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Abstract. With the Ribbon Growth on Substrate (RGS) technology, a new crystallization technique is available 

that allows controlled high crystallization rate production of silicon wafers and advanced metal-silicide alloys. 

Compared to other casting methods, such as e.g. directional solidification, the RGS process allows better 

crystallization control, high volume manufacturing and high material yield due to its continuous, substrate-driven 

design. Insights from modelling the characteristic melt flow in the casting frame are very desirable. To address 

this demand, we are developing a new numerical tool based on OpenFOAM [1] which can be utilized to simulate 

the free-surface dynamics of the melt flow under the influence of alternating electromagnetic fields. The 

underlying multi-physical model involves three-dimensional hydrodynamic and magnetodynamic effects and 

their interaction. 

Keywords: Ribbon Growth on Substrate, numerical simulation, coupled multi-physics, free-surface flow, eddy-

currents 

1. Introduction 

The central idea of the RGS process [2, 3] is a continuous feeding of molten semi-

conductor material into a bottomless casting frame, while a solidified foil (ribbon) is extracted 

sidewise on a sub-cooled moving substrate underneath. Fig. 1 depicts the main parts and 

outlines the process principle. Excitation coils, which are necessary for inductive heating, bear 

a two-fold meaning. The generated AC magnetic field is designed to provide both heat and a 

kind of magnetic valve. The latter actively prevents leakage of melt from the slit region 

between casting frame and substrate and reduces flow-oscillations at the extraction site of the 

silicon foil through electromagnetic forces. That is, magnetic forces act to counter the 

gravitational forces on the melt, supporting the effect of surface tension on the free-surface in 

the slit region.  

2. Numerical Model 

In the real RGS process [2], the casting region is a complex and detailed system. Many 

parts of this system have only limited influence on the melt flow. In order to reduce 

computational efforts, a simplified set of modeling parameters and casting environment 

geometry was derived for our numerical approach. For this model the RGS wafer size is given 

by 156 𝑚𝑚 × 156 𝑚𝑚 × 0.5 𝑚𝑚. The mean melt level height inside the casting frame is 

assumed to be ℎ = 20 𝑚𝑚, the length of the melt region in process direction is 𝑙 = 70 𝑚𝑚 

and the width 𝑤 = 150 𝑚𝑚. A typical set of process parameters is a RMS-current of 

𝐼𝑅𝑀𝑆 = 1000 A at a frequency of 𝑓 = 10 kHz to feed the excitation coils in combination with 
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a substrate velocity of 𝑢S = 0.1 m/s in process direction. The most important properties of 

the materials shown in Fig. 1 are listed in Table 1.  

Considering the assembly of all conducting parts inside and around the excitation coil (cf. 

Fig. 1) as one non-magnetizable, conducting domain ΩC with locally varying conductivity, the 

physical description of the magnetic fields can be regarded as a typical eddy current problem 

[4] according to the scheme in Fig. 2. The skin depths 𝛿 as specified in Table 1 denote the 

characteristic penetration depths of the alternating magnetic flux into each material. Our 

mathematical formulation is based on the so called 𝑨,𝑉-𝑨-formulation [4, 5] for small 

magnetic Reynolds numbers 𝑅m = 𝜇0𝜎𝑈𝐿 ≪ 1 [6]. This is valid for our purposes taking into 

account a typical reference velocity of 𝑈 = 1 𝑚/𝑠 and the mean melt height as reference 

length  𝐿 = ℎ in combination with the properties of the melt from Table 1. Given the velocity 

field 𝒖 and the physical time 𝑡, we may introduce the magnetic vector potential 𝑨 with 

applied Coulomb-Gauge and the electric scalar potential 𝑉 in ΩC as follows: 

𝑩 = 𝜵 × 𝑨 ;      𝜵 ∙ 𝑨 = 0 ; (1) 

𝑬 = −(𝜕𝑡𝑨 + 𝜵𝑉) ;     ‖𝒖 × 𝑩‖/‖𝑬‖ ≪ 1 . (2) 

The quasi-static Maxwell-Equations with MHD approximation [4, 6] for the conducting 

domain ΩC then becomes 

𝜵 × 𝜵 × 𝑨 + 𝜎𝜇0(𝜕𝑡𝑨 + 𝜵𝑉) = 𝟎 , (3) 

with the solely induced current density according to Ohm’s law - the eddy currents: 

𝒋 = −𝜎(𝜕𝑡𝑨 + 𝜵𝑉) . (4) 

An additional equation for 𝑉 can be derived from (4) to satisfy current conservation (𝛁 ∙ 𝒋 =
0) in ΩC in the case of a three-dimensional domain: 

 𝜵 ∙ (𝜎𝜵𝑉) = −𝜵 ∙ (𝜎𝜕𝑡𝑨) . (5) 

To allow for discontinuities in 𝜎, we have developed specialized interpolation and 

discretization schemes, which are strictly current conserving. 

Maxwell's equations [4] are actually defined on an unbounded domain. To capture this 

numerically, the conducting region itself is being surrounded by a non-conducting region Ω0 

(𝜎 ≡ 0) which extends up to a sufficiently large distance from the interface ΓC = ΩC ∩ Ω0 

between both domains and from the location of the excitation coil (cf. Fig. 2). The size of the 

non-conducting region can be determined empirically. Starting from a first selection, its size 

can be increased successively until the magnetic field inside the conductor does not change 

significantly anymore. 

Using the definition of 𝑨 and 𝑉 to substitute the magnetic field 𝑩 and the electric field 𝑬, 

enables us to explicitly introduce an external source current density 𝒋0 (claiming 𝛁 ∙ 𝒋0 = 0) in 

the governing equations for Ω0 to model the inductor. If this is elaborated, 𝑨 needs to hold 

𝜵 × 𝜵 × 𝑨 = 𝜇0𝒋0  (6) 
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in the non-conducting region.  

The outer boundary Γ∞ of Ω0 with its normal 𝒏∞ is modelled as tangentially magnetic. A 

corresponding boundary condition for the Coulomb gauged magnetic vector potential 𝑨 can 

be identified from this as: 

𝑨 × 𝒏∞ = 0 ;      𝜕𝒏∞
𝑨 ⋅ 𝒏∞ = 0 . (7) 

It is worth to note that using equation (7) will not truncate the magnetic field 𝑩 on Γ∞. It 

rather forces the magnetic field lines to be closed within the non-conducting region as if the 

numerical model would be in a magnetically insulating box. A more strict modelling of this 

far-field boundary would be to use a purely homogeneous Dirichlet boundary condition. 

Across the conductor interface ΓC, the Coulomb gauged magnetic vector potential 𝑨 

remains continuous. The current density 𝒋 needs to vanish in normal direction 𝒏C. To fulfill 

this requirement, it is necessary to apply an inhomogeneous Neumann-boundary condition for 

𝑉, which represents a charge accumulation in order to counter the rate of change of the 

magnetic field: 

𝜵𝑉 ∙ 𝒏𝐶 = 𝜕𝑡𝑨 ∙ 𝒏𝐶  . (8) 

The 𝑨,𝑉-𝑨-formulation as given above can be transformed into a quasi-stationary 

formulation. Thereby complex-valued sinusoidal fields for an angular frequency of 𝜔 = 2𝜋𝑓 

are introduced. This is valid since the excitation coil in the real RGS process is part of an 

oscillation circuit and thus driven by a sinusoidally alternating current with resonance 

frequency. After switching to the complex domain, it is possible to replace all time derivatives 

of 𝑨 with a complex-valued angular frequency (∂𝑡 = 𝑖𝜔). 

As already mentioned in the introduction, a new algorithm for the numerical solution of the 

magnetodynamic system has been developed on the basis of the OpenFOAM Extend Project 

(www.extend-project.de). The novel solver-implementation called eddyCurrentFoam uses a 

partially coupled approach to deal with the challenging 𝑨,𝑉-system. For the complex parts of 

𝑨 in the frequency domain, the component-wise coupling is directly integrated into the finite-

volume discretization process on the whole region Ω. A segregated coupling is then used to 

link 𝑨 and 𝑉 together, where the electric scalar potential is only solved on ΩC. The 

implementation of  our new eddyCurrentFoam-solver has already been validated. A detailed 

description of its concept would however go beyond the scope of this paper. More details and 

a comparison of results for an appropriate test case with a commercial finite-element software 

will be published elsewhere. 

The fluid dynamics of the melt (cf. Fig. 1) is governed by the principle of conservation of 

mass and momentum in form of the Navier-Stokes-Equation [7]. The melt is modelled as an 

incompressible, isothermal Newtonian fluid. Eddy currents 𝒋 from (4) and the magnetic field 

𝑩 corresponding to (1) have an effect on the momentum balance via the time-averaged 

Lorentz force 

𝑭𝐿 = 〈𝒋 × 𝑩〉𝑡 . (9) 

Following Ampere’s law, 𝑭L can be expressed as a sum of its rotational and gradient part 
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𝑭𝐿 = 1/𝜇0〈(𝑩 ∙ 𝜵)𝑩〉𝑡 − 𝜵𝑝𝐵, (10) 

where 𝑝𝐵 is the time-averaged magnetic pressure given by 

𝑝B = 1/(2𝜇0)〈𝑩𝟐〉𝑡 . (11) 

Besides magnetic forces, gravitational forces are acting on the fluid such that the above can 

be concluded to 

𝜌[𝜕𝑡𝒖 + (𝒖 ∙ 𝜵)𝒖] = 𝜵 ⋅ 𝝉′ + 1/𝜇0〈(𝑩 ∙ 𝜵)𝑩〉𝑡 ;      𝜵 ∙ 𝒖 = 0 , (12) 

where the stress tensor 

𝝉′ = 𝜂[𝜵𝒖 + (𝜵𝒖)𝑇] − 𝑝′𝑰  (13) 

is based on a modified diagonal fluid pressure including magnetic and gravitational pressure: 

𝑝′ = 𝑝 + 𝑝𝐺 + 𝑝𝐵     𝑤𝑖𝑡ℎ     𝑝𝐺 = −𝜌(𝒈 ∙ 𝒙) . (14) 

In the equations above, the fluid density is denoted with 𝜌, the dynamic viscosity of the fluid 

with 𝜂, the physical pressure with 𝑝 and 𝒙 is the field of position vectors. Currently 

solidification and thermal energy transport is not modelled, but an extension is possible at a 

later stage of development. 

The fluid domain is bounded by the top free-surface, side walls (casting frame) and the 

liquid/solid interface at the bottom (substrate). The latter is assumed to be planar and being 

translated with the horizontal casting velocity 𝒖S of the moving substrate. The free-surface 

boundary ΓF with ΓF ∈ ΓC is influenced by strong surface tension. The viscosity of the external 

atmosphere, which is in contact with the liquid melt at the free-surface, is several orders of 

magnitude smaller than the viscosity of the melt itself. In this regard, the fluid boundary 

condition at the free-surface with its velocity 𝒖F, unit normal field 𝒏F, unit tangent field 𝒕F 

and the stress vector 𝒔F = 𝝉′ ∙ 𝒏F is modeled as simplified Young-Laplace-Equation [8] 

𝒔𝐹 ∙ 𝒏𝐹 = 2𝜅𝛾 − (𝑝𝐵 + 𝑝𝐺) ;     𝒔𝐹 ∙ 𝒕𝐹 = 0 ; (15) 

𝜅 = −1/2 ⋅ (𝜵𝛤 ⋅ 𝒏) ;    𝜵𝛤 = 𝜵 − 𝒏𝜕𝒏 = (𝑰 − 𝒏𝒏𝑇)𝜵 (16) 

with 

𝒖 ∙ 𝒏𝐹 = 𝒖𝐹 ∙ 𝒏𝐹 . (17) 

The surface gradient operator 𝜵Γ from equation (16) defines the mean curvature 𝜅 of the 

free-surface and 𝛾 represents the constant surface-tension coefficient. Stationary walls are 

modelled with no-slip boundary conditions, whereas for the bottom wall of the fluid domain 

an inhomogeneous Dirichlet boundary condition is applied to simulate the substrate 

movement. 

The flow calculation and the dependent free-surface movement is modelled and solved 

within the same three-dimensional finite-volume method as the electromagnetic part. Similar 

to the solution of 𝑨 and 𝑉, the solution of 𝒖 and 𝑝′ from equation (12) and (13) is determined 
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in a segregated manner according to the so called PISO-algorithm [7] for given Lorentz force 

and magnetic pressure. A surface tracking method with a dynamic moving mesh [8, 9] based 

on an extended version of the interTrackFoam solver algorithm [10] is used to adjust the 

interface in order to achieve a vanishing normal flux at the free-surface. According to 

equations (15) to (17) and the current shape of the top free-surface, a variable Dirichlet 

boundary for 𝑝′ and an inhomogeneous Neumann boundary condition for 𝒖 can be formulated 

on ΓF. These boundary conditions are iteratively re-calculated and coupled to the flow 

variables for each time step until the free-surface flux is negligibly small and all initial 

residuals are below predefined thresholds. Typically five to ten iterations are necessary to 

achieve a reasonable small error. 

The underlying concept of the whole surface tracking method is based on the Arbitrary 

Lagrangian-Eulerian formulation (ALE). This formulation is used to account for the mesh 

movement. The mesh moves independently from the fluid flow, except for the domain 

boundaries. For our model, the free-surface is under constraint, such that the fluid velocity 

equals the mesh velocity 𝒖M in normal direction. For all other boundaries, 𝒖M is restricted 

according to the meaning of the boundary for the mesh (e.g. slip/no-slip). The independent 

mesh-movement away from the boundaries allows a free and preferably smooth mesh point 

distribution. In our case a Laplace-smoothing for 𝒖M was utilized [11]. The inner mesh is 

however only adjusted and smoothed once per time step and not within the free-surface 

adjustment iterations. In the sense of ALE, the governing equation (12) of the hydrodynamic 

problem needs to be considered as relative to the mesh motion 𝒖M in a Lagrangian manner. 

The mesh movement is incorporated by means of replacing the time-derivative in (12) with 

the material derivative. This introduces an additional convection term, such that we obtain: 

𝜌[𝐷𝑡𝒖 + (𝒖 ∙ 𝜵)𝒖 − (𝒖𝑀 ∙ 𝜵)𝒖] = 𝜵 ⋅ 𝝉′ + 1/𝜇0〈(𝑩 ∙ 𝜵)𝑩〉𝑡 ;      𝜵 ∙ 𝒖 = 0 . (18) 

In OpenFOAM, the second convection term is implicitly treated on the basis of the so 

called mesh flux, which is derived from the current mesh velocity. As the convection term is 

already linearized and discretized with the flux of the fluid velocity, subtracting the flux of the 

mesh velocity from the former is sufficient for a description of (12) in a relative reference 

system. Further details about the surface tracking method can be found in [10]. 

Since the spatial distribution of the electrical conductivity inside the whole numerical 

domain Ω = ΩC ∪ Ω0, as shown in Fig. 2, depends on the current location of the free-surface 

ΓF, it is obvious that there is a two-fold coupling mechanism between the magnetodynamic 

equations (3), (5), (6) and the hydrodynamic equation (12) due to the Lorentz force (10) and 

𝜎 = 𝜎(𝒙(𝒖M)). Compared to one time-step of the hydrodynamic part, the numerical solution 

of the magnetodynamic problem is computationally very expensive especially in three 

dimensions. In general, the system of equations (3), (5) and (6) in their complex form is 

equivalent to a system of eight strongly coupled scalar-valued Poisson-type equations. The 

surface-tracking approach now allows to “carry“ the Lorentz force distribution 𝑭L(𝒙(𝒖M)) 

with the mesh for a defined and reasonable small simulation time. This reduces the 

computational effort to solve the whole coupled system. 

To combine the solution of 𝑨, 𝑉 and 𝒖, 𝑝′ in the same framework we have developed a 

new multi-mesh backend in OpenFOAM Extend Project based on several superposed meshes 

for fast and direct, bi-directional mapping. On the one hand, Lorentz force and magnetic 
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pressure are calculated from 𝑨 and 𝑉 in the conducting domain ΩC. They are consequently 

mapped to the fluid domain ΩF prior to the flow calculation. On the other hand, before the 

magnetic field calculation is repeated during the simulation, the mesh of the conducting and 

the background region is adjusted to the current shape of the fluid domain. The multi-mesh 

backend, eddyCurrentFoam and our extended interTrackFoam were combined to one multi-

physics software tool called interTrackEddyCurrentFoam, where no interpolation of bulk data 

is necessary to couple the magnetodynamic and hydrodynamic fields. This is a major 

advantage compared to similar techniques [12, 13], whose different numerical methods like 

finite-volume and finite-element are combined via interpolation and periodically re-generated 

meshes. More details concerning the whole numerical method will be published separately. 

3. Simulation results 

In previous studies [14] we have provided an overview of the magnetohydrodynamic 

effects in the RGS process at its characteristic process parameters as given above. We have 

already performed 3D-simulations with fixed melt geometry to numerically confirm the 

functioning melt retention based on magnetic fields. Analyzing the corresponding data, it has 

been illustrated that the retention effect is correlated with a strong forced fluid flow with 

velocities up to 𝑈 = 1 𝑚/𝑠. That is, the influence of the Lorentz force on the fluid flow is 

much more intense than the drag force from the moving substrate wall. In particular, we also 

demonstrated that the surface deformation is substantially influencing global flow patterns 

such as the typical size of the vortices close the side walls. The Lorentz force acting on a 

conducting liquid inside a coil is roughly pointing towards the center of this coil. 

Consequently, the shape of the deformed fluid domain for these and similar cases looks like a 

dome. This typical kind of deformation is therefore often referred to as "dome-shaping" [6]. 

We demonstrated the numerical simulation of this dome-shaping effect for the RGS process 

by means of a two-dimensional model in [15], where we used COMSOL Multiphysics [16] as 

tool for the magnetodynamic part of the simulation. It turned out that the combination of 

OpenFOAM and COMSOL Multiphysics is not suitable for large 3D-simulations due to 

several reasons. The central issue with this external coupling of fundamentally different 

software tools, even if all steps were already fully automated, is the overhead produced by 

interpolation, mesh generation and free-surface extraction. With our new method as explained 

in the last section we overcame these obstacles completely. The following results still have to 

be considered more as demonstration of this novel method, rather than a validation case.  

Basic testing of the new interTrackEddyCurrentFoam-solver is already completed, but a 

comprehensive validation is yet to follow. 

As a new proof of concept, Fig. 3 (process direction is always from left to right) shows a 

time-series of the free-surface flow inside the fluid domain with its evolving dome-shape for a 

three-dimensional model of the RGS process according to Fig. 1. The underlying numerical 

mesh comprises a total of ≈ 1.5 × 106 cells (background: 8.8 × 105, fluid: 1.5 × 105, other 

conducting parts: 4.7 × 105). A simulation time of ten seconds took approximately one week 

of calculation time on one single core of a modern CPU with a dynamic time step width based 

on an average value of ∆𝑡mean = 2.0 × 10−4𝑠. The Lorentz force was updated periodically 

with a time step width of ∆𝑡𝑭L
= 0.01 𝑠. A direct comparison of the computational 

performance with similar models of other authors (e.g. [13]) is very difficult as the available 

information is very limited. In [13] it is stated in section 4.3 that the calculation of ten seconds 

simulation time took three months on four CPUs in parallel. This is approximately 24 times 
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more than the necessary computational time for our three-dimensional RGS-model. Any 

information about the mesh size of the corresponding model in section 4.3 of [13] is however 

missing. Although it might be similar to the size of our RGS model, as the geometrical 

dimensions are roughly in the same order of magnitude, some uncertainty remains. 

To allow unsteady RANS-simulations on coarser meshes, the usage of turbulence and sub-

grid-scale-models of OpenFOAM has been implemented in our solver, too. The 𝑘-𝜔-SST 

turbulence model [17] was used in our case. At the start of the simulation (𝑡 = 0 𝑠), the 

magnetic field was applied for a constant surface level of ℎ = 20 𝑚𝑚. In the left column of 

Fig. 3 one can comprehend how the three-dimensional dome-shape is evolving during time. 

Here, the front contour of the fluid region shows the magnitude of the velocity field (‖𝒖‖ [𝑚/
𝑠]), and the back contour indicates the time-averaged Lorentz force density (𝑭L/𝜌[𝑚/𝑠2]). In 

the middle column of Fig. 3, the development of the flow velocity at a central section in 

process direction is presented. The right column finally illustrates how the velocity field 

changes during time at a central horizontal section at a height of ℎ = 10 𝑚𝑚.  

During the first second, there is evidently a good agreement with the results of our 2D-case 

[15] regarding to velocity magnitude and flow structure. At later times, three-dimensional 

effects eventually get more and more dominant. After approximately 4-5 seconds, two large 

vortices begin to emerge from four smaller ones. Those two large eddies seem to be quasi-

stable, as they persist even for long runs with 𝑡 > 10 𝑠.  

4. Conclusion 

The RGS process [2, 3] is a promising technology for the production of silicon wafers and 

advanced metal-silicide alloys. Detailed insights from modelling the characteristic melt flow 

in the casting frame are very desirable. There are many related industrial applications, where 

the analysis of similar magnetohydrodynamic effects is of great interest. Within this paper we 

have introduced a novel numerical method and corresponding software for the simulation of 

the free-surface dynamics of conducting fluids under the influence of magnetic fields. This 

tool is based on the framework of the OpenFOAM Extend Project. From a global analysis of 

the RGS process [14] and comprehensive tests we revised our previous approach [15] and 

combined a new eddy current solver and an extended surface tracking method within the same 

multi-mesh finite-volume method. The realization now allows us to perform three-

dimensional simulations of the RGS process and similar problems at minimal computational 

costs. A proof of concept was made and first test cases revealed satisfying three-dimensional 

results compared to well-established tools like COMSOL Multiphysics. There are still 

remaining problems concerning numerical stability and dynamic mesh handling as our 

method relies on some cutting-edge developments of OpenFOAM Extend Project. These 

issues are subject of current and future investigation. To validate our newly developed code, 

future work will also be devoted to prepare experimental test cases for comparison. 
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Material 𝜌 [kg/m3] 𝜂 [Pa ⋅ s] 𝜎 [S/m] 𝛾 [N/m] 𝛿 [mm] 

Liquid silicon (melt) 2580 0.86 x 10
-3 

1.20 x 10
6 0.733   5.0 

Solid silicon (melt/wafer) 2330 - 8.30 x 10
4 - 17.0 

Graphite (casting frame) 1880 - 1.25 x 10
5 - 14.0 

Copper (inductor) 8960 - 6.00 x 10
7 -   0.7 

Table 1: Properties for different materials: Density 𝜌, dynamic viscosity 𝜂, electrical conductivity 𝜎, surface 

tension 𝛾 for contact with air and skin depth 𝛿 = √1/(𝜋𝑓𝜇0𝜎)  for a frequency of 𝑓 = 10 𝑘𝐻𝑧. 
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Fig. 1: Scheme of the RGS process with silicon [2]. 
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Fig. 2: Domain decomposition with non-conducting region Ω0 and conducting region ΩC with its fluid sub-region 

ΩF (dashed line). The free-surface ΓF of the fluid is part of the conductor surface ΓC. The excitation coil is 

modelled as source current density 𝐣0. 
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Fig. 3: Evolution of the 3D free-surface flow after applying the magnetic field for a constant surface level at 

𝑡 = 0 𝑠  (left column, front contour: ‖𝒖‖ [𝑚/𝑠], back contour: 𝑭L/𝜌[𝑚/𝑠2]): Velocity field vectors and contour 

at the central section in process direction (middle column) and at a central horizontal section (right column) of the 

fluid domain. The Lorentz force was updated every ∆𝑡𝑭L
= 0.01 𝑠. (Process direction is from left to right) 


