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Abstract Recent years have seen an increased interest in the question of whether
the gravitational action of planets could have an influence on the solar dynamo.
Without discussing the observational validity of the claimed correlations, we
ask for a possible physical mechanism that might link the weak planetary forces
with solar dynamo action. We focus on the helicity oscillations that were recently
found in simulations of the current-driven, kink-type Tayler instability, which is
characterized by an m = 1 azimuthal dependence. We show how these helicity
oscillations can be resonantly excited by some m = 2 perturbation that reflects
a tidal oscillation. Specifically, we speculate that the 11.07 years tidal oscillation
induced by the Venus–Earth–Jupiter system may lead to a 1:1 resonant exci-
tation of the oscillation of the α-effect. Finally, in the framework of a reduced,
zero-dimensional α–Ω dynamo model we recover a 22.14-year cycle of the solar
dynamo.
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1. Introduction

Sixty years after the seminal article of Parker (1955), a remarkable agreement
has been achieved that the solar magnetic field is generated by some sort of an
α–Ω dynamo (Charbonneau, 2010).

Most certainly, the (strong) toroidal field is produced from some (weak)
poloidal field by an Ω-effect due to differential rotation, whereas the poloidal
field is reproduced from the toroidal field by some appropriate α-effect. The
remaining controversy concerns the source, and location, of this α-effect that is
needed to close the dynamo loop.
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Roughly, we can distinguish between four different interpretations of the
toroidal-to-poloidal field transformation. Mean-field dynamo theory, focusing on
helical twisting of toroidal field lines in the turbulent convective zone, can be
traced back to heuristic arguments by Parker (1955) and was later corroborated
in mathematical detail by Steenbeck, Krause, and Rädler (1966); see also Krause
and Rädler (1980). The theory starts by expressing the flow U = U +u and the
magnetic field B = B + b as the sum of their mean parts (denoted by an over-
bar) and their fluctuating parts (denoted by lower-case letters). The interaction
of the fluctuating flow and magnetic-field components produces an additional
electromotive force term in the induction equation which, in its simplest form,
can be written as E = u× b = αB−β∇×B (but see Krause and Rädler (1980)
and Rädler and Stepanov (2006) for significant extensions).

Despite various conceptual problems (Proctor, 2006), regarding e.g.

the catastrophic quenching of α (Vainshtein and Cattaneo, 1992), or
the questionable relationship between helicity and α and the non-
convergence of α for large magnetic Reynolds numbers (Courvoisier,
Hughes, and Tobias, 2012), mean-field theory has served for decades as the
standard model of the solar dynamo, which provided a natural explanation for
the periodicity and the equator-ward sunspot propagation of the solar cycle
(Steenbeck and Krause, 1969; Stix, 1972). A first blow to this model came
when helioseismology mapped the differential rotation in the solar
interior (Brown et al., 1989), in particalur the positive radial shear
in a ±30◦ strip around the Equator, resulting in a serious problem
with the Parker–Yoshimura sign rule which requires α∂Ω/∂r < 0 in
the northern hemisphere for the correct equatorward propagation of
sun spots (Parker, 1955; Yoshimura, 1975). A second issue was raised by
D’Silva and Choudhuri (1993) who noticed that the rather strong toroidal field
at the bottom of the convection zone, which is needed to explain the variation of
the tilts of bipolar sunspot pairs with latitude, would significantly hamper the
helical turbulence to twist the toroidal field.

A possible way out of this dilemma was found in the Babcock–Leighton
mechanism (Babcock, 1961; Leighton, 1964), which interprets the generation of
poloidal field by the stronger diffusive cancellation of the (closer to the equator)
leading sunspots compared with that of the trailing (farther from the equator)
spots. This leads to a spatially separated, or flux-transport type of dynamo
(Choudhuri, Schüssler, and Dikpati, 1995), which also provides the correct but-
terfly diagram if combined with an appropriate meridional circulation. Most
notable in the context of our work is that the 22-year (Hale) cycle is basically
set by the velocity of the meridional circulation (Charbonneau and Dikpati,
2000). The flux-transport dynamo model of Jiang, Chatterjee, and Choudhuri
(2007) succeeded in predicting the relatively weak Solar Cycle 24. Further to
this, a tuned model of this kind was shown to produce a Maunder-like minimum
(Choudhuri and Karak, 2009), although some additional subsurface α-effect has
still to be invoked for the dynamo to restart after the minimum (when nearly
all sunspots had disappeared).

The tachocline α-effect proposed by Dikpati and Gilman (2001) might serve
this purpose well. It relies on a hydrodynamic shear instability at the solar
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tachocline where vertical fluid displacements correlate with horizontal-vorticity
pattern providing kinetic helicity, and therefore, a third possibility to produce an
α-effect. An alternative version of a distributed dynamo implies a stronger role
of the near-surface shear layer that may also be compatible with the observed
angular velocities of magnetic tracers (Brandenburg, 2005).

A fourth interpretation of the toroidal-to-poloidal transformation relies on
the idea that the toroidal field itself becomes unstable to non-axisymmetric
instabilities, which can then lead to an α-effect. With dedicated application to
the Sun, this theory has been worked out by Ferriz Mas, Schmitt, and Schüssler
(1994) and Zhang et al. (2003). Such dynamo models, which rely on flux
tube instabilities, were sucessfully applied to explain grand minima
in terms of on-off intermittency (Schmitt, Schüssler, and Ferriz Mas,
1996). Interestingly, the underlying current-driven, kink-type Tayler instabil-
ity (TI) had been treated long before (Tayler, 1973; Pitts and Tayler, 1985).
Recent theoretical (Gellert, Rüdiger, and Hollerbach, 2011) and experimental
work (Seilmayer et al., 2012) has focused on the TI in fluids with low magnetic
Prandtl number, which indeed applies to the solar tachocline. Based on the TI,
a non-linear dynamo mechanism had been proposed (Spruit, 2002) which is now
known as the “Tayler–Spruit dynamo”. However, the initial enthusiasm about
this dynamo cooled down with the argument by Zahn, Brun, and Mathis (2007)
that the non-axisymmetric m = 1 TI mode would produce the “wrong” poloidal
field, which is unsuitable for regenerating the dominant axisymmetric toroidal
field.

In principle, this mismatch could be circumvented if the m = 1 TI were con-
nected with some m = 0 component of the α-effect. For comparable large values
of the magnetic Prandtl number [Pm], Chatterjee et al. (2011), Gellert, Rüdiger,
and Hollerbach (2011), and Bonanno et al. (2012) found evidence for spontaneous
symmetry breaking between left- and right-handed TI modes, leading indeed to
a finite value of α. Whether, and how, these results can be transferred to the
solar tachocline with its relatively low Pm ≈ 10−2 will be discussed further
below.

Somewhat disconnected from that main road of solar-dynamo research, a few
studies were devoted to the theoretical possibility that the motion of planets
could have an influence on the solar magnetic field (Abreu et al., 2012; Charva-
tova, 1997; Jose, 1965; Hung, 2007; Palus et al., 2000; Scafetta, 2014; Wilson,
2013). A recent example is the article by Abreu et al. (2012) who had found
synchronized cycles in proxies of the solar activity and the planetary torques,
with periodicities that remain phase-locked over 9400 years. Given the immense
relevance of a putative planetary influence on the solar dynamo and, perhaps,
on the Earth’s climate and its predictability (see Figure 9 in Scafetta (2014)) via
several proposed mechanisms (Svensmark and Friis-Christensen, 1997; Scafetta,
2010; Gray et al., 2010), it is not surprising that those claims are vigorously
debated.

Yet, first attempts to link solar variability to planetary motion trace back
to times of a milder “climate” of scientific disputation. Noteworthy here is
the early article by Bollinger (1952), who showed remarkable evidence of the
synchronization of the sunspot numbers with the Venus–Earth–Jupiter system,
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which is characterized by a 44.77-year conjunction cycle. This connection has
found further attention by Takahashi (1968), Wood (1972), Condon and Schmidt
(1975), Hung (2007), Wilson (2013), and Okhlopkov (2014) who derived the
actual 11.07-year period of the tidal height, which is within the 0.1 per cent
uncertainty of the measured sunspot number period of 11.06 years (Cole, 1973)
(the slight difference between 11.07 years and 44.77/4=11.19 years is a typical
aliasing effect (Condon and Schmidt, 1975)).

Surveying the literature we can distinguish between studies (Abreu et al.,
2012; Scafetta, 2014) advocating a planetary modulation of the solar cycle,
while accepting the explanatory power of traditional dynamo models for the
22-year Hale cycle, and other studies that, more radically, relate the Hale cycle
to planetary motion, mostly to the tidal effect of the Venus–Earth–Jupiter sys-
tem (Bollinger, 1952; Takahashi, 1968; Wood, 1972; Hung, 2007; Wilson, 2013;
Okhlopkov, 2014).

In either case, it is not surprising that the first reaction of most scientists
is profound skepticism (if not complete rejection), given the tiny accelerations
exerted by planets on the Sun (≈ 10−10 m s−2, see De Jager and Versteegh
(2005) and Callebaut, de Jager, and Duhau (2012)) and the corresponding tidal
heights of less than a mm (Condon and Schmidt, 1975). This being said, one
should likewise bear in mind the many examples that show that very weak forces
can indeed lead to synchronization if only the time of interaction is long enough
(Pikovsky, Rosenblum, and Kurths, 2001).

Although the empirical correlation of the solar cycle with the Venus–Earth–
Jupiter conjunction cycle seems amazingly persuasive (see Figure 1 of Bollinger
(1952), Figures 1 and 2 of Wood (1972), and Figure 3 of Okhlopkov (2014)),
we will abstain here from any judgment of empirical correlations, in particular
with regard to longer periodicities as discussed by Abreu et al. (2012) and in the
reactions to that article.

Instead, the aim of this investigation is to explore whether a specific mecha-
nism could indeed lead to synchronization of the solar dynamo with planetary
motion. The chosen model is mainly inspired by a recent numerical finding
(Weber et al., 2015) that the TI at low magnetic Prandtl numbers is capable of
producing oscillations of the helicity and the related α-effect. These oscillations
are connected with a redistribution of energy between left- and right-handed TI
modes, without (or only slightly) changing the total energy content of the system.
We strongly emphasize this latter feature because it indicates the possible point
of vantage for the tiny planetary forces to synchronize the solar dynamo.

Rather than attacking the complete solar-dynamo problem within a single
numerical model, we split our argument into two parts. First, we will show
how helicity oscillations of the m = 1 TI modes can be resonantly excited by
some m = 2 periodic viscosity modulations that serve as a surrogate for the
corresponding tidal oscillations. Specifically, we argue that the 11.07-year tidal
oscillation, connected with the 44.77-year conjunction cycle of the Venus–Earth–
Jupiter system, may lead to a resonant excitation of a 11.07-year oscillation of
the α-effect.

Second, in the framework of a strongly reduced, zero-dimensional α–Ω dy-
namo model, we will recover from this 11.07-year oscillation of α the 22.14-year
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(Hale) cycle, and we will discuss some interesting aspects of this model in view
of observational features.

The article will conclude with a summary, and a dismayingly long list of
problems that are yet to be solved before the proposed mechanism of planetary
synchronization of the solar dynamo might get a chance to become accepted.

2. Resonant Excitation of Helicity Oscillations

Admittedly, the setting in this section is still far away from any realistic model of
the tachocline, let alone the whole solar dynamo. Its intention is just to illustrate
the main physical idea of this article: a resonant excitation of helicity oscillations,
arising with some frequency in the saturated state of the m = 1 TI (Weber
et al., 2015), by an m = 2 perturbation oscillating with the same frequency. Ac-
tually, similar resonance phenomena have been discussed in connection with the
swing excitation of galactic dynamos (Chiba and Tosa, 1990) and with the von-
Kármán-sodium (VKS) dynamo experiment (Giesecke, Stefani, and Burguete,
2012).

The typical time-scale we have in mind is the 11.07-year tidal oscillation in-
duced by the Venus–Earth–Jupiter system, which might trigger a corresponding
oscillation of the helicity and the α-effect.

For this purpose, we consider a fluid with conductivity σ, viscosity ν, and den-
sity ρ in a cylindrical volume of geometric aspect ratioH/2R = 1.25, threaded by
an electrical current [J0] of constant density (actually, a more tachocline-shaped
hollow cylinder, or a thin spherical shell, would require much stronger magnetic
fields leading to significantly higher numerical costs). In the first instance we
also skip any rotation of the fluid (see the discussion in the conclusions). We
further choose a much too small magnetic Prandtl number Pm ≡ µ0σν = 10−6

(instead of ≈ 10−2 as for the tachocline), which is required to ensure the validity
of the applied numerical scheme that is based on the quasistatic approximation.
Details of the numerical implementation of the TI problem can be found in the
appendix, as well as in Weber et al. (2013, 2015).

Without any perturbation, when choosing a sufficiently large Hartmann num-
ber Ha ≡ µ0J0(2π)

−1(σ/(νρ))1/2 = 100, this setting leads to an intrinsic helicity
oscillation with a certain frequency f = 1/T0 that is comparable with the growth
rate of the TI in its kinematic phase (see Figures 5 and 7 in Weber et al. (2015)).
Yet, in contrast to this well-defined frequency, the amplitude of the helicity
oscillation is very sensitive to the details of the numerical implementation, in
particular the grid spacing.

Now assume an m = 2 oscillation of the viscosity [ν], which is to mimic the
tidal deformation of the tachocline due to the Venus–Earth–Jupiter cycle (a
similar way of emulating tidal driving, by using an m = 2 body force, was
described by Cebron and Hollerbach (2014)). The space-time dependence is
assumed to be

ν(r, φ, t) = ν0{1 +A[1 + 0.5r2/R2 sin(2φ)(1 + cos(2πt/Tν))]} , (1)
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Figure 1. Visualization of the viscosity structure according to Equation (1), at t = 0 and
with ν0 = 1, A = 0.25.
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Figure 2. Three examples of the temporal evolution of the energy, the helicity, and the α-effect
for Tν/T0 = 0.7, 1.06, 1.42. The time is normalized to the viscous time scale, i.e. tn ≡ tν/R2.

which includes a constant term ν0(1+A) and an additional term with an m = 2
azimuthal dependence that is oscillating with a period Tν . The spatial structure
of ν is illustrated in Figure 1.

For the intensity of the viscosity wave we choose now five specific values
A = 0.03125, 0.0625, 0.125, 0.25, 0.5. For A = 0.5, and three different oscillation
periods Tν/T0 = 0.7, 1.06, and 1.42, Figure 2 shows the temporal evolution of
three quantities. The first row gives the averaged Reynolds number of the flow
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Figure 3. Resonant excitation of the kinetic helicity and the α-effect, connected with
the m = 1 TI, by the m = 2 viscosity oscillation with five different amplitudes
A = 0.03125, 0.0625, 0.125, 0.25, 0.5. Amplitude of the oscillations of helicity (a) and the
α-effect (b) in dependence on the period of excitation. (c) Oscillation period of helicity in
dependence on the period of excitation.

arising from the initial state at rest, Re = R(〈u2〉)1/2/ν where 〈...〉 denotes

an average over the total volume. For all three ratios Tν/T0, we get the same

Re ≈ 350 with very small fluctuations superposed on it. In the second row we

show the kinetic helicity, as normalized to the mean-squared velocity over radius,

i.e., 〈Hu〉n = 〈u · (∇× u)〉R/〈u2〉. Apart from some constant part, we observe

a significant fluctuation (with exactly the period of the viscosity oscillation),

which appears strongest for Tν/T0 = 1.06. Intimately connected with this helicity

oscillation, we also show (third row) the α-effect, normalized in such a way that
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(b)(a) (c) (d)

Figure 4. Velocity field over one half-period of the helicity oscillation for the case A = 0.5,
Tν/T0 = 1.06. (a) Typical m = 1 velocity field of the TI, as averaged over one period of the
helicity oscillation. (b) Residual velocity (i.e., actual velocity minus averaged velocity), for an
instant with maximum helicity. (c) Residual velocity for an instant with mean helicity. (d)
Residual velocity for an instant with minimum helicity. The typical velocities of (a) are
a factor of 44 larger than those of (b,c,d). Note the opposite directions of the
residual velocity in (b) and (d). The color at the bottom of (b,c,d) indicates the
viscosity at the respective instants, according to Equation (1).

it corresponds to a magnetic Reynolds number of the helical flow part, i.e.,
〈α〉n = µ0σR〈(u × b) ·B0〉/B

2
0 .

Figure 3 shows the amplitude of the helicity oscillation (a), the corresponding
amplitude of the α oscillation (b), and their period (c) as a function of the period
of excitation. Evidently we obtain a strong resonance (a,b) when the excitation
frequency 1/Tν is equal to the intrinsic “eigenfrequency” 1/T0 of the helicity
oscillation.

Figure 4 reveals the character of the helicity oscillations in terms of the
velocity for the particular case Tν/T0 = 1.06. While Figure 4a illustrates the
averaged velocity field, Figures 4b – d show the residual velocities at maximum,
mean, and minimum helicity.

3. Synchronizing the Solar Dynamo

In the previous section, we have seen that a weak m = 2 viscosity oscilla-
tion is able to excite, and synchronize, an oscillation of the helicity and the
corresponding α-effect with the same frequency.

In this section, a first attempt will be made to set up a closed dynamo model in
which the synchronized α-effect is appropriately embedded. To keep the physics
simple, we will use an extremely reduced, zero-dimensional α–Ω dynamo model
consisting of two coupled ordinary differential equations for the toroidal and the
poloidal field component. Despite their simplicity, models of this sort have been
shown to be well capable of producing various solar-like features (Hoyng,
1993; Weiss and Tobias, 2016), in particular if the induction effects in spa-
tially segregated layers are mimicked by appropriate time delays in the model
(Wilmot-Smith et al., 2006).
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Specifically, we consider the following system of equations:

da(t)

dt
= α(t)b(t)− a(t) (2)

db(t)

dt
= Ωa(t)− b(t) (3)

wherein a represents the poloidal field (actually, its vector potential), and b the
toroidal magnetic field. While keeping constant the value of Ω, which represents
the induction effect of the differential rotation, α is considered as dependent on
the instantaneous toroidal magnetic field:

α(t) =
c

1 + gb2(t)
+

pb2(t)

1 + hb4(t)
sin (2πt/Tν) . (4)

Equation (4) is motivated as follows: the first term, scaled by c, reflects some
constant part that is only quenched, in the usual way, by the magnetic-field
energy [b2] in the denominator. Although this term can be chosen to be quite
small, we will see that it must not be set to zero. The second term, scaled by a
parameter p, is periodic in time and emulates the resonance of the α-oscillation
in the sense that its explicit temporal dependence is fixed, but its amplitude
has a maximum at some particular value of b where the external excitation is in
resonance with the intrinsic helicity oscillation of the TI (note that the frequency
of the helicity oscillation is a monotonically increasing function of the azimuthal
magnetic field; see Figure 7 of Weber et al. (2015)). Interestingly, a similar b-
dependence of α had already been used by Wilmot-Smith et al. (2006), although
without the sin (2πt/Tν) dependence, and for other reasons than here.

Figure 5 illustrates the evolution of this equation system for six different
parameter sets which cover some paradigmatic types of solutions, although not
exhaustively. Figures 5a – c correspond to solutions that clearly do not comply
with the solar dynamo, while 5d – f are much more interesting. In all cases we
choose g = 1 and Tν = 11.07 years.

Let us start with Figure 5a, obtained for Ω = 10, c = 0, p = 8, and h = 10.
Evidently, this dynamo fails to work at all, since the constant part of α is set
exactly to zero. The dynamo fails also when some constant α is used (by setting
c = 0.8), but Ω = −10 acquires the wrong sign; see Figure 5b. A first dynamo
becomes visible in 5c, with Ω = 10, c = 0.8, p = 8, and a comparably large value
h = 20. However, the fields generated by this dynamo vacillate with
a period of 11.07 years around some finite positive values, instead of
oscillating with the correct 22.14-year period around zero.

Much more promising results are obtained for c = 0.8, p = 8, h = 10. For
increasing values Ω = 10, 50, 100, Figures 5d – f show a quite robust solar-type
behavior, with an ever increasing ratio b/a (note the different scaling factors for
b in the three pictures). The most important point here is that the 11.07 years
(Schwabe) periodicity of α leads to the 22.14 years (Hale) oscillation of both a
and b, in contrast to the mere vacillation seen in Figure 5c.

For the restricted period 27 < t < 36 years of Figure 5d, the next Figure 6
illustrates in more detail the behavior during a sign change of the magnetic field,
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including the amazing “spiky” features of α close to the turning point of a and
b. The capitals A...E mark various instants with specific features to be explained
in the following: Initially (A), at large values of b, α is rather constant, although
strongly quenched, while its oscillatory part is negligible since b is so strong that
we are far away from resonance. As b decreases, it reaches a level at which the TI
helicity oscillation becomes resonant with the viscosity oscillation. This happens
(B) when b ≈ 0.56, which actually corresponds to the maximum of the pre-factor
b2/(1 + 10b4) of the oscillatory term in Equation (4). At this point α becomes
strongly negative. Shortly after (C), b drops to zero, so that the quenching of
the constant term of α disappears and α acquires the unquenched value c (here
≈ 0.8). Subsequently (D), b goes again through the resonant point b ≈ −0.56
for the helicity oscillation so that the oscillatory part again contributes its large,
but now positive, value to α. After that (E), b increases quite smoothly until it
reaches a maximum strength where α is strongly quenched and rather constant.

It is worth noting that many oscillatory dynamo solutions, based on Equations
(2,3) and some appropriate quenching of α, show a similar behavior as long as
the quenching of α is quadratic in the fields. This applies, e.g., to some of the
solutions given by Wilmot-Smith et al. (2006) where a close connection with a
driven oscillator, in which the driving works only in a certain window of b, has
been discussed. In some sense, the resonant driving of α with the 11-year cycle
can thus be considered just a trigger for the whole process.

In Figure 7 we compare our simulations with two specific time series of the
observed solar magnetic field. For this purpose we restrict the time to the period
between 1975 and 2015 for which north and south polar-field data are available
from the Wilcox Solar Observatory. Figure 7a shows the 20 nHz filtered north and
south polar-field data, together with an appropriately scaled and time-shifted
segment of our a(t). For the same period, Figure 7b shows the annual sunspot
number, obtained from the Royal Observatory of Belgium, Brussels, together
with our b2(t).

The first observation that we make in Figures 5, 6, and 7 is the in-phase
behavior of a and b which looks not very solar-like at first glance. In reality
(see Figures 7a and b), the solar magnetic field shows a significant phase-shift
between the sunspot activity (a tracer for the toroidal field), and the global
poloidal dipole field.

A possible way out of this dilemma is to invoke the rise-time of the toroidal
field, in terms of flux tubes, from the tachocline to the photosphere. Figure 7b
would point to a rise-time of approximately four years. According to Figure
2 of Weber, Fan, and Miesch (2013), this would be roughly consistent with
a magnetic-field strength of 15 kG for a tube simulation without convection.
Unfortunately, the inclusion of convection leads to rise times not longer than
eight months. Here lies one of the crucial point for the acceptability of this sort
of dynamo localized in, or at least close to the tachocline, while flux-transport
dynamos, or dynamos in which this spatial separation is emulated by a time-
delay (Wilmot-Smith et al., 2006) can easily comply with this long time-shift.
Only later simulations will show if this discrepancy can be overcome in higher
dimensional α–Ω models.
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Figure 5. Evolution of the equation system (2) – (4) with g = 1 and Tν = 11.07 years. All
other parameters are given in the insets.

An amazing coincidence exists, however, between the additional peaks of the
north and south polar field in Figure 7a and the corresponding spikes of our a
(indicated by the three black arrows).

Another point is related to the vigorous, ”spiky” variations of α close to the
reversal point of a and b, as seen in Figure 5 and Figure 6. It is tempting to relate
this behavior to the short-term sign changes of the current-helicity, as observed
recently by Zhang et al. (2012). It might also be interesting to relate the high
amplitudes of α to the so-called δ-sunspots, while other explanations in terms
of kink-type instabilities of flux-tubes have also been invoked to explain them
(Fan, 2009).

While it is not our intention to overemphasize the significance of the latter
two points, they might be kept in mind when trying to validate, or falsify, our
resonant synchronization model of the solar cycle.
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4. Conclusions and Outlook

While the traditional explanation of the Hale cycle bears on intrinsic and, in
general, time-independent features of the solar dynamo such as the magnetic
diffusivity, the amplitudes of Ω, α, and the meridional flow (Charbonneau and
Dikpati, 2000), we have asked for a mechanism that could allow for synchro-
nizing the solar dynamo with planetary tides. From the very outset we were
well aware of the fact that those tiny forces could never compete with the much
larger acceleration forces of the turbulent motion in the convection zone (if this
were indeed the governing source of the α-effect). The same holds true for a
corresponding α-effect based on a Babcock–Leighton mechanism. However, an
additional energy injection from an external forcing is not the crucial point in
our argumentation.

Motivated by the recent numerical evidence of helicity oscillations appearing
in the kink-type, m = 1 TI (Weber et al., 2015), we studied a simple cylindrical
model for the resonant excitation of those oscillations by an m = 2 viscosity
variation that serves as a proxy for the tidal action of planetary forces. Invoking,
as a specific example, the 11.07-year periodic tide produced by the Venus–Earth–
Jupiter system, this was shown to trigger a 11.07-year oscillation of the helicity
and the related α-effect. This resonant excitation of the α-oscillation served then
as a “clock” for the 22.14-year dynamo cycle of a reduced, zero-dimensional α−Ω
dynamo model. The output of this model shows interesting solar-like features,
in particular an additional secondary peak of the poloidal field shortly after its
sign change, and a tendency for vigorous and fast oscillations of the helicity in
this weak-field period.

As already mentioned by Weber et al. (2015), there is nearly no external
energy needed to trigger helicity oscillations. As an intrinsic feature of the TI, a
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Figure 7. (a) Comparison of the north and south polar magnetic field and the parameter
a, appropriately scaled and shifted in time. The field data are the 20 nHz filtered data from
Wilcox Solar Observatory (courtesy J.T. Hoeksema). (b) Comparison of the mean sunspot
number and the parameter b2, appropriately scaled and shifted in time. The sunspot data are
SILSO data from the Royal Observatory of Belgium, Brussels.

helicity oscillation is just a reshuffling of (kinetic and magnetic) energy between
left- and right-handed modes, without (or barely) changing the energy content,
as confirmed in Figure 2. Exactly here is the point where the tiny planetary forces
might get a chance to synchronize the solar dynamo. Since this type of dynamo
draws its energy nearly exclusively from the shear of the differential rotation, the
resonantly oscillating α-effect functions as a periodically opening “bottleneck”
that ultimately controls the frequency of the dynamo. An interesting and non-
trivial next step would be to check if also longer periods of the solar dynamo,
like the ≈ 87-year Gleissberg cycle, the ≈ 210-year Suess-de-Vries cycle, and the
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≈ 2300-year Hallstatt cycle, can be explained somehow in the framework of the
present model.

It goes without saying that the delineated mechanism is by far not the end
of the story. What is urgently needed is to blend together the two mechanisms,
which were only loosely connected in this article, into an appropriate global, i.e.
at least a 1D, or better a 2D, or 3D dynamo model. Perhaps the most significant
problem of our model is the complete omission of rotation and gravity. The
TI has been treated only in the presence of viscosity and resistivity, so that
the typical growth rates and frequencies are ∝ ω2

Alfven
/ωη (Rüdiger, Kitchati-

nov, and Hollerbach, 2013). This will definitely be modified when rotation and
stratification are taken into account. Hopefully, the main result will not change
very dramatically. As shown recently (Rüdiger et al., 2015; Stefani and Kirillov,
2015), the effect of positive shear in the tachocline (which prevails in a ±30◦

strip around the Equator) on the TI is not so grave and leads, surprisingly, even
to some moderate reduction of the critical Hartmann number. The azimuthal
drift of the instability mode depends strongly on the radial profile of Bφ(r),
tending to corotate for Bφ(r) ∝ 1/r while standing still for Bφ(r) ∝ r (Rüdiger
et al., 2015).

A final remark: Leaving aside the specific TI aspect of the helicity oscillations
and their resonant excitation, as discussed in Section 2, one might ask for other
realizations of the general resonance model as described in Section 3. Specifically,
it is worthwhile to check whether a similar resonance could apply to a tachocline
α, as proposed by Dikpati and Gilman (2001). In any case, the model according
to Equations (2) – (4) would then change significantly due to the missing depen-
dence of the eigenfrequency on the magnetic-field strength, which is indeed a
specific feature of the TI based synchronization model as presented here.
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Appendix

A. The Numerical Model

In this appendix we sketch the integro-differential equation scheme that was
utilized in Section 2 for the calculation of the oscillations of the helicity and α.
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Further details can be found in Weber et al. (2013, 2015). For an alternative
numerical method to treat the TI, see Herreman et al. (2015).

In our code we circumvent the usual Pm limitations of pure differential-
equation codes by replacing the solution of the induction equation for the mag-
netic field by invoking the so-called quasistatic approximation (Davidson, 2001).
We replace the explicit time stepping of the magnetic field by computing the elec-
trostatic potential by a Poisson solver, and deriving the electric-current density.
In contrast to many other inductionless approximations in which this procedure
is sufficient, in our case we cannot avoid to compute the induced magnetic field,
too. The reason for this is the presence of an externally applied electrical current
in the fluid. Computing the Lorentz-force term it turns out that the product of
the applied current with the induced field is of the same order as the product
of the magnetic field (due to the applied current) with the induced current. The
induced magnetic field is computed as follows: in the interior of the domain,
we apply the quasi-stationary approximation and solve the vectorial Poisson
equation for the magnetic field which results when the temporal derivative in
the induction equation is set to zero. At the boundary of the domain, however,
the induced magnetic field is computed from the induced current density by
means of Biot–Savart’s law. This way we arrive at an integro-differential equation
approach, similar to the method used by Meir et al. (2004).

In detail, the numerical model as developed by Weber et al. (2013) works
as follows: it uses the OpenFOAM library to solve the Navier–Stokes equations
(NSE) for incompressible fluids

u̇+ (u · ∇)u = −∇p+ ν∆u +
fL

ρ
and ∇ · u = 0, (5)

with u denoting the velocity, p the (modified) pressure, fL = J × B the elec-
tromagnetic Lorentz force density, J the total current density, and B the total
magnetic field. The NSE is solved using the PISO algorithm and applying no
slip boundary conditions at the walls.

Ohm’s law in moving conductors

j = σ (−∇ϕ+ u×B) (6)

allows us to compute the induced current j by previously solving a Poisson
equation for the perturbed electric potential ϕ = φ− J0z/σ:

∆ϕ = ∇ · (u×B) . (7)

We concentrate now on cylindrical geometries with an axially applied current.
After subtracting the (constant) potential part [J0z/σ], with z as the coordinate
along the cylinder axis, we use the simple boundary condition ϕ = 0 on top and
bottom and n · ∇ϕ = 0 on the mantle of the cylinder, with n as the surface
normal vector.

The induced magnetic field at the boundary of the domain can then be
calculated by Biot–Savart’s law

b(r) =
µ0

4π

∫
dV ′

j(r′)× (r − r′)

|r − r′|3
. (8)
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In the bulk of the domain, the magnetic field is computed by solving the vectorial
Poisson equation

∆b = µ0σ∇× (u×B) (9)

which results from the full time-dependent induction equation in the quasi-
stationary approximation.

Knowing b and j we compute the Lorentz force fL for the next iteration. For
more details about the numerical scheme, see Section 2 and 3 of Weber et al.

(2013).
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Gellert, M., Rüdiger, G., Hollerbach, R.: 2011, Helicity and alpha-effect by current-driven

instabilities of helical magnetic fields. Mon. Not. Roy. Astron. Soc. 414, 2696 DOI.
Giesecke, A., Stefani, F., Burguete, J.: 2012, Impact of time-dependent nonaxisymmetric ve-

locity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303
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