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Kurzfassung

Im Rahmen dieser Arbeit wurden zwei Zwillingsexperimente, bestehend aus Neu-
troneneinfang und Photonenstreuung an den Nachbarisotopen “"Se / ™Se und %Pt
/ 196Pt, analysiert, um qualitative und quantitative Informationen iiber die Photo-
nenstarkefunktion und Niveaudichte in den jeweiligen Compoundkernen zu gewin-
nen. Fiir die Analyse und Simulation der beiden Experimenttypen wurde eine neue
Monte Carlo Simulation entwickelt, die einen effizienten und schnellen, extrem statis-
tischen Ansatz zur Beschreibung von Kernabregungen unter der Aussendung von
Gammastrahlung verwendet. Dariiberhinaus wurde der Einfluss von Fluktuationen
in Ubergangsbreiten der Photonenstreuung untersucht und quantifiziert. Es konnte
gezeigt werden, dass diese eine Erhohung von elastischen Streuprozessen zur Folge
haben. Die Datenanalyse beider Zwillingsexperimente zeigt nicht-lorentzférmige ex-
tra E'1 Photonenstéarke unterhalb der Neutronenseparationsenergie.

Abstract

Within this thesis two twin experiments consisting of neutron capture and photon
scattering on the neighbour isotopes 7"Se / ™®Se and '°Pt / 9Pt have been analysed
to gain qualitative and quantitative information about the photon strength function
and level density in the respective compound nuclei. For the analysis and simulation
of both experimental types a new Monte Carlo simulation using a fast and efficient,
extreme statistical treatment of radiative nuclear deexcitations, was developed. Fur-
thermore the influence of fluctuations of transition widths on photon scattering were
investigated and quantified. It could be shown that those lead to an enhancement
of elastic scattering processes. The data analysis of both twin experiments reveals
non-Lorentzian extra E1 photon strength below the neutron separation energy.
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Chapter 1
Motivation and Introduction

One of the challenges of mankind is the generation of electrical energy. About 15%
of the total energy and one third of the electrical energy consumed in the European
Union comes from nuclear power plants [EU, 2007| which have the advantage of a
very low emittance of green house gases. For several EU states the use of nuclear
power is one of the ways to lower their emittance of CO, and to reach their climate
goals. However, nuclear energy has the disadvantage of producing radioactive waste.
Regardless of whether the use of nuclear energy will be increased or be stopped in
a few years, the nuclear waste which has been already produced has to be handled.
Without any reprocessing, some parts of the waste have to be stored safely for a
very long time (&~ 10° years) which would be a burden and hard task for many
future generations. The challenge for the sustainable use of nuclear energy has to
be the reduction in the amount of nuclear waste that will be left for final storage
and simultaneously the reduction of the final storage time.

A possible solution for this challenge is the transmutation of radioactive waste which
is the conversion of long-lived isotopes into shorter-lived ones via nuclear reactions.
For example, the long-lived actinides 23°Pu and 2*2Pu produced via unwanted succes-
sive neutron capture on 2**U in a commercial pressurised-water power reactor, can
be fissioned into shorter-lived fission products using fast neutrons. The partitioning
and fission of plutonium, the chemical element which contributes the biggest part
of the radiotoxicity of nuclear waste after 100 years, could reduce the final storage
time by a factor of ten to approximately 10* years.

The MYRRHA project [Abderrahim et al., 2001] aims at building the first sub-
critical accelerator driven system (ADS) that will be used for transmutation. For
an efficient transmutation process, facilities like MYRRHA have to be simulated
in advance. For these complicated calculations nuclear data such as cross sections
for fission, neutron scattering and capture or photonuclear reactions are needed for
many isotopes. On the one hand, these quantities can be measured directly for
stable or long-lived isotopes. On the other hand, it is impossible to measure them
for short-lived ones raising the need of theoretical models for calculations of these
quantities.

Two of these quantities that are of special interest are the photon strength function
and the nuclear level density which directly enter in statistical model calculations,
e.g. for neutron capture. This thesis deals with the analysis and comparison of two
twin experiments, consisting of neutron capture and photon scattering, for measur-
ing the photon strength function up to the neutron separation energy. The neutron
capture experiments were performed on the isotopes “"Se and %Pt in October 2009

7



8 Chapter 1. Motivation and Introduction

at the 10 MWy, research reactor of the Hungarian Academy of Sciences in Budapest.
Complementary, the second part of the twin experiments, photon scattering exper-
iments on "8Se and %°Pt, took place at Helmholtz-Zentrum Dresden-Rossendorf in
2009 and 2010. The isotope pairs of selenium and platinum have been chosen to as-
sure that s-wave neutron capture and photon scattering from the neighbour isotope
lead to excited compound nuclei with equal spin and parity. The analysis and com-
parison of the gamma ray spectra resulting from deexcitations of excited states in
the compound nuclei in both cases reveals qualitative and quantitative information
about the photon strength function and the level density which can be compared
to predictions of different models. By combining two different nuclear reactions
systematic uncertainties in both types of measurements will be examined and the
influence on the deduced photon strength function and nuclear level density can be
estimated. For the analysis of both experiments, a new Monte Carlo simulation code
using a fast and efficient statistical treatment for radiative deexcitations of nuclei
was developed. The experiments in this thesis were supported by the EURATOM
FP 6 project EFNUDAT and the BMBF project TRAKULA 02NUK13A.



Chapter 2
Theoretical Background

This chapter provides an overview about all quantities needed for a theoretical de-
scription of the measured neutron capture and photon scattering gamma ray spectra.
At first, in sections (2.1) and (2.2), the origin and a statistical calculation method
of the measured spectra are presented. Subsequently, in sections (2.4) and (2.5),
the two most important quantities for a statistical description of both spectra, the
nuclear level density and photon strength function, are discussed. Section (2.6) is a
brief introduction into the influence of fluctuations in transitions widths on photon
scattering.

2.1 Neutron Capture Gamma Spectra

The first part of the performed twin experiments deals with the analysis of cold
neutron capture gamma ray spectra. This process can be described in two steps and
is schematically illustrated in figures (2.1) and (2.2).

In the first step a neutron is captured by a target nucleus (A,7) leading to an excited
compound nucleus (A + 1,7). The excitation energy is equal to the incident kinetic
energy of the neutron 7T, plus the neutron separation energy S, and minus the recoil
energy Fg of the compound nucleus. Since cold neutrons with a kinetic energy of
around 1 meV and heavy target nuclei were used, T;, and ER are negligible. Possible
spins J of the excited compound nucleus after s-wave neutron capture are ‘JT — %|
and Jr + % where Jr is the ground state spin of the target nucleus. The parity II of
the compound nucleus after s-wave neutron capture is given by II, - IIt, where II,
is the parity of the neutron (+1) and Ilt is the ground state parity of the target
nucleus. Since both measured target nuclei (""Se and %Pt) have %_ ground states,
0~ and 17 resonances can be excited. Due to the small incident neutron energy,

only the first state above the neutron threshold in the compound nucleus, which is

A (A+1)* A+1 Y

T Y
t
2:;,[;?2 deexcitation \

Figure 2.1: Scheme of neutron capture as a two step process. First an excited compound
nucleus is created. Subsequently it deexcites via the emission of gamma rays.
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target nucleus + neutron compound nucleus
(A, Z)+n (A+1,2) .
) ith ex. state AE
% T, (i-1)th ex. state o
ground state ? (i-2)th ex. state
S,
E y Ist ex. state
---------------------- ) A y ground state

Figure 2.2: Energy scheme of neutron capture. An excited compound nucleus (A + 1, Z)
is created after neutron capture on a target nucleus (A4, Z). Neglecting the
recoil energy, the excitation energy is the sum of the neutron kinetic energy 17,
and the neutron separation energy of the compound nucleus. Subsequently
to the excitation, the compound nucleus deexcites back to the ground state
via the emission of gamma rays. In this figure, only a few excited states are
shown, e.g. for ™®Se the number of excited states up to the neutron separation
energy Sy is more than 100000.

according to [Mughabghab, 2006] a 1~ state, is excited.

Subsequently in the second step, the excited 1~ state of the compound nucleus
deexcites via emission of gamma radiation back to the ground state. In most cases,
the deexcitation does not go directly to the ground state. Instead it happens via the
population of intermediate states leading to the emission of several gamma rays. An
energy spectrum of these emitted gamma quanta for the reaction ""Se(n,7) is shown
in figure (2.3). In this spectrum many peaks up to the neutron separation energy of
Se (S, = 10498keV) are visible. For further understanding of the spectral shape
it is reasonable to divide the spectrum into three parts.

1. Low-energy region (0... ~ 2300keV): The spectrum in this region is dom-
inated by strong gamma peaks resulting from transitions between the first
low lying excited states in the compound nucleus. These states are populated
during cascade deexcitations of the initially excited state.

2. Intermediate (continuum) region (3000keV ... =~ 7500keV): Gamma peaks in
this region are mainly primary, secondary and third order transitions during
a cascade deexcitation.

3. High-energy region (7500keV ... =~ 10500keV): Gamma peaks in this region
are primary gamma transitions of the initially excited state in the compound
nucleus to the first low lying excited states.

In addition to the strong peaks, a continuum containing many weak transitions
is visible in the measured spectrum. Due to the finite energy resolution of the
detector, natural and induced nuclear background and and low statistics, these weak
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Figure 2.3: Measured ""Se(n,y) spectrum corrected for detector response and efficiency.
The neutron separation energy of "®Se is 10498 keV [Farhan and Singh, 2009].

transitions are not resolvable. In order to theoretically describe capture gamma ray
spectra, one would have to know all excited states of the compound nucleus and
all transition widths between these states. Due to the complexity of the nuclear
many body system, this is impossible at the moment. Only few excited states and
transition widths all lying in the low-energy region are known in intermediate and
heavy nuclei from nuclear spectroscopy. Hence a statistical treatment for the analysis
of neutron capture gamma ray spectra must be used. Instead of trying to calculate
the real transition width I';; between an initial state ¢ at energy E; and a final one
f at energy Ey, it is reasonable to express this quantity by an average transition
widths (I';¢) which can be calculated via [Bartholomew et al., 1973]:

fx(E,) B3

o(E)
Where E, ~ E,—Ej is the transition energy, fx(E,) is the photon strength function
for a transition of multipolarity X L discussed in section (2.5) and o(E;) is the level
density in the compound nucleus at the initial energy discussed in section (2.4).
The averaging in equation (2.1) is done over several final states in an energy interval
around Ey. The transition width I';; between distinct states can be expressed by
the average value value via:

(Lif) =

(2.1)

Lip = yig - (Lig) (2.2)

Where y;r is a statistical distribution factor which describes the fluctuations of the
transition widths I';r. According to [Porter and Thomas, 1956] and the predictions
of Random Matrix Theory [Guhr et al., 1998| which is based on the assumption of
a Gaussian distribution of the transition amplitudes, y;s follows the Porter-Thomas
distribution which is a reduced chi-square distribution with one degree of freedom.
The probability density function of this distribution with mean unity is given by:
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1.0 1.
Yif

2.0 2.5

ot

Figure 2.4: Probability density function of the Porter-Thomas distribution which is equal
to a chi-square distribution with one degree freedom.

——dy;
\/2TYip /

and shown in figure (2.4). This very asymmetrical distribution leads to strong
fluctuations of the transition widths.

However, the value of y;; for a single distinct transition is unknown which makes it
impossible to predict the widths of single distinct transitions. Instead, it is reason-
able to analyse a rebinned capture gamma ray spectrum with a bigger bin width in
a statistical sense. Choosing the bin width big enough, it can be assured that the
yield in one bin results from transitions to several different final states. The yield
Yiin for transitions starting at one distinct state (for example the state excited after
neutron capture) and ending in an energy bin [E F— %, Er+ %] is proportional to
the sum of all transition widths ending at final states in that bin divided by the
total radiative width of the initial state I'; 1¢:

YbinOC Z M: Z M (2_4)

I, I
fl.Epebin = "% 1/ B ebin b,tot

If on the one hand the energy bin is big enough to assure that there are many possible
final states in the bin and on the other hand small enough that the level density,
the photon strength function and the transition energy do not vary too much over
the bin, it is justified to write [Bartholomew et al., 1973|:

) ) Fr(Ey) B2
Yhin X ifr = Ny ——— =~ o(Ly) - AE- .
b Z Yif ! Fi,tot ( f) Fi,tot : Q(EZ>

(2.5)

The sum over the Porter-Thomas distributed y;¢ in equation (2.5) can be replaced
by the number of final states in the bin N; times the mean of the distribution
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counts
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Figure 2.5: Rebinned experimental capture gamma ray spectrum (binwidth 200keV) of
the reaction ""Se(n,y)

which is one. It has to be pointed out again, that this step is only justified if there
are enough reachable final states in the energy bin. Regarding equation (2.5) and
noticing that o(E;) and I';i. are constants for a fixed initial state, it is obvious
that two quantities influence the yield of measured gamma rays following neutron
capture:

1. The level density of the final states o(Ey)

2. The photon strength function fx(E,)

Figure (2.5) shows a rebinned capture gamma spectrum of the reaction 7"Se(n,y). Tt
is important to check which bins of the rebinned spectrum fulfill the conditions for
the validity of equation (2.5). The bins in the low-energy region (up to 2300 keV) do
not. They are dominated by transitions between distinct low lying excited states.
For example, the bin 600 — 800keV is dominated by the 613 keV transition from
the first excited state to the ground state. Neither do the energy bins in the high-
energy region (above 7500 keV). Their content results from transitions with strongly
fluctuating transition widths to distinct low lying states. However the bins in the
intermediate region (2300keV ...7500keV) do fulfill the requirements. The gamma
yield in each bin in this continuum region can result from many different transitions
which assures that fluctuations are averaged out.

Hence it is reasonable to try to understand the influence of the photon strength func-
tion and the level density on the shape of continuum region of the capture gamma
ray spectrum using equation (2.5). For this purpose a simulation describing radia-
tive cascade deexcitations of excited nuclei has been developed which is discussed
in detail in section (4.1).
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ith ex. state
(i-1)th ex. state AL

(i-2)th ex. state

A

1—‘()i

photo excitation
of state i

1st ex. state

{--------

A 4

ground state

Figure 2.6: Scheme of photon scattering. A state ¢ is excited via the absorption of a
real photon. Subsequently the excited state deexcites directly or in a cascade
back to the ground state via the emission of gamma rays.

2.2 Photon Scattering

The second part of the performed twin experiments is the determination of the
average photon absorption cross section and the related photon strength function
from photon scattering experiments. Similar to neutron capture, this process can be
visualized in two steps - excitation and deexcitation. In contrast to neutron capture,
in photon scattering the nucleus is excited via absorption of a real photon. Electric
dipole excitations from ground states of even-even nuclei, like "®Se and %Pt lead
to excited 1~ states. Thus, spin and parity of the initially excited state in the
compound nucleus are equal to the ones in the neutron capture experiments on
Se and '%Pt. Subsequently to the excitation, the nucleus deexcites back to the
ground state, either directly (elastic scattering) or via a cascade (inelastic scattering)
leading to the emission of one or several gamma rays. A scheme of photon scattering
is shown in figure (2.6). In contrast to neutron capture not only one state is excited.
Due to the use of bremsstrahlung for the photoexcitation, preferentially 1~ states
between the ground state and the endpoint energy of the bremsstrahlung spectrum
can be excited. In addition, magnetic dipole excitations that leas to excited 1T
are possible, as well. However, as discussed in section (2.5.2), the strength of these
excitations is much weaker compared to the electric ones.

At high excitation energies (Eox ~ S,) the mean spacing of 1~ states (=~ 100eV) is
very small compared to the resolution of the used high purity germanium (HPGe)
detectors (=~ 10keV). That means, it is not possible to resolve gamma transitions of
all high lying states. Moreover, due to the mentioned fluctuations of the transition
widths, many unresolvable weak transitions are measured, which create a continuum
region in the measured deexcitation spectrum. A raw experimental spectrum from
the ™Se(v,7) experiment is shown in figure (2.7). Many peaks are visible that result
from strong transitions in the deexcitation process. It is not clear whether these
are direct ground state or cascade transitions. Furthermore the spectrum contains
a continuum region of unresolved weak transitions. The strong peaks at 4443 keV,
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Figure 2.7: Uncorrected measured "Se(v,7) spectrum. Many peaks from strong transi-
tion in the deexcitation process are visible. Furthermore the spectrum con-
tains a continuum region of unresolved weak transition. The strong peaks at
4443keV, 5017keV, 7279keV and 8912keV are transitions of ''B used for
the bremsstrahlung fluence determination.

5017keV, 7279keV and 8912keV are transitions of !B combined with the target
and used for the bremsstrahlung fluence determination.

In order to understand the measured spectrum, one has to start with a description
of the photoabsorption process into single states and their subsequent deexcitation.
The cross section for photoabsorption from the ground state with spin [ into a
single resonance ¢ with spin /; is given by [Axel, 1968|:

2
E) ( F'y,OiFi,tot (26)

E) (E—E)%+ 11?2

sl ) = /(1) (
4~ 1,tot

Here, I', o; is the partial width for a radiative transition between the i-th excited
state and the ground state, I'; ;o is the total width of the i-th state - E; is the
excitation energy of i and ¢'(I;) = (21; + 1)/[2- (21p + 1)] is a spin statistical factor
including the possible orientations of the z-component of the spins of the nuclear
states and the photon.

Integrating over all energies and assuming that I'; < E; yields:

r he\” ,
/ Oabss(E)dE = (%) 2/ (I)T- 0 (2.7)
0

Averaging o,1,s; over all resonances with spin /; in an interval [E — %, E+ %}
leads to:
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B =35 > aabs,xE)dE:(%c) 29/(1) (Tyoi) o B, T (2:9)

E;Einterval

Here, o(E, I;) is the density of spin I; states in the averaging interval. It has to
be emphasised that (o.us(E)); is the average cross section for photoabsorption in
states with a fixed spin I;. Considering dipole excitations, absorption into states
with spins I = |Ip — 1|,..., 1y + 1 is in general possible. [Brink, 1955] has shown,
that the average dipole absorption cross section (o,ps(F)) into states with all possible
spins is related to the absorption cross section into states with a fixed spin by:

3 rhe\”
(on(E)) = 5 oy, =3 (T ) Toodet®)  (29)
By replacing (I, ¢;) with equation (2.1), one obtains the relation between the aver-
aged dipole absorption cross section and the dipole strength function:

(Oaps(E)) = 3(7he)® E f1(E) (2.10)

Considering a typical photon scattering experiment where a suitably thin target
with negligible photon attenuation with an areal density ¥ (z,y) (number of target

atoms per unit area perpendicular to the beam at the position (z,y)) is irradiated
with a spectral bremsstrahlung fluence %(m, y, E) (number of photons per unit
energy and unit area at the position (x,y) with energy F), the number of absorbed
photons Y,ps(E, AE) in an energy bin AE around F is given by:

E+&E
, dN- d’N. ) ,
Yaps(E, AE) = / (oaps(E")) / d—AT(x,y)-dAdé/(a:,y,E)dAdE (2.11)
E—AE tar.

2

If the photon beam is bigger than the target and constant across the target area,
one obtains:

E+AE
d?N. dN
_ / 24 ! W /
Yaps(E, AE) = / (Tabs(E)) dAdE’< )/ I (z,y)dAdE (2.12)
E?M tar
2
E+4E
Yis(E,AE) = N / (B N () g (2.13)
abs 3 T abs dA dE, .
E—AE

d2N,

diqn and

Assuming that the energy bin is small and that the spectral fluence &5 =
(oaps(E)) are constant over the bin, one obtains:

Yars(E,AE) = Nt - Pp(E) - (0as(E)) - AE (2.14)



2.2. Photon Scattering 17

In principle one could obtain the average photoabsorption cross section by measur-
ing the number of absorbed photons per energy bin. However, due to the dom-
inant atomic reactions and the relatively weakness of nuclear interactions, this
is difficult in an experiment. Instead the technique of photon scattering is used
[Kneissl et al., 1996]. In this experimental method the number of photons emitted
in the deexcitation process following photoexcitation is measured. Of special inter-
est is the process of elastic photon scattering which is a two step process consisting
of photoabsorption into an excited state ¢ and radiative deexcitation of this state
back to the ground state. The cross section of this process is given by the cross
section for photoabsorption from the ground state with spin [ into an excited state
i with spin /; times the ground state branching ratio I', jo /I'; ot Of .

Fw,Oi

Uscat,i(-E) = Uabs,i(E) = (215)

Fz',tot
Integrating over the energy and averaging over an energy bin and all possible spins
yields:

i3 () ()

In analogy to equation (2.14) the number of elastically scattered photons on reso-
nances in an interval [E . %, E + %} is given by:

Yieat (B, AE) = Ny ®p(E) - (0wa(E)) - AE (2.17)

In order to extract the averaged photoabsorption cross section (oans(E)) from a
photon scattering experiment, it has to be expressed in terms of the average elas-
tic scattering cross section (og.¢(F)) which can be measured in the experiment.
This is only possible by transforming the average of the product of transition
widths into a product of average transition widths. It has to be strongly empha-
sized that these two quantities are not equal. Formally it is reasonable to define
[Bartholomew et al., 1973]:

I 30 <F 0i> <F 0i>
T, 022 ) = g 200/ = 300/ 2.18
< 70 I‘i,tot> <Fi,tot> ( )

The factor S'is called statistical fluctuation factor and is discussed in detail in section
(2.6). With the help of equation (2.9), (2.16) and (2.18), it is possible to calculate
the average absorption cross section from the average elastic scattering cross section.

<F7 Oi) ) }/;C&t(E7 AE) / ( <F'y Oz') )
Oabs(E)) = {Ogcar (E S - : = S - :
(el E)} = (el >>/ ( (Titr) ) Nrp-®p(E)-AE (T tor)
(2.19)
That means the statistical fluctuation factor S and the average ground state branch-
ing ratio 201 have to be calculated in order to extract the average photoabsorption

(Ti,tot)
cross section from a photon scattering experiment.

The complete analysis of a photon scattering experiment is more complicated due
to several reasons:
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e The response function of the used gamma ray detector
e The existence of non-nuclear scattered photons (atomic background)

e The existence of inelastically scattered photons (deexcitation happens via a
cascade instead directly to the ground state)

All these effects have to be corrected in the following steps:

1. Deconvolution of the measured spectrum for the detector response
2. Simulation and subtraction of non-nuclear scattered events
3. Simulation and subtraction of inelastically scattered events

4. Calculation of (0.t (F)) from the number of elastically scattered events, P (E)
and Nt

5. Simulation of the statistical fluctuation factor and the average branching ratio
and calculation of (o.s(F)) from (ogat(E))

It has to mentioned, that the corrections for inelastically scattered events, the aver-
age branching ratio and the statistical fluctuation factor themselves depend on the
level density and the strength function. In order to achieve self-consistent results an
iterative analysis must be used.

2.3 Gamma Ray Transitions in Nuclei

For understanding measured gamma ray spectra in neutron capture (n,7y) and photon
scattering experiments (,7), it is crucial to describe the properties of radiative
transitions in nuclei. If a state ¢ with energy E;, spin J; and parity Il; is excited, it
will deexcite after some time to a lower lying state f at E; with spin J; and parity
IT;. Considering the conservation of energy and momentum one obtains:

E
E,—E;=E, (1 + 2M762> (2.20)

Here, M is the mass of the recoil atom and £, the energy of the emitted photon.
Obviously, the energy difference between the states is not completely emitted as
gamma ray energy. A small fraction is converted into recoil energy of the nucleus
which leads to the second term in the parenthesis of equation (2.20). E.g., for a
gamma transition energy of 8.92 MeV the recoil energy is approximately 3.6 keV for
1B and 0.5keV for ™Se.

Since a gamma quantum is an electromagnetic wave, it can be further characterized
by its angular momentum [ and parity II. Conventionally, a gamma transition
is described by its multipole order L. Moreover, there are two different types of
transitions: electric £ and magnetic M ones. The parity of both types are given by:
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E1l M1 E2
multipole order L 1 (dipole) 2 (quadrupole)
transition parity II -1 +1 +1
spin of final state .J; | =1 < Jr < Ji+1 | =2| < Jr < Ji+2
parity of final state I, —II; II; I1;
forbidden transitions 0—0 0—0,0—1, % — %

Table 2.1: Characteristics of radiative £1, M1 and E2 transitions from a state A to a
state 1.

i {(_1)L for electric transitions (2.21)

(=1)E* for magnetic transitions

Usually a radiative transition is labeled with the two letters X L, where X stands
for electric F or magnetic M transition and L is the multipole order. Together, X L
is called multipolarity. Table (2.1) summarizes the most important characteristics
of E1, M1 and E2 transitions.

It should be taken into account that an excited state can deexcite to any lower lying
one, as long as the selection rules, given in table (2.1), are fulfilled. In general, the
transition width decreases with increasing multipole order and electric transitions
are stronger than magnetic ones.

2.4 Nuclear Level Densities

The nuclear level density p is one of the most crucial elements for statistical calcula-
tions of nuclear properties and reactions. It plays an important role at intermediate
and high excitation energies where information about discrete levels is not available
or incomplete.

The level density depends on the excitation energy FE, the spin J and the parity II
of states in nuclei. It is defined as the number of levels N with a certain spin and

parity in an energy interval [ = [E — ATE, E— %} around £ divided by AFE.
1
E JI) = — N (E;, J, 11 2.22
0B, 1) = 57 3 N (B 1D (2.22)

The sum in equation (2.22) runs over all states ¢ in the interval I. With AFE
approaching zero, the level density is given by:

d
E J 1) = —N(L, J, 11 2.2
0 (B, J.11) = - N(E, J,TI) (2.23)

The total level density o' is obtained by summing o over all spins and parities.

QB =) o(E,J 1) (2.24)
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Usually, a factorized form is used to calculate the level density for a certain spin

and parity o from the total level density o"".

o(E,JII)=P(E,J ) f(E,J) " (E) (2.25)

Here, P (F, J,I1) is the parity distribution factor and f (F,J) is the spin distribu-
tion factor, discussed in section (2.4.2). If the excitation energy is not too small
(E > fewMeV), an equal distribution of levels with positive and negative parity is
assumed, which means P = %

2.4.1 The Total Level Density

Experimental information about the level density of nuclei is derived at energies
around and below the neutron separation energy S, from neutron resonances and
from nuclear spectroscopy in the low-energy region. At some energy the spectro-
scopic information ceases and one has to interpolate the level density up to S,. For
the description of the total nuclear level density o' different models exist. The
most widespread macroscopic ones are the Back-Shifted Fermi Gas Model (BFM)
and the Constant Temperature Model (CTM).

In the Back-Shifted Fermi Gas Model [Huizenga and Moretto, 1972| the nucleus
is treated as a system of non-interacting fermions. In statistical mechanics the total
level density can be calculated via inverse Laplace transform of the grand partition
function of a system. For a system of non-interacting fermions one obtains:

oot (B) = 1 ﬁ o2Val
BFM oo 12 al/AUs/4

(2.26)

In equation (2.26) a is the level density parameter, U is the back-shifted energy
(E — A), and o is the spin cut-off factor which is discussed in subsection (2.4.2).
The level density parameter a is given by:

where g(Ey) is the single particle level density at the Fermi energy.

[Ignatyuk et al., 1975] have shown that a is energy dependent and related to shell
effects.

1—e
a(E)=a (1 + 5WT> (2.28)
Here, 0W is the shell effect and v is a damping parameter. The two parameters a
and A of the BFM are obtained by fits to the distribution of states at low energies
known from spectroscopy and states close to the neutron separation energy known
from neutron capture experiments. Compilations of values for 310 nuclei and a global
systematic are given in [Koning et al., 2008] and [Egidy and Bucurescu, 2009].
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If the back shift energy A is positive, a singularity at £ = A in equation (2.26)

appears (09t (A) — oo). This singularity can be avoided by using the approach

given in |Grossjean and Feldmeier, 1985]:

1 1 -1
~tot
oprum (B) = O + 2.29
BE ( ) QtBLEM<E) QO(E> ( )

where go(F) is given by:

a
0 (E) = @ewﬂ (2.30)

The Constant Temperature Model |Gilbert and Cameron, 1965| is based on the
observation that the cumulative number of all states is proportional to an exponen-
tial function in the low energy region.

N(E) = eF=E/T (2.31)

According to equation (2.23) the Constant Temperature total level density is given

by:

1
05y (B) = elB= BT (2:32)

Here, T' is the nuclear temperature and Ej is a back-shift energy. Systems at a phase
change like melting ice are known to have a constant temperature, when energy is
transferred to them. In a nucleus, this phase change can be interpreted as breakups
of proton and neutron pairs leading to many new degrees of freedom.

As in the case of the BFM, the parameters of the CTM are obtained from fits to
experimental known states. Assuming a temperature 7', it is possible to calculate

the value of Fy from the known mean s-wave neutron capture resonance spacings
Dq given in [Mughabghab, 2006].

1 1 -
Do = Q(Sn, JT =+ 5, HT) + Q(Sm JT — 5, HT) (233)

where Jp and Il are spin and parity of the target nucleus.

For the nucleus ®Se, the CTM and BFM total level density and the calculated cu-
mulative number of levels are shown in figure (2.8). It is visible that both models
match at the neutron separation energy (S, = 10.5MeV), because they are fixed
at this point. In the low energy region it is possible to compare the experimentally
known cumulative number of levels to the theoretical predicted one. One sees that
there is a good agreement between the experimental number and the CTM whereas
the BFM yields a poorer agreement in the low-energy region. At excitation energies
above 4 MeV, the experimental level schemes becomes incomplete and thus deviates
from both models. This is due to the fact that at these excitation energies the mean
spacing between excited states becomes smaller than energy resolution of the best
gamma ray detectors.
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(a) Comparison of CTM and BFM total (b) Comparison of the cumulative number
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Figure 2.8: Total level density for "®Se. For the Constant Temperature Model a tempera-
ture 7' = 850 keV [Koning et al., 2008| and a back shift energy Ey = 413keV
was used. For the Back-Shifted Fermi Gas Model (BFM) a level density pa-
rameter a(S,) = 10.74MeV~! and a back shift A = 1.27MeV was taken.
The experimental number of cumulative levels is taken from [RIP, 2011].

Recently it has been shown in [Schmidt and Jurado, 2011], [Voinov et al., 2009] and
|Guttormsen et al., 2003| that the CTM describes the dynamics of different nuclear
reactions, like energy transfer between fission fragments or particle evaporation spec-
tra better than the BFM. The three articles state that the CTM gives good agree-
ment with experimental data up to excitation energies of 10...20MeV. Due to this
fact, the CTM will be used as the standard model for the total level density in the
further analysis.

2.4.2 The Spin Distribution of States

The spin distribution of excited states is described by the spin distribution factor
f. It was calculated by [Ericson, 1960] as:

F(J,0) = e T°20% _ =T+ /207 (2.34)

Where J is the spin of the state and o is the spin cut-off parameter. The spin distri-
bution factor f(J, o) is shown for different spin cut-off parameters o in figure (2.9).

It is visible that with increasing o the distribution gets broader and the maximum

of the distribution moves to higher spins.

Obviously, equation (2.34) crucially depends on the spin cut-off parameter o. |Ericson, 1960]
derived a theoretical model for the energy dependences of the spin cut-off parameter

o given by:

o? = gt(m?) (2.35)
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Where ¢ is the density of single particle states, ¢ is the temperature given by \/U/a, a
is the level density parameter and U the back shifted energy. (m?) is the expectation
value of the square of the spin projection on the z or symmetry axis for single particle
states.

In the article about global and local level density models [Koning et al., 2008] a
combined way to express the energy dependence of ¢ is used.

In the low energy region (E < Eg) o is given by a constant o4 obtained from the
spins of experimental known states.

Ny
3 B+ )2+ 1)
o} == (2.36)
3> (2J;+1)

=N,

The sums in equation (2.36) run over all levels from a lower state Ny, at energy Ef,
to an upper state Ny at energy FEy. The energy F4 up to which the constant value
0q is used is given by:

1
Eq = 3 (Ey — Ev) (2.37)
Above the neutron separation energy, o is calculated under the assumption of a rigid

rotor to:

VaU
2 = 0.01380A%% ——— 2.38
7 aMeV (2:38)
Where U is the back shifted energy, a is the energy dependent level density parameter

given in equation (2.28) and a is the asymptotic value of a.

In the intermediate energy region (Eq < E < S,) the value of 02 is interpolated
linearly between the values of 03 at Fy and ¢ at S, from equation (2.38).
In the three energy regions, the energy dependence of ¢ is given by:

o2 , for E < Fyq
E — Eq4
Choning = T G, — iy TS —0d) S for Ea<E<S (239)
VaU

0.01389A45/3

NV ,for £ > S,
The spin distribution and spin cut-off factor are of great importance in the treatment
of level densities. As mentioned, the total level density is deduced from s-wave
neutron resonances. These resonances reveal only the distribution of states with
certain spins. Thus an assumption for the spin distribution at the neutron threshold
is crucial for the fit of the total level density. For the sake of consistency, the
level density and spin cut-off parameters are taken from [Koning et al., 2008] in the
further analysis.
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Figure 2.9: The spin distribution factor f and spin cut-off factor o2 for "8Se

2.5 Photon Strength Functions

Photon strength functions play an important role in the statistical treatment of
radiative processes in nuclei. [Bartholomew et al., 1973| defined the gamma ray
(photon) strength function f as follows:

“The gamma-ray strength function ... is the distribution, as a function of ~-ray
energy, of the average reduced width for transitions of a particular multipole type.
... Regions where it is appropriate to discuss level densities instead of single levels are
also regions where it is useful to think in terms of y-ray strength functions instead
of individual radiation widths.”

In the treatment of photon strength functions one has to distinguish between a
strength function for photoexcitation (the nucleus is excited from a lower level [
at Fj to a higher one h at Fj) and a strength function for photodeexcitation (the
nucleus deexcites from a higher level h at E, to a lower one [ at E;). These two

— —
functions are labeled with f for excitation and f for deexcitation.

The strength function for photo excitation is given by [Bartholomew et al., 1973]:

— (D)3ipxe 0By, J)
f;‘]fXL(E’Y) = : f;m (2-40)
Y

In equation (2.40) E, = E; — E; is the gamma-ray energy. The initial state ¢ is
fixed whereas the final one f is variable. All other symbols in equation (2.40) are
explained in table (2.2).

The strength function for photodeexcitation of a state i’ with spin J to a lower state
f" is defined by:

— <F>J¢f xr 0(Eir, J)
f:i]’f’XL(E'Y) = ! fE2L+1 (24]‘)
v
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symbol  definition

o(F,J) density of states with spin J at excitation energy F
<F>i sxr  average radiative width for transitions between state ¢ of spin J

and state f
XL transition multipolarity (E1, M1, E2 ...)
E, gamma transition energy

Table 2.2: Symbols for gamma-ray strength functions

The difference between the last two equations is that in (2.40) the low lying state
i is fixed whereas in (2.41) the high lying one i’ is fixed. Apart from that, both
definitions are identical.

The Axel-Brink hypothesis [Brink, 1955] states that the photon strength func-
tion does not depend on the properties (energy, spin, etc.) of the initial state which
means it is only a function of the transition energy f = f(E,). Assuming this hy-

pothesis, 7 and 7 are identical.
In the next subsection, models for strength functions of the most relevant transi-
tion types (E'1 and M1) for the description of neutron capture gamma and photon
scattering spectra are presented.

2.5.1 E1 Strength Functions

Most of the knowledge about E1 strength functions comes from measurements of
photonuclear reactions ((v,xn) x = 1,2,...). Assuming that above the neutron
threshold these are the dominant interaction channels of photons, the measured
cross sections can be converted into a photon strength function. All (y,n) cross sec-
tions show a broad maximum in the energy region of 10...20MeV. The character
of this maximum was found to be F'1 and called “Isovector Giant Dipole Resonance’
(GDR). In the article [Goldhaber and Teller, 1948|, the GDR is treated as a collec-
tive vibration of all protons against all neutrons in the nucleus. This concept was
refined in [Steinwedel et al., 1950| as a interpenetrating motion of an incompressible
proton and neutron fluid under the condition of a constant total nucleon density and
a constant nuclear radius. For spherical nuclei the GDR is a broad one-humped max-
imum. In contrast, for well deformed nuclei a two-humped shape is apparent, which
was explained with the existence of two collective oscillations - one along each defor-
mation axis. In the past, the photo neutron data were described by two Lorentzians
for well deformed nuclei and with one Lorentzian for spherical ones with a fixed
width (Standard Lorentzian Model SLO [Axel, 1962]) or with an energy dependent
width (Enhanced Generalised Lorentzian Model EGLO |[Kopecky et al., 1993]). Ex-
trapolations of these fits to low energies are at the moment the standard description
for E'1 strength functions below the neutron separation energy.

Since it is known that triaxial nuclei exist, [Junghans et al., 2008| suggested a new
parametrization of the GDR average absorption cross section and the related E'1
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strength function with three Lorentzians (TLO) taking into account the existence
of three oscillations along three different axis. The centroid energies Ey (k = 1,2, 3)
of the three Lorentzians are proportional to the length of the semi-axis and thus de-
termined by the mass number A, the quadrupole deformation 3 and the triaxiality
parameter .

Ey

- e\ /5/47\'5005(7—%]@#)

Where the energy Ej is given in the Finite Range Droplet Model (FRDM) and a
function of A and of the parameters of the liquid droplet. Results of hydrodynamical
calculations can be used to compute the width of each Lorentzian:

Ej,

(2.42)

I, = 1.99 MeV B " 9.43
BT PRV T0Mev (2.43)

Obviously, the widths 'y, depend only on the centroid energy Ey. Adding up all three
Lorentzian contributions, one obtains the average photoabsorption cross section:

1.02-11.9-ZN i EITy,

MeVfm? 2.44
37A (B2 — B2+ B0z (2.44)

(0y.abs) (Er)
k=1
The fraction in front of the sum guarantees that the Thomas-Reiche-Kuhn (TRK)
sum rule is fulfilled. The latter one gives a value for the non-relativistic frequency-
weighted integrated total absorption strength of a quantum system which interacts
by velocity-independent forces only. The TRK sum rule has been tested thoroughly
in nuclear, atomic, and mesoscopic systems. The electric dipole strength function
fE1 can be calculated from the average photoabsorption cross section using equation
(2.10).
It has to be emphasised that the TLO model is a global prediction with a smooth
dependence of I' on A whereas SLO and EGLO are fits to (7y,n) cross sections

separately for each nucleus leading to a irregular dependence of the GDR width I'
on A.

In order to test E1 strength function models, they have to be compared with ex-
perimental data. In particular, the related average photoabsorption cross section
can be compared to measured photonuclear cross sections. Two of these compar-
isons are shown in figure (2.10). For the two considered nuclei ®Se and %Pt, the
three Lorentzian model fits well to the experimental data in the region between the
neutron threshold and the GDR maximum. Above the GDR maximum the theoret-
ical prediction deviates from the experimental data, because other channels such as
(7,2n) contribute to (0 abs)-

The performed neutron capture and photon scattering experiments provide infor-
mation about the strength function below the neutron separation energy, where the
only contribution to photoabsorption is inelastic and elastic photon scattering. The
gained experimental data from the performed neutron capture and photon scattering
experiments can answer the question whether an extrapolation of the GDR down to
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(a) Cross sections for "Se (3 = 0.271,y = (b) Cross sections for %Pt (8 = 0.13,y =
27.1°). The experimental data are taken 31.9°). The experimental data are taken
from [Carlos et al., 1976]. from |Goryachev and Zalesnyi, 1978].

Figure 2.10: Comparison of the calculated average photoabsorption cross section (o abs)
from the TLO model (blue line) and experimental photo neutron cross sec-
tions (oyn) (red circles). The Carlos data are scaled with 0.85 because
it was found that the normalisation of the Saclay group was incorrect
[Berman et al., 1987]. The assumption is made that the bremsstrahlung
data measured by Goryachev and corrected by Varlamov also depends on
the Saclay normalisation and thus have to be scaled, as well.

energies below S,, (which is the standard method at the moment for statistical calcu-
lations) is justified or whether the shape of the strength deviates from a Lorentzian.
This is important, e.g. for the calculation of the total radiative width I'y,; which is
given by [Bartholomew et al., 1973]:

J+1
Sy >, fU,o(5 —E,))
;o I=|7-1] 0" (S, — E,)
I ot = /E::’fElJer F(To (S 2 (S,) dE, (2.45)

0

In many articles, the ratio of the spin distribution factors f(J) at the final and
initial state is approximated by 3 which only holds if f(.J) is a linear function of .J
in the region |J —1|,...,J + 1. It is visible in figure (2.9) that this assumption is
not valid for all J and o.

An enhanced strength below S, would result in an increased total radiative width
which for example directly influences the neutron capture cross section. With in-
creasing total radiative width the ratio of captured to scattered neutron increases
as well. As mentioned in the introduction, this ratio is important for simulations of
neutron spectra in transmutation facilities.

2.5.2 M1 Strength Functions

It is shown in [Heyde et al., 2010] that the magnetic strength distribution below the
neutron separation energy has three contributions. These are the orbital or scissors
mode, the isoscalar and the isovector spin flip mode. A first attempt to convert and
parametrise the given reduced matrix elements B(M1) into a M1 strength function
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Figure 2.11: M1 strength functions according to the parametrisation (2.46). The orbital
mode in "Se is very prominent due to the large quadrupole deformation

(8 =0.271)
M1 mode amplitude A central energy F; standard deviation oy,
. (ZB)* , .4
orbital 5 GeV 0.21EGgpr 0.85 MeV

A
isoscalar spinflip 03 GeV ™3 34 A~1/3 MeV 0.85 MeV

A
isovectorial spinflip 03 GeV™? 44 A=13 MeV 1.27 MeV

Table 2.3: Parameters used for the M1 strength function parametrization

was done by Prof. Grosse!. For the three contributions Gaussians are used instead
of Lorentzians.

—(BE—Ey)?

3
Ja = Z Ape 7k (2.46)
k=1

Here, the amplitudes Ay, central energies E) and standard deviations oy, are given
in table (2.3). Figure (2.11) shows the M1 strength distribution for "®Se and %Pt
according to equation (2.46). Compared to the M1 strength, the E'1 strength at the
maximum of the M1 strength is 5 times greater.

2.6 The Statistical Fluctuation Factor

At high excitation energies nuclear physics measurements often face the complication
of spacing between excited states being smaller than the detector resolution. Thus it
is only possible to measure average quantities. [Lynn, 1968] and [Axel et al., 1970]
have shown that fluctuations in the transition widths lead to an enhancement of
elastic transitions in neutron scattering and (,p) measurements. As derived in

lprivate communication, 2010
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section (2.2), the same effect occurs in photon scattering where the average elastic
scattering cross section is enhanced by a factor S compared to the product average
photoabsorption cross section and average ground state branching ratio.

(L0 g

<Fi,t0t>

In general the influence of fluctuations on elastic photon scattering between the
ground state 0 and an excited state ¢ can be defined as |[Bartholomew et al., 1973]:

s=(rog ) /() 24

The averaging is done over several excited states ¢ in an energy bin [El — %, E; + %] .
As will be shown later on, it is reasonable to express S as a function of the ratio
of average inelastic to elastic transition width R = ) (I';;) / (I'io). The latter is
5>0

determined by the level density (the number of possible deexcitation channels) and
the photon strength function (the probability of the single channels). If there is
only one possible channel (deexcitation back to the ground state), S is unity. On
the other hand, if there are many possible open channels (transitions to lower excited
states), the total radiative width I'; o is the sum of many single transition widths
and thus according to the central limit theorem it should not fluctuate strongly.
Therefore it is justified to write:

<Uscat(E)> = <‘7abS<E)> :

Lio 1 Lo;)” 2 Toi)*
<F0i—> = m Z Loil'o = % Z Yoi = <<Fi,tjt> <190i> (2.48)

T.
4, tot i,E;€bin i,E;€bin

Equation (2.48) shows that for a non fluctuating total radiative width the enhance-
ment is given by (y2) which is the mean of the squared fluctuation distribution
of the single transition widths. Assuming a reduced chi-square distribution with v
degrees of freedom for the y;;, one obtains:

2
S(Titor = (Figor) = 1+ . (2.49)
For the analysis of photon scattering experiments, S has to be calculated in the en-
ergy range 0...5,. In this energy region the approximation I'; ot &~ (I'; tot) does not
hold and thus S has to be simulated numerically. For this purpose a numerical sim-

ulation has been developed which operates in the following way which is visualised
in figure (2.12):

1. This simulation code generates a nuclear mock level scheme, with N states
up to an energy E + % according to the nuclear level density. Given that
photon scattering is dominated by F1 excitations and 0" target nuclei are
used, only 07, 1~ and 2" levels are distributed because only those states can
be populated in a two step E'1 excitation and deexcitation process.

2. All average transition widths (I';;) between all states are calculated using equa-
tion (2.1).
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3. Each average transition width is multiplied with a random variable y;; drawn
from a reduced chi-square distribution with v degrees of freedom.

4. The two quantities <FF°Z—tF°tL> and W are calculated, where the averaging

is done over all 1~ states ¢ in the bin [E — %, E+ %] By division of these
last two quantities, the statistical fluctuation factor S is obtained for elastic
ground state transitions for one mock level scheme.

The simulation algorithm is executed several times each time with a new mock
random scheme of excited states and new fluctuations of the transition widths. In
the end the mean value for S deduced from all mock state schemes is taken.

Figure (2.13) shows simulated values of S for different excitation energies for Se.
For the calculation a TLO E1 strength function with g = 0.271 and v = 27.1° was
used. The states in the mock level scheme were distributed according to a Constant
Temperature level density with Ey = 413 keV and three different temperatures (7" =
800keV,850keV,950keV). The spins of the states were assigned according to the
spin-cutoff factor given in [Koning et al., 2008]. The averaging was performed over
200keV bins and the fluctuations of the single transition widths y;; were drawn from
a chi-square distribution with one degree of freedom (Porter-Thomas distribution).
In the low-energy region (E, < 3000keV), where on average there are one or less
states in the averaging bin, S is one. With increasing excitation energies, S increases
as well, until it reaches the limiting value of 3 at high excitation energies for the
assumed Porter-Thomas distribution. For energies above 10.5MeV S could not
be simulated because the exponentially increasing number of excited states caused
computer memory problems. It is visible in figure (2.13) that for a given excitation
energy, S increases with increasing level density (equivalent to an increasing 7" when
Dy is fixed).

Figure (2.14) shows simulated fluctuation factors S as a function of the ratio of
average inelastic and elastic transition width R for different level densities and E'1
strength functions. Obviously in regions where R is greater than 3, .S is independent
of strength function and level density. Furthermore it is visible, that S approaches
3 when R approaches infinity which corresponds to very high excitation energies.
However, at excitation energies above the particle threshold, other reaction channels
are open and thus the total width I'; o, contains also partial particle widths which
influence S [Axel et al., 1970].

In summary, it could be shown that when dealing with fluctuating transition widths,
an enhancement of elastic transitions occurs. Applied to photon scattering this
means that the observed yield of direct ground state transitions is enhanced by a
factor S compared to the product of average ground state branching ratio By =
(Ti0) / (L tot) times the absorbed yield. This can be realised by taking into account
that in photon scattering due to fluctuations not all states in an energy bin are
excited equally. Thus, the average ground state branching ratio By, which is an
uniformly averaged value of all single branching ratios gives an incorrect estimate
for the yield of direct ground state transitions of excited states in photon scattering
experiments.
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Figure 2.12: The four steps of the simulation algorithm for the statistical fluctuation
factor that are explained in the text.
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Figure 2.13: Energy dependence of the statistical fluctuation factor S for "®Se. For the
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was used. 200keV bins were used for the averaging. The vertical black line
represents the neutron separation energy and the horizontal ones correspond
to the limiting cases of one and infinite states in the averaging bin. The
fluctuations of the single transition widths y;; were drawn from a chi-square
distribution with one degree of freedom (Porter-Thomas distribution). The
vertical errorbars correspond to one standard deviation of all S deduced
from different mock level schemes.
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strength functions.



Chapter 3
Experimental Setups

In this chapter a brief overview of the two experimental facilities used in the two twin
experiments is given. Firstly, in section (3.1), the upgraded neutron-induced prompt
gamma spectroscopy facility [Szentmiklosi et al., 2010] at the Institute of Isotopes
(IKI) in Budapest, where the neutron capture experiments took place is described.
Secondly, in section (3.2), the bremsstrahlung facility [Schwengner et al., 2005| at
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), where the photon scattering ex-
periments were performed, is presented.

3.1 The Neutron Capture Setup

The Institute of Isotopes in Budapest, Hungary, operates a cold neutron source
at a research reactor with a thermal power of Py, = 10 MW. A floor plan of the
reactor and the associated experiments is shown in figure (3.1). For neutron capture
experiments cold neutrons are extremely suitable due to the 1/y/E, dependence of
the neutron capture cross section at low energies.

A tangential beam tube guides neutrons from the reactor core to a cold neutron
source (CNS). The CNS uses liquid hydrogen to moderate the incoming neutrons
via elastic scattering. The resulting energy spectra of the moderated neutrons fol-
lows a Maxwell distribution with a mean kinetic energy of approximately 1meV.
A bent beam tube guides the cold neutrons from the CNS to the Prompt Gamma
Activation Analysis (PGAA) setup where the capture gamma ray spectra were mea-
sured. Using a tangential and bent neutron guiding system reduces the fraction of
unwanted direct radiation from the reactor core impinging the measuring sample.
The PGAA setup, shown in figure (3.2), consists of an optional beam chopper, a
beam collimator made of °Li enriched plastic, a sample holder and a bismuth ger-
manate (BGO) escape-suppression shielded High Purity Germanium (HPGe) detec-
tor under an angle of 90° with respect to the beam axis. The detector was brought
from HZDR.

The neutron flux in the cold range at the sample position is at maximum 5 - 107 CI§2S.
In the two neutron capture experiments ""Se(n,y) and **Pt(n,y) performed in Oc-
tober 2009, a BGO escape-suppression shielded Ortec 41-N31587A HPGe Detector
with a relative efficiency of 100 % was used. In addition to the capture experiments
on ""Se and '%Pt, a gamma spectrum from neutron capture on urea-d was mea-
sured. Cold neutron capture on urea-d consisting of carbon, hydrogen, deuterium,
oxygen and nitrogen produces a simple gamma ray spectrum with a few and strong
transitions. The shape of this spectrum can be used to test the detector response
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Figure 3.1: Floor plan of the research reactor at IKI Budapest and the associated ex-
periments. For the neutron capture experiments, cold neutrons from the
cold neutron source (CNS) were used. The capture gamma ray spectra were
measured at the Prompt Gamma Activation Analysis (PGAA) setup. The
picture is taken from [W1, 2011].
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Figure 3.2: PGAA setup for measuring prompt neutron capture gamma spectra consist-
ing of an optional beam chopper, a beam collimator, a sample holder and a
BGO shielded HPGe detector. The picture is taken from [W2, 2011].
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Figure 3.3: Floor plan of the photon scattering facility at ELBE. After injection by a
thermionic injector, electrons are accelerated in the first superconducting cav-
ity to at most 20 MeV. Between the second and third cavity the electron beam
is deflected and focused on a niobium radiator for producing bremsstrahlung.

correction of the measured spectra needed for the further analysis.

3.2 The Photon Scattering Facility

The second part of the twin experiments, the photon scattering experiments on "Se
and %Pt took place in October 2009 and in February 2010 at the photon scat-
tering facility [Schwengner et al., 2005 of the superconducting electron accelerator
for beams with high brilliance and low emittance (ELBE) at Helmholtz-Zentrum
Dresden-Rossendorf (HZDR). Photon scattering experiments using a bremsstrahlung
continuum have the advantage that all states up to the endpoint energy of the im-
pinging spectrum can be excited. However, the disadvantage of bremsstrahlung
excitations is the lack of knowledge of the actual absorbed photon energy and thus
the excitation energy of the target nucleus. By measuring the deexcitation gamma
spectra and several corrections which are discussed in (4.3), the spectrum of ab-
sorbed photons can be reconstructed.

A floor plan of the photon scattering facility and the nuclear physics cave at ELBE
are shown in figures (3.3) and (3.4), respectively. The linear accelerator ELBE,
which consists of 4 superconducting cavities, is able to produce electron beams up
to 40 MeV with an average current of 1mA and with a very short micro pulse
length down to 1ps in continuous wave mode. For photon scattering experiments,
the electron beam is deflected behind the first two cavities under 45° and focused
onto a few micro meter thin niobium radiator. Electrons impinging onto the ra-
diator are slowed down by ionization and emission of bremsstrahlung. A purging
magnet behind the radiator deflects all electrons that passed through the radiator
into a beam dump. A beam of bremsstrahlung photons with a diameter of approxi-
mately 3.8 cm at the target position is shaped by a conical collimator made of pure
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Figure 3.4: Nuclear physics cave at ELBE. Electrons from the accelerator are focused
onto a thin Nb radiator and produce bremsstrahlung which is collimated
through a wall of heavy concrete towards the target position. Four Silicon
detectors are used for measuring proton spectra from photodisintegration
of a deuterised PE target for the determination of the maximum energy
of the bremsstrahlung beam. The photons scattered from the the target
are detected by four bismuth germanate shielded High Purity Germanium
detectors.

aluminium placed in the heavy concrete wall between the accelerator hall and the
photon scattering hall. In front of the collimator a beam hardener of aluminium can
be placed. Aluminium mainly absorbs photons in the low energy region and thus
hardens the bremsstrahlung spectrum. For an exact determination of the kinetic
energy of the electrons needed for a correct calculation of the bremsstrahlung flu-
ence at the target, four silicon detectors are installed around the beam tube behind
the collimator. These detectors are used for measuring protons from photodisinte-
gration of a deuterised polyethylene target. Additionally, the electron beam energy
can be measured with an electron spectrometer located at the chicane behind the
second cavity. Around the scattering target position four High Purity Germanium
(HPGe) detectors are mounted all surrounded with an escape-suppression shield
made of bismuth germanate (BGO). Two HPGe detectors are installed vertically at
90° and two are mounted horizontally at 127° with respect to the beam direction.
This detector arrangement is chosen to distinguish between dipole and quadrupole
elastic scattering due to their different angular distribution. At the end of the beam
line, the remaining photons are dumped in a lead and cadmium shielded beam dump
made of polyethylene. The experimental parameters of the two photon scattering
experiments are given in table (A.8) in the appendix.



Chapter 4
Data Analysis

In this chapter, the data analysis of the two twin experiments is presented. First
of all in section (4.1), the most important tool, a statistical simulation for radiative
deexcitations of excited nuclei, is explained. Subsequently, sections (4.2) and (4.3),
deal with its application in the simulation and analysis of neutron capture and
photon scattering experiments.

4.1 Simulation of Nuclear Radiative Deexcitations

Both types of experiments, neutron capture and photon scattering, have in common
that deexcitation gamma spectra of excited nuclei are measured. The only difference
between both experiments is the way of excitation. In cold neutron capture, the nu-
cleus is excited via the nuclear interaction of a neutron with the target nucleus. As
mentioned in section (2.1), due to the small incident kinetic energy of the neutron,
one distinct state close to the neutron separation energy in the compound nucleus
is excited. In contrast to neutron capture, in photon scattering experiments the nu-
cleus is excited via the electromagnetic interaction of the impinging bremsstrahlung
photons with the target nucleus. Instead of exciting only one state, all states from
E.. = 0 up to the endpoint energy of the used bremsstrahlung spectrum, with re-
spect to the selection rules, can be excited.

For the analysis of both experiments it is thus important to understand the spectral
shape of gamma rays emitted in a deexcitation process of an excited state. This
spectral distribution is determined by all transition widths I';; from the excited state
1 to all possible final states f. Theoretically, one could try to calculate all transition
widths I';¢, but one faces several problems:

1. The energies, spins and parities of excited states in medium and heavy nuclei
are only completely known for few stable nuclei in the low energy range (0 <
Eox S 2MeV).

2. The number of excited states increases exponentially. In stable medium and
heavy nuclei there are approximately 10%...10° states up to the neutron sep-
aration energy.

3. Due to the complexity of the nuclear many body system, it is only possible
to calculate transition widths between states in the low energy region (up to
a few MeV). At higher excitation energies, average transition widths (I';¢)
calculated from photon strength functions and level densities must be used.
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4. The transition widths I';; fluctuate strongly around their mean (I';f).

Some years ago, the simulation code DICEBOX [Becvar, 1998] was developed to
simulate gamma transitions in excited nuclei. This code calculates the emitted
gamma ray spectrum of an excited state by creating several mock level schemes and
using fluctuating transition widths. A main application of DICEBOX is the analysis
of two-step gamma cascade experiments [Becvar et al., 2007| for deducing photon
strength functions in neutron capture experiments.

For the analysis of previous photon scattering experiments Gencho Rusev imple-
mented an algorithm [Schwengner et al., 2007|, [Rusev, 2007] based on DICEBOX
for the simulation of radiative deexcitations of nuclei excited in photon scattering
experiments. These calculations are necessary for the subtraction of inelastic events
in the analysis of photon scattering experiments. However, due to the great number
of excited states (=~ 10°) up to the high excitation energies used in experiments at
HZDR, simulations with this code are very time consuming. Typical calculations on
a computing cluster took about two weeks which made a systematic analysis with
varying input parameters (level density and strength functions) tedious.

For a faster calculation and a more sophisticated study of the influence of the input
parameters on the simulated deexcitation spectra, a new computational approach
was developed in this thesis. Instead of using many mock level schemes each contain-
ing a large number of excited states, this new approach calculates average gamma
deexcitation spectra between energy bins that contain several states. Typically a
bin width of 200keV is used which reduces the number of transition possibilities
dramatically leading to much shorter computation times. However, the impact of
fluctuations on simulated spectra has to be considered and the validity of using
averaged quantities has to be checked.

As derived in section (2.1) and shown in |[Bartholomew et al., 1973| the average
spectral distribution v¢; of emitted primary gamma rays for a given transition type
XL of an excited state ¢ with spin J in the extreme statistical limit is given by:

o )

o(B— B, 1

E.) 1=[J-1|

J E :E2L+leL< Y 4.1
I/XL( ’Y) ¥ <Ftot,i> ,Q(El,J) ( )

In equation (4.1) (I'tet;) is the average total radiative width of the excited state i
and o(E;, J) is the level density of states with spin J at E;. Since the latter two
quantities are independent of the gamma ray energy, the spectral shape v (E,) is
only determined by the photon strength function fx(E,) and the level density at
possible final states o(E; — E,, ).

For practical reasons it is more suitable to use an integrated level density over an
energy interval which is equivalent to the number of states in that interval instead
of the level density. This has the big advantage that the position of experimentally
known states can be included easily in the low-energy region by simply counting
the number of experimentally known states in each bin. If the energy interval AF
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Figure 4.1: Average spectral distribution of emitted primary gamma rays from an excited
state at 10.7 MeV calculated from equation (4.1). The strength function (red)
and the number of states per 105keV bin (blue) are shown in arbitrary units.
Both spectral distributions are normalized to the same area.

around an energy F is not too large, the number of states in this interval is simply
given by:

N(E,AE) ~ o(E)- AE (4.2)

Inserting this into equation (4.1) does not change the spectral distribution of emitted
primary gamma rays. Figure (4.1) shows schematically the shape of emitted primary
FE1 gamma rays calculated using equation (4.1) from an excited state at 10.7 MeV.
Furthermore the gamma energy dependence of the F1 strength function fz; and
the level density at final states o(E; — E.,) is illustrated.

The rise and fall of the spectral distribution is caused by the two competing mecha-
nisms of the transition strength rising with the transition energy and the exponential
decline of the level density at possible final states as function of the transition en-
ergy. In the left subfigure, no information about low lying discrete states was used,
whereas in the right one two states at 0 and 613 keV were inserted. It is clearly visi-
ble that the use of low lying discrete states changes the distribution at high energies.

The actual position of the maximum in the primary gamma distribution is deter-
mined by the slope and curvature of the strength function and level density. Figure
(4.2) shows schematically the influence of these quantities on the spectral shape
of the emitted primary gamma ray spectrum. It is visible that an increase in the
steepness of level density and strength function leads to a more narrow distribution
of primary gamma rays and a shift of the mean to lower and higher energies, respec-
tively.

It should be emphasised that equation (4.1) only holds in the extreme statistical
limit. It is only capable of describing the distribution of transitions to an energy
interval containing several final states. Supposing that there are many possible
states in the final energy interval, it is assured that fluctuations in the transition
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Figure 4.2: Influence of the shape of level density at the final state (blue) and strength
function (red) on the normalised primary gamma spectrum (black). The
spectral distributions are normalised to the same area.

widths will average out. Situations where and where not the use of equation (4.1)
is valid are discussed in the following section.

Knowing the average spectral distribution of primary gamma rays emitted from an
excited state, it is moreover possible to calculate a complete gamma deexcitation
cascade to the ground state including higher-order gamma rays. For this purpose a
Monte Carlo simulation was developed. A visualisation of the algorithm used in the
simulation is shown in figure (4.3). First of all, for a given initially excited state i,
the possible final energies are divided into bins with equal width AFE. Subsequently,
the numbers of possible final states for all considered spins (J < 5) and parities
are calculated separately in all energy bins using a model for the total level density
and spin distribution. In the lowest bins these values are taken from experimentally
known states. In the next step the spectral distribution v(E.,) of primary gamma
rays to all possible final bins is computed according to equation (4.1) for £1, M1
and F2 transitions for all spins and parities using the respective strength functions.
After a normalization of v(E,) a uniformly distributed random number drawn into
the normalized cumulative spectral distribution is used to select a final energy Fy, a
final spin J¢, and a final parity II;. This procedure is executed with the chosen final
energy as new starting energy until the ground state is reached. During the cascade
deexcitations all transition energies, populated states, spins and parities are stored.
In order to gain enough statistics several deexcitations processes are simulated.
The simulation algorithm was implemented in programming language Python using
Scipy, a package for scientific computing. In addition a graphical user interface
(GUI) for an easy and intuitive handling of the program was developed with QT4.
Moreover it is possible to plot simulated results directly from the GUI with the help
of the Matplotlib library.
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Figure 4.3: Scheme of the simulation algorithm of nuclear radiative deexcitations. Ac-
cording to the calculated transition probabilities from the spectral distri-

bution of emitted gamma rays, transitions are chosen.

repeated until the ground state is reached.

The procedure is
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4.2 Analysis of Neutron Capture Experiments

The aim of the analysis of the measured “"Se(n,7y) and %Pt (n,y) spectra is to obtain
qualitative information about level density and strength function in the compound
nucleus. For this purpose the following analysing steps were performed:

1. Correction of the measured spectra for background, detector response and
efficiency

2. Simulation of neutron capture gamma spectra using different level densities
and strength functions

3. Comparison of measured and simulated spectra

A simulation of the detector setup used in the experiment including detector re-
sponse and efficiency was done with GEANT4 by [Massarczyk, 2011]. These simu-
lations were used by Evert Birgersson to correct the measured spectra for detector
response and efficiency. The efficiency correction not shown here is based on mea-
surements with calibration sources and GEANT4 simulations for the energy range
above 2 MeV. A test of this correction was performed on a measured capture gamma
ray spectra of deuterised urea. This target contains nitrogen, oxygen, carbon, deu-
terium and hydrogen leading to a capture spectrum with few and strong gamma
peaks. Figure (4.4) shows the originally measured and the response corrected spec-
trum. The strongest peaks result from neutron capture on hydrogen (H) and ni-
trogen (N). Moreover, single escape (SE) and double escape peaks (DE) are visible.
The latter two and the Compton continua are detector artefacts and are removed in
the response corrected spectrum. Obviously the response correction works well in
the high-energy region, whereas it is imperfect in the intermediate and low-energy
region. However, the ratios of the leftover artefacts to the corresponding full energy
peaks are negligibly small. For the nitrogen peak at 10.8 MeV the ratio of left over
artefacts from double escape, single escape peak and Compton continuum is 2 %.
For the nitrogen peak at 6.3 MeV ,where the detector artefacts are superimposed by
other full energy peaks, the ratio of the left over single escape to full energy peak in
the response corrected spectrum is 2 %.

Subsequently to the background, response and efficiency corrections of the measured
Se(n,y) and *°Pt(n,y) spectra, these gamma spectra were simulated using the
algorithm described in section (4.1) with a few modifications. From other cold
neutron capture experiments, the primary transition probabilities of the initially
excited state to the first low lying states are known and can be found in [PGA, 2011].
Including these probabilities, simulations of neutron capture gamma ray spectra
were performed with different level densities and strength functions to study their
influence on the spectral shape.

4.2.1 Analysis of Neutron Capture on Selenium-77

Figure (4.5) shows the background, response and efficiency corrected measured
"Se(n,y) spectrum. In the spectrum with the original 0.77 keV binning (top sub-
figure), the primary gamma transitions from the initially excited 1~ state close to
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Figure 4.4: Measured (blue) and response corrected (red) neutron capture gamma spec-
trum on deuterised urea. The marked peaks result from neutron capture on
hydrogen (H), nitrogen (N), single escape (SE) and double escape (DE).

Sn to the ground state (0) and the first excited states (1,2,3,7,10) are visible. The
properties of these first excited states are listed in table (A.5) in the appendix. The
low-energy region of the spectrum is dominated by transitions of the first excited
states to the ground state (2 — 0, 1 — 0). Most interesting for a comparison with
a statistical simulation is the intermediate (continuum) region which contains many
weak unresolved transitions. For the sake of better statistics and averaging over
several transitions, the spectrum was rebinned to 200keV (bottom subfigure). In
the rebinned spectrum, a decreasing slope of the continuum region between 2.4 MeV
and 7.8 MeV is clearly visible. Additionally to the smooth shape of the continuum
region, a local enhanced gamma yield at around 6.3 MeV can be seen. In the fur-
ther analysis the shape of the continuum region will be used for a comparison with
different simulated spectra.

For the simulation of the measured spectra the algorithm described in section (4.2)
was used. The standard input parameters for the simulation of "Se(n,y) are listed
in table (A.3). The resulting simulated spectra are shown in figure (4.6).

The histogram of all gamma rays emitted during 100000 excitations, presented in
the top subfigure of (4.6), shows that the general shape of the measured spectrum is
nicely reproduced. Especially the decreasing slope of the continuum region between
2.4MeV and 6 MeV is clearly visible. A more detailed view on the simulated spec-
trum is shown in the bottom subfigure where histograms of all simulated gamma
rays are shown in different colours corresponding to their order in the deexcitation
cascade. Obviously, the continuum region between 2.4 MeV and 6 MeV is a com-
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(b) Rebinned spectrum with 200keV binning. The rebinning averages fluctuations
and resolves the shape of the continuum region.

Figure 4.5: Background, response and efficiency corrected experimental 7"Se(n,7y) spec-
trum
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position of primary, secondary and third order gamma rays. The contribution of
higher-order gamma rays to the continuum increases with decreasing gamma en-
ergy. The origins of gamma rays measured in this region can be very different. For
example a gamma ray at 4 MeV can result from a primary transition from the initial
state at 10.5 MeV to state at 6.5 MeV or from a secondary transition from a state
at 7MeV to a state at 3 MeV, or even from a third order transition from a state at
6 MeV to a state at 2MeV. This great number of possibilities assures that fluctu-
ations in the single transition widths between two distinct states are averaged out
and that the use of the statistical approach for the simulation of this region is valid.
In order to understand the influence of the level density on the neutron capture
gamma ray spectrum, simulations with different input level densities were performed.
Since the normalised average spectral distribution of emitted primary gammas is
only dependent on the slope of the level density, simulations using the Constant
Temperature Model (CTM) with different temperatures (see figure (4.9)) were per-
formed. The results of these simulations are presented in figure (4.7).

Each subfigure of figure (4.7) shows a comparison between the experimental spec-
trum (black hatched bars) and the simulated one (filled bars). Moreover the average
gamma multiplicity and the reduced chi square for the goodness of fit in the con-
tinuum region (2MeV < E < 5.4MeV) are given. In all cases the TLO model
was used as E1 strength and the parametrisation discussed in section (2.5.2) was
used as M1 strength. It is visible that the simulated spectrum with 7" = 900 keV
fits best to the experimental measured data in the continuum region. This value
for the temperature is slightly higher than the one given in [Koning et al., 2008]
(Tx = 850keV). However none of the simulations using a monotonically increasing
E1 strength function is able to describe the measured enhanced gamma yield at
energies around 6.3 MeV.

Due to this disagreement, the influence of the shape of the F'1 gamma strength func-
tion on the simulated spectrum, was also investigated in several simulations with
different models which are shown in figure (4.9). Simulated spectra using a constant
E1 strength function, a TLO E1 strength function and a composed E1 strength
function of TLO and an extra Gaussian resonance at 6.3 MeV are shown in figure
(4.8). For all these simulations the same CTM level density with 7" = 850 keV and
Dy = 121eV was used.

Again, the gamma multiplicity and a reduced chi square for the goodness of fit in
the continuum region (2MeV < E < 6.4MeV) are given for each simulation. All
simulations result in the same gamma ray multiplicity m = 3.6 £ 0.1 which can be
used for the calculation of the total capture cross section. The first simulations with
two monotonously increasing strength functions (linear and TLO model) give poor
fits in the region of the enhanced yield at 6.3 MeV. However, adding an Gaussian
resonance at this energy with a standard deviation of 200 keV and an amplitude of
2.96- 107" keV " to the TLO E1 strength results in a good agreement between sim-
ulated and experimental measured spectrum. Hence, the enhanced yield at 6.3 MeV
could be a hint for a resonance like structure in the gamma strength function. Un-
fortunately, no quantitative information about the absolute value of the photon
strength function can be drawn from these comparisons.
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(a) All simulated gamma transitions that occurred during 100000 cascade deexci-
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energy primary gamma transitions are adjusted to experimental data taken from
[PGA, 2011].
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(b) Detailed view on the simulated spectrum. Primary (blue), secondary (red), third
order (green) and higher-order (yellow) transitions are shown separately. The
high-energy region is dominated by primary transitions, whereas the continuum
region also consists of secondary and third order transitions.

Figure 4.6: Simulated 7"Se(n,7y) spectra. The used input parameters are listed in table
(A.3) in the appendix.
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Simulated ""Se(n,y) spectra with different temperatures 7 of the input CTM
level density (see figure (4.9)). The simulated spectra (filled bars) containing
100000 iterations are normalised to the experimental yield (black hatched
bars) in the highest bin. For each simulation the gamma multiplicity (m)
and the reduced chi square for the goodness of fit in the continuum region
(2MeV < E, < 5.4MeV) are given. The deviation in the bin at 8 MeV is a
binning artefact.



48 Chapter 4. Data Analysis

B sin. spec. |
EX) exp. spec.

Oava
)

counts
—
(an)
>
QIR
DX XN

XX

>

XXX

6
E, (MeV)

(a) Simulation with a linear FE1 strength function

T T I ]
B sim. spec. |
EX) exp. spec.

TLO fr
Y2 =8.56
m = 3.59

YoY%
]

K]

counts
]
e

,_.
o
z
A0S,
DX

RIICIXX
[

6
E., (MeV)
(b) Simulation with TLO E1 strength function

| T T I
TLO + res. . ]
X2*42_8 fer B i spec. |-
= v <
15} B —
3 EX exp. spec. 4
10; m = 3.57 D- 51 ]
. ]
= T
T
= kK
2. HH
S
<k
]
)
]
il
<]
10°

6
E, (MeV)

(c) Simulation with E'1 strength function consisting of TLO and Gaussian resonance at
6300 keV with o = 200keV and an amplitude A = 2.96-10717 keV 3

Figure 4.8: Comparisons of experimental measured spectrum (black) with simulated ones
(red) using different input E'1 strength functions (see figure (4.9)). For each
simulation the gamma multiplicity (m) and the reduced chi square for the
goodness of fit in the continuum region (2MeV < F < 6.4 MeV) are given. It
is visible that a resonance like structure in the E'1 strength is able to describe
the enhanced measured gamma yield in the region at 6.3 MeV.
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Figure 4.9: Different input CTM level densities and F1 strength functions for the simu-
lation of ""Se(n,y)

4.2.2 Analysis of Neutron Capture on Platinum-195

For the analysis of ®Pt(n,y) the same approach as in the case of ""Se(n,y) was
used. The measured efficiency and response corrected gamma spectrum is presented
in figure (4.10). In the top subfigure, the high-energy primary gammas and the
continuum region are obvious. Moreover many strong gamma lines can be found in
the region between 5MeV and 6 MeV. This is visible in the bottom subfigure as
well, where the spectrum rebinned to 200keV is shown. In comparison to 7"Se(n,7)
the ratio of the high lying primary gammas to the continuum region is much smaller,
which can be explained with the higher level density of %Pt compared to "Se.

As in the previous analysis, simulations with a TLO E1 and a M1 strength function
discussed in section (2.5.2) and different temperatures 7" were made and are shown
in figure (4.11). The standard input parameters for the simulation of %Pt(n,v)
and the properties of the used first excited states are listed in tables (A.4) and
(A.5) in the appendix. For the goodness of fit between simulated and experimental
spectrum, the reduced chi square in the energy region 1.4 MeV < E < 4.4 MeV was
calculated. Apparently, the simulation using 7" = 650 keV fits the data best. Again
this value is higher than the one given in [Koning et al., 2008| (Tx = 553keV). As
in the case of ""Se(n,7y) none of the simulations with a monotonically increasing F1
strength function is able to describe the enhanced measured gamma yield in the
region around 5.4 MeV. Compared to “"Se(n,y), all simulations of %Pt (n,y) give a
higher gamma ray multiplicity of m = 4.1 4+ 0.1 which can be explained with the
greater number of excited states up to Sj.

As discussed in |[Bartholomew et al., 1973|, the origin of the enhanced gamma yield
at around 5.4 MeV in heavy nuclei can not be a local enhancement of the level
density. It could be shown that the center of gravity of this bump does not change
when varying the incident neutron energy (capture on higher lying resonances).
Moreover, from comparisons of s-wave and p-wave neutron capture gamma spectra,
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(a) 19°Pt(n,y) spectrum with experimental 0.77keV binning. In the high-energy region
the primary gamma transitions to the ground state (0) and the first excited states
(1,2,5) are visible. In the low-energy region the strongest line results from ground
state transitions of the 1st excited state. The intermediate region consists of distinct
lines and a continuum of weak unresolved transitions. In the region between 5 MeV and
6 MeV an enhanced number of strong transitions is visible. The neutron separation
energy of 196Pt is 7.92 MeV [Xiaolong, 2007]
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(b) Rebinned spectrum with 200keV binning. The rebinning averages fluctuations and
resolves the shape of the continuum region. In the region between 5 MeV and 6 MeV
a strongly enhanced yield is obvious.

Figure 4.10: Background, response and efficiency corrected experimental *>Pt(n,y) spec-
trum
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Figure 4.11: Simulated '%Pt(n,y) spectra with different temperatures T for the input

CTM level density (see figure (4.9)). The simulated spectra (filled bars)
containing 100000 iterations are normalised to experimental yield (black
hatched bars) in the highest bin. For each simulation the gamma multiplic-

ity (m) and the reduced chi square for the goodness of fit in the continuum
region (1.4MeV < E, < 4.4MeV) are given.
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it could be deduced that this extra yield are E'1 transitions.

In order to describe the 5.4 MeV extra yield, simulations with a modified £'1 strength
function consisting of the TLO model and a Gaussian resonance at 5.4 MeV have
been performed (see figure 4.13). The results of these simulations are shown in
figure (4.12). Obviously, simulations with an additional Gaussian resonance in the
E1 strength function are able to reproduce the enhanced gamma yield at 5.4 MeV.
In order to fit the width and height of the extra bump, a resonance with an amplitude
of A~ 1.88-107keV ™ and a width of o = 0.25MeV is necessary. Compared to
the area of the TLO E1 strength function up to S, this corresponds to an extra
strength of 17%.

Conclusions

1. The comparisons of simulated and experimental neutron capture
gamma ray spectra show that the developed simulation code for a sta-
tistical description of radiative deexcitations in excited nuclei works.

2. By comparison of simulated and experimental continuum regions in
the spectra, a temperature for the Constant Temperature level density
of the compound nuclei of 7' = 900 keV for “®*Se and T = 650 keV for
196P¢ could be estimated.

3. Enhanced gamma yields at 6.3MeV in ""Se(n,y) and 5.4MeV in
195Pt(n,y) are hints for extra E1 photon strength.

4. The gamma ray multiplicity for ""Se(n,y) m = 3.6 & 0.1 and for
195Pt(n,y) m = 4.1 + 0.1 could be determined.
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Figure 4.12: Simulations of " Pt(n,y) with a modified E1 strength function consisting
of the TLO model plus an additional Gaussian resonance with amplitude
A, mean F, and standard deviation o (see figure (4.13)). For all cases, a
CTM level density with T'= 650keV and Dy = 19.2eV was used. For each
simulation the gamma multiplicity (m) and the reduced chi square for the
goodness of fit in the continuum region (1.4MeV < E, < 6.0MeV) are
given.
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Figure 4.13: Different input CTM level densities and E1 strength functions for the sim-
ulation of %Pt (n,y)

4.3 Analysis of Photon Scattering Experiments

In this section the different steps in the analysis of the two photon scattering experi-
ments on “8Se and Pt are presented. The first two of these steps, the deconvolution
of the measured spectra for detector response and efficiency and the subtraction of
non-nuclear background was done by [Massarczyk, 2011| using GEANT4 simulations
of the experimental setup. In this work, the remaining steps, the determination of
the incident bremsstrahlung fluence and the correction for inelastically scattered
events and branching will be presented.

4.3.1 Analysis of Photon Scattering from Selenium-78
Determination of the Bremsstrahlung Fluence

For the determination of the incident bremsstrahlung fluence, photon scattering
from a B calibration target is used. 'B has only few excited states up to 9 MeV
with known branching ratios and integrated elastic scattering cross sections. These
quantities are listed in table (A.1) in the appendix.

The number of photons Y,,s absorbed by a resonance in a thin target irradiated by
a homogeneous photon fluence distribution is given by:

Vi = No- [ o(E)0p(E)E (4.3)

Here, Nt is the number of target atoms in the beam, o(F) is the cross section for
absorption into a resonance and ®g(FE) is the spectral photon fluence (the number
of photons per unit energy and unit area perpendicular to the beam). Assuming
that the impinging spectral photon fluence is constant over the narrow resonance
one obtains:
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_ Y;ibs
NT ' ]abs
Here I, is the energy integrated cross section for absorption in a resonance. In the

experiment, the number of elastically scattered photons Y., is measured which is
given by:

Pp(Eres) (4.4)

Yscat = Yabs . BO : 6(E’res> W (45>

where By is the ground state branching ratio of the resonance, W is an angular
correlation factor and ¢ is the detector efficiency.

It has to be taken into account that the resonances at 2124 keV, 4444 keV, 5020 keV
are fed from excited states at higher energies. The number of absorbed photons
is obtained by subtracting the amount of feeding transitions from the measured
number of detected transitions using the branching ratios given in table (A.6) in the
appendix. Finally one obtains for the feeding-corrected number of absorbed photons
in the resonances:

% szcat,8920
abs,8920 —
0.973 - £8920 * W8920
% }/;cat,7285
abs, 7285 —
0.884 - E7985 ° W7285
Yicat,5020
Yabs 5020 = —0.06 Yaps 7285
0.858 - €5020 ° W5020
Y;Cat 4444
Yabsa440 = —0.03 Yapsg920 —0.06 Yips 7285
1.000 - E4444 * W4444
szcat 2124
}/abs,2124 _014 Yabs,5020

1.000 - £2124 - Wa124

In order to describe the shape of the incident photon fluence for a given endpoint en-
ergy a two dimensional interpolation of the values given in [Seltzer and Berger, 1986]
for a thin niobium radiator multiplied with a simulated function that takes the in-
fluence of the aluminium hardener into account is used. The hardener function was
simulated with GEANT4 by Ralph Massarczyk and is shown in figure (A.1) in the
appendix. The fluence values deduced from fits to the measured yield of elastically
scattered photons on the B resonances are given in table (4.1). Moreover the calcu-
lated photon fluence distribution from the Seltzer and Berger values for an incident
kinetic electron endpoint energy of Ee,q = 11.5MeV is shown in figure (4.14). The
value of the kinetic electron endpoint energy was determined by analysing proton
spectra from deuteron breakup [Schwengner et al., 2005].

It is visible in figure (4.14) that the fluence deduced from the 7285 keV resonance is
too high and has a large uncertainty. In the measured spectrum this peak has a non-
Gaussian distribution indicating an unresolved contribution from another transition.
The uncertainty in the deduced fluence distribution has two contributions. These
are on the one hand the normalisation uncertainty which is 7.4% resulting from
the statistical error of the fitted peak area and an estimated 5% uncertainty of
the efficiency and on the other hand a 200 keV uncertainty of the endpoint energy.
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Eres (keV) )/scat Yabs q)E (evilb_l)
8920  7954(228)  5.1(3)-107 1.46(11)-10717
7985 9083(4083)  4.9(22)-107  3.9(18)-10-17
5020 29040(6766) 10. 6(26) 107 3.6(9)- 10717
4444 31112(728)  8.6(5)-107  4.5(3)-10°'7
2124 39065(723)  5.4(5)-107  9.1(11)-107V7

Table 4.1: Spectral bremsstrahlung fluence deduced from fits to the measured gamma

0.0,

fluence at 8.9 MeV corresponds to a flux of approximately 10” MeV ~tem™2s
typically for this bremsstrahlung setup.

yield of elastically scattered photons on B resonances in the “Se(v,y) ex-
periment. Y.t are the number of measured elastic scattered photons on a
resonance at Fr.s. Yaps are the calculated numbers of absorbed photons in
the resonance and ®p is the spectral bremsstrahlung fluence. The calculated
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Figure 4.14: Spectral bremsstrahlung fluence of the "®Se(v,7) experiment. The red circles

correspond to the fluence determined from measured transitions in ''B. The
dashed black line is the flux distribution calculated using the Seltzer and
Berger Formula. The solid black line takes the influence of the aluminium
hardener into account. Both curves are normalised to the fluence deduced
from scattering from the 8920keV resonance. The gray bands correspond
to the uncertainty due to a 200keV uncertainty of the 11500 keV kinetic
electron endpoint energy.
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Figure 4.15: Simulation (black) and subtraction (red) of the atomic background from
the response corrected measured "8Se(v,y) spectrum (blue). The atomic
background was simulated with GEANT4 by Ralph Massarczyk.

The latter one is small compared to the first one for energies less than the neutron
separation energy of 10.5MeV (< 5%). The total uncertainty of the fluence is
estimated to be at maximum 9%.

Correction for Non-Nuclear Scattered Transitions

The non-nuclear background (atomic background) contained in the measured spec-
trum, resulting from interactions of the impinging photons with electrons in the
target was simulated with GEANT4 by |[Massarczyk, 2011]. The results of the sim-
ulation and the subtraction of the atomic background from the response corrected
measured spectrum are shown in figure (4.15). It is clearly visible that the measured
spectrum (blue) below 4 MeV is strongly influenced by non-nuclear scattered events
(black). Above 4 MeV the ratio of the atomic background to the measured events
decreases steadily from 30% to ~ 1% at the neutron threshold of 10.5 MeV. Due
to the huge corrections in the low energy region, an analysis of the data is only
reasonable above ~ 4 MeV.

Correction for Inelastic Transitions

As discussed in section (2.2), the yield of elastic scattered photons and the ground
state branching ratio of an excited state in an energy bin [E — %, E+ A2—E} are
needed to calculate the average absorption cross section. The measured gamma
spectrum however, contains not only gammas from elastic transitions, but also in-
elastic transitions that occur in cascade deexcitations. Hence a two step correction
of the measured spectrum for inelastic transitions is necessary:

1. Subtraction of all inelastic transitions which yields the spectrum of elastically
scattered photons Y.
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2. Calculation of the absorption spectrum Y,,s by division of the spectrum of
elastically scattered photons Y.s by the ground state branching ratio B.

The simulation code described in section (4.1) is able to calculate the average ground
state branching ratio as well as the average yield of inelastic transitions emitted
during a deexcitation of an excited state. However, it has to be emphasized again,
that photon scattering is a two step process consisting of excitation and deexcitation.
Due to fluctuations in the ground state transition widths, not all states in an energy
bin are excited equally. Those with a large transition width are excited more often
than those with a small one. Subsequently to the excitation, states with a large
ground state width will deexcite with a higher probability directly back to the ground
than the other states. This effect results in an enhancement of direct ground state
transitions in photon scattering experiments and can be calculated with a numerical
simulation discussed in section (2.6) to a statistical fluctuation factor S for each
excitation energy.

For the correction of inelastic transitions, the average deexcitation spectra for states
at different excitation energies were simulated. In the analysis of "®Se(v,y) this
was done in steps of 200keV up to the neutron separation energy. The simulated
deexcitation spectra for a TLO E1 strength function and CTM level density with
T =900keV and Dy = 121 eV are shown in figure (4.16). For each excitation energy
the direct ground state transitions and the transitions to the first excited states are
visible (diagonal structure). Moreover vertical structures in the low energy region
which correspond to transitions between the first excited states can be seen. In the
simulation experimentally known states and their branching ratios were used up to
2400 keV.

Figures (4.17) and (4.18) show the simulated statistical fluctuation S factor and the
ground state transition probabilities which are the products of the average branching
ratio (I'g) / (I'tor) and S for different CTM level densities. Each time a fixed mean
resonance spacing at the threshold, an E1 TLO strength function and a Porter-
Thomas distribution for the fluctuations of the transition width was used. In the
top subfigure it is visible that at high energies the branching ratio decreases with
increasing temperature for a fixed excitation energy. This is due to the fact, that
there are simply more possible final states between the ground state and the excited
state for increasing 7" and a fixed Dy. The statistical fluctuation factor, shown in
the bottom subfigure, increases steadily from 1 at low excitation energies where
only one resonance lies in the averaging bin. At high excitations energies (above
the threshold) it will approach its limiting value of 1 + % for a reduced chi-square
distribution with v degree of freedoms of the transition widths. For the assumed
Porter-Thomas distribution (v = 1) it will approach 3 at high energies. With
increasing 1" which corresponds to an increasing number of states in the averaging
bin, S rises faster.

For the correction of the inelastic transitions a step by step subtraction method is
used beginning at the bin corresponding to the highest possible excitation energy
(Sh) in the uncorrected spectrum. The gamma yield in this bin can only result from
elastic transitions because all possible inelastic transitions must have smaller ener-
gies. For this excitation energy the simulated deexcitation spectrum is normalized to
the gamma yield in the bin of the uncorrected spectrum. Subsequently all simulated
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Figure 4.16: Simulated deexcitation spectra for excited 1~ states in "®Se in steps of
200keV. For each excitation energy 50000 deexcitations were simulated. A
CTM level density with 7' = 900keV and a TLO FE1 strength function were
used as input parameters. Clearly visible are the direct ground state tran-
sitions and the transitions to the first excited states (diagonal structures).
Moreover the transitions between the first excited states can be seen in the
low energy region (vertical structures).
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Figure 4.17: Simulated statistical fluctuation factor for “®Se. For the simulations a CTM
level density with different temperatures 7', but a fixed mean resonance
spacing at the threshold Dy = 121.0eV and an E1 TLO strength function

were used.
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Figure 4.18: Simulated ground state branching ratios enhanced by the statistical en-
hancement factor for “®Se. For the simulations a CTM level density with
different temperatures T', but a fixed mean resonance spacing at the thresh-
old Dy = 121.0eV and an E1 TLO strength function were used.

inelastic transitions are subtracted from the uncorrected spectrum. This procedure
is executed on all bins in decreasing order starting at the highest one. Finally, after
subtracting all inelastic events from all possible excitation energies, the spectrum
should contain only elastic transitions. In the last step of the correction, the elastic
spectrum is divided by the simulated ground state transition probability for each
excitation energy.

Figure (4.19) shows the two correction steps for the case of Se(7y,y). The spectrum
containing all transitions (red), the spectrum without inelastic transitions (blue)
and the calculated absorption spectrum (black hatched) are shown. As visible,
transitions in the highest bins (£, > 9MeV) are hardly fed by inelastic transitions
from above. For those states the division by the ground state transition probability
leads to a larger value of absorbed transitions compared to measured transitions.
In the intermediate region (5.5MeV < E, < 7.5MeV) the subtraction of inelastic
transitions and the correction for ground state branching nearly cancels out which
means that the number of measured photons is approximately equal to the number
of absorbed photons. In the low-energy region (E, < 5.5MeV) the feeding effect
dominates which means that the measured gamma yield is bigger than the number
of absorbed photons. However it should be mentioned that the uncertainties rapidly
increase towards low excitations energies due to the stepwise subtraction method.

Using the calculated absorption spectrum, and equations (2.14), (2.19) and (4.4)
allows to calculate the integrated absorption cross section Iops 1 of the target relative
to the integrated absorption cross section I,psp of a B resonance.

Lps (B, AE) _ Yaps(E,AE) Np ®p(Ep) Ws (4.6)
Lps B(ER) YasB(Es) Nt Pp(E) Winio .
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Figure 4.19: Different steps in the correction for inelastic transitions. The response, ef-
ficiency and atomic background corrected measured spectrum containing
elastic and inelastic transitions (red), the spectrum without inelastic tran-
sitions (blue) and the calculated absorption spectrum (black hatched) are
shown for "®Se(y,Y) using the simulated deexcitation spectra shown in figure
(4.16).

Inserting the relation between the number of absorbed photons in the target and
the measured elastically scattered ones in the detector yields:

Iabs,T(E,AE) _ }/;C&t(Ea AE) . 5(EB)B(EB)% . q)E(EB) . WB
Lpss(EB) e(E)B(E)S(E) Yiatn(Es) Nr Pp(E) Wosio

(4.7)

In equations (4.6) and (4.7) Ep is the energy of elastically scattered photons on the
B resonance, ¢(F) is the detector efficiency, B(E) is the average branching ratio,
S(E) is the statistical fluctuation factor, Ny and Nrp are the numbers of boron
and scattering target atoms in the beam, W is a angular correlation coefficient and
O (F) is the spectral bremsstrahlung fluence.

The uncertainty of s 1 is given by:

(Ajabs,T>2 o <AYabs,T>2 + (AY;,bS,B>2 + (A(I)E)2 + (Ajabs,B>2 (4 8)
]abs,T Y;tbs,T Yabs,B (I)E Iabs,B '

Here, the uncertainty in the number of absorbed photons is given by:

AYuut\?  (AVir\® | (Ac\? | [AB\?  [AS)?
bs T\ _ tT) Qg + (=) 4+ (=2 (4.9)
Yabs,T Y;cat,T € B S

The number of elastically scattered photons Yi..:(¢) in a bin i is calculated by a
stepwise subtraction of simulated inelastic transitions Yi,elas j(¢) of higher lying states
at energies E; from the measured spectrum Y., (7).
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}/;cat (Z = exp Z n] sim,Eex=E; Z) (410)
>t
Here, n; is a normalisation factor of the simulated deexcitation spectra. The uncer-
tainty of Y., is thus given by:

(AViar ()” = (AVesp(D))°+ Y (An;)* (Voim iy (1) 4D (15)” (AVoim iy ()
7>t >
(4.11)
The normalisation factor n; for the bin ¢ is the ratio of the yield in the bin 7 of
the spectrum corrected for all inelastic transitions from higher bins j divided by the
number of simulated ground state transitions for the excitation energy FE;.

Y:%X(Z.) — Z nj}/sim,Eex:Ej (Z)

J>t

P = 4.12
" Vi 1) 12
That means for the highest bin A the normalisation factor is:
Yex (D
= oel) (4.13)

szim,Eex:Eh (h)

Its uncertainty is given by:

()= () () o

For the adjacent bin h — 1 the factor is given by:

Yex(h — 1) — nhYsim,Eex:Eh(
}/éimyEeX:Eh—l (h - 1)
In general, the normalisation factor n; depends on all normalisation factors n; with
J >t which means that the uncertainty of n; increases exponentially with the number
of performed subtractions (ns,, = h — 7).
Estimates for the uncertainties that enter in the uncertainty of I,,s 1 are given in
table (4.2). At high energies the total uncertainty is determined by the uncertainty
of S, B, ®p, ¢ and I, whereas the uncertainty in the low energy region is
completely dominated by the uncertainty of the subtraction of inelastic transitions
which rises exponentially with the number of performed subtractions.

h—1)

Ny = (4.15)

As mentioned in section (2.2), the simulation and correction for inelastic transitions
needed for the determination of the average photoabsorption cross section and the
related photon strength function depends on the used input photon strength func-
tions. Hence, to have a self-consistent analysis, the correction has to be performed
several times in an iterative process. As a starting point for the iteration, a TLO E'1
and a M1 strength function discussed in section (2.5.2) were used. In the next step,
the mean of input and smoothed output dipole strength function of the previous
step is used as new input F1 strength function for the simulation of inelastic tran-
sitions. This procedure is repeated until input and output strength function are in
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quantity relative uncertainty comment
03 5.0% due to uncertainty in endpoint energy
Lbsp 4.8% from [Ajzenberg-Selove, 1990
5 5.0 % from [Massarczyk, 2011]
B 5.0% due to uncertainty in temperature

Yiim 5.0%
S 7.0% from fluctuation simulation
Yicat,B 3.0% from fit of yield in 'B resonance
Yexp 1//Yexp statistical unc. of measurement

Table 4.2: Relative uncertainties that enter in the uncertainty of I,y,s T for Se(v,y)

agreement. Figure (4.20) shows the calculated average photoabsorption cross section
after different steps of the iteration for simulations using a CTM level density with
T = 900keV. This value was chosen from comparisons of simulated and measured
"Se(n,y) in section (4.2). It is visible that after three iteration steps the input and
output strength function (average absorption cross section) are self-consistent. The
steep drop of the average photoabsorption cross section above 10.3 MeV is due to
the opening (y,n) channel at 10.49 MeV.
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(a) 1st step of the iteration (TLO strength function used as input for the correction of
inelastic transitions)
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(b) 3rd step of the iteration (mean of input and output strength function of 2nd iteration
used as input for the correction of inelastic transitions)

Figure 4.20: Calculated average photoabsorption cross section (red circles) from experi-
mental data of ®Se(7y,7). The black line represents the average photo ab-
sorption cross section deduced from the dipole strength function that was
used as input for the simulation and correction of inelastic transitions. For
this purpose, the data points of the previous iteration were fitted locally (up
to 10 MeV) with a quadratic polynomial. In both cases a CTM level den-
sity with 7" = 900keV and Dy = 121 eV was used for the simulation. After
the third step input and output strength functions are self-consistent. The
steep drop of the average photoabsorption cross section above 10.3 MeV is
due to the opening (v,n) channel at 10.49 MeV. As mentioned before, the
black line is a local fit and therefore must not be extrapolated to higher
energies.
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Eres (keV) ifscat Yabs (I)E (ev_lb_l)

8920  376(23) )-10°  1.39(13)-1078
7285  689(52) )-106  6.0(7)-10718
5020 4154(146) 15.4(9)-10°  10.4(7)-10-18
4444 3779(158) )-106  11.3(9)-10718
2124 5151(726) )-106  23(5)-10718

Table 4.3: Spectral bremsstrahlung fluence deduced from fits to the measured gamma
yield of elastically scattered photons on !B resonances in the '%°Pt(vy,y) ex-
periment. Y., is the number of measured elastically scattered photons from
a resonance at Fies. Yaps is the calculated number of absorbed photons in the
resonance and ®g is the spectral bremsstrahlung fluence.

4.3.2 Analysis of Photon Scattering from Platinum-196

The analysis of the photon scattering experiment on Pt was performed in a similar
way to the analysis of ®®Se(v,7). Therefore, only the results of the important steps
are presented in the following.

Determination of the Bremsstrahlung Fluence

As in the ™Se(v,7) experiment, elastic photon scattering on a !B calibration target
was used to determine the incident bremsstrahlung fluence in the °Pt(v,v) exper-
iment. The number of elastically scattered photons and the deduced fluence at the
transition energies are shown in table (4.3).

The fluence deduced from scattering from the 5020 keV resonance was used to nor-
malise the calculated bremsstrahlung fluence with the Seltzer and Berger formula
using a kinetic electron energy of 9.5 MeV which was measured with the Browne-
Buechner spectrometer of ELBE. Due to this low endpoint energy the fluence de-
duced from the 8920 keV resonance is not capable for the flux normalisation because
close to the endpoint energy the bremsstrahlung spectrum strongly depends on the
exact value of the electron energy. An uncertainty of 200 keV for an endpoint energy
of 9.5 MeV results in a relative uncertainty in the calculated fluence at 8920 keV of
approximately 25%. In contrast, it only leads to an uncertainty of approximately
3% at 5020 keV. Moreover, the statistical uncertainty of the gamma yield scattered
from the 5020 keV resonance is much smaller.

Figure (4.21) shows the shape of the incident spectral bremsstrahlung fluence in the
196Pt(v,v) experiment. Up to the neutron separation energy of Pt (7922keV),
the uncertainty of the bremsstrahlung fluence can be estimated to 8 % at maximum.

Correction for Non-Nuclear Scattered Transitions

As in the case of ®Se(v,7), the spectrum of non-nuclear scattered events was simu-
lated with GEANT4 by Ralph Massarczyk. Inexplicably the results of the simulation
do not fit to the measured spectrum. Nevertheless, as shown in figure (4.15), it can
be assumed that at high energies (> 6 MeV) the ratio of nuclear and non-nuclear
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Figure 4.21: Spectral bremsstrahlung fluence of the %Pt(v,y) experiment. The red
circles correspond to the fluence determined from measured transitions in
HUB. The dashed black line is the flux distribution calculated using the
Seltzer and Berger Formula. The solid black line takes the influence of
the aluminium hardener into account. Both curves are normalised to the
fluence deduced from scattering from the 5020keV resonance. The gray
bands correspond to the uncertainty due to a 200keV uncertainty of the
9500 keV electron kinetic energy.

scattered events is negligibly small. Thus, the measured data was only analysed
above 6 MeV so far under the assumption that above this energy the contribution
of non-nuclear scattered background is negligible.

Correction for Inelastic Transitions

For the correction of inelastic events deexcitation spectra and ground state branch-
ing ratios for excitation energies up to Sy in steps of 200 keV were simulated. The
resulting spectra and enhanced average ground state branching ratios are shown in
figures (4.22) and (4.23) respectively. In addition the simulated statistical fluctua-
tion factor is shown in figure (A.2) in the appendix.

Obviously, the simulated enhanced ground state branching ratios for %Pt are much
smaller then those of ™®Se which is due to the higher level density of Pt compared
to ™Se (Dy = 19.2eV < Dy = 121eV). Moreover, it can be seen that small uncer-
tainties in the CTM temperature lead to large uncertainties in the branching ratios
(= 40% at 8 MeV,30% at 6 MeV) which makes a precise estimate of By difficult.
Figure (4.24) shows the subtraction of inelastic transitions and the correction for
branching using the simulated deexcitation spectra for the response corrected mea-
sured °Pt(v,7) spectrum. What can be seen is that at 6 MeV (2MeV below S,)
approximately 50 % of the measured gamma yield are inelastic transitions. The rise
in the measured yield with decreasing gamma energy below 6 MeV is due to atomic
background which is not subtracted from the spectrum.
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Figure 4.22: Simulated deexcitation spectra for excited 1~ states in %Pt in steps of
200keV. For each excitation energy 50000 deexcitations were simulated. A
CTM level density with T" = 600keV and Dy = 19.2eV and a TLO E1

strength function were used as input parameters.
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Figure 4.23: Simulated ground state branching ratios for '%°Pt. For the simulations a
CTM level density with different temperatures 7', but a fixed mean res-
onance spacing at the threshold Dy = 19.2eV and an E1 TLO strength
function were used.
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Figure 4.24: Different steps in the correction for inelastic transitions. The response and

efficiency corrected measured spectrum containing elastic and inelastic tran-
sitions (red), the spectrum without inelastic transitions and the calculated
absorption spectrum (black hatched) are shown for '?6Pt(vy,y) using the
simulated deexcitation spectra shown in figure (4.22). The uncorrected
spectrum (red) still contains the atomic background which distorts the cor-
rection at energies below 6 MeV.

In the last step of the analysis, the average photoabsorption cross section was cal-
culated from the absorption spectrum with the help of equations (4.6) and (4.8).
The relative uncertainties that enter into equation (4.8) are listed in table (4.4).
Obviously, the large uncertainties in the simulated branching ratios dominate the
total uncertainty. Figure (4.25) shows the resulting calculated average photoabsorp-
tion cross section for 1%Pt. The steep drop in the cross section at 8 MeV is due
to the opening of the (y,n) channel at 7.9 MeV. Due to the failure of the atomic
background subtraction, the cross section is only shown for energies above 6 MeV
where it is assumed that the contribution of non-nuclear scattered events to the
measured yield is negligible. For the used CTM level density with 7" = 550 keV,
Dy =19.2eV and a TLO F1 strength function, the subtraction procedure is already
self-consistent after the first iteration. In the considered energy range, the relative
uncertainty of the calculated average absorption cross section is 35 % which mainly
results from the large uncertainties in the estimated ground state branching ratios.
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quantity relative uncertainty comment
b 5.0% due to uncertainty in endpoint energy
Lbs B 3.5% from [Ajzenberg-Selove, 1990]
£ 5.0 % from [Massarczyk, 2011]
B 30.0 % due to uncertainty in temperature
Yiim 5.0%
S 7.0% from fluctuation simulation
Yicat,B 3.5% from fit of yield in ''B resonance
Yexp 1/+/Yexp statistical unc. of measurement

Table 4.4: Relative uncertainties that enter in the uncertainty of I v for 196Pt(’y,7)

® @ calc. from corr. exp. data

30p — input for feeding corr. : i
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Figure 4.25: Calculated average photoabsorption cross section (red circles) from
196Pt(v,7). The black line represents the average photoabsorption cross
section deduced from the dipole strength function that was used as input
for the simulation and correction of inelastic transitions. For the simulation
a CTM level density with 7' = 550keV and Dy = 19.2eV was used. The
steep drop of the average photoabsorption cross section above 7.8 MeV is
due to the opening (v,n) channel at 7.9 MeV.






Chapter 5
Results, Discussion and Outlook

In the following chapter the results gained from the analysis of the two twin experi-
ments "'Se(n,y) / ®Se(y,7y) and ¥*Pt(n,y) / 1%Pt(v,y) are presented and discussed.
Moreover a brief outlook is given.

5.1 Selenium
The analysis of the 7"Se(n,y) experiment revealed three major insights:

e The developed simulation code for the description of gamma deexcitations of
excited nuclear states works well, and is able to nicely reproduce the shape of
the continuum region of the measured neutron capture gamma spectrum.

e From a comparison of the shape of the continuum region of the simulated and
experimental spectrum, it can be concluded that the total level density in the
compound nucleus "®Se is described best by a Constant Temperature Model
(CTM) with a temperature of T'= 900keV and Dy = 121 eV.

e An enhanced measured gamma yield at 6.3 MeV is a hint for strength ad-
ditional to Lorentzian models. In order to reproduce the enhanced yield a
200 keV wide resonance like structure at 6.3 MeV is necessary (see figure (4.8))
which contributes to about 5% of the photon strength below S, equivalent to
0.1 % of the Thomas-Reiche-Kuhn sum rule.

With the help of the gained information about the level density in the compound
nucleus and the developed simulation code for gamma deexcitations, it was possible
to perform the correction for inelastically scattered events in the analysis of the
photon scattering experiment "®Se(y,7) in a fast and efficient way. Figure (5.1) shows
the final deduced average photoabsorption cross section after three iterations of the
correction for inelastic transitions. In addition, the experimental (v,n) cross section
[Carlos et al., 1976| scaled with 0.85 due to a normalisation uncertainty proposed
by [Berman et al., 1987] and the absorption cross section calculated from Single
Lorentzian (SLO) and Triple Lorentzian (TLO) E1 strength functions are shown. At
the neutron separation energy (S, = 10.5MeV) the photon scattering data match
the (y,n) data. Above the threshold the photon scattering cross section rapidly
decreases due to the opening (v,n) channel. Below the threshold, where photon
scattering is the only contribution to photoabsorption, the measured data are up
to a factor of three higher than the SLO and TLO model predictions. A resonance

71
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Figure 5.1: Average photoabsorption cross section for “®Se. The blue circles are values
measured via photon scattering at HZDR. The orange circles are values from
(7,n) measurements at Saclay [Carlos et al., 1976] scaled with 0.85 due to a
systematic error proposed by [Berman et al., 1987]. Moreover the absorption
cross section calculated from SLO (dashed line) and TLO (solid line) E1
strength functions are shown. The calculated numerical values are given in
table (A.7) in the appendix.

structure at 6.3 MeV, as seen in the ""Se(n,y) spectrum, is not visible. However,
it should be mentioned that the uncertainties of the photon scattering data at this
energies are large (=~ 70 %) due to the stepwise subtraction method. In contrast to
the (n,y) analysis, the (v,7) data show a broad increased strength around 8.2 MeV
equivalent to approximately 1.3 % of the Thomas-Reiche-Kuhn sum rule.

5.2 Platinum

From the analysis of the ®°Pt(n,y) experiment the following conclusions can be
drawn:

e Simulations with a CTM level density with T" = 650keV and Dy, = 19.2¢eV
describe the slope of the continuum region in the measured gamma spec-
trum best. This value for T is higher than the ones given in the compila-
tions [Koning et al., 2008| (7Tx = 550keV) and in [Egidy and Bucurescu, 2009]
(Ty = 600keV).

e An enhanced measured gamma yield at 5.4 MeV is a hint for extra strength at
this transition energy. As discussed in [Bartholomew et al., 1973], this extra
strength must be of E1 type. Simulations with a modified E1 strength func-
tion show that the enhanced yield can be reproduced with a Gaussian extra
strength at 5.4keV with ¢ = 250keV (see figure (4.12)) which contributes
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Figure 5.2: Average photoabsorption cross section for ?6Pt. The blue circles are values
measured via photon scattering at HZDR. The orange circles are values from
(7,n) measurements from |[Goryachev and Zalesnyi, 1978| scaled with 0.85.
Moreover the absorption cross section calculated from SLO (dashed line) and
TLO (solid line) E1 strength functions are shown. The calculated numerical
values are given in table (A.7) in the appendix.

to about 17% of the photon strength below S, equivalent to 0.3% of the
Thomas-Reiche-Kuhn sum rule.

The deduced information about the level density in the compound nucleus Pt were
used in the correction for inelastically scattered events in the analysis of %Pt (~y,y).
Figure (5.2) shows the average photoabsorption cross section calculated from the
corrected measured photon scattering spectrum. In addition, the experimental
(7,n) cross section from |Goryachev and Zalesnyi, 1978| scaled with 0.85 and the
prediction of the global TLO model are presented. In contrast to "®Se, no SLO
data from [RIP, 2011] was available for 1%Pt. Below the neutron separation energy
(Sy, = 7.9MeV), where photon scattering is the only contribution to the photoab-
sorption cross section, the calculated data exceed on average 33 % the TLO pre-
diction. Nevertheless, the general trend is nicely described by the TLO model. At
the neutron threshold the photon scattering data matches the (y,n) data. Above
the threshold, where the photoabsorption cross section is dominated by the rising
(7,n) channel, the photon scattering contribution strongly decreases. The relative
uncertainty of the calculated photoabsorption cross section in the region between
6 MeV and 8 MeV is approximately 35 % and dominated by the uncertainty in the
estimated ground state branching ratio.

Due to the failure of the atomic background correction, an analysis of the data was
only reasonable above 6 MeV. Thus it yet remains unclear whether the deduced
extra E1 strength from %Pt(n,y) is also observed in photon scattering.
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5.3 Discussion and Outlook

The main effort of this thesis was the development and implementation of a new,
fast and efficient simulation algorithm using an extreme statistical approach for the
description of radiative nuclear deexcitations. The application of this code in the
analysis of the two twin experiments revealed qualitative and quantitative informa-
tion about level density and E1 photon strength function and the related average
photoabsorption cross section below the neutron separation energy in the compound
nuclei ®Se and *°Pt. In both cases the calculated photoabsorption cross section
below S, exceeds the predictions of the global TLO E1 model. The hints for extra
E1 strength in the neutron capture gamma spectra of “'Se at 6.3 MeV could not be
confirmed in the analysis of the photon scattering experiments on "®Se. In contrast,
extra strength in a rather broad distribution is visible in the photon scattering data
around 8.2MeV. For '%Pt, the hints for extra strength at 5.4 MeV could not be
verified so far, due to the failure of the atomic background correction. With respect
to the different results of the twin experiments on selenium, it still remains an open
questions whether these two different experimental types reveal information about
the exactly same quantity. In addition, recent («,o/7y) and (7,7) measurements on
124Sn |Endres et al., 2010] show extra E1 strength at different excitation energies,
as well, raising the question whether different excitation methods are sensitive to
different excited states in nuclei.

Possible future benchmark tests for the developed simulation algorithm can be the
analysis of photon scattering experiments performed at HIvS |[Tonchev et al., 2005]
where quasi monochromatic photons from Laser Compton backscattering are used
for nuclear excitations. In principle, due to the known and relatively sharp excitation
energy (AFE =~ 200keV) the code is directly able to simulate the emitted deexcitation
spectra. In addition, the finite energy spread assures that at high energies several
states are excited and a extreme statistical treatment of the scattering process is
valid.

Another major insight of this thesis is the enhancement of elastic transitions in
photon scattering due to fluctuations in the transition widths. This enhancement
could be quantified with the statistical fluctuation factor S. So far, this factor is
simulated as a function of excitation energy for a given level density and strength
function. However, regarding figure (2.14) it seems that there is a unique definite
relation between S and the ratio of average inelastic transition width and average
elastic transition width. An analytic expression or a numerical parametrisation
for this relation would redundantise the simulations of S leading to even shorter
calculation times of the deexcitation spectra needed for the correction of inelastic
transitions in the analysis of photon scattering experiments. Moreover, it could
be shown that the shape of the distribution of the fluctuations in the transitions
widths directly influences the magnitude of the elastic enhancement. Perhaps, this
fact could give insight in the ongoing discussion about the validity of the Porter-
Thomas distribution currently investigated using high resolution neutron resonance
data [Koehler et al., 2010], [Weidenmiiller, 2010].
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mhe\ 2 2I; + 1
[abs - <Eres> 2[0 + 1 FO (A1>
Iscat = Iabs . & — labs * BO (A2>
1—‘tot

Eres (keV) JU Eor (keV) Ty (eV) By s (eVb) I (€VD)
2124.7(3) 1/2-  2124.2(3) 0.120(9) 1 51(4) 51(4)
4444.9(5) 5/2-  4442.8(5)  0.56(2) 1 163(6) 163(6)
5020.3(3) 3/2~  5017.6(3) 1.63(6) 0.858(4)  256(9)  220(8)
7285.5(4) 5/2  7279.8(4) 1.00(7) 0.884(3)  109(8) 96(7)
8920.2(6) 5/2  8912.4(6) 4.15(20) 0.973(1)  301(15)  293(14)

Table A.1: Properties of resonances in ''B used for the determination of the incident
bremsstrahlung fluence in photon scattering experiments. FE,es is the energy
of the resonance, Ejo7 is the ground state transition energy under 127°, JU
are spin and parity of the resonance, I'y is the ground state transition width
taken from [Ajzenberg-Selove, 1990], By is the ground state branching ratio
taken from [Rusev et al., 2009], I, is the integrated absorption cross section
and Igat is the integrated cross section for elastic scattering.

AkeV™?) Ey(keV) o (keV)

TLO + x1 (blue) 1.18-10716 5400 250
TLO + x2 (red) 1.88-1016 5400 250
TLO + x3 (green) 2.34-1071'6 5500 500

Table A.2: Parameters of extra Gaussian resonances added to the E1 strength function
for the simulation of >Pt(n,y). The resulting strength functions are shown
in figure (4.13).



comment

quantity value
neutron separation energy S, 10498 keV
total level density model: CTM

temperature T’ 850 keV
average neutron resonance spacing D 121eV
CTM back shift E, 413 keV
spin cut-off model: Koning

discrete spin cut-off o, 2.145
discrete spin cut-off energy E, 2018 keV
spin cut-off at S, og, 4.382
E1 strength function: TLO

quadrupole deformation (3 0.271
triaxiality - 27.1°

M1 strength function:
Grosse parametrisation

[Farhan and Singh, 2009]

from [Koning et al., 2008|
from [Mughabghab, 2006|
calc. from T, Dy, f(J)

from [Koning et al., 2008|
from [Koning et al., 2008|
from [Koning et al., 2008|

from [Raman et al., 2001]
from [Andrejtscheff, 1994|
data for parametrisation
from [Heyde et al., 2010]

Table A.3: Input parameters for simulations of 7"Se(n,y) and Se(v,7).

quantity value comment
neutron separation energy Sy 7922 keV [Xiaolong, 2007|
total level density model: C'TM

temperature 7' 553keV  from [Koning et al., 2008|
average neutron resonance spacing Dy 19.2eV  from [Mughabghab, 2006]
CTM back shift 136 keV calc. from T, Dy, f(J)
spin cut-off model: Koning

discrete spin cut-off oy 3.03  from |Koning et al., 2008]
discrete spin cut-off energy Fy 1137keV  from [Koning et al., 2008|
spin cut-off at S, og, 6.65 from |Koning et al., 2008]
E1 strength function: TLO

quadrupole deformation (3 0.13 from [Raman et al., 2001]
triaxiality 31.9° from [Andrejtscheff, 1994]

M1 strength function:
Grosse parametrisation

data for parametrisation
from [Heyde et al., 2010]

Table A.4: Input parameters for simulations of 1%Pt(n,y) and Y°Pt(v,7).

IT



ex. state | E (keV) JU Py, | E(keV) JU P,

0 0t 0.007 0.0 0t 0.0055
613.72 2t 0.073 | 355.68 2% 0.0021
1308.64 2% 0.048 | 688.693 2% 0.0056
1498.60 0" 0.002 | 876.86 4% 0.0000
1502.82 4T 0.000 | 1015.04 3% 0.0000
1758.69 0T 0.001 | 1135.31 0" 0.0011
1853.93 3T 0.000 | 1270.21 5~ 0.0000
1995.90 2* 0.015 | 1293.31 4% 0.0000
2190.65 4% 0.000 | 1361.58 27 0.0018
2327.32 2t 0.016 | 1373.60 7~ 0.0000
2335.21 0" 0.018 | 1402.73 0" 0.0007

—_
O O© 00 IO Ul Wi~ O

Table A.5: Energies, spins and parities of the first excited states of "®Se and 9Pt
[RIP, 2011]. Pig, are the transition probabilities for primary gammas emit-

ted from the resonance excited in cold neutron capture to the respective
excited state [PGA, 2011].

EieskeV  E;keV B

8920.20 0 0973
444489 0.027
7285.51 0 0.884

4444.89 0.053
5020.31 0.063

5020.31 0 0.858

2124.69 0.142
4444.89 0 1
2124.69 0 1

Table A.6: Branching ratios of resonances in "'B at E,e to possible final resonances at
Ey taken from [Rusev et al., 2009].

I11



& o < e
DO (98] = Ut
T T T T

I I I I

o
—
T

i

(I)with hardener/ (vaithout hardener

e
o

| | | | ]
2000 4000 6000 8000 10000
E, (keV)

Figure A.1: Ratio of bremsstrahlung fluence at the target position with and without
a 10cm aluminium hardener in front of the collimator. The function was
deduced with a GEANT4 simulation. The aluminium hardener absorbs more
photons in the low energy region and thus hardens the spectrum.

3.0 T T T T T
e e T =550keV —o—
e o T =600keV ﬂ-ﬁL*
25H e e T =650keV ; St .
++
’_0-_"_—0- ++
20} « 4+ |
0 1 o~ ++
0~ o
O _0-_":0- ++
——
1.5 o~ _._T : -
——
Qi HHHHHHHH
HH'—O—'
1.0F .
| | | | |
3 1 5 6 7 3
E. (MeV)

Figure A.2: Simulated statistical fluctuation factor for ?Pt. For the simulations a CTM
level density with different temperatures 7', but a fixed mean resonance
spacing at the threshold Dy = 19.2eV and an E1 TLO strength function
were used.
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(a) Isometric projection
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(b) Projection along the x-axis
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(c) Projection along the y-axis
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Figure A.3: Triaxial shape of "8Se (left) and %Pt (right). The deformation parameters
B and +y are given in tables (A.3) and (A.4). The resulting ratios of the z, y
and z semi axis are 0.99 : 0.87 : 1.16 for "®Se and 1.00 : 0.93 : 1.07 for '%Pt.
The ellipsoids are scaled with A=1/3,
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78Se 196Pt
E, (MeV) | (05,abs) (mb) | (04,abs) (mb)
4.1 3(4)
43 2(4)
45 A(4)
47 3(4)
4.9 3(4)
5.1 5(4)
5.3 3(3)
5.5 5(3)
5.7 5(3)
5.9 A(3)
6.1 6(3) 19(6)
6.3 6(3) 16(6)
6.5 5(3) 15(5)
6.7 9(3) 17(6)
6.9 6.3(27) 18(6)
7.1 7.5(27) 22(7)
7.3 10.2(28) 24(8)
75 10.9(26) 26(8)
7.7 13.9(28) 26(8)
7.9 16.2(28) 21(7)
8.1 18.8(29) 6.1(20)
8.3 17.7(26) 5.2(16)
8.5 19.9(28)
8.7 18.1(24)
8.9 18.5(24)
9.1 16.7(21)
0.3 19.5(23)
9.5 18.6(21)
9.7 20.8(23)
9.9 20.5(22)
10.1 16.3(17)
10.3 16.3(17)
10.5 10.3(11)
10.7 4.5(5)

Table A.7: Calculated average photoabsorption cross sections of ®Se and ?6Pt.
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Figure A.4: E1 (black), M1 (red) and E1+ M1 (blue) strength functions in comparison
for ™®Se and '®6Pt. The used input parameters for the TLO and Grosse
parametrisation are given in tables (A.3) and (A.4).

experiment Kkinetic electron energy average current measuring time

Se(v,7) 11.5MeV 0.5 mA 144.5h
1964 () 9.5 MeV 0.7mA 89.5h

Table A.8: Parameters of the photon scattering experiments
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