.v	Gasgehaltswerte für die einzelnen Kreuzungspunkte des Gittersensors für alle gemessenen frames, Werte zwischen 0 und 100 % (Abschnitt: 1.5.1)	binär
*.v00	Lokale Gasgeschwindigkeiten als Wertepaare, bestehend aus dem Abstand des Messpunktes vom Zentrum des Rohres und der jeweiligen Geschwindigkeit, nur zur internen Verwendung (Abschnitt: 1.5.3, Filestruktur VI.14)	text
*.vel	Lokale azimutal (80 Radiusdomänen) gemittelte Gasgeschwindigkeiten (Abschnitt: 1.5.3, Filestruktur VI.15)	text

VI.3 Geometrische Blaseneigenschaften

Tab. VI.2 Auszug aus einem *.a File (Blaseneigenschaften)

bb	im	jm	km	ifront	jfront	kfront	iback	jback	kbac k	rmi	rmj	rmk	rmxy	max	v	rv	n	deps	rxymax
[-]	[ms]	[mm]	[mm]	[ms]	[mm]	[mm]	[ms]	[mm]	[mm]	[ms]	[mm]	[mm]	[mm]	[%]	[ms*mm²]	[s3(ms*mm ²)]	[-]	[%]	[mm]
1	3.6	18.7	132.2	0.4	15.0	120.0	9.6	21.0	135.0	5.4	13.1	13.0	18.4	100	1348.93	6.85	888	0.0004527	9.031
2	18.0	98.2	103.1	0.4	21.0	102.0	52.0	36.0	135.0	23.9	97.0	72.5	121.1	100	304569.4	41.74	1358	0.1022072	55.256
															4		12		
3	6.0	165.9	44.1	0.4	147.0	51.0	15.6	177.0	48.0	9.2	15.6	13.4	20.6	100	3991.92	9.84	2134	0.0013396	12.017
4	8.5	27.5	66.7	0.4	18.0	66.0	16.0	42.0	72.0	8.7	16.3	12.9	20.8	100	3754.53	9.64	1964	0.0012599	10.822
5	14.9	93.6	25.1	9.2	93.0	24.0	19.2	99.0	24.0	5.7	10.2	8.4	13.2	100	1180.37	6.56	667	0.0003961	7.183
6																			

Die *.a – files beinhalten eine Tabelle (Tab VI.2), die für alle identifizierten Blasen folgende Eigenschaften zusammenfasst:

bb - Blasenidentifikationsnummer,

im, jm, km - Schwerpunktkoordinaten der Blase in i – Strömungsrichtung und j, k – Messquerschnitt,

ifront, jfront

kfront - Koordinaten des Blasenanfangs,

iback, jback										
kback -	Koordinaten des Blasenendes,									
rmi, rmj, rmk -	ni, rmj, rmk - Blasenmomente in i – Strömungsrichtung und j, k – Messquer schnitt,									
rmxy -	adiales Blasenmoment in Messquerschnittsebene,									
max -	Maximum des Gasgehalts pro Blase,									
V -	Blasenvolumen,									
rv -	Radius einer volumengleichen Kugel,									
n -	Anzahl der Messvolumina pro Blase,									
deps -	Anteil des Gasgehaltes pro Blase bezogen auf das gesamte Strömungsvolumen,									
rxvmax -	Maximaler kreisäguivalenter Radius der Blase in der Messebene.									

In der zweiten Zeile der Tabelle VI.2 sind die Maßeinheiten für die Blaseneigenschaften angegeben. Es wird noch einmal darauf hingewiesen, dass sich bei den Blaseneigenschaften im Gegensatz zu den Gasgehaltsberechnungen der Index i auf die laufende Nummer des frames bezieht (Zeitachse oder z-Richtung) und die Indizes j bzw. k für den Messquerschnitt gelten. Alle Eigenschaften in Richtung der Zeitachse sind in Zeiteinheiten angegeben (ms).

VI.4 Zeitgemittelte Gasgehaltsverteilungen

Die Textfiles *.epsr enthalten die lokalen zeitgemittelten Gasgehalte in Form von Wertepaaren, aufgeteilt auf zwei Spalten: Die linke Spalte enthält den radialen Abstand jedes einzelnen Messpunktes (x,y) von der Mittelachse des Rohres in mm, während in der rechten Spalte der Gasgehalt in % zugeordnet ist. Die Reihenfolge richtet sich nach der Anordnung der Messpunkte im Gittersensor. Es sind 64 x 64 Punkte nacheinander aufgelistet, wobei die Punkte außerhalb des Messquerschnitts einen Gasgehalt von 0.00 % haben. Beispielhaft ist in Tabelle VI.3 ein Auszug aus einem *.epsr file dargestellt. Er enthält 20 reale Messpunkte für eine Erregerelektrode am Rand des Gittersensors sowie im oberen und unteren Bereich jeweils zwei Punkte außerhalb des Sensors.

	• • • –	
	0.6 51.439	
100.601 0.00	1.8 51.439	
99.612 0.00	3.1 51.475	
98.704 1.36	4.3 51.519	
97.880 3.13	5.5 51.403	
97.142 6.25	6.7 51.433	
96.491 8.56	7.9 51.564	
95.930 9.97	9.2 51.695	
95.459 12.97	10.4 51.851	
95.082 14.27	11.6 51.890	
94.797 13.94	12.8 51.726	
94.607 14.91	14.0 51.554	
94.512 16.05	15.3 51.449	
94.512 16.81	16.5 51.428	
94.607 15.61	17.7 51.337	
94.797 14.72	18.9 51.004	
95.082 13.24	20.1 50.789	
95.459 12.15	21.4 50.684	
95.930 10.09	22.6 50.596	
96.491 8.45	23.8 50.460	

Tab. VI.3	Ausschnitte aus	den Gasgehaltsfiles	*.epsr und	*.epsrad_	_80
-----------	-----------------	---------------------	------------	-----------	-----

97.142 5.61	25.0 50.117
97.880 4.06	26.2 49.974
98.704 3.11	27.5 49.713
99.612 0.00	28.7 49.375
100.601 0.00	29.9 49.118
Auszug aus einem *.epsr-file	Ausschnitt einer epsrad_80 Datei

VI.5 Zeit- und azimutal gemittelte Gasgehaltsverteilungen

Diese Datei (*.epsrad_80) beinhaltet zeit- und azimutal gemittelte Gasgehaltsinformationen für 80 konzentrische Ringe gleicher Breite. Sie listet ebenfalls Wertepaare auf, wobei Spalte 1 den mittleren Abstand des jeweiligen Ringes vom Zentrum des Rohres in mm und die rechte Spalte den zugehörigen Gasgehalt ebenfalls in % enthalten. Tab. VI.3 zeigt im rechten Teil einen Ausschnitt aus dieser Datei. Dargestellt werden 25 Wertepaare für Ringe mit einer Breite von 1,2 mm. Diese Dateien wurden für die Visualisierungen der radialen Gasgehaltsprofile im Anhang I verwendet.

VI.6 Zeit- und azimutal gemittelte Gasgehaltsverteilungen aufgelöst nach Blasenklassen

In diesem File (*.epsrad_80_bub) sind zusätzlich zu den Informationen aus den *.epsrad_80-Dateien noch vier Spalten angefügt, in denen der azimutal und zeitlich gemittelte Gasgehalt in % auf Blasenklassen aufgeteilt wurde (siehe Tab. VI.4). Die Breite der einzelnen Klassen ist im Tabellenkopf in mm angegeben. Die Summe des Gasgehaltes über die vier Klassen ergibt den Gesamtgasgehalt in der Spalte eps_all.

r e	os_all	0.0	< 4.0	< 5.8	< 7.0	< 200.0
mm	%		%	%	%	%
0.6	51.27		0.20	0.76	0.97	49.34
1.8	51.27		0.20	0.76	0.97	49.34
3.1	51.30		0.20	0.77	1.00	49.34
4.3	51.34		0.20	0.78	1.03	49.32
5.5	51.22		0.21	0.78	1.03	49.21
6.7	51.25		0.21	0.78	1.00	49.26
7.9	51.37		0.20	0.79	1.00	49.37
9.2	51.48		0.20	0.79	1.00	49.49
10.4	51.61		0.20	0.78	1.00	49.63

Tab. VI.4 Auszug aus einem *:epsrad_80_bub File

VI.7 Zeitgemittelte Gasgehaltsverteilungen

In diesem Fall (*.epsxy) sind die zeitgemittelten volumetrischen Gasgehalte in % als Matrix des Messquerschnittes (64 x 64 Werte) angeordnet. Bild VI.1 zeigt beispielhaft einen Ausschnitt dieser Matrix. Auch bei dieser Darstellungsform haben die Punkte außerhalb des Messquerschnitts den Wert 0,00 %.

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.68	4.85	11.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	3.05	9.54	14.49	19.04	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.64	5.50	12.31	17.41	20.65	23.38	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.89	7.96	14.98	18.85	23.32	24.92	26.92	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.21	10.29	16.23	19.37	21.99	24.87	27.67	29.14	

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.36 10.96 16.53 19.79 22.58 24.78 27.98 29.65 31.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.06 10.31 16.22 19.83 21.98 24.56 27.68 30.60 31.77 33.84 10.75 16.10 21.03 23.77 24.79 27.33 29.64 31.07 33.42 34.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.43 0.00 0.00 0.00 0.00 0.00 0.00 0.64 8.40 15.66 20.19 23.17 26.07 28.06 29.02 30.82 32.34 33.71 35.29 0.00 0.00 0.00 0.00 0.00 0.10 7.42 15.18 20.52 23.23 25.85 28.05 29.74 30.76 31.78 32.60 34.96 35.58 14.37 19.71 23.72 26.08 27.78 30.12 32.35 33.23 32.49 34.34 35.91 37.41 0.00 0.00 0.00 0.00 0.00 5.600.00 0.00 0.00 0.00 2.80 12.20 18.78 23.12 25.53 28.71 30.65 31.53 34.36 33.29 34.06 36.45 36.83 38.44 0.00 7.11 15.93 20.69 24.06 28.32 29.65 32.58 33.63 35.15 35.39 36.42 36.99 39.06 39.53 0.00 0.00 0.00 0.00 0.00 0.00 3.03 13.68 19.19 23.29 27.39 30.63 31.34 33.41 34.47 36.25 37.33 37.73 38.98 40.38 40.29 0.00 0.00 18.04 21.84 25.67 29.48 31.95 33.86 35.02 36.34 37.60 39.05 39.48 40.66 40.87 39.40 0.00 8.57 0.00 0.00 3.61 14.25 21.12 26.01 28.41 31.09 32.86 35.34 36.78 38.41 38.73 40.35 39.67 40.55 41.14 40.28 0.00 0.00 7.43 18.02 24.67 27.91 29.51 32.74 33.86 36.45 38.01 39.03 38.98 41.17 41.08 40.91 40.99 42.05 11.77 20.31 25.91 29.55 30.74 33.69 35.55 37.08 37.29 39.58 41.10 41.33 41.87 42.27 41.35 42.27 0.00 1.93 0.00 4 43 15 19 22 52 26 78 29 13 31 32 34 86 35 92 38 10 38 94 39 15 40 66 40 18 40 65 42 10 41 90 42 84 0.00 8.20 18.29 23.26 27.12 30.03 32.36 35.57 35.98 38.31 39.15 40.46 41.13 40.92 41.72 42.09 41.60 42.96 0.53 11.17 20.14 24.69 28.03 30.29 33.01 36.54 36.15 38.33 39.93 39.64 40.67 41.12 42.30 43.31 42.67 43.16 12.80 21.76 26.42 29.93 31.73 33.68 35.76 36.78 38.02 38.96 39.83 40.68 43.07 42.64 43.84 43.83 44.90 2.93 4.96 15.00 21.77 27.13 31.22 32.95 34.64 37.44 38.07 38.06 39.51 40.67 41.61 42.90 44.06 44.91 44.98 44.64 16.06 23.12 28.44 31.97 33.95 35.89 36.59 37.47 38.11 39.19 40.84 41.45 41.37 43.65 45.87 45.14 44.74 7.33 9 04 17.42 23.93 28.37 31.82 33.62 35.70 37.70 37.65 38.20 39.35 41.14 43.38 43.27 45.44 46.71 45.85 45.64 10.21 18.41 24.72 27.19 30.58 33.17 35.88 37.14 37.54 38.92 39.92 41.87 44.15 43.09 45.51 46.71 46.93 45.65 11.26 19.42 24.76 27.60 30.63 32.71 35.78 37.24 37.77 39.13 40.00 42.07 42.89 43.71 46.17 46.15 46.22 47.01 11.82 19.83 24.52 27.07 30.50 32.88 35.10 35.86 36.71 38.12 40.98 42.84 43.83 44.20 45.00 47.07 46.24 45.35 13.03 19.26 23.99 26.96 30.27 31.95 34.83 35.84 37.48 38.44 41.09 42.85 43.86 43.38 44.53 45.38 45.74 46.28

Bild VI.1 Visualisierung zeitgemittelter Gasgehalte über einen Teil des Messquerschnitts aus einer *.epsxy Datei

VI.8 Blasengrößenverteilung für lineare Blasenklassenbreiten

Auch diese Dateien (*.his_lin) sind in Form einer Tabelle (vgl. Tab. VI.5) aufgebaut.

d	hdxy	hdrelxy	hdnxy	hdv	hdrelv	hdnv
[mm]	[%/mm]	[1/mm]	[1/mm/s]	[%/mm]	[1/mm]	[1/mm/s]
0.00	0.0000	0.0000	59.60	0.0000	0.0000	25.20
0.25	0.0000	0.0001	59.20	0.0000	0.0000	31.20
0.50	0.0002	0.0011	168.00	0.0000	0.0000	33.20
0.75	0.0005	0.0022	167.20	0.0001	0.0003	76.00
1.00	0.0011	0.0055	248.00	0.0001	0.0007	127.60
1.25	0.0021	0.0103	310.40	0.0004	0.0019	176.00
1.50	0.0051	0.0252	597.60	0.0009	0.0045	250.80
1.75	0.0133	0.0655	1182.00	0.0033	0.0161	551.60
2.00	0.0335	0.1643	2222.00	0.0106	0.0523	1231.60
2.25	0.0503	0.2468	2492.40	0.0227	0.1113	1927.60
2.50	0.0686	0.3365	2664.80	0.0357	0.1750	2224.00
2.75	0.0996	0.4889	3211.20	0.0564	0.2770	2732.80
3.00	0.1274	0.6252	3452.00	0.0812	0.3988	3059.20

Tab. VI.5	VI.5 Blasengrößenverteilung		lineare	Blasenklassenbreiten	aus	dem	File
	*.his lin						

.....

Die einzelnen Spalten beinhalten folgende Informationen (siehe auch Abschnitt 1.5.5):

- d Blasendurchmesser in mm
- hd Gasgehalt der Blasen dieser Klasse bezogen auf die Blasenklassenbreite (0,25 mm) in %/mm
- hdrel hd bezogen auf den Gesamtgasgehalt in 1/mm

hdn – Anzahl an Blasen in der jeweiligen Klasse bezogen auf die Klassenbreite und die Gesamtmesszeit 1/(mm*s)

Diese drei Verteilungen werden jeweils bezogen auf den flächengleichen Blasendurchmesser für die größte Querschnittsfläche der Blase beim Durchdringen der Messebene (xy) bzw. auf den volumengleichen Blasendurchmesser (v) bereitgestellt. Bei der Berechnung der volumengleichen Parameter werden die lokalen Gasgeschwindigkeiten verwendet, um die Zeitkoordinate aus den *.a-Files in eine geometrische Länge umzurechnen.

VI.9 Blasengrößenverteilung für lineare Blasenklassenbreiten aufgelöst auf Ringdomänen

Diese Dateien (*.his_lin_r) enthalten für jeden der zur Mittelung verwendeten 80 ringförmigen Bereiche eine Tabelle wie sie in Tab. VI.5 dargestellt ist. Zur Zuordnung steht über den Tabellen jeweils der Anfangs- und Endradius der Ringdomänen. Am Ende des Files ist eine Tabelle mit den integralen Blasengrößenverteilungen angefügt, die den Verteilungen im File *.his_lin entsprechen.

VI.10 Blasengrößenverteilung für logarithmische Blasenklassenbreiten

Die *.his_log Dateien enthalten die gleichen Verteilungen wie die *.his_lin Files (vgl. Abschnitt VI.8), mit dem Unterschied, dass die Blasenklassenbreite ab einem Durchmesser von 3 mm logarithmisch zunimmt. Für kleinere Blasen wurde eine lineare Klassenbreite von 0,1 mm gewählt. Anhang I enthält die Visualisierung der Blasengrößenverteilungen aus den *.his log Files.

			5			
d [mm]	hdxy [%/mm]	hdrelxy [1/mm]	hdnxy [%/mm/s]	hdv [%/mm]	hdrelv [1/mm]	hdnv [%/mm/s]
2.50	0.0696	0.3416	2882.00	0.0288	0.1412	1971.00
2.60	0.0664	0.3261	2503.00	0.0382	0.1875	2331.00
2.70	0.0848	0.4165	3009.00	0.0461	0.2264	2549.00
2.80	0.0940	0.4612	3055.00	0.0545	0.2674	2716.00
2.90	0.1056	0.5183	3241.00	0.0627	0.3077	2825.00
3.00	0.1212	0.5949	3533.62	0.0730	0.3586	2951.55
3.11	0.1288	0.6324	3376.85	0.0849	0.4166	3103.95
3.22	0.1276	0.6265	2992.83	0.0976	0.4789	3203.98
3.33	0.1402	0.6880	2968.25	0.1098	0.5388	3234.49
3.45	0.1568	0.7696	3042.70	0.1197	0.5876	3194.02
3.57	0.1563	0.7674	2786.43	0.1380	0.6773	3306.48
3.70	0.1726	0.8473	2829.40	0.1506	0.7395	3257.98
3.83	0.1688	0.8285	2546.78	0.1624	0.7972	3157.65
3.97	0.1919	0.9422	2660.76	0.1723	0.8459	3037.73
4.11	0.2001	0.9824	2567.87	0.1905	0.9349	3022.71
4.26	0.1988	0.9760	2316.66	0.1899	0.9323	2714.98
4.41	0.2034	0.9986	2223.62	0.2129	1.0449	2735.58
4.57	0.2231	1.0952	2176.03	0.2103	1.0323	2430.59
4.73	0.2299	1.1287	2018.06	0.2265	1.1117	2372.51
4.90	0.2288	1.1231	1860.94	0.2311	1.1345	2177.41
5.07	0.2291	1.1244	1684.00	0.2417	1.1866	2046.05

Tab. VI.6	Blasengrößenverteilung	für	logarithmische	Blasenklassenbreiten	aus
	einem File *.his_log				
5.25 0.2518 1.2359 1684.88 0.2487 1.2210 1896.	0.2487 1.2210 1896.	684.88	1.2359	0.2518	5.25
--	---------------------	--------	--------	--------	------
--	---------------------	--------	--------	--------	------

.....

VI.11 Gewichtete Driftgeschwindigkeiten

Die *.ud Dateien enthalten die Ergebnisse der Berechnung der gewichteten Driftgeschwindigkeiten. Die theoretischen Grundlagen für die Berechnungen sind im Kapitel 2.2.2 ausführlich beschrieben worden. Die Files beinhalten eine Tabelle (Beispiel: Tab. VI.7) mit folgenden Informationen:

- r mittlerer Radius der jeweils zur azimutalen Mittelung genutzten Ringdomäne (vgl. Bild 12) in mm,
- f Schwarmfaktor,
- urel berechnete azimutal gemittelte Relativgeschwindigkeiten zwischen beiden Phasen in m/s,
- ul berechnete azimutal gemittelte Geschwindigkeiten der flüssigen Phase in m/s,
- jl berechnete azimutal gemittelte Leerrohrgeschwindigkeit der flüssigen Phase in m/s,
- jg berechnete azimutal gemittelte Gas-Leerrohrgeschwindigkeit in m/s.

Tab. VI.7	Zwischenergebnisse	zur	Berechnung	der	gewichteten	Driftgeschwindig-
	keiten					

r	f	urel	ul	jl	jg
mm	-	m/s	m/s	m/s	m/s
0.6	1.6581	0.5428	2.0364	0.9889	1.3276
1.8	1.6581	0.5428	2.0364	0.9889	1.3276
3.1	1.6589	0.5430	2.0362	0.9880	1.3286
4.3	1.6600	0.5436	2.0356	0.9869	1.3297
5.5	1.6572	0.5446	2.0346	0.9888	1.3267
6.7	1.6579	0.5448	2.1003	1.0201	1.3614
7.9	1.6610	0.5437	2.1014	1.0178	1.3649
9.2	1.6642	0.5421	2.1030	1.0159	1.3684
10.4	1.6680	0.5396	2.0395	0.9820	1.3383
11.6	1.6689	0.5385	2.0406	0.9817	1.3393
12.8	1.6649	0.5381	2.0411	0.9853	1.3350
14.0	1.6608	0.5384	2.1067	1.0206	1.3646
15.3	1.6583	0.5379	2.1072	1.0231	1.3619
16.5	1.6578	0.5368	2.0424	0.9920	1.3274
17.7	1.6556	0.5366	2.0425	0.9940	1.3250
18.9	1.6477	0.5371	2.0421	1.0005	1.3164

k= 0.999; J= 1.780 m/s; eps(r)= 35.338 %; C0= 1.058; <Ugl>= 0.275 m/s; <UD>= 0.378 m/s eps(Matrix)=33.881 %; eps(Integral)=35.353 %

Nach der Tabelle schließen zwei Zeilen dieses Textfile ab, in denen integrale Zwischenergebnisse und die berechnete gewichtete Driftgeschwindigkeit ausgegeben werden. Dabei haben die Symbole folgende Bedeutung:

- k Korrekturfaktor für die Berechnung der Geschwindigkeit der flüssigen Phase,
- J mittlere Gesamtleerrohrgeschwindigkeit,
- eps(r) über den Radius integrierter Gasgehalt (direkt aus den *.epsrad_80 Dateien berechnet),

- C0 Profilparameter,
- Ugl lokale Driftgeschwindigkeit,
- DU berechnete gewichtete Driftgeschwindigkeit,
- eps(Matrix) aus den Leerrohrgeschwindigkeiten für Wasser und Gas der Versuchsmatrix (Tab. 2) und der gewichteten Driftgeschwindigkeit berechneter Gasgehalt,
- eps(Integral) mit Hilfe der berechneten (über dem Radius integrierten) Leerrohrgeschwindigkeiten für Wasser und Gas und der gewichteten Driftgeschwindigkeit berechneter Gasgehalt.

Die Maßeinheiten für die jeweiligen Werte sind in den Ergebniszeilen mit angegeben. Die mit den gewichteten Driftgeschwindigkeiten berechneten Gasgehalte dieser Dateien sind im Anhang I visualisiert.

VI.12 Kalibrierwerte für alle Messpunkte des Gittersensors als Matrix

In diesen Dateien (*.uw) werden die zur Kalibrierung der Messwerte verwendeten Daten ähnlich wie die Gasgehalte in den *.epsxy Files als Matrix abgespeichert. Die Kalibrierwerte bestimmen sich aus den Leitfähigkeiten der Messvolumina um die jeweiligen Gitterpunkte für reines Wasser. Bild VI.2 zeigt ca. ¹/₄ des Messquerschnitts:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	480	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	496	1232	1584	
0	0	0	0	0	0	0	0	0	0	0	0	0	272	1056	1696	1680	1808	
0	0	0	0	0	0	0	0	0	0	0	0	416	1408	1680	1872	1792	1888	
0	0	0	0	0	0	0	0	0	0	0	752	1488	1824	1824	1952	1872	1952	
0	0	0	0	0	0	0	0	0	0	896	1648	1744	1872	1872	1952	1936	1984	
0	0	0	0	0	0	0	0	160	1008	1664	1824	1824	1952	1952	2016	1968	2032	
0	0	0	0	0	0	0	0	928	1664	1776	1872	1856	1952	1968	2016	1984	2032	
0	0	0	0	0	0	0	960	1648	1792	1840	1920	1888	2000	2000	1984	2016	2048	
0	0	0	0	0	0	672	1680	1760	1856	1872	1952	1936	2000	2016	2016	2016	2064	
0	0	0	0	0	432	1552	1808	1824	1888	1920	1984	1952	2016	2016	2000	2048	2048	
0	0	0	0	160	1360	1744	1840	1856	1936	1936	1984	1952	2048	2000	2016	2032	2064	
0	0	0	0	880	1744	1808	1904	1888	1952	1952	1984	1968	2000	2000	2000	2016	2064	
0	0	0	336	1552	1792	1840	1904	1920	1936	1968	2000	1968	2016	2016	1968	2048	2064	
0	0	0	1168	1744	1888	1920	1984	2000	2016	2032	2048	2032	2096	2080	2048	2128	2144	
0	0	400	1648	1776	1904	1936	1984	2000	2048	2032	2048	2016	2128	2112	2080	2144	2112	
0	0	1200	1728	1792	1952	1952	1984	2000	2032	2016	2032	1952	2096	2032	2016	2096	2080	
0	384	1600	1776	1856	1984	1968	2016	2016	2064	2080	2080	1968	2128	2080	2048	2112	2144	
0	1024	1664	1824	1872	2000	2000	2016	2032	2048	2032	2064	2000	2112	2096	2064	2096	2112	
0	1504	1712	1856	1888	2000	2016	2048	2032	2080	2080	2048	2016	2096	2080	2064	2112	2128	
352	1712	1760	1872	1904	2032	2032	2048	2048	2096	2064	2096	2016	2112	2112	2048	2096	2112	
864	1760	1792	1904	1888	2016	2016	2032	2016	2064	2064	2032	1968	2080	2080	2016	2080	2064	
1344	1808	1856	1968	1952	2080	2080	2064	2096	2128	2096	2112	2048	2208	2128	2064	2176	2208	
1488	1792	1792	1904	1904	2016	2000	2016	2032	2048	2032	2048	1984	2112	2080	2016	2112	2096	
1648	1840	1840	1952	1936	2064	2048	2016	2048	2096	2080	2080	1984	2080	2064	2048	2128	2128	
1728	1856	1856	1952	1936	2064	2048	2032	2048	2080	2080	2080	2048	2144	2128	2064	2128	2160	
1776	1888	1888	1952	1952	2080	2080	2048	2064	2128	2112	2112	2080	2144	2128	2080	2176	2160	
1808	1904	1888	1968	1952	2064	2064	2048	2064	2112	2096	2096	2016	2144	2144	2048	2144	2208	
1808	1904	1888	1952	1936	2064	2048	2016	2048	2064	2080	2096	2016	2128	2096	2064	2144	2128	
1840	1904	1888	1968	1936	2048	2064	2016	2064	2080	2080	2080	2016	2112	2096	2016	2112	2144	

Bild VI.2 Visualisierung der Kalibrierwerte über einen Teil des Messquerschnitts aus einer *.uw Datei

Die Kalibriermatrix wird für 64 x 64 Punkte berechnet. Liegen die Punkte außerhalb des Messquerschnittes, erhalten sie den Wert 0. Die Kalibrierwerte in diesen Files und in den *.uwrad_80 Dateien sind auf 4096 ADC Werte normiert.

VI.13 Azimutal gemittelte Kalibrierwerte

Zur Beurteilung der Qualität der Histogrammkalibrierung werden radiale Kalibrierprofile verwendet (siehe Abschnitt 1.5.1). Hierzu benötigt man azimutal gemittelte Kalibrierwerte. Die Mittelung wird ähnlich wie bei den Gasgehalten oder Gasgeschwindigkeiten entsprechend Abschnitt 1.5.2 Bild (vgl. 12) mit Wichtungskoeffizienten durchgeführt. Der linke Bereich von Tabelle VI.8 zeigt beispielhaft die Anordnung der Kalibrierwerte. In der linken Spalte sind die mittleren Radien der zur azimutalen Mittelung verwendeten Ringdomänen dargestellt. Die rechte Spalte enthält die zugehörigen gemittelten Kalibrierwerte.

0.6	2076.00			0.6	2.581
1.8	2076.00	100.6	0.000	1.8	2.581
3.1	2081.17	99.6	0.000	3.1	2.581
4.3	2090.73	98.7	1.665	4.3	2.581
5.5	2088.69	97.9	1.780	5.5	2.581
6.7	2083.10	97.1	1.518	6.7	2.647
7.9	2087.58	96.5	1.377	7.9	2.647
9.2	2095.03	95.9	1.541	9.2	2.647
10.4	2107.30	95.5	2.065	10.4	2.581
11.6	2113.51	95.1	1.693	11.6	2.581
12.8	2111.34	94.8	1.693	12.8	2.581
14.0	2108.42	94.6	1.750	14.0	2.647
15.3	2107.56	94.5	1.454	15.3	2.647
16.5	2106.22	94.5	1.811	16.5	2.581
17.7	2099.05	94.6	2.025	17.7	2.581
18.9	2071.38	94.8	1.395	18.9	2.581
20.1	2055.96	95.1	1.639	20.1	2.581
21.4	2065.63	95.5	1.324	21.4	2.581
22.6	2082.10	95.9	1.564	22.6	2.518
23.8	2087.42	96.5	1.414	23.8	2.518
25.0	2084.30	97.1	1.721	25.0	2.518
26.2	2084.88	97.9	1.147	26.2	2.518
27.5	2085.93	98.7	0.688	27.5	2.518
28.7	2084.28	99.6	0.000	28.7	2.518
29.9	2082.76	100.6	0.000	29.9	2.518
Azimı	utal gemittelte Kali-	Lokale	Gasgeschwindig-	Azimut	al gemittelte Gas-
brierv	verte (*.uwrad 80)	keiten	der Punkt-zu-Punkt	aeschv	windigkeiten (*.vel)
		Kreuzk	relation (* y00)	3	- <u>J</u>
		i ti Guzi			

Tab. VI.8 Beispiele für die Dateien *.uwrad_80, *.v00, *.vel

VI.14 Lokale Gasgeschwindigkeiten

Wie in Kapitel 1.5.3 beschrieben, nutzt man die gemessenen Gasgehalte zweier übereinander angeordneter Messebenen, um aus der Kreuzkorrelation der übereinander liegenden Messpunkte lokale Gasgeschwindigkeiten zu bestimmen. Die Ergebnisse der Punkt-zu-Punkt Korrelation sind in den *.v00 Files aufgelistet. Tabelle VI.8 zeigt im mittleren Bereich Daten dieses Filetyps. Ähnlich wie die Gasgehaltsdaten in den *.epsr Dateien sind auch diese Geschwindigkeitsinformationen für 64 x 64 Messpunkte als Wertepaare untereinander angeordnet. In der linken Spalte ist der radiale Abstand jedes einzelnen Messpunktes (x,y) von der Mittelachse des Rohres in mm angegeben, während die rechte Spalte die zeitgemittelte lokale Gasgeschwindigkeit in m/s enthält. Punkte außerhalb des Messquerschnitts erhalten die Geschwindigkeit 0.000 m/s. Das Beispiel zeigt oben und unten jeweils zwei Punkte außerhalb des Sensors mit dem Wert 0.000 und dazwischen 20 reale Werte der ersten Erregerelektrode am Rand des Sensors.

In diesem Zusammenhang wird darauf hingewiesen, dass die Informationen in diesem File nur zu Kontrollzwecken verwendet werden können, da die Streuung der lokalen Gasgeschwindigkeiten für eine Einzelauswertung zu groß ist.

VI.15 Lokale azimutal gemittelte Gasgeschwindigkeiten

Aufgrund der im vorhergehenden Abschnitt erwähnten großen Streuungsbreite der lokalen zeitgemittelten Gasgeschwindigkeiten werden die Ergebnisse der Kreuzkorrelationen azimutal innerhalb von ringförmigen Domänen gemittelt (vgl. Abschnitt 1.5.3). Nach der Mittelung werden die Geschwindigkeiten für jeden Ring berechnet und in den Files *.vel gespeichert. Der rechte Bereich von Tab. VI.8 zeigt beispielhaft einen Auszug aus einer solchen Datei. Sie enthält in der linken Spalte den mittleren Radius der ringförmigen Domänen in mm und rechts die dazugehörige zeitlich und azimutal gemittelten Gasgeschwindigkeiten in m/s. Die Daten dieser Files sind als radiale Geschwindigkeitsprofile im Anhang I dieses Berichtes dargestellt.