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Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code
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Abstract

This paper describes the methods used in the Serpent 2 Monte Carlo code for producing homogenized group constants for nodal

diffusion and other deterministic reactor simulator calculations. The methodology covers few-group reaction cross sections, scat-

tering matrices, diffusion coefficients and poison cross sections homogenized in infinite and B1 leakage-corrected critical spectra,

as well the calculation of assembly discontinuity factors, pin-power form factors, delayed neutron parameters and total and partial

albedos. Also included is a description of an automated burnup sequence, which was recently implemented for the handling of

restart calculations with branch variations. This capability enables covering the full range of local operating conditions required

for the parameterization of group constants within a single run. The purpose of this paper is to bring the methodological descrip-

tion provided in earlier publications up to date, and provide insight into the developed methods and capabilities, including their

limitations and known flaws.
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1. Introduction

The use of the continuous-energy Monte Carlo method

for producing homogenized group constants for nodal diffu-

sion and other deterministic reactor simulator calculations has

gained considerable interest during the past ten years, even

though the practical applications are still limited by the high

computational cost of the transport simulation. Covering all

assembly types and reactor operating conditions over multiple

core cycles requires solving the local heterogeneous transport

problem hundreds or even thousands of times, which poses a

major challenge for any calculation code. The long running

time, however, is thought to be outweighed by the inherent ad-

vantages of the Monte Carlo method – the capability the handle

interaction physics without major approximations and three-

dimensional geometries at an arbitrary level of spatial detail.

Another significant advantage is that Monte Carlo lattice

physics codes not only allow performing spatial homogeniza-

tion at the fuel assembly level, but also running transport sim-

ulations for the full-scale heterogeneous system. This pro-

vides ideal reference solutions for the validation of the calcu-

lation scheme, since all additional discrepancies resulting from

evaluated nuclear data libraries and methodological differences

can be eliminated. The differences between the homogeneous

and the heterogeneous reference solution instead reflect on how

well the physics of the transport process is preserved over the

calculation chain, which can be extremely valuable for the de-

velopment of new methods for core calculations.

The Serpent code (Leppänen et al., 2015) has been devel-

oped at VTT Technical Research Center of Finland since 2004,

∗Tel. +358-40-593-9076; fax +358-20-722-5000. E-mail address:

Jaakko.Leppanen@vtt.fi

and the current user basis includes some 500 users in 150 uni-

versities and research organizations in 37 countries around the

world. The code is used for a multitude of applications in re-

actor physics, but spatial homogenization based on the Monte

Carlo method was, in fact, the original incentive for starting

the work. The progress has been steady over the years, but so

far the use of Serpent for group constant generation has mostly

been limited to preliminary studies with simplified core mod-

els.1 This is in part because of the complexity and computa-

tional cost of producing the full set of group constants for realis-

tic fuel cycle and transient simulator calculations, but no doubt

also because of the insufficient documentation of methods and

procedures used in the code.

In an effort to correct this deficiency, work on a comprehen-

sive User’s Manual in the form of an on-line Wiki2 was started

in late 2015. The purpose of this paper, on the other hand, is to

bring the methodological description provided in some earlier

publications (Leppänen, 2007; Fridman and Leppänen, 2011,

2012; Leppänen et al., 2014b, 2015) up to date. This part is

covered in Section 2, and the description corresponds to code

version 2.1.26, distributed to users in March 2016. Recent de-

velopment includes also an automated burnup sequence capa-

ble of performing branch variations, which considerably sim-

plifies setting up the inputs for group constant generation and

the management of output data. The procedure is described in

Section 3. Since Serpent is still a developing code, there are

a number of flaws and limitations in the methodology, as dis-

cussed in Section 4. Some future plans are outlined along with

the conclusions in Section 5.

1See (Leppänen et al., 2014b) and (Leppänen et al., 2015) for a review of

examples.
2See: serpent.vtt.fi/mediawiki
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This paper covers the theory of homogenization and nodal

diffusion methods only as far as is considered necessary for un-

derstanding the methods used in the Serpent code. The funda-

mentals can be found in (Koebke, 1978) and (Smith, 1980), as

well as most text books on reactor theory. Practical issues, such

as the input and output formats are addressed at the Serpent

on-line Wiki.

2. Methods used for spatial homogenization

The purpose of spatial homogenization is to preserve the

local reaction balance when group constants obtained from

the solution of the local heterogeneous transport problem

(assembly-level calculation) are used as the building blocks for

the global homogeneous system (core-level calculation). For-

mally, the homogenization of reaction cross section Σg can be

written as:

Σg =

∫

V

d3r

∫ Eg−1

Eg

dE Σ(r, E)φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (1)

where φ is the scalar flux and the integration is carried over the

volume of the homogenized region and energy group g. The

spatial dependence of Σ reflects the fact that the geometry is

heterogeneous, albeit typically composed of discrete uniform

material zones. In other words, spatial homogenization implies

averaging the physical continuous-energy cross sections over

volume and flux spectrum.

Deterministic lattice transport codes, in which the heteroge-

neous flux solution is obtained in space- and energy-discretized

form, apply the procedure as:

Σg =

∑

h∈g

∑

i

ViΣi,hΦi,h

∑

h∈g

∑

i

ViΦi,h

(2)

where Φi,h is the scalar group flux, and i refers to the spa-

tially discretized regions and h to the multi-group structure used

in the calculation. Cross section Σi,h is obtained from spec-

tral calculation, taking into account spatial and resonance self-

shielding effects.

One of the advantages of using Monte Carlo simulations for

spatial homogenization is that stochastic estimates for the in-

tegrals in Eq. (1) can be obtained directly, using continuous-

energy cross sections. This means that self-shielding effects

are automatically accounted for, without relying on various ap-

proximations employed by deterministic codes. Consequently,

the same methods and cross section libraries can be used for

modeling any fuel or reactor type, without any application-

specific limitations. Another advantage typically attributed

to the method is its capability to handle complicated three-

dimensional structures, in which the level of spatial detail can

be arbitrarily refined.

The group constant input for deterministic nodal diffusion

codes typically consists of absorption (Σa,g), fission neutron

production (νΣf,g) and group transfer (Σs,gg′ ) cross sections, as

well fission spectrum χg and diffusion coefficients (Dg). These

are the constants needed for forming the group diffusion equa-

tions. Coupling between adjacent nodes is accomplished using

discontinuity factors Fg, and normalization of flux with fission

energy production cross sections (κΣf,g). Dynamic calculations

require additionally inverse neutron speeds 1/vg and effective

delayed neutron fractions βeff , divided into a number of precur-

sor groups. Most modern core simulators have the capability to

perform pin-power reconstruction and track the concentrations

of fission product poisons 135Xe and 149Sm separately. The

group constant input then includes also pin-power form factors

and production and absorption cross sections for fission prod-

uct poisons and their precursors. As discussed below, the task

of producing all this data becomes much more complicated than

just calculating stochastic estimates for the integrals in Eq. (1)

using standard reaction rate tallies.

2.1. General procedure applied in Serpent 2

For practical reasons made apparent in Sec. 2.4, Serpent does

not evaluate the integrals in Eq. (1) directly. The procedure is

instead handled in two parts:

i) A number of multi-group homogenized reaction cross sec-

tions are calculated using standard Monte Carlo tallies and

analog estimators.

ii) The multi-group cross sections are condensed into few-

group cross sections using the infinite and the B1-leakage

corrected critical spectra (see Sec. 2.4).

In this paper the intermediate energy group structure used in-

ternally in the calculation routines is referred to as the “multi-

group structure”, and using group index h. The final group

structure to be used in the simulator calculation is correspond-

ingly referred to as the “few-group structure”, with group in-

dex g. The default multi- and few-group structures used by

Serpent are the WIMS 69-group structure and the conventional

two-group structure with thermal and fast group separated at

0.625 eV. Both structures can be changed by input options.

Technically this two-stage approach means that instead of

Eq. (1), the final energy group condensation is written as:

Σg =

∑

h∈g
ΣhΦh

∑

h∈g
Φh

. (3)

The difference to Eq. (2), applied by deterministic codes, is that

Φh is integrated and Σh averaged over the volume of the homog-

enized geometry:

Φh =

∫

V

d3r

∫ Eh−1

Eh

dE φ(r, E) , (4)

Σh =

∫

V

d3r

∫ Eh−1

Eh

dE Σ(r, E)φ(r, E)

∫

V

d3r

∫ Eh−1

Eh

dE φ(r, E)

. (5)
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The integrals in Eqs. (4) and (5) are obtained using standard re-

action rate tallies. Since the stochastic integration is performed

using continuous-energy cross sections, all self-shielding ef-

fects are automatically taken into account, so even though the

calculation is divided in two parts, the most significant advan-

tages of Monte Carlo simulation is preserved.

The calculation proceeds in batches. One batch in critical-

ity source simulation consists of 20 source cycles (by default),

during which Monte Carlo integral estimates for parameters of

the form (4) and (5) are collected from the transport simula-

tion. Once the batch is completed, the resulting multi-group

cross sections are used to calculate batch-wise estimates of the

few-group constants. These estimates form the statistical mean

values and the associated relative statistical errors printed in the

output. It is assumed that the conditions of the central limit

theorem are met, i.e. that the sequence of batch-wise estimates

follows the normal distribution. This assumption is supported

by statistical analyses performed for the group constant data,

provided that the source population is of reasonable size (Kalti-

aisenaho and Leppänen, 2014).

This general approach applies to simple one-dimensional re-

action cross sections, such as total, total absorption and total

fission, as well as the inverse neutron speed. Fission neutron

and energy production cross sections are obtained by multiply-

ing the fission cross section with the average neutron yield ν

and deposited fission energy κ, respectively, when the tallies for

the batch-wise multi-group estimates are scored. In the default

optimization mode (Leppänen and Isotalo, 2012) Serpent pre-

calculates the corresponding continuous-energy macroscopic

cross sections to avoid summation over material compositions

during the transport simulation. This is made possible by the

use of a single unionized energy grid for all nuclides, and may

result in a significant increase in computational performance,

especially in calculations involving irradiated fuel composed of

hundreds of nuclides (Leppänen, 2009).

2.2. Poison cross sections

Poison cross sections for fission product poisons 135Xe and
149Sm and their precursors 135I, 147Pm, 148Pm, 148mPm and
149Pm are calculated similar to the homogenized reaction cross

section, via the intermediate multi-group structure. The pro-

duction cross section of isotope x is formally defined as:

Σp,g,x =

∫

V

d3r

∫ Eg−1

Eg

dE
∑

l

γl,x(E)Σf,l(r, E)φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (6)

where Σf,l is the macroscopic fission cross section for actinide l

and γl,x is the corresponding fission yield of isotope x, obtained

from the ENDF format fission yield data file. The yields of

the immediate precursors are taken as cumulative, i.e. they in-

clude all nuclides higher in the decay chains, most significantly
135Te for 135I and 149Nd for 149Pm. The 135Xe production also

includes the meta-stable state 135mXe, which has no separate

cross sections in standard nuclear data libraries.

The microscopic absorption cross section for isotope x is de-

fined as:

σa,g,x =

V

Vf

∫

Vf

d3r

∫ Eg−1

Eg

dE σa,x (E)φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (7)

where Vf and V refer to the fissile and the total volume of the ho-

mogenized region, respectively. In addition to microscopic ab-

sorption cross sections, also the flux-volume-averaged macro-

scopic absorption cross sections of 135Xe and 149Sm are calcu-

lated as:

Σa,g,x =

∫

V

d3r

∫ Eg−1

Eg

dE Nx(r)σa,x (E)φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (8)

where Nx is the poison concentration. These parameters reflect

the contribution of fission product poisons on total absorption

for the given fuel composition.

2.3. Scattering matrices

Group-transfer cross sections form a scattering matrix, re-

flecting the rate at which neutrons are removed from group g to

group g′. Calculation of these matrices requires averaging the

differential scattering cross section over incident and emission

energies:

Σs,gg′ =

∫

V

d3r

∫ Eg−1

Eg

dE

∫ Eg′−1

Eg′

dE′ Σs(r, E → E′)φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

.

(9)

However, instead of differential form, the continuous-energy

ACE format used by Serpent provides the scattering data as to-

tal (1D) cross sections and associated probability distributions

for the scattering angle. Inelastic reactions and thermal S(α, β)

data also include distributions for the emission energy. Since

obtaining the direct integral estimates in Eq. (9) becomes ex-

tremely complicated in practice, Serpent resorts to using analog

estimators instead.

This means that every sampled scattering reaction from

group h to group h′ is counted, and the result stored in an h × h

matrix. This multi-group data is then condensed into the few-

group structure using a procedure very similar to that used for

the reaction cross sections:

Σs0,gg′ =

∑

h∈g

∑

h′∈g′
Σs0,hh′Φh

∑

h∈g
Φh

. (10)
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Group-transfer cross sections (10) form the P0 scattering ma-

trix. Serpent also calculates the P1 matrix:

Σs1,gg′ =

∑

h∈g

∑

h′∈g′
Σs1,hh′Φh

∑

h∈g
Φh

, (11)

by weighting the scored tallies used to form Σs1,hh′ by the scat-

tering cosine µ. The scattering cosine is obtained from the

scalar product between the direction vectors of the incident and

emitted neutron in the scattering event.3

Since neutron-multiplying scattering has a non-negligible

impact on neutronics, the contribution of (n,2n), (n,3n), etc. re-

actions has to be included in the balance equations. In most

core simulator codes this is accounted for by replacing the con-

ventional scattering cross sections with scattering multiplica-

tion cross sections:

Σsp = Σs + 2Σ2n + 3Σ3n + . . . , (12)

where Σs includes all elastic and inelastic reactions in which a

single neutron is produced, and absorption cross section with

the reduced absorption cross section:

Σra = Σt − Σs − Σ2n − 3Σ3n + . . . , (13)

where Σt is the total cross section. Serpent calculates scattering

production cross sections in matrix form, similar to the scat-

tering cross sections described above. The reduced absorption

cross sections are also calculated from the multi-group data.

Analog reaction rate estimators have the inherent drawback

that only reactions sampled during the transport simulation

make contributions in the tally scores. This is not considered a

major problem for the scattering cross sections, since the reac-

tion mode is so dominant in reactor applications (elastic scatter-

ing typically covers more than 90% of all neutron interactions

in LWRs). Similar estimator is used for the fission spectra, by

counting the number of neutrons emitted in group h. The num-

ber of scores is lower compared to scattering, but still sufficient

for reasonable statistics. This is ensured by the fact that the

k-eigenvalue criticality source simulation preserves the average

number of emitted fission neutrons from cycle to cycle.

2.4. B1 leakage correction

Performing spatial homogenization as an infinite-lattice cal-

culation ignores the fact that neutrons are moving between as-

semblies, and that the inward or outward current contributes to

local neutron balance. When the net current is forced to zero

by reflective boundary conditions, there is, in general, an im-

balance between the source and loss terms. When the transport

problem is formulated into a steady-state k-eigenvalue equation,

the balance between source and loss terms is sought by dividing

3In fact, Serpent calculates the Pn scattering matrices up to Legendre poly-

nomial order n = 7, but the higher-order data has so far not been tested or used

by the authors.

the fission source by multiplication factor k, which differs from

unity. In Monte Carlo criticality source simulations the same

adjustment is done by scaling the average number of emitted

fission neutrons for every source cycle in such way that the av-

erage population size is preserved.

This biasing of the fission source introduces a bias in the flux

solution. The same problem concerns both deterministic solu-

tion methods and Monte Carlo simulation, and the root cause

is that a physically sub- or super-critical system is forced into a

steady-state condition by adjusting one of the source terms. The

result is that the flux spectrum used for calculating the flux-

volume averaged cross sections is distorted if the local multi-

plication factor differs significantly from unity. Leakage effects

can be approximated to some extent by including the immediate

surroundings in the modeled geometry, but as long as the calcu-

lation is performed on a simplified sub-set of the physical sys-

tem, there is no physically consistent solution to this problem.

Since, however, the entire purpose of spatial homogenization

is not to simulate physical reality, but rather to produce input

parameters for the next stage in the calculation chain, the flux

solution can be artificially improved by leakage corrections.

The general idea is to introduce an additional source or loss

term, representing the transfer of neutrons across the bound-

aries in such way that the local neutron balance is restored.

The simplest correction, implemented in Serpent 2, is based

on the homogeneous B1 method. The basic assumption of the

method is that the homogeneous multi-group flux can be repre-

sented as a product of the space-dependent part and the angular-

and energy-dependent part. Substitution of a trial function of

this form in the multi-group transport equation yields an eigen-

value problem for the spatial modes with material bucklings B2
n

as the eigenvalues. In general, the greatest eigenvalue corre-

sponds to the spectrum inside a homogenized geometry away

from anisotropies and therefore this fundamental mode is cho-

sen as the spectrum used in the method. After substituting the

fundamental mode solution to the transport equation, the angu-

lar dependence of the solution is expanded in Legendre polyno-

mials. The B1 equations defining the current and flux spectrum

can then be derived by limiting scattering anisotropy to first or-

der (Stamm’ler and Abbate, 1983). The material buckling B2 is

iterated by repeatedly solving the B1 equations until a solution

yielding a critical multiplication factor keff = 1 is found.

In Serpent the B1 equations are formed for the homogenized

system, using the multi-group cross sections obtained as in (5).

The solution of the B1 equations produces the critical flux spec-

trum Φ′
h
, which can be used similar to the infinite spectrum Φh

for collapsing cross sections into the final few-group form. The

only difference in the procedure is the vector of multi-group

fluxes used in summations similar to Eq. (3), which consider-

ably simplifies the practical implementation of the leakage cor-

rection. The leakage correction is applied after each batch. The

leakage-corrected homogenized parameters are generated along

with the infinite-spectrum few-group cross section data accord-

ing to the user request. Since the method involves solving the

critical flux spectrum, it is naturally not applicable to reflectors

or other non-multiplying regions.
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2.5. Diffusion coefficients

Diffusion coefficient differs from homogenized reaction

cross sections in that it has no continuous-energy counterpart

in transport theory. It is instead most commonly defined as the

scalar constant that relates flux gradient to neutron current den-

sity:

Jg(r) = −Dg∇Φg(r) (14)

This relation is also known as Fick’s law. The derivation of

Eq. (14) is not completely trivial, and neither is the definition

of Dg. It results from transport theory that the group-wise dif-

fusion coefficient can be calculated from

Dg =

∫

V

d3r

∫ Eg−1

Eg

dE
1

3Σtr(r, E)
φ(r, E)

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (15)

where the transport cross section is defined as:

Σtr(r, E) = Σt(r, E) − Σs1(r, E) , (16)

and the the P1 scattering cross section is given by the product of

total scattering cross section and the average scattering cosine:

Σs1(r, E) = µΣs(r, E) . (17)

Serpent first calculates the multi-group transport cross sec-

tion homogenized over the geometry:

Σtr,h = Σt,h − Σs1,h , (18)

where Σs1,h is obtained by summing over the columns of the

P1 scattering matrix (see Sec. 2.3). The few-group diffusion

coefficient is then obtained by collapsing the inverse value:

Dg =

∑

h∈g

1

3Σtr,h

Φh

∑

h∈g
Φh

. (19)

The practical necessity of dividing group constant generation in

two parts is again seen in that the P1 scattering cross section in-

volves the average scattering cosine. This parameter is not pro-

vided in the ACE format cross section libraries in continuous-

energy form, which means that instead of evaluating the inte-

grals in Eq. (15) directly, the calculation has to resort to analog

estimators, which are used for calculating the average on the

intermediate multi-group structure.

The calculation of Dg from (19) corresponds to the infinite

flux spectrum. The solution of the B1 equations provides the

leakage-corrected diffusion coefficient:

Dg =

∑

h∈g
J′h

|B|
∑

h∈g
Φ′h

, (20)

where B is the critical buckling, and J′
h

and Φ′
h

are the cor-

responding leakage-corrected current and flux spectra, respec-

tively. As discussed in Sec. 2.4, these values are obtained as the

result of the critical buckling iteration.

2.6. Effective delayed neutron parameters

Serpent 2 has the capability to calculate adjoint-weighted

point kinetics parameters, i.e. effective delayed neutron frac-

tions, precursor decay constants and prompt neutron lifetimes

using the iterated fission probability (IFP) method (Leppänen

et al., 2014a). The methodology was implemented mainly for

the purpose of full-core Monte Carlo calculations, and it has

certain limitations when it comes to spatial homogenization.

Most importantly, these time constants are always calculated

over the entire modeled geometry, which may not produce the

correct result if the homogenized region covers only a part of

the system, which is the case, for example, in assembly colorset

configurations.

Effective delayed neutron fractions and precursor yields for

the purpose of group constant generation are currently calcu-

lated separately, using the Meulekamp method (Meulekamp

and van der Marck, 2006), in which the delayed neutron frac-

tion is defined as the fraction of new fissions initiated by neu-

trons emitted as delayed. This is basically an approximation

of the IFP method, taking into account only the first generation

of descendants. The calculation is limited to the homogenized

region by counting only neutron histories that originate from

inside it.

2.7. Assembly discontinuity factors

The coupling between adjacent calculation nodes in nodal

diffusion codes is accomplished via continuity conditions for

neutron current and heterogeneous flux. The homogeneous

flux, which forms the actual global solution, is discontinuous

at the node boundaries, but coupled to the heterogeneous flux.

This coupling is handled using assembly discontinuity factors

(ADFs), which by definition are calculated as the ratio of two

flux integrals:

Fg,k =

1

S k

∫

S k

d2r

∫ Eg−1

Eg

dE φ(r, E)

1

S k

∫

S k

d2r Φg(r)

, (21)

where φ is the heterogeneous flux, Φ is the homogeneous flux,

and the integration is carried over boundary surface k.

In equivalence theory (Koebke, 1978; Smith, 1980), the

global heterogeneous and homogeneous flux are represented

by the corresponding local flux solutions at the fuel assembly

level. When the lattice calculation is performed using reflective

boundary conditions, the net boundary currents are reduced to

zero, and the local homogeneous flux in Eq. (21) becomes con-

stant. The constant flux shape and the preservation of reaction

rate balance in the homogenized region imply that the surface-

averaged homogeneous flux is equal to the volume-averaged

heterogeneous flux, which means that Eq. (21) is reduced into:

Fg,k =

1

S k

∫

S k

d2r

∫ Eg−1

Eg

dE φ(r, E)

1

V

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

. (22)
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In practice this means that the ADFs can be obtained directly

from the Monte Carlo simulation, using standard cell and sur-

face flux tallies.

This, however, is no longer the case when the homogenized

region forms only a part of the modeled geometry, and the

boundary currents become non-zero. The homogeneous flux

assumes a non-uniform shape, which has to be solved explic-

itly, and integrated over the boundary surface as in Eq. (21).

Examples of such geometries include reflectors, where the neu-

tron source is comprised of an inward boundary current from

the core, and assembly colorsets, in which the homogenized as-

sembly is modeled together with its immediate surroundings.

For these cases Serpent provides a built-in diffusion flux solver

based on an analytic solution corresponding to specified bound-

ary conditions. The solution scheme is described in the follow-

ing.

The diffusion equation in a homogenized medium can be

written in matrix form as

−D△Φ(x, y, z) =
(
Σsp − Σt

)
Φ(x, y, z) +

1

keff

FΦ(x, y, z) , (23)

where D ∈ R
G×G and Σt ∈ R

G×G are diagonal matrices con-

taining the multi-group diffusion coefficients and total cross-

sections, Σsp ∈ R
G×G is the scattering production matrix and

F = χ(νΣf)
T ∈ R

G×G is the fission source term, with G being

the number of energy groups in the few-group structure. Let

Σ̃ = −D−1

(
Σsp − Σt +

1

keff

F

)
. (24)

Diffusion equation can now be written

△Φ(x, y, z) = Σ̃Φ(x, y, z) . (25)

It can be seen that any matrix function of the form

f(x, y) = eΣ1 x+Σ2y+Σ3z , Σ2
1 + Σ

2
2 + Σ

2
3 = Σ̃ (26)

is a solution of Eq. (25). Matrix functions according to Eq. (26)

are called the basis functions of the diffusion equation in the

homogenized medium. The solution of Eq. (25) can be writ-

ten using an arbitrary combination of basis functions and the

selection depends on the geometry and boundary conditions.

Boundary conditions are typically specified as net currents over

segments of the boundary surface. In this case, an unambigu-

ous solution can be constructed when the number of basis func-

tions equals the number of boundary conditions. The most

recent version of Serpent 2 supports two-dimensional geome-

tries bounded by planes and square, rectangular and hexagonal

prisms. The net currents are calculated using standard surface

current tallies. Corners of the prismatic geometries can be in-

cluded in the calculation, which doubles the number of basis

functions and boundary conditions. Net currents at corners are

calculated on segments extending 10% of the surface width in

both directions.

Basis functions used in the solution are of the form

fi = e
√
Σ̃ni·r , (27)

where the square root of a matrix A ∈ R
n×n is defined as any

matrix in C
n×n satisfying

(√
A
)2
= A , (28)

and ni is the direction vector of basis function i. The direc-

tions are selected to match the surface normals. If corners are

included, the additional basis functions are oriented in the di-

rection of the diagonals. In an infinite square prism, for exam-

ple, this approach corresponds to employing the following basis

functions:

• f±x = e±
√
Σ̃x

• f±y = e±
√
Σ̃y

• f±x+y = e±
√
Σ̃

2
(x+y)

• f±x−y = e±
√
Σ̃

2
(x−y)

The first four basis functions correspond to boundary surfaces

and the last four to corners.

According to Fick’s law, Jg = −Dg∇φg, and the boundary

conditions can be written using the normal derivatives of the

basis functions. Let

F±i,x =

∫

S i

∂f±x
∂n

dS ∈ CG×G . (29)

Assuming both boundary and corner net currents are used as

boundary conditions, the net current across S i can be written

Jnet,S i
= −D

(
F+i,xc1 + F−i,xc2 + . . .F

−
x−yc8

)
. (30)

Writing down the boundary conditions for all surfaces

S 1, . . . , S 8, we obtain a linear system from which coefficients

c1, . . . , c8 ∈ C
G can be solved. After solving the coefficients,

the solution can be computed simply as

Φ(x, y) = f+x (x, y)c1 + f−x (x, y)c2 + . . . + f−x−y(x, y)c8 . (31)

The procedure is similar for hexagonal geometries with the only

difference being that ni, i = 1, . . . , 12, in Eq. (27) are chosen as

the normal vectors of the hexagonal prism.

The numerical solution scheme can be summarized as:

1. Matrix Σ̃ is formed.

2. The complex Schur form Σ̃ = TUT∗ is computed. Numer-

ical implementation is based on Hessenberg reduction and

QR decomposition using Householder transformations.

3. Basis functions are formed using the Parlett method (Par-

lett, 1976). In 2D, the number of basis functions is 4 or 8

in rectangular geometry and 6 or 12 in hexagonal geom-

etry, depending on whether net currents over corners are

included in the boundary conditions.

4. Normal derivatives of basis functions are integrated over

assembly boundaries and corners.
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5. Coefficient vectors of the basis functions are solved from

the resulting linear system using Gaussian elimination.

The solution provides the unknown coefficients for Eq. (31), i.e.

the homogeneous diffusion flux, which can then be integrated

over boundary surfaces and corners to obtain the assembly dis-

continuity factors from (21).

2.8. Pin-power form factors

The intra-nodal homogeneous flux solution carries no infor-

mation about the heterogeneity of flux and power distributions

inside the node, which may be imperative for the estimation of

peak cladding temperatures and other parameters relevant for

safety analyses. The information lost in the process of homog-

enization can, however, be recovered by projecting the local

power distribution obtained from the assembly-level calculation

on top of the global flux solution. This is done in a process of

pin-power reconstruction, using form factors:

pg, j =

1

V j

∫

V j

d3r

∫ Eg−1

Eg

dE κΣf(r, E)φ(r, E)

1

V j

∫

V j

d3r Φg(r)

, (32)

where κΣf is the fission energy production cross section, φ is

the heterogeneous flux, Φ is the homogeneous flux, and the in-

tegrals are extended over the volume of pin j.

Serpent produces these form factors by relating the pin in-

dices to a lattice structure. Similar to the calculation of ADFs,

the procedure depends on the boundary conditions. If the ho-

mogenized geometry is limited to a reflective boundary, the net

currents are reduced to zero, and the homogeneous flux be-

comes uniform. The integral in the denominator of Eq. (32)

can then be replaced by the integral of the heterogeneous flux:

pg, j =

1

V j

∫

V j

d3r

∫ Eg−1

Eg

dE κΣf(r, E)φ(r, E)

1

V

∫

V

d3r

∫ Eg−1

Eg

dE φ(r, E)

, (33)

and both values can be obtained directly using standard Monte

Carlo tallies.

When the net boundary current is non-zero, the calculation of

form factors requires the explicit solution of the homogeneous

flux, which is integrated over the pin volume as in Eq. (32).

This solution is provided by the same deterministic solver as

described in Sec. 2.7.

2.9. Albedos

Albedos and partial albedos are used in some core simula-

tor codes to set up the boundary conditions between reflectors

and other non-multiplying regions with the active core. The

total albedo is a matrix describing the fraction of escaped neu-

trons that return into the fuel, i.e. the ratio of neutrons pass-

ing through boundary surface S in group g and returning in

group g′:

αgg′,k =

∫ Eg′−1

Eg′

dE

∫

S

dS · J−g (r, E)

∫ Eg−1

Eg

dE

∫

S

dS · J+(r, E)

, (34)

where J+ is the escaping current and J−g is the returning cur-

rent component formed by neutrons that have escaped the ac-

tive core in energy group g. The current integrals in Eq. (34) are

easily evaluated using standard Monte Carlo tallies and energy

group flagging.

Partial albedos are used in a similar way, but they allow ac-

counting for the fact that neutrons escaped from one node may

return into the active core through the boundary of a completely

different node. The non-multiplying region coupled to core

nodes is represented by a response matrix, in which each el-

ement gives the probability of transition from energy group g to

g′ and face k to k′:

αgg′,kk′ =

∫ Eg′−1

Eg′

dE

∫

S k′

dS · J−gk(r, E)

∫ Eg−1

Eg

dE

∫

S k

dS · J+(r, E)

, (35)

where J−
gk

is the outward current component formed by neu-

trons that have entered the volume in energy group g through

face k. Partial albedos are used, for example, in VTT’s HEX-

TRAN transient code, for the modeling of VVER-440 control

elements (Siltanen et al., 2003).

Serpent calculates albedos and partial albedos for user-

specified surfaces within the geometry. The supported surface

types are the same as in the ADF calculation, i.e. planes and

infinite square, rectangular and hexagonal prisms.

3. Automated burnup sequence

The direct connection between neutronics and state variables

is lost in the process of homogenization. The same applies to

fuel burnup, as the group constant data carries no information

on the detailed isotopic compositions. Feedback effects and fuel

depletion in core calculations are instead accounted for by inter-

polating between discrete states, which means that the building

blocks of the full-scale model have to cover the complete range

of operating conditions. The interpolation and the way the data

is parameterized depends on the core simulator, but it is not un-

common that the production of the full set of group constants

requires repeating the assembly-level calculation thousands of

times. This poses a major computational challenge, not only

because of the high CPU cost of the Monte Carlo simulation,

but also because of the sheer volume of data that needs to be

handled and processed.

Since the procedure involves burnup calculation, and the lo-

cal operating conditions inside the homogenized fuel assembly

also affect how the materials are depleted, the state-points by

which the group constant data is parameterized are not com-

pletely independent. The calculations are instead divided into:
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i) Branch variations, taking into account the momentary

changes in the operating conditions, such as fuel tempera-

ture, moderator density and temperature, boron concentra-

tion and insertion of control rods inside the core

ii) History variations, taking into account conditions that per-

sist for an extended period of time, thus affecting the way

the fuel is burnt, such as moderator temperature and den-

sity, boron concentration and positioning of control rods

Preparing each input and setting up the calculations by hand

is not a viable option, and Serpent 2 offers an automated bur-

nup sequence for performing the branch variations. It should be

noted that even though this is a relatively new feature, built in

burnup capability has been available in Serpent for years. An

overview of the general methodology is provided in (Leppänen

et al., 2015), and the depletion solver based on the Cheby-

shev Rational Approximation Method (CRAM) is introduced

in (Pusa and Leppänen, 2010).

The automated sequence works by running a burnup calcu-

lation for a single history case, after which a number of restart

calculations are performed for selected burnup points. For each

restart the code invokes a number of user-specified variations

in the input, corresponding to the branches to different state

points. The available variations in version 2.1.26 include:

• Change in material temperature and density

• Replacement of one material with another

• Replacement of one universe with another

• Application of a universe transformation

• Adjustment of normalization

The changes in material temperatures and densities can be used

to account for variations in the thermal hydraulic state. The ad-

justment of cross section library temperatures is handled using

the built-in Doppler-broadening preprocessor routine (Viitanen,

2009),4 and moderator temperature effects by interpolation be-

tween S(α, β) tables (Viitanen and Leppänen, 2016). Coolant

boron branches can be invoked by changing the entire mate-

rial, and control rod branches in 2D calculations by replacing

the universe, for example, an empty guide tube with a rodded

tube. The capability to apply universe transformations allows

moving and rotating different parts of the geometry, which is

practical for positioning the control rods if the homogenization

is performed in 3D. Adjustment in normalization changes the

level of flux and fission power.

The standard Matlab-format output of Serpent 2 contains all

calculated results, including the homogenized few-group con-

stants. However, because of the large amount of data, these

4Serpent 2 also provides an on-the-fly temperature treatment routine (Vi-

itanen, 2015), which is used especially for modeling non-uniform temperature

distributions in coupled multi-physics simulations. The temperature branches

in group constant generation typically involve uniform changes throughout the

homogenized geometry, for which the Doppler preprocessor is well sufficient.

files can be difficult to post-process. When the automated cal-

culation sequence is run, the code produces another output file,

in which the group constant data is organized in a way easily

read by processing scripts. The parameters included in the out-

put can be selected by the user. It is also possible to define

variables, which are passed as-is into the output file. This al-

lows including additional information on each calculation case,

which may be useful when the output is read and processed.

4. Known limitations and flaws

The procedures used in Serpent 2 for group constant gener-

ation involve several subroutines and large quantities of inter-

mediate data. The methodology has its limitations and there

are several compromises that had to be made during the course

of development. It is important that the code user is aware of

the potential pitfalls, and does not apply the code as a black

box. Some input options, in particular related to the batching

of results and selection of the intermediate multi-group struc-

ture, may have an impact on computational performance and

memory footprint, but also on the results of the calculation.

4.1. General procedures and multi-group structure

The amount of data collected and stored during the transport

simulation depends on the number of energy groups in the inter-

mediate multi-group structure. The discretization of the energy

variable has no effect on most group constants homogenized

in the infinite flux spectrum, but insufficient energy resolution

may be reflected in the leakage-corrected values. This is also

the case for the infinite-spectrum diffusion coefficient. Using

too many energy groups, on the other hand, may result in ex-

cessive memory usage. The distribution of collected scores over

a large number of energy groups may also lead to deteriorated

statistics, and consequently, convergence problems with the de-

terministic B1 solver.

Similar convergence problems caused by insufficient statis-

tics are encountered when modeling fast-spectrum systems, as

the energy groups in the thermal region may be left completely

without scores. A practical workaround is to merge the low-

est groups together both in the multi- and the few-group struc-

ture. This is not likely to affect the outcome of the core sim-

ulations, as demonstrated by Fridman and Shwageraus (2013).

Even so, the root cause of the problem is not in the B1 method,

but rather in the implementation of the numerical solver in Ser-

pent 2, which cannot handle zeros in the input data. This flaw

is planned to be corrected in future updates.

The homogeneous diffusion flux solver used for calculating

ADFs and pin-power form factors may also fail because of poor

statistics, although the calculation is based on the few-group,

not the multi-group structure. An efficient way to improve the

batch-wise statistics without increasing the population size is

to increase the batch interval from the default of 20 source cy-

cles, but it should be noted that if the total number of batches

falls too low, the statistical error estimates may no longer be

reliable. It is even possible to include the entire simulation in a

single batch. This minimizes the stochastic noise in parameters
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passed to the deterministic solvers, but the drawback is that all

information on statistical errors is lost.

Both deterministic solvers run into problems when the im-

pact of the associated correction becomes negligible – the B1

solver when the system is close to criticality and the homoge-

neous diffusion flux solver when the net boundary currents are

close to zero. Serpent tries to identify such conditions and fall

back to the simplified methodology. For ADFs and pin-power

form factors this means assuming a uniform distribution for the

homogeneous flux and for leakage corrected cross sections us-

ing the infinite spectrum instead.

Serpent uses OpenMP threading to distribute the simulation

of neutron histories over multiple CPU cores. The processing

of intermediate multi-group data after each batch, on the other

hand, is currently done in serial. This is also the case for the

deterministic solvers. All CPU time spent outside the threaded

loop limits the parallel scalability, so the selection of multi-

group structure and batching interval also affect computational

performance. Group constant generation always adds some

computational overhead, and if the output data is not needed,

it is advised to switch the procedure off.

The production of homogenized cross sections is currently

limited to macroscopic data, but there have been several re-

quests from the user community to include microscopic cross

sections, for example, for the purpose of micro-depletion in

fuel cycle simulations. The reason why this is currently not

an option is in part related to the way group constant genera-

tion is handled. Storing the intermediate multi-group data for

a large number of isotopic microscopic reaction cross sections

may lead to very large memory footprint. It would be possible

to produce the few-group data directly, as in Eqs. (1) and (9),

but only in the infinite spectrum. Another problem is related to

the use of the analog estimator for the calculation of scattering

matrices. It was noted in Sec. 2.3 that poor statistics is not a

problem for the macroscopic cross sections because scattering

is the dominant reaction mode. This is not the case for micro-

scopic cross sections, since the atomic density of the nuclide

may be very low or even zero.

4.2. Leakage correction

The homogeneous B1 method is only one option to perform a

leakage correction for the flux spectrum, and the methodology

used in Serpent was adopted from deterministic transport the-

ory. This approach has the advantage that both infinite- and

critical-spectrum-averaged group constants can be produced

within a single run, but it also ignores some of the advantages

of Monte Carlo simulation, including the capability to obtain

the integral estimates in Eq. (1) without discretizing the energy

variable. The leakage correction is applied to a multi-group

flux, and the group structure sets a limit for the resolution of

spectral effects. There exist also Monte Carlo specific methods

in which the correction is applied during the transport simula-

tion, for example, based on the use of complex weights (Ya-

mamoto, 2012) or albedo iteration (Yun and Cho, 2010). One

of such methods was developed for Serpent by Dorval (2016a),

but at the time of this writing the capability was not yet included

in the distributed version (update 2.1.26).

It should also be noted that no leakage correction can cur-

rently be applied to transmutation cross sections during bur-

nup calculation, even though it is known that fuel depletion is

strongly influenced by spectral effects. This is mainly because

the leakage-corrected spectrum is calculated separate from the

transport simulation, during which the data for the depletion

solver is collected. A natural solution for this problem would be

to apply one of the Monte Carlo specific corrections discussed

above, in which the spectral effects are accounted for within the

transport simulation.

4.3. Effective delayed neutron fractions

The number of delayed neutron precursor groups is fixed in

the evaluated nuclear data files. Libraries based on JEFF-3.1

and later versions use a structure of 8 groups, while other eval-

uations typically rely on 6 groups. This group structure cannot

be changed, which may limit the applicability of the produced

data. It should also be noted that Serpent fixes the structure

to either 6 or 8 groups, and if the number of groups for some

nuclide differs from the fixed value, the data is discarded alto-

gether. The selection is primarily based on the major actinides:
235U, 239Pu, 233U and 238U. If none of these isotopes are in-

cluded in the initial composition, the structure used by the first

listed actinide is selected.

As mentioned in Sec. 2.6, the calculation of effective delayed

neutron parameters relies on the Meulekamp method. This is an

intermediate solution, planned to be replaced later by a deter-

ministic solver and importance weighting by the multi-group

adjoint flux.

4.4. Homogeneous diffusion flux solver

The local homogeneous flux solution used in the calculation

of ADFs and pin-power form factors when the net boundary

currents for the homogenized region differ from zero should

match the diffusion flux solution in the nodal code. The rou-

tine in Serpent 2 was developed specifically for the ARES

code (Mattila, 2003). It is important to realize that if the data

is used in a nodal diffusion code with boundary conditions and

intra-nodal flux solution significantly different from what is de-

scribed in Sec. 2.7, the results of the core calculation may be

compromised. For the moment the solution is limited to two-

dimensional rectangular and hexagonal geometries.

4.5. Other methodological limitations

One methodological issue that extends beyond group con-

stant generation is the question of how to normalize reaction

rates to fission power? The recoverable energy released in fis-

sion is divided between the kinetic energy of the fission frag-

ments, neutrons and prompt fission gammas. This is supple-

mented by a delayed component following the decay of radioac-

tive fission products, as well as additional energy released in

other neutron reactions, in particular (n,γ). Even though the

Monte Carlo method allows very accurate modeling of the di-

rect heating effects of neutrons and photons, such approach may

not be the best choice for lattice physics calculations. The fact
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that the homogenized assembly is separated from its actual sur-

roundings by reflective boundary conditions ignores in any case

the energy transfer beyond the geometry boundaries.

Fission power in Serpent 2 is currently calculated based on

a simple empirical model, by assuming that each 235U fission

deposits 202.27 MeV of energy directly in the fuel, and the cor-

responding values for other actinides are scaled according to the

ratios of the fission Q-values. Since this normalization fixes the

ratio of reaction rates to fission power, as well as the relation

between irradiation time and burnup, the approximation does

have an effect on the rate at which the initial composition is de-

pleted and new isotopes are accumulated in the fuel. The user

should be aware of this approximation, and if necessary, adjust

the default values by input options.

It was briefly mentioned in Sec. 2.1 that the meta-stable state

of fission product poison 135Xe is lumped together with the

ground state in the calculation of poison cross sections. This

is a practical necessity, as 135mXe lacks the cross sections in

all major nuclear data evaluations, and because of its relatively

short half-life of 15 minutes, the effect of this simplification

is not considered very significant. Kim and Kim (2014) have

pointed out, however, that including the meta-stable state may

have a noticeable effect in transient analyses. Including sepa-

rate absorption and production cross sections for 135mXe should

therefore be an option for group constant generation as well,

provided that the data is included in the cross section library.

4.6. Automated burnup sequence

The automated burnup sequence is currently capable of han-

dling only branch variations, and setting up the history cases

has to be done separately. The possibility of including histo-

ries in the calculation sequence has been considered, but at this

point such approach does not seem practical. Creating the his-

tory inputs with a simple pre-processing script, or even by hand,

is relatively straightforward. Implementing such capability in

Serpent would only lead to overly complicated input structures

without much added value to the user.

The Doppler-broadening preprocessor routine used for in-

voking the temperature variations cannot currently adjust the

unresolved resonance probability table data,5 which may have

a noticeable effect in fast-spectrum systems. The problem can

be avoided by selecting the branch temperatures in such way

that they match the library temperatures, which are typically

provided in 300K intervals. The adjustment is made based on

the closest available temperature below the given value, and if

the temperatures match, there is no need to broaden the cross

sections or adjust the probability tables at all.

5. Conclusions, discussion and plans for future work

The Serpent Monte Carlo reactor physics burnup calcula-

tion code has been developed for the purpose of spatial ho-

mogenization and other reactor physics applications since 2004.

5It should also be noted that probability table sampling is switched off by

default in Serpent 2.

The code has been successfully used for producing group con-

stants for various deterministic core simulators, although most

of these studies have so far been limited to simplified applica-

tions, most typically initial core zero-power calculations. In

recent years, however, some experienced Serpent users have

started moving from proof-of-concept type of studies towards

more challenging practical applications, involving fuel cycle

and transient simulations.

The continuous-energy Monte Carlo method does have some

clear advantages compared to traditional deterministic lattice

transport codes, such as the capability to produce the ideal ref-

erence solution for the validation of the multi-stage calculation

scheme. Even so, the scope of applications is still limited by the

high computational cost of the transport simulation. The practi-

cal applicability of Serpent has also been limited by insufficient

documentation, of both the input syntax and the methodology

used for spatial homogenization. In an effort to correct this de-

ficiency, an on-line Serpent Wiki was recently set up to fill in

for the missing User Manual.6 The purpose of this paper, on

the other hand, was to collect the methodological description

scattered through various earlier publications into a single up-

to-date document, and to fill in the missing pieces.

Serpent is still a developing code, and advanced methods for

spatial homogenization is one of the major topics for future

work. As discussed above, there are several flaws and problems

in the methodology waiting to be corrected. Plans for future

work also include implementing new features requested by Ser-

pent users, in particular the capability to produce microscopic

cross sections and axial discontinuity factors.

Many of the limitations and weak points in the methodol-

ogy are ultimately related to the fact that the energy and angu-

lar transfer functions of scattering reactions are not provided in

double-differential form, but rather as probability distributions

separate from the cross sections. This complicates the calcula-

tion of scattering matrices and higher scattering moments, and

practically necessitates resorting to the use of analog estima-

tors. An elegant solution to the problem would be to extract

this information from the ACE data and pre-process it into a

form directly usable with the reaction rate tallies, as was done

by Nelson and Martin (2014) for the OpenMC code. Whether

or not this is a viable solution for Serpent as well is not clear at

this point.

As noted in Sec. 2.5, the most conventional approach to dif-

fusion theory is to use a scalar constant to relate neutron cur-

rent density to flux gradient by Fick’s law (14), but it is also

possible to include directional dependence in the diffusion pro-

cess. The currently distributed version of Serpent 2 (version

2.1.26) does not yet support the calculation of directional diffu-

sion coefficients, but recent work on the topic has been carried

out in a related doctoral thesis (see Dorval and Leppänen, 2015;

Dorval, 2016b). The methodology, together with the new leak-

age model developed as part of the same thesis work (Dorval,

2016a), will be included in the official version of Serpent 2 in

the future.

6The User Manual for Serpent 1 (Leppänen, 2015) is considered outdated,

and in any case is missing most of the new features and capabilities in Serpent 2.
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