
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

HASEonGPU—An adaptive, load-balanced MPI/GPU-code for calculating
the amplified spontaneous emission in high power laser media

Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.;

Originally published:

May 2016

Computer Physics Communications 207(2016), 362-374

DOI: https://doi.org/10.1016/j.cpc.2016.05.019

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-24191

Release of the secondary publication
on the basis of the German Copyright Law § 38 Section 4.

CC BY-NC-ND

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1016/j.cpc.2016.05.019
https://www.hzdr.de/publications/Publ-24191
https://creativecommons.org/share-your-work/cclicenses/

HASEonGPU — An adaptive, load-balanced MPI/GPU-Code for
calculating the amplified spontaneous emission in high power laser media

C. Eckerta,1,∗, E. Zenkera,1, M. Bussmanna, D. Albacha

a Institute of Radiation Physics, Helmholtz-Zentrum Dresden – Rossendorf e. V., Bautzner Landstraße 400, 01328 Dresden,
Germany

Abstract

We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux
in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require
large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing
multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a
medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling
to multiple GPUs. Comparison of simulation results to measurements of ASE in Yb3+ : YAG ceramics show
perfect agreement.

Keywords: Amplified Spontaneous Emission, CUDA, GPU Cluster, Massively Parallel, Monte Carlo
Integration, High Power Laser

PROGRAM SUMMARY
Manuscript Title: HASEonGPU — An adaptive,
load-balanced MPI/GPU-Code for calculating the
amplified spontaneous emission in high power laser
media
Authors: C. Eckert, E. Zenker, M. Bussmann, D.
Albach
Program Title: HASEonGPU
Journal Reference:
Catalogue identifier:
Licensing provisions: GPLv3
Programming language: C++, Matlab
Computer: GPU cluster or workstation with CUDA-
capable GPUs (compute capability ≥ 2.0)
Operating system: Linux
RAM: Several GB, depending on input size and
number of GPUs. 4000000000 bytes (4 GB) per GPU
is recommended.
Has the code been vectorised or parallelized?: Yes.
Number of processors used: Can utilize 1 CPU core per
compatible GPU
Supplementary material:
Keywords: Amplified Spontaneous Emission, CUDA,
GPU Cluster, Massively Parallel, Monte Carlo Integra-
tion, High Power Laser

∗Corresponding author; postal address: POB 51
01 19 01314 Dresden Germany; e-mail: carlchris-
tian.eckert@gmx.de; tel: +491799409536

Email addresses: c.eckert@hzdr.de (C. Eckert),
e.zenker@hzdr.de (E. Zenker), m.bussmann@hzdr.de (M.
Bussmann), d.albach@hzdr.de (D. Albach)

1contributed equally

Classification: 4.13 Statistical Methods, 6.5 Software
including Parallel Algorithms, 15 Laser Physics
External routines/libraries: CUDA, Boost Program
Options, OpenMPI

Nature of problem:
The algorithm described by D. Albach in [1,2] uses
ray tracing techniques and Monte Carlo integration to
calculate Amplified Spontaneous Emission (ASE) with
high precision. It requires a high number of sampling
points as well as a high number of rays to reach the
desired results. Additionally, reflections on the upper
and lower surface of the medium increase the workload
by an order of magnitude. On traditional CPU-based
systems the computation is time-consuming, which
limits the number of simulations that can be performed.

Solution method:
HASEonGPU uses a non-uniform distribution of
sampling points within the gain medium to focus
computation on areas of interest. This is further
improved by combining the Monte Carlo integration
with importance sampling [3]. To improve execution
time further, the algorithm is highly parallelized to run
on a GPU and supports adaptive sampling resolutions
and random restarts. It can also be executed in a
GPU cluster, where linear scaling is achieved by a
coarse-granular load balancing that distributes the
workload among all GPUs in a master-worker-scheme
over MPI.

Restrictions:
Presently, the number of rays used for the Monte Carlo

Preprint submitted to Computer Physics Communications March 31, 2016

integration of a single sampling point within the gain
medium is limited by the available memory on the
GPU (about 108 rays per GB of GPU memory). Fur-
thermore, when using MPI as a workload distribution
mechanism, one of the MPI processes will act as a
scheduling master and its GPU can not participate in
the computation.

Unusual features:
The software can run on a workstation (threaded)
as well as on a large-scale GPU cluster (MPI) that
provides the required GPU hardware. The simulation
parameters include polychromatic laser pulses as well
as surface coatings, cladding, and refractive indices of
the gain medium. This allows to also simulate reflec-
tions on the upper and lower surface of the medium.
If a desired mean square error metric is not met with
a set number of rays, the algorithm can automati-
cally increase the number of rays to improve the results.

Additional comments:
The source code also includes a MATLAB script
that can be used to call HASEonGPU directly from
MATLAB code to integrate it into existing simulation
setups. There are also examples included on how to
execute HASEonGPU from the command line as well
as an example experiment that uses MATLAB and
the provided script. More detailed information can be
found in the README file.

Running time:
Depending on the number of sampling points, desired
sampling resolution for each point, and number of
GPUs, the execution time can vary strongly. A typical
cylindrical gain medium of 6cm diameter simulated
with 4210 non-uniformly distributed sampling points
can be simulated with a sufficient precision in 1min
on a single NVIDIA Tesla K20m GPU. Running time
as well as precision can be further optimized through
various parameters.

[1] D. Albach, J.-C. Chanteloup, G. l. Touz e, Influence of
ASE on the gain distribution in large size, high gain
Y b3+ : Y AG slabs, Opt. express 17 (5) (2009) 37923801.

[2] D. Albach, Amplified spontaneous emission and ther-
mal management on a high average-power diode-pumped
solid-state laser-the Lucia laser system, Ph.D. thesis,
Palaiseau, Ecole polytechnique (2010).

[3] E. C. Anderson, Monte Carlo methods and importance
sampling, 1999.

1. Introduction

The main principle of every laser (light amplifi-
cation by stimulated emission of radation) is stimu-
lated emission. In order to permit such stimulated
emission, energy has to be stored in a so-called up-
per laser state (e.g. an excited electronic state).
The transistion from the upper to the lower laser
state yields the associated photon energy. How-
ever, such an excited energy level has a limited life-

time and therefore spontaneous emission does natu-
rally occur. Those spontaneously emitted photons
are, if they travel through an excited part of the
the laser material, amplified by stimulated emis-
sion. This process, called amplified spontaneous
emission (ASE), is consequently one of the limiting
factors for any laser design, as it ultimately limits
the available energy in any laser amplifier medium
[1–3].

With the increasing availability of high power
lasers, computer aided design of laser gain me-
dia, including efficient cooling and the optimization
of cladding and mounting, demands multi-physics
simulation capabilities. Those simulations link the
thermal and optical properties of laser gain media
to the amplification process itself.

For high power laser design, energy efficiency is
becoming one of the major constraints when aiming
to maximize average power at a high peak power.
Exact knowledge of the flux of amplified sponta-
neous emission (ASE) is thus vital, as it drastically
reduces the energy stored in the gain medium us-
able for amplification.

Energy can be dislocated to non-pumped areas,
as the ASE photons can freely travel within the gain
medium, experiencing repeated amplification along
their path. Consequently, a significant part of the
stored energy is converted into heat inside the ma-
terial itself, the surrounding claddings and mounts.
ASE becomes an important factor of heat distri-
bution inside and outside of the pumped laser gain
medium. With the increasing importance of energy-
efficient diode-pumped lasers, this particular topic
has come into the focus of interest again [4].

Up until now, coupling models of heat dissipa-
tion to models of ASE generation required drastic
simplifications, as detailed simulations of ASE are
computationally intensive and in most of the ap-
plied cases, ASE cannot be treated analytically.

With the advent of massively parallel accelerator
hardware such as graphic processing units (GPUs),
it has become possible to solve the fundamental
ASE gain integral by exploiting the strong scal-
ability of Monte Carlo algorithms. In this pa-
per we focus on the extension of a previously
published model [4], its implementation on GPU
accelerator hardware and its performance opti-
mization for use on multi-GPU clusters, present-
ing the open source, multi-GPU ASE simulation
code HASEonGPU (High performance Amplified
Spontaneous Emission on GPU). This algorithm
concentrates on quasi-cw pumping, where simula-

2

tion timesteps are long compared to the time a pho-
ton takes to travel the total physical extent of the
gain medium.

To our best knowledge HASEonGPU is the first
massively-parallel code for simulating ASE in laser
gain media. In order to encourage the use of the
code by high power laser developers we provide a
MATLAB [5] interface that should allow for easy in-
tegration into simulation workflows existing in this
scientific community.

HASEonGPU includes all features of the ASE
simulation code described in [4, 6] which was writ-
ten in C and is purely serial. All these features are
discussed in the following sections that explain the
Monte Carlo integration of the ASE gain along a
single ray, see Section 2.1, the 3D sampling of the
laser gain medium via an anisotropic mesh, see Sec-
tion 2.2, and the computation of the complete gain
via ray tracing, Section 2.3.

HASEonGPU adds to these features by includ-
ing reflections at the upper and lower surface of
the gain medium as detailed in Section 2.4, which
increases the computational workload by typically
one order of magnitude, and allowing for polychro-
matic pump spectra of arbitrary form, which, too,
increases the computational effort compared to the
monochromatic pump used in [4, 6].

With this in mind, major improvements to the
existing simulation code [4, 6] are thus the hybrid
parallelization for use on GPU clusters, the intro-
duction of sampling techniques to optimize compu-
tation of the overall gain and of load balancing as
described in Section 3.

From the detailed analysis of time to solution and
strong scalability in Section 4.4 we find an over-
all speedup of about two orders of magnitude com-
paring the single-core performance of [4, 6] to the
single-GPU performance of HASEonGPU and lin-
ear strong scaling of HASEonGPU, reaching time to
solution of a few minutes on a medium sized GPU
cluster.

2. Ray tracing model for calculating the gain

In order to calculate the impact of ASE on a given
point in a laser amplifier medium, it is necessary to
compute the density of incoming ASE photons per
time interval. This ASE flux (ΦASE) is given by
the integral (2.1). For reasons of simplicity the gain
medium is assumed to have planar top and bottom
surfaces. High resolution spatial sampling of the

gain medium results in a large number of sampling
points, see Fig. 1, for which the amplification of
spontaneous emission needs to be determined.

2.1. Monte Carlo integration of the ASE flux

For any given sampling point si in the gain
medium, ΦASE can be calculated by solving the
integral [6]:

ΦASE(si) =
1

4π

∫∫
V λ

n̂(r)

τf |ρ(r, si)|2
g(λ) Gr→si dV dλ

(2.1)
where n̂(r) is the density of excited states at the
point of spontaneous emission r, τf the life time of
the upper laser state, |ρ(r, si)| the absolute value of
the distance travelled between the position of spon-
taneous emission r and the point of observation si,
g(λ) the spectral distribution function of the spon-
taneous emission, Gr→si denotes the amplification
between positions r and si as a line integral along
the vector −→rsi. HASEonGPU solves for ΦASE by
Monte Carlo integration of (2.1) for all sampling
points over its volume V and wavelength λ.

For a single wavelength and sampling point si,
(2.1) can be rewritten as a sum:

ΦASE(si) =
1

4πNτf

N−1∑
u=0

n̂(ri,u) ·gain(−−−→ri,usi) (2.2)

where N is the number of randomly selected paths
−−−→ri,usi of photons traveling inside the gain medium.
The amplification gain(−−−→ri,usi) along the photon
path −−−→ri,usi is computed via Eq. (2.5) as described
later.

The method presented here is in many ways sim-
ilar to ray tracing methods and, thus, we will in
the following call −−−→ri,usi a ray. Therefore, our algo-
rithm derives the ASE flux distribution inside the
medium by calculating the local ASE flux for each
sampling point via repeated computation of the am-
plification of a multitude of rays all ending in the
selected sampling point.

2.2. Sampling of the gain medium using a non-
uniform mesh

In order to distribute the sampling points, the
medium is treated as a horizontal, two-dimensional
plane, extruded to the third dimension. The sam-
pling points in the plane can have non-uniform den-
sity, allowing for an increase in spatial resolution in
certain areas of interest. These sampling points are

3

thickness

z
y

x

sampling point si random
ray

Figure 1: Non-uniform sampling of the active gain medium,
forming a mesh of prisms as described in the text. The
center of the gain medium is sampled at a higher spatial
resolution than the outer regions. Two slices of prisms are
shown in z-direction. For each sampling point si, a large
number of rays starting from random positions ri,u inside
the medium points back to the sampling point, each ray rep-
resenting spontaneously emitted radiation. For each ray, the
gain along the path of the ray through the medium is calcu-
lated. The amplified spontaneous emission is then deposited
at the position of the sampling point.

in turn connected using Delaunay triangulation [7]
to form a 2D mesh of triangles.

The extrusion of the triangular mesh in direction
of the vertical axis forms a slice of right prisms, see
also Fig. 2. This slice is then duplicated several
times along the z-axis, until the whole medium is
divided into prisms, see Fig. 1.

2.3. Ray tracing calculation of the overall gain

In order to calculate the amplification of photons
spontaneously emitted at a randomly chosen posi-
tion ri,u when traversing the medium to a sampling
point si, rays are traced along their paths through
the prisms, see Fig. 3. When the path of a ray in-
tersects the interface between two prisms, it is split
into partial rays. Each of these partial rays is lo-
calized in the volume of its corresponding prism.

Starting from point ri,u inside a prism, there are
five possible intersection points of the ray with the
surrounding prism surfaces, one for the horizontal
top and bottom surfaces and one for each of the
three vertical sides.

Once the intersected plane is determined, with
rx denoting the intersection point, the prism the

sampling point si

thickness

z
y

x

Figure 2: The extruded plane of triangles forms a slice of
prisms. The thickness of the slices sets the level of detail in
z-direction. Concatenating the slices in the z-directions fills
up the volume of the gain medium.

ray will enter next can be determined based on the
knowledge about the mesh structure:

vertical side The ray remains in the same slice
and the next prism is given by a neighboring
triangle. The data structure to determine the
neighboring triangle is created during the De-
launay triangulation.

horizontal plane If the ray intersects with either
the top or bottom surface of the prism, the
next prism will be based on the same triangle
as the previous, but will be located in a neigh-
boring slice.

This process is iterated for each prism on the
path between ri,u and the selected sampling point
si. Each intersection point rx with prism surfaces
along the path divides the ray into line segments
of a certain length lx. These segments are used for
the gain calculation in the following way: For each
prism x, the contribution to the gain is called par-
tial gain and calculated as a function of lx by:

partial gain(x) = e g0·lx (2.3)

with
g0 = Ntot · (βx(σe + σa)− σa) (2.4)

being defined for the quasi three-level laser [4],
where βx is the stimulus in the current prism and
σe, σa are emission and absorption cross-sections
for a single wavelength. This wavelength is ob-
tained by equidistant discretization of the polychro-
matic spectrum followed by the selection of a ran-
dom wavelength from the discrete spectrum. It is

4

z
y

x

si

ri,u

rx

Figure 3: Scheme for tracing the ray −−−→ri,usi connecting a ran-
dom point ri,u in the gain medium to a selected sampling
point si through the prism structure: All prisms intersected
are located on the same slice. As the ray intersects the ver-
tical interface of two neighboring prisms at rx, it is divided
into two partial rays of lengths lx and li.

worth noting that the function for the partial gain
can be easily extended to include any local charac-
teristic of the gain medium as it is computed for
each prism.

The gain over the complete ray is then computed
as the product of all partial gains:

gain(−−−→ri,usi) =

∏n
partial gain(n)

|−−−→ri,usi|2
(2.5)

weighed by the square of the total ray length.

2.4. Adding vertical reflections to the model

In order to allow for a more realistic simulation of
ASE generation, we include reflections on the outer
upper and lower surface of the medium. The ray is
split into multiple separate sub-rays, each sub-ray
being created by either reflection or transmission
at the intersection point, see sub-rays −−−−−−→ri,umi,u,1,
−−−−−−−−→mi,u,1mi,u,2 and −−−−−→mi,u,2si in Fig. 4 and Fig. 5. The
sum of the energy of both the reflected and trans-
mitted ray is equal to the energy of the incident
ray.

ri,u

si mi,u,1

mi,u,2
z

x
outer surfaces

Figure 4: Total internal reflection of a ray consecutively
intersecting either the upper or lower suface of the gain
medium: The incident angle θ is larger than the angle of
total internal reflection θTIR.

z

x

outer surfaces

ri,u

si mi,u,1

mi,u,2

Figure 5: Partial reflection of a ray consecutively intersecting
either the upper or lower suface of the gain medium: The
incident angle θ′ is smaller than θTIR.

At each reflection point, the angle of total in-
ternal reflection θTIR is calculated to estimate the
initial gain gi of a ray that is reflected at position xi
by

gi =

{
gain(−−−−→xi−1xi) if θ ≥ θTIR
gain(−−−−→xi−1xi) · γ(xi) if θ < θTIR

, (2.6)

where γ(xi) is the fraction of the energy of the inci-
dent ray reflected as given by the reflectivity of the
prism interface and which is non-zero if the incident
angle is too small for total internal reflection.

As in the case of the partial gain computation,
information on the local surface reflectivity can be
easily incorporated into the algorithm.

Each point xn refers to either a mirror point mn,
a start point ri,u or a sampling point si.

The computation of all sub-rays results in a sig-
nificant overhead over the more simplistic model
with just a single ray, which necessitates the use
of a high performance algorithm. The current im-
plementation supports locally varying refractive in-

5

dices as well as varying reflectivities for each De-
launay triangle of the outer surfaces.

Currently, HASEonGPU only supports reflec-
tions on the upper and lower surface of the medium.
Therefore, our model assumes that the lateral sur-
faces of the gain medium are coated with an anti-
reflective material. This is not a drawback, since
a gain medium can be coated with anti-reflective
coating on the vertical surface(s), but, disregards
the sometimes important issue of transverse lasing.

The ray tracing method for computing the gain
presented here can accommodate local, per-prism
variations of the gain. Therefore, it can be cou-
pled to a multi-physics model of lasing that pro-
vides feedback to the simulation via changing the
local reflectivity and partial gain. Such a coupling
requires a short time to solution. Consequently, the
algorithm depicted above has been implemented in
HASEonGPU for multi-GPU clusters as described
in the following.

3. Parallelization and sampling methods

In this section, program flow and memory man-
agement of HASEonGPU are introduced. Incre-
mental improvement of the computational perfor-
mance of HASEonGPU will be discussed by first
describing the parallelization of the ray tracing al-
gorithm on GPUs and later adding several tech-
niques that improve sampling precision as well as
runtime behavior.

All results shown in this section are based on the
simulation of a single time step using the same gain
medium, see Fig. 1, and stimulus with input prop-
erties listed in Table 1.

3.1. HASEonGPU program flow

The basic program flow as depicted in Fig. 6
starts by passing input data from a MATLAB [5]
script to the CUDA-C host application CalcPhi-
ASE. Input data includes the mesh points, local
refractive indices and reflectivities as well as infor-
mation on the absorption and emission spectrum.
Input data is then copied from the main memory of
the compute node (host memory) to the accelerator
card’s memory (device memory) and processed as
described in Section 3.2.2. After the computation
has succeeded, all data is passed back to the calling
MATLAB script and the outer loop advances to the
next time step. In the following, we will focus on
the CUDA-C implementation of CalcPhiASE and
the corresponding kernel functions.

Points per plane 321
Sampling points 3210
Planes 10
Triangles 600
Prisms 5400
Total height of medium 0.6 cm
Surface area of medium 4 × 4 cm2

Medium material Yb3+:YAG

Yb3+ doping 2 at.%
Spectrum Monochromatic

λ = 1030 nm
σe = 2.4× 10−20 cm2

σa = 1.1× 10−21 cm2

Table 1: Input parameters for the scaling tests described in
the text. The crystal doping gives the amount of Yb3+ ions
implanted in the YAG crystal and the spectral information
includes the center wavelength λ, the spectral cross-sections
for photon emission, σe, and absorption, σa.

3.2. Parallel many-core implementation of the ray
tracing algorithm

When moving from a single CPU to a multi-GPU
implementation we heavily exploit the Monte Carlo
Method’s parallel nature, using NVIDIA [8] CUDA-
C for the implementation.

Fig. 6 highlights two embarrassingly parallel
parts of the algorithm which can be exploited for
many-core parallelization. First, for a single sam-
pling point, the calculation of the gain for each ray
is completely independent of the other rays. Sec-
ond, the gain calculation for each sampling point
itself is independent of all other sampling points.

3.2.1. HASEonGPU data structures and caching

In the following we will assume basic knowledge
of the CUDA threading model and of concepts such
as thread blocks, block grids and warps as intro-
duced in [9]. Memory on NVIDIA GPUs in general
can be split in three hierarchical levels:

Global memory several Gigabytes, high latency
and bandwidth, global access for threads from
all thread blocks

Shared memory several kilobytes, medium la-
tency, access by threads of a single thread block

Register memory several 32 bit registers, no la-
tency, exclusive access by a single thread

All HASEonGPU data structures are one-
dimensional arrays that are accessible through

6

MATLAB

CalcPhiASE()

copy mesh to gobal
memory of device

calcGainSum(si)

propagateRay(ri,u)

atomicAdd(gain)

prepare simulation

for each
time step

for each sampling
point independently

for each ray
independently

read laser parameters and mesh

multiply with constants

Figure 6: Basic program flow of HASEonGPU: Input data
is prepared by a MATLAB script which calls the CUDA-C
host application CalcPhiASE inside a loop to simulate the
development of the ASE flux over multiple time steps. The
CUDA-C host application itself calls multiple GPU device
functions for each sampling point and returns the results for
the whole time step to the calling MATLAB script.

programmer-friendly interfaces to avoid explicit
pointer arithmetic. In particular, the mesh con-
sists of an array of points and an array holding the
indices to these points. Three consecutive indices
form a triangle. In addition to the triangle corner
points, normals and neighbors of all edges are in-
cluded for use by the intersection and ray tracing
algorithms.

Precise Monte Carlo integration requires spawn-
ing millions of threads for each sampling point, each
thread computing the gain for several rays sequen-
tially. With each ray requiring 4 bytes of memory,
the memory consumed for storing all rays by far
takes up the largest fraction of global memory, in-
directly setting a limit for the sampling resolution
by the memory available on a single GPU.

It is not possible to store all mesh data in the
(small) register memory. Hence, the mesh is stored
in global memory and will be transferred prism by
prism into the registers of the threads when needed,
see Fig. 7.

The trace of a ray cannot be predicted in ad-
vance and, thus, the shared memory as depicted

global
memory

shared
memory

register
memory

Prism
 x

points

triangle
indices

normals

Prism
 y

...

...

...

...

0 1 31
warp0

uncached

cached

...

0 1 31
warp1 - warpn-1

Figure 7: Memory hierarchy for a single CUDA thread block.
Prism data consisting of corner points, surface normals and
triangle indices are copied only once from global memory
to shared memory, which is used as the L1 cache by CUDA.
Subsequent reads within a thread block are implicitly cached.
Rays with similar paths are grouped together to reuse prism
data from the cache allowing for warp execution of threads
for these groups of rays.

in Fig. 7 acts as an L1 cache, caching prisms
from global memory to share them with several
warps of threads. Threads for rays starting in the
same prism and, henceforth, rays with similar trace
through the mesh, are grouped in thread blocks.
Thus, warps of threads can reuse cached prism data
from their shared memory.

3.2.2. Rays as GPU threads

The tracing of every ray through the mesh struc-
ture can be done independently. Fig. 8 demon-
strates the parallel processing of rays. For each
sampling point si, a kernel consisting of a grid
of maximum 200 blocks is spawned, with the
maximum block number limited by the Mersenne
twister implementation [10] used for generating
random numbers. Each of these blocks contains
128 threads. This number was determined by the
CUDA Occupancy Calculator [11] with the objec-
tive to obtain the maximum number of concur-
rently executed operations for the testing hardware,
see Section 4.2.

Depending on the GPU hardware and compute
capability, up to B blocks can be executed in par-

7

s
e
q
u
e
n
t
i
a
l

p a r a l l e l

CUDA block

CUDA
thread

atomicAdd in
global memory

addition in
register memory

Figure 8: Inside each thread block, threads run in parallel.
Each thread executes several ray traces sequentially and ac-
cumulates their gain values. The final gain value for each
sampling point si is obtained by atomic reduction over all
blocks in a grid and written to global memory.

allel on a device. Each thread within a block will
continue to request and process new rays until a to-
tal of N rays has been simulated on the device. So,
instead of relying on a fixed stride, blocks receive
their workload through an on-demand mechanism.
This scheme allows for efficient inter-thread-block
load balancing as described later in the text.

During simulation, a gain value is calculated for
each ray by executing the following cycle, see also
Fig. 9:

1. Get current sampling point si
2. Request a prism x to start ray from

3. Generate random starting point ri,u inside this
prism

4. Generate ray −−−→ri,usi
5. Calculate the partial gains for −−−→ri,usi:

(a) Find intersection point rx between −−−→ri,usi
and prism x

(b) Calculate length lx of partial ray −−−→ri,urx
(c) Calculate partial gain(x) (2.3)

(d) If the ray did not reach si, determine
neighboring prism x′, set x := x′, set rx
as the new start point and repeat the pre-
vious steps Item 5a to Item 5d.

6. Calculate gain(−−−→ri,usi) (2.5)

7. Sum gains of all rays for the sampling point si
via atomic reduction

si si

random points

ri,u

x

rx

si

si

si

si

ri,u

x x'

ri,u

5d5a

3

1 2

4

Figure 9: Lifecycle of a single ray within a thread, corre-
sponding to propagateRay(ri,u), see also Fig. 6. While the
ray propagates through the mesh structure, steps 5a to 5d
are repeated for each prism traversed along the path to si.

After a maximum of t iterations, each thread in
a block has computed its share of rays pointing to-
wards the sampling point si and adds its locally
accumulated gain to the gain results of the other
threads in a global reduce operation. This reduce
operation is implemented as a sequential atomi-
cAdd operation on the GPU (2.2).

Since each distinct ray potentially takes a dif-
ferent path through the gain medium, the execu-
tion times between threads can differ substantially.
In case of a static mapping from threads to rays,
i.e. strided access, one thread can end up calculating
many rays with long paths. If there are still many
of these rays remaining, the thread has to continue
working for a long time, while other threads are
already finished, causing load imbalances.

In order to improve load balancing between the
threads and, thus, the utilization of the GPU mul-
tiprocessors, each thread block fetches a workload
equal to its number of threads and executes it com-
pletely before determining a new workload. There-
fore, only threads in the same block are stalled by
the gain calculation for the longest ray assigned
to the thread block. Meanwhile, threads in other
blocks can pick up more work.

8

3.2.3. Multi-GPU implementation using the Mes-
sage Passing Interface

sn-1

s0

s1

si sj

request new
sampling point si

request new
sampling point sj

Grid

MPI node

node0 nodek-1

queue of sampling
point indexes

dequeue

s
e
q
u
e
n
t
i
a
l

p a r a l l e l

Figure 10: Partitioning of the workload to multiple GPU
devices. All compute nodes inside a cluster store the whole
mesh in global memory. The head node assigns sampling
points to nodes on demand. After a node has finished com-
putation it will request another sampling point.

Each Monte Carlo computation of Equa-
tion (2.2), calculates the ΦASE(si) value for a sam-
pling point si independent from the other sampling
points. Thus, each calcGainSum(si) calculation is
executed as a self-contained grid and therefore sam-
pling points can be distributed to several devices.

In order to understand the workload distribution
for HASEonGPU in a multi-GPU scenario, consider
a message passing interface (MPI) environment [12]
with k MPI processes, each handling a single GPU.
In this environment, one MPI process is selected as
the master process responsible for distributing the
workload.

The master process holds a queue of all sampling
points. Each of the other MPI processes holds all
the necessary mesh data. It requests a sampling
point from the queue and then begins with the ASE
flux calculation. As soon as one process is finished
with the calculation it can request new work inde-
pendently from the other processes, see Fig. 10.

This form of load balancing is important in the
case of varying workloads for each sampling point,
see Section 3.3.2, which is the most common sce-
nario encountered in real world applications. Al-
though such a so-called master–slave configuration
is known to be prone to communication bottlenecks
when scaling to large k, the amount of data com-

municated between master and slave is minute and,
thus, conflicts in resource sharing are negligible.

As a result of our load balancing strategy, the
speedup is almost linear in the number of GPUs for
moderate but realistic numbers of up to 64 nodes
(see Section 4.4).

3.3. Techniques for efficient ray sampling

This section describes several techniques imple-
mented to improve the quality as as well as the per-
formance of the simulation algorithm. The latter
can simply be expressed as a function of runtime.
To assess changes in the precision of the simulation,
we utilize the mean squared error (MSE) of the ASE
calculation for a given set of rays which serves as a
core metric to describe sampling improvements:

f(si) =
1

N

N−1∑
u=0

gain(−−−→ri,usi) (3.1)

f2(si) =
1

N

N−1∑
u=0

gain(−−−→ri,usi)
2 (3.2)

MSE(si) =

√
f2(si)− f(si)2

N
(3.3)

This metric can be computed for a single sam-
pling point using only the variation in computed
gain values and the number of rays. A lower MSE
indicates that the simulation generated a more pre-
cise value for the sampling point. Methods to
lower the MSE include redistribution of rays to
focus on different areas of the medium (see Sec-
tion 3.3.1) and increasing the number of rays (see
Section 3.3.2).

3.3.1. Importance sampling (IS)

Importance sampling is a well known optimiza-
tion technique when performing Monte Carlo sim-
ulations [13]. For each sampling point the IS algo-
rithm decides which part of the gain medium will
have the most influence on the calculation of ΦASE ,
see 10 and Fig. 11.

Importance sampling distributes N rays to P
prisms of the active gain medium, where parts
which contribute strongly to the ASE flux will be
sampled by more rays, accordingly. This is done by
introducing a center point cx and a triangle surface
area Tx for each prism x with x ∈ {0, . . . , P − 1}.
From the center of each prism, a ray is traced to
the gain medium and its preliminary gain used to

9

CalcPhiASE()

copy mesh to gobal
memory of device

importanceSampling(si)

calcGainSum(si)

propagateRay(ri,u)

atomicAdd(gain_imp)

for each sampling
point independently

for each ray
independently

estimate rays per prism

calculate importance

multiply with constants

Figure 11: HASEonGPU program flow including importance
sampling (IS). Importance sampling influences the distribu-
tion of rays in calcGainSum(si). Varying numbers of rays
per prism are compensated by using impx as a weighting
factor on the gain calculation.

compute the number of rays to use in the Monte
Carlo process.

Rays which start close to the sampling point si
may produce very high gain values in the later
Monte Carlo simulation, which is inevitable for the
chosen method due to the form of the gain func-
tion (see Equation (2.5)), which shows a steep in-
cline for ray lengths below a certain threshold (see
Figure 12). Short rays are not excluded from the
calculations but their effect is suppressed by mul-
tiplying their gain by a factor kl. This factor re-
duces the number of short rays and increases their
importance at the same time, thus keeping their
contribution to the gain constant while at the same
time reducing the probability of strong outliers con-
tributing to the gain when sampling randomly. The
threshold for this short distance is denoted by tl:

kl = |−−−−→ri,u, si| · α (3.4)

gain l(−−−−→ri,u,xsi) =

{
gain(−−−−→ri,u, si) · kl |−−−−→ri,u, si| < tl

gain(−−−−→ri,u, si) otherwise

(3.5)

where α is a constant factor. For our experiments,

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

g
a
in

length of the ray in cm

βx=0.08
βx=0.25

Figure 12: Behavior of the gain function (Equation (2.5)).
Very short rays are modeled with extremely high gain val-
ues. In order to compensate, the importance sampling uses
an additional factor kl to scale down the gain in these
cases. βx = 0.08 shows the gain function for an unpumped
gain medium, as is the case when starting our simulations,
whereas βx = 0.25 is the gain curve for a strongly excited
medium.

α = 1
1000 was sufficient.

The number raysx of rays propagating from
prism x to sampling point si can be derived from
the expected gain for this prism by

raysx =

⌊
gain l(−−→cxsi) ·N∑P−1
j=0 gain l(−−→cjsi)

⌋
(3.6)

In order to compensate for varying values of
raysx, the importance impx is used as a weight-
ing factor and extends (2.5) to (3.8) where Ttotal is
the sum of all triangle surface areas:

impx =

{
Tx

Ttotal
· N
raysx

raysx > 0

0 otherwise
(3.7)

gain imp(−−−−→ri,u,xsi) = gain(−−−→ri,usi) · impx (3.8)

The result of importance sampling for si is a dis-
tribution of rays, giving the number of rays for each
prism. This method greatly enhances the precision
of the simulation as it reduces strong peaks in lo-
cal gain that arise due to overestimating the con-
tribution of prisms with high expected gain when
uniformly distributing rays over the medium with
constant weighting.

The impact of importance sampling in ΦASE(si)
is seen when calculating the difference

ΦASE∆ = |ΦASE IS(M)− ΦASE US(N)|

between the results obtained by importance sam-
pling (IS) and uniform sampling (US) starting with

10

105

106

107

In
cr

e
a
se

 N

N [rays]

0.0001 0.0002 0.0003 0.00040 0.0005

Figure 13: Left: ΦASE IS(105). Right: ΦASE∆. With in-
creasing number N of rays for the simulation with uniform
sampling (US), the difference between ΦASE IS(105) and
ΦASE US(N) constantly decreases as the result for US ap-
proaches the result obtained by importance sampling with
orders of magnitude less rays.

N,M = 105 rays per sampling point as depicted in
Fig. 13. The number N of rays per sampling point
was increased twice, each time by one order of mag-
nitude, resulting in sampling with 106 and 107 rays,
respectively.

When increasing N , ΦASE∆ decreases and the
result obtained with US approaches the result ob-
tained with importance sampling and fixed number
of M = 105 rays, see also Fig. 14.

We conclude that importance sampling can
achieve the same result as obtained by uniform sam-
pling with orders of magnitude fewer rays, thus in-
creasing the efficiency of Monte Carlo integration
by reducing variance and simulation runtime.

3.3.2. Adaptive sampling (AS)

Adaptive sampling (AS) utilizes the MSE directly
to determine the quality of the result. Since most
sampling points si exhibit low MSE(si), there is
no need to sample them with a high number of rays
in order to obtain the ASE gain with a sufficient
precision.

However, in few cases spurious outliers need to be
sampled with a higher resolution to reduce the over-
all variance of the ASE gain. This can be achieved
by an adaptive method which allows for removing
strong peaks in the result of the simulation by re-
sampling these points with more rays. The number
of rays is increased with each iteration, until the de-

s
a
m

p
li
n
g
 p

o
in

ts

MSE

US
IS

 1

 10

 100

 0.0025 0.005 0.0075 0.01

Figure 14: Histogram comparing the mean squared error
(MSE) distribution, Equation (3.3), for importance sam-
pling (IS) and uniform sampling (US). Importance sampling
shifts the histogram towards lower MSE values for most sam-
pling points while in some cases maintaining high MSE val-
ues, thus not reducing the global maximum MSE value.

sired MSE threshold is met or a defined maximum
number of rays is reached, see Fig. 15.

Note that after each adaptive resampling the im-
portance sampling step needs to be executed again,
since the number of rays has been changed, thus
changing the overall distribution of rays. Poten-
tially unbalanced workloads, caused by a varying
number of rays per sampling point in a multi-GPU
scenario are mitigated by the MPI load balancer,
see Section 3.2.3.

CalcPhiASE()

copy mesh to gobal
memory of device

importanceSampling(si)

calcGainSum(si)

for each sampling
point independently

multiply with constants

Adaptive Sampling
retry with
more rays

AS

Figure 15: HASEonGPU program flow extended by adap-
tive sampling (AS). The mean squared error MSE(si)
of the ASE calculation for a given set of rays is com-
pared to a fixed threshold. If the threshold is exceeded,
both importanceSampling(si) and calcGainSum(si) are
restarted using a higher number of rays to increase sampling
resolution.

11

sa
m

p
li
n
g
 p

oi
n
ts

MSE

IS + AS
IS

1

10

100

0.0025 0.005 0.0075 0.01

MSE threshold

Resampling

Figure 16: Histogram comparing MSE values for importance
sampling (IS) only and importance sampling with adaptive
sampling (IS+AS). The addition of adaptive sampling glob-
ally removes MSE values higher than a given threshold from
the distribution.

For comparison, the impact of importance sam-
pling on the MSE values is shown in Fig. 14. Im-
portance sampling alone already reduces the MSE
values for many sampling points significantly, albeit
not evenly.

By employing adaptive sampling, the MSE values
for all sampling points are reduced to a global, user-
defined MSE threshold as seen in Fig. 16 which uses
an MSE threshold of 0.005.

All sampling points si with MSE(si) > 0.005
were resampled with more rays per sampling point
to lower their MSE value, while the number of rays
used for all other sampling points remained un-
changed.

Adaptive sampling does not aim to reduce the av-
erage MSE over all sampling points, but instead re-
duces the maximum MSE values of outliers. Thus,
AS gives lower errors and a smaller error distribu-
tion while maintaining roughly the time to solution.

3.4. Methods summary

It is left to compare the sampling methods US,
IS, and AS by runtime and precision. In Fig. 17, the
time to reach an MSE value of 0.01 was measured.
It is evident that IS+AS performs much better than
US or IS alone. We conclude by stating that thread
parallelization over rays grouped by proximity al-
lows for efficient caching. Additional load balancing
between thread blocks and between MPI processes
allows for excellent scaling for all relevant applica-
tion cases. Time to solution is furthermore reduced
drastically by the combination of importance sam-
pling and adaptive sampling which optimizes the
distribution of rays over the medium.

US IS IS+AS

ru
n

ti
m

e
[s

]

MSE threshold = 0.01

1

10

100

1000

10000

Figure 17: Comparison of runtimes for the presented sam-
pling methods with same MSE value. The addition of AS
greatly reduces runtime.

4. Validation of the results obtained with
HASEonGPU

4.1. Simulation input data used for validation

In the following, the simulation setup uses a
cylindrical gain medium with parallel top and bot-
tom surfaces as depicted in Fig. 18 in order to com-
pare the simulation results to experimental results
obtained with a medium of the same form and di-
mensions. The simulation input as listed in Table 2
was chosen to match the experimental setup.

Points per plane 421
Sampling points 4210
Planes 10
Triangles 812
Prisms 7308
Total height of medium 0.7 cm
Surface area of medium π × 3 cm2

Medium material Yb3+:YAG ceramic

Yb3+ doping 2 at.%

Cladding material Cr4+:YAG

Cr4+ doping 0.25 at.%
Spectrum Polychromatic

Table 2: Input parameters for validating the simulation re-
sults in comparison to experiment. Crystal doping is given
for both the gain medium and the cladding. The polychro-
matic input cross-sections are plotted in Figure 19. Note
that the overall size of the problem is comparable to that of
the test setup given in Table 1.

In order to study the influence of various approx-
imations, we performed simulation using both a
monochromatic spectrum peaked at the wavelength
of maximum intensity emission and the full poly-
chromatic spectrum. We furthermore studied the
impact of reflections on the validity of the simula-
tion results.

12

Figure 18: Non-uniform sampling of the circular active gain
medium that was used for comparison of HASEonGPU sim-
ulation results to experimental data. In z-direction the
medium is sampled by 9 slices or 10 planes, respectively.

4.2. Technical description of the environment used
for validation

The validation simulations were conducted on a
GPU cluster consisting of 16 compute nodes con-
nected by InfiniBand over a Mellanox MSX6036F
(FDR) IB switch, each equipped with a quad
core Intel Xeon CPU E5-2609 CPU (2.40GHz),
64GB RAM and 4 NVIDIA Tesla K20m GPUs.
Each GPU contains 5GB GDDR5 RAM and 2496
CUDA cores with a total peak performance of
3520 GFLOP/s. Job submission is handled by
TORQUE [14] with Maui [15] as scheduling back-
end.

4.3. Simulation validation through comparison to
experiment

We compare the small signal gain at a wavelength
of 1030 nm derived from the simulation and the
results obtained in the experiment described in [6].
Note the impact of the reflections as well as the
polychromatic approach in our model compared to
experimental results.

Fig. 20 shows a variety of simulation configura-
tions and their influence on the gain development
over time, compared to the experimentally mea-
sured gain. Note that simulation values are discrete
and linearly interpolated to guide the eye.

In this particular experiment, monochromatic
simulations without reflections (d) show very sim-
ilar, but smaller, gain values in comparison to the
polychromatic simulation with reflections (c).

0.0 · 100

5.0 · 10-21

1.0 · 10-20

1.5 · 10-20

2.0 · 10-20

2.5 · 10-20

 910 960 1010 1060

in
te

n
s
it

y
[c

m
²]

wavelength[nm]

Emission
Absorption

Figure 19: Polychromatic input spectra used in simula-
tions. In the monochromatic setup the emission spectrum
was approximated by a monochromatic spectrum of wave-
length 1030 nm, marking the position of the maximum emis-
sion intensity.

0

1

2

3

4

5

0 500 1000 1500

g
a
in

time[µs]

(a)
(b)
(c)
(d)
(e)

pump stops
at 1.02 ms

(a)

(b)

(c)

(d)

(e)

Figure 20: Simulation results compared to experimental
measurements: (a) polychromatic no reflections; (b) exper-
imental measurement; (c) polychromatic with reflections;
(d) monochromatic no reflections; (e) monochromatic with
reflections. Close-to-perfect agreement is found between ex-
perimental results and results obtained using a simulation
with a polychromatic spectrum and reflections. Simulation
results are discrete and interpolated linearly to guide the eye.

Interestingly, results can get worse when more
physical details are considered. Adding reflec-
tions (e) but keeping the spectrum monochromatic
overestimates the ASE impact and consequently
underestimates the gain. We mainly attribute this
to reflections increasing the average length of ray-
traces, especially due to total internal reflection.
Thus, the energy stored in the gain medium is re-
duced more severely by ASE than without reflec-
tions.

Simulating only a polychromatic spectrum (a)
overestimates the gain. As the average emission
intensity is lower than the peak value at 1030 nm,

13

see Fig. 19, the reduced ASE flux leads to an over-
all higher gain. In comparison, the simulation con-
figuration including both reflections and a poly-
chromatic spectrum (c) matches the measured val-
ues (b) within the measurement uncertainty and
validates our simulation approach.

For the same simulation input parameters,
Fig. 21 visualizes the temporal rise in ASE at five
consecutive time steps. Using (2.1) and (2.4), it il-
lustrates dn

dt |ASE in the sliced gain medium by plot-
ting the local value of

dn

dt

∣∣∣∣
ASE

=

∫
λ

g0(λ) · ΦASE(λ) dλ (4.1)

for each sampling point.

200 µs

400 µs

600 µs

800 µs

1000 µs

-10 10525 50 75

Figure 21: Development of dn
dt
|
ASE

in a sliced gain medium
for five consecutive timesteps while the medium is pumped.
Values in the pumped area are increase until the pump stops.

4.4. Performance benchmarking

In Fig. 22, the runtime of the original single
threaded algorithm from [6] is compared to the
non-adaptive parallel ASE flux algorithm (IS) with
varying numbers of rays to demonstrate scaling for
different workloads. All simulations were performed
without reflections to ensure comparability. In or-
der to increase the number of GPUs, MPI [12] was

100

101

102

103

104

105

106

104 105 106 107 108

ru
n
ti

m
e
[s

]

rays per sampling point

 1 x CPU IS
 1 x GPU IS
 4 x GPU IS
47 x GPU IS

Figure 22: Runtime of the sequential IS algorithm imple-
mentation compared to the parallel IS algorithm implemen-
tation. Comparing single CPU and single GPU setups, the
time to solution is reduced by two orders of magnitude for
intensive workloads. Further improvements can be achieved
by using more GPUs.

used to distribute the sampling points to all avail-
able devices. A sequential overhead for device allo-
cation on the nodes and not fully occupied GPUs
are the reasons for the lack of runtime improvement
observed for small workloads with a low number of
rays.

Adaptive sampling usually does not only elimi-
nate outliers, but also reduces the runtime. By us-
ing a predefined MSE-threshold, the precision of the
simulation can be adjusted in terms of this thresh-
old rather than simply increasing the number of
rays for all the sampling points. Usually, only a
small subset of sampling points actually needs to
be sampled by a high number of rays and an in-
significant increase in runtime can be sufficient to
lower the maximum MSE values below the desired
threshold, as seen in Fig. 23. Note, that some val-
ues in this figure actually display almost the same
runtime, albeit much lower MSE values, since the
computation always succeeded to stay below the
given threshold with very little additional effort.
This is indicated by the black rectangle in Fig. 23.

For any adaptive algorithm, simulation times for
different sampling points can vary significantly, see
Section 3.3.2. Inter-process load balancing via MPI
as described in Section 3.2.3 allows to account for
this variation in ray number, however it still ex-
hibits a constant initialization overhead of 5 s for
sending the initialization data to all MPI processes.

Apart from this, distribution of the computa-
tion to multiple devices scales well, as seen in
Fig. 24. This result shows that for the same work-

14

0.0001

0.001

0.01

0.1

1

100 1000

m
a
x.

 M
S

E

runtime[s]

IS
IS + AS

not fully occupied GPU

Figure 23: Comparison of maximum MSE values of IS to
IS+AS. The same runtime yields much lower maximal MSE
values when adding AS.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

s
p
e
e
d
u
p

GPUs

IS + AS
IS

Figure 24: Strong scaling on multiple GPU devices. Bench-
marks with up to 64 GPUs in a cluster show that load bal-
ancing as implemented in HASEonGPU results in almost
linear speedup behavior.

load adding GPU compute processes gives nearly
linear speedup with the number of GPUs added.

4.5. Conclusion and outlook

We have presented the open-source, adaptive
multi-GPU code HASEonGPU for computing the
ASE flux in laser gain media. Inclusion of dynamic
load balancing achieves large speedups on the order
of two magnitudes of the multi-GPU implementa-
tion compared to previously existing CPU imple-
mentations. Comparison to experiment shows that
HASEonGPU precisely predicts the absolute gain
values during and after pumping of the medium.

HASEonGPU implements Monte Carlo integra-
tion of the gain using a ray tracing method that
can include local information on the gain medium
at high spatial resolution using the NVIDIA CUDA

extension to C. Dynamic adaptive resolution guar-
antees to globally adhere to a design precision while
at the same time reducing computation time. In-
cluding several sampling methods allows for signif-
icant reduction of time to solution.

For easy integration into existing workflows,
HASEonGPU provides a MATLAB interface. By
using this interface, experimental details like
cladding, surface coating, refractive indexes, poly-
chromatic laser pulses and reflections on the upper
and lower surface can be integrated into the simu-
lation. This allows for detailed simulations of ap-
plication cases and future integration into multi-
physics simulation chains relying on an interface
widely adopted within the high power laser com-
munity.

Future improvements in HASEonGPU will ad-
dress reflections on the lateral sides of the gain
medium. Moreover, it will be helpful to further
increase the maximum number of rays, which is
currently fixed to 5 × 108 rays per sampling point
due to the available GPU memory. This could be
done by splitting the simulated rays in groups and
calculating these groups iteratively, combining the
results afterwards. Such an approach would also
allow for higher scaling of HASEonGPU, as cur-
rently the granularity of the simulation is limited
by the number of sampling points. Regardless of
how many GPUs are used for calculation, no fur-
ther speedup will be obtained as soon as the number
of GPUs exceeds the number of sampling points, es-
sentially making an increase in GPUs futile.

However, this limitation does not influence the
usability of HASEonGPU strongly, as the sev-
eral sampling methods implemented strongly re-
duce the need for high ray number sampling. Thus,
HASEonGPU presents an important tool for pro-
viding scalable parallel simulations of ASE flux for
the upcoming generation of high-power laser sys-
tems at high spatial and temporal resolution.

With the growing availability of mid-size high-
performance compute clusters using GPUs, this will
allow to integrate HASEonGPU into a chain of
multi-physics simulations, as the time to solution
now enables repetitive simulations with integrated
feedback on the local properties of the gain medium
and its surroundings. With HASEonGPU being
fully open source, adapting the code to more so-
phisticated applications is straightforward and in
many cases only requires a change of the local gain
calculation and not a change in the ray tracing al-
gorithm itself.

15

First validation tests show very good agreement
with measurements, promising HASEonGPU to be
a tool for real-world applications that can be used
by laser designers without a need to deeply delve
into GPU programming.

Acknowledgment

We acknowledge support by the CUDA Center of
Excellence [16].

[1] G. I. Peters, L. Allen, Amplified spontaneous emission
I. The threshold condition, J. of Phys. A: Gen. Phys.
4 (2) (1971) 238–243.

[2] L. Allen, G. I. Peters, Amplified spontaneous emis-
sion and external signal amplification in an inverted
medium, Phys. Rev. A 8 (4) (1973) 2031–2047.

[3] G. J. Linford, E. R. Peressini, W. R. Sooy, M. L. Spaeth,
Very long lasers, Appl. opt. 13 (2) (1974) 379–390.

[4] D. Albach, J.-C. Chanteloup, G. l. Touzé, Influence of
ASE on the gain distribution in large size, high gain
Y b3+:YAG slabs, Opt. express 17 (5) (2009) 3792–3801.

[5] MATLAB, a numerical computing environment,
http://www.mathworks.de/products/matlab, accessed:
2014-08-03.

[6] D. Albach, Amplified spontaneous emission and ther-
mal management on a high average-power diode-
pumped solid-state laser-the Lucia laser system, Ph.D.
thesis, Palaiseau, Ecole polytechnique (2010).

[7] B. N. Delaunay, Sur la sphère vide, Bull. of Acad. of
Sci. of the USSR (1934) 793–800.

[8] NVIDIA corporation, http://nvidia.com, accessed:
2014-08-03.

[9] CUDA C programming guide, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html,
accessed: 2014-08-03.

[10] M. Saito, A variant of mersenne twister suit-
able for graphic processors, http://www.math.sci.

hiroshima-u.ac.jp/~m-mat/MT/MTGP, accessed: 2014-
12-09 (2010).

[11] CUDA occupancy calculator, http://developer.

download.nvidia.com/compute/cuda/CUDA_

Occupancy_calculator.xls, accessed: 2014-07-06.
[12] J. Dongarra, D. Walker, E. Lusk, B. Knighten, M. Snir,

A. Geist, S. Otto, R. Hempel, E. Lusk, W. Gropp, et al.,
MPI - a message-passing interface standard, Int. J. of
Supercomp. and High Perform. Comput. 8 (3-4) (1994)
165.

[13] E. C. Anderson, Monte Carlo methods and impor-
tance sampling, University lecture notes for statisti-
cal genetics, http://ib.berkeley.edu/labs/slatkin/

eriq/classes.htm#GuestLectAnchor (1999).
[14] A. Computing, TORQUE resource manager,

http://www.adaptivecomputing.com/products/

open-source/torque, accessed: 2014-07-05.
[15] A. Computing, Maui cluster scheduler, www.

adaptivecomputing.com/products/open-source/maui,
accessed: 2014-08-03.

[16] Dresden CUDA Center of Excellence, https://

ccoe-dresden.de, accessed: 2014-12-11.
[17] E. Zenker, C. Eckert, M. Melzer, F. Liebold, D. Albach,

HASEonGPU github repository, https://github.com/
ComputationalRadiationPhysics/HASEonGPU, accessed:
2014-12-09.

Appendix A. Overview of the HASEonGPU
application interface

The application is available as a command-line
tool and reads simulation data from plain text files.
It was improved over the original application de-
veloped by D. Albach [6], adding support for poly-
chromatic spectra, adaptive sampling, multi-GPU
computation and reflections.

For easy access, use of the MATLAB compat-
ible interface, see Appendix A.1, is highly rec-
ommended. Experienced users with the intention
to call the application directly should consult the
README file, the example code provided or the
source code [17] for more details.

Appendix A.1. Installation and Usage

The application was tested and developed under
a Linux environment and runs on NVIDIA graph-
ics cards with compute capability 2.0 (Fermi gen-
eration) or higher. It can be built by running
make inside the application directory, provided that
make (tested with 3.82), gcc (tested with 4.6.2) and
CUDA (tested with 5.0) are installed. This will also
create a MATLAB file calcPhiASE.m in the appli-
cation directory.

For running the application from MATLAB, 2
steps are necessary to take in advance:

1. Include calcPhiASE.m from the application di-
rectory into your MATLAB path

2. Call the calcPhiASE function from the MAT-
LAB script:

[phiASE, MSE, nRays] = calcPhiASE(args)

Appendix A.1.1. HASEonGPU input arguments

An overview of the most important input argu-
ments is given in the list below:

Mesh information

• Structure (points, triangles, prisms)

• Thickness of a mesh slice

• Number of planes

• Mesh refractive indexes (& surroundings)

• Reflectivities of mesh planes bottom and top

Properties

• Stimuli β in sampling points and prisms

16

http://www.mathworks.de/products/matlab
http://nvidia.com
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP
http://developer.download.nvidia.com/compute/ cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/ cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/ cuda/CUDA_Occupancy_calculator.xls
http://ib.berkeley.edu/labs/slatkin/eriq/classes.htm#GuestLectAnchor
http://ib.berkeley.edu/labs/slatkin/eriq/classes.htm#GuestLectAnchor
http://www.adaptivecomputing.com/products/open-source/torque
http://www.adaptivecomputing.com/products/open-source/torque
www.adaptivecomputing.com/products/open-source/maui
www.adaptivecomputing.com/products/open-source/maui
https://ccoe-dresden.de
https://ccoe-dresden.de
https://github.com/ComputationalRadiationPhysics/HASEonGPU
https://github.com/ComputationalRadiationPhysics/HASEonGPU

• Crystal Fluorescence τf

• Cladding (use of different materials)

• Doping of the active gain medium Ntot

Laser information

• Absorption cross section σa

• Emission cross section σe

Algorithm information

• Maximum number of rays for adaptive sampling

• MSE-threshold for adaptive sampling

• Decide whether to activate reflections

A detailed description of the MATLAB compat-
ible interface and the required arguments including
units is given in the README file.

Appendix A.1.2. Output

The simulation returns 3 data sets:

phiASE is a matrix of ΦASE(si)

MSE is a matrix of MSE(si) reached

nRays is a matrix of number of rays used for
the Monte Carlo integration for each sampling
point

The return variables are represented as two-
dimensional matrices in which columns are slice in-
dexes and rows are point indexes. For example,
the matrix for the example gain medium has 321
rows and 10 columns, multiplying to 3210 sampling
points. The value for the i-th point and the j-th
slice can then be obtained in MATLAB by invok-
ing value = values(i,j).

Appendix B. Description of the source code
structure

This section describes the structure of the
HASEonGPU source code and provides a brief
overview from the parsing of the input data up
to the return of output data. The following para-
graphs show a typical run of the program, the hier-
archy of function calls and the files in which they are
contained. It is intended as a starting point for un-
derstanding the source code in detail. All file paths
are related to root folder of the repository [17]. We
assume to use simulation data similar to that in the
example folders (example/). As a graphical refer-
ence, see the program flow diagrams Figures 6, 10,
11 and 15.

Appendix B.1. Calling the HASEonGPU code

Starting from a MATLAB -based
(like example/matlab example/

laserPumpCladdingExample.m), the MATLAB
interface (src/calcPhiASE.m) is called through
the MATLAB function calcPhiASE(). The in-
terface then starts the actual HASEonGPU code
(src/main.cc).

Appendix B.2. Preparing the actual computation

The main function first parses the com-
mand line parameters as well as the input data
for the simulation (src/parser.cc, functions
parseCommandLine(), parseMesh()) and stores
these parameters in a Mesh class (src/mesh.cc)
and the structs ExperimentParameters and
ComputeParameters according to their mean-
ing for the simulation. Based on the pa-
rameters deviceMode and parallelMode,
the correct communication entry point is
selected (files src/calc phi ase mpi.cc,
src/calc phi ase threaded.cc,
src/calc phi ase graybat.cc). For example, the
MPI communication corresponds closely to what is
described in Section 3.2.3 and Figure 10, where one
process becomes the master (mpiHead()) and the
others are slaves (mpiCompute())that will perform
the actual computation (in src/calc phi ase.cu).

Appendix B.3. Host part of the computation

In src/calc phi ase.cu, the function
calcPhiAse() (see Figure 11) creates all datas-
tructures on the GPU that are required for the
subsequent kernels, initializes the random genera-
tor and enters the loop depicted in Figure 15 which
executes multiple GPU kernels in each iteration.
The kernels importanceSamplingPropagation(),
importanceSamplingDistribution()

and mapRaysToPrisms() are lo-
cated in src/importance sampling.cu

src/map rays to prisms.cu. The core
part of the computation is entered through
the GPU kernels calcSampleGainSum() or
calcSampleGainSumWithReflection().

Appendix B.4. GPU part of the computation

The mentioned kernels are located in
src/calc sample gain sum.cu, and their
parallel flow is depicted in Figure 8. In the
case of reflecting rays, the partial rays (Sec-
tion 2.4, Equation (2.6)) are computed inside

17

propagateRayWithReflection(), which is located
in src/propagate ray.cu. Finally, the propaga-
tion propagateRay() itself is computed with the
helper functions from src/reflection.cu and
src/geometry.cu.

Appendix B.5. Gathering of output data

The gain values of each ray are summed in-
side the calcSampleGainSumWithReflection ker-
nel and copied back to the host after the kernel
execution. If the MSE value (see Section 3.3) is
low enough, the gain for the sample point is re-
turned to the master process and the next sam-
ple point requested. After all sample points are
processed, the list of gain values as well as the
used number of rays and corresponding MSE val-
ues are written to the output folder through the
helper functions found in src/write to file.cc

and src/write matlab output.cc where it can be
read into MATLAB again.

18

