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Abstract 

 

In a pioneering study, Darmana et al. [Chemical Engineering Science 62 (2007), 2556 - 2575], 

considered the reactive absorption of CO2 in aqueous NaOH in a bubble column. Although 

quite good agreement was obtained between an Euler-Lagrange simulation and measured  pH-

values at a single point, a number of aspects of the model deserve further discussion. This will 

be provided in the present work by using a simplified treatment that applies at the 

measurement location. Particularly relevant is the enhancement factor, which describes the 

effect of the chemical reaction on the mass transfer. An investigation of alternative expressions 

for this quantity is given, based on which an improved match with the data can be obtained. 

Furthermore, the complete network of possible reactions in this system has to be considered.  

 

Keywords: mass transfer, chemical reaction, chemisorption, enhancement factor, dispersed 

gas liquid multiphase flow, modeling and simulation  
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1 INTRODUCTION 

 

Due to its impact on global warming, the absorption of CO2 from flue gas streams is 

nowadays an important consideration in energy production (Feron, 2016). It is also 

commonly used for gas purification applications in chemical engineering (Kohl and Nielsen, 

1997). The industry standard is to use aqueous solutions of alkanolamines for this purpose 

(Rao and Rubin, 2002; Rochelle 2009). Reactions occurring in this system are quite complex 

involving formation of carbamate as well as carbonate and several related equilibria (e.g. 

Versteeg et al. 1996; Vaidya and Kenig, 2007; Couchaux et al. 2014). Therefore, process 

models based on integral balances have been developed (e.g. Kucka et al., 2003; Mandal et 

al., 2001; Pacheco and Rochelle, 1998), but no detailed simulations and experiments 

resolving local phenomena are available at present.  

By using alkaline solutions the reactions are simplified, because carbamate formation is 

excluded and, aside from the auto-dissociation of water, only the carbonate-bicarbonate 

equilibrium needs to be considered. For the reactive absorption of CO2 in aqueous NaOH or 

KOH in bubble columns, several detailed modeling and simulation studies by means of 

Euler-Euler or Euler-Lagrange methods have been published (Jain et al., 2015; Gruber et al., 

2015; Zhang et al., 2009; Darmana et al., 2007; Bauer and Eigenberger, 2000; Marquez et al., 

1999; Fleischer et al., 1996).  

Concerning experimental investigations on such systems, Darmana et al. (2007) used own 

measurements of time-dependent pH-value at a single location in the column and an axial 

profile of mean bubble size to compare with their simulations. Becker (1996) provided 

measurements of time-dependent pH-value and temperature at four different heights in a 

bubble column. These data were used for comparison by Bauer and Eigenberger (2000) and 

Fleischer et al. (1996).  

A rather detailed model for the reaction-kinetics and physico-chemical properties of the 

solution was presented by Darmana et al. (2007) together with expressions for the 

enhancement factor, mass transfer coefficient and effective diffusivity. Mostly the same 

models were used in the later works of Jain et al. (2015), Gruber et al. (2015) and Zhang et al. 

(2009). While the achieved level of agreement with the data was quite encouraging, the 

approximations implied by the modeling and their suitability for the problem at hand seem 

worth to be investigated in further detail. 

In particular as will be shown, a frequently used approximation for the enhancement factor of  

an instantaneous irreversible second order reaction produces significant errors when used 

outside its range of applicability, which is restricted to situations with large enhancement 

effect. An improved fit formula with a rather wide range of application is presented. 

Moreover, it will be shown that the two-step nature of the reaction of CO2 with hydroxide 

ions can be neglected for the conditions of Darmana et al. (2007), but examples for other 

conditions are given, where this is not justified. Finally, it will be shown that the reaction of 

CO2 with water needs to be taken into account to correctly describe the later stage of the 

neutralization process.  

For these purposes, a simplified description of the hydrodynamic phenomena in the bubble 

column is used which applies locally at the point of measurement. In this way possible errors 

of the present hydrodynamic modeling are excluded and the description of the chemistry can 

be assessed in isolation. A validation of this simplified approach is provided by comparison 

with the full Euler-Lagrange simulation results of Darmana et al. (2007). 

A summary of the experimental and simulation results of Darmana et al. (2007) is given in 

section 2. The modeling of reactive mass transfer is described in section 3 detailing the 

complete network of possible reactions and different expressions for the enhancement factor 

available from the literature. Results of the calculations are presented in section 4. 
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Comparison is made with both experiments and simulations from Darmana et al. (2007). In 

addition, varied conditions are considered, namely the initial presence of dissolved sodium 

carbonate and an increased temperature. Conclusions and an outlook are given in section 5. 

Two appendices contain the correlations for reaction kinetics and physicochemical properties 

that were used and the development of the aforementioned fit formula for the enhancement 

factor of an instantaneous irreversible second order reaction. 
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2 SUMMARY OF RESULTS FROM DARMANA ET AL. (2007) 
 

Darmana et al. (2007) investigated a lab scale bubble column of 200 mm width and 30 mm 

depth as sketched in Fig. 1. Initially the column was filled up to a level of 1000 mm with 

aqueous NaOH at a pH of 12.5. Pure CO2 gas was supplied at a superficial velocity of 

0.007 m/s through 21 needles arranged with a square pitch of 5 mm in the center of the 

column bottom. The size of the bubbles generated this way was dB = 5.5 mm and an integral 

gas fraction of αG = 1.2 % was obtained. The precise value of the temperature in the 

experiments was not reported.  

The pH-value was measured by a glass electrode at a single point located 2 cm below the 

liquid surface in the center of the column. Bubble size was measured by videometry and 

bubble velocity by PIV over the entire column. Values of bubble size up to a height of 

approximately 40 cm of the column were judged as unreliable. In this region most bubbles 

appeared as clusters which could not be handled by the sizing algorithm, resulting in 

underestimated sizes. The integral gas hold-up was simply obtained from the difference of the 

liquid heights with and without aeration. 

In addition to the experiment, Darmana et al. (2007) also presented simulation results using 

an Euler-Lagrange method. The calculated value for the integral gas fraction was αG = 1.6 % 

which is somewhat too large compared with the experimental value of αG = 1.2 %. For the 

cross-sectionally averaged bubble size at the top of the column, the simulations gave a value 

of dB = 4.7 mm which is again somewhat too large compared with the experimental value of 

dB = 3.5 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Sketch of geometry for the test from Darmana et al. 

(2007). 



 

 5

3 MODELING OF REACTIVE MASS TRANSFER 

 

Mass transfer in a two-phase system is usually described by transport equations for the 

concentration of each solute species in both phases which are coupled by exchange terms. For 

the present purpose to quickly assess model alternatives and parameter sensitivities, a 

simplified model neglecting all spatial dependences is sufficient. In addition, only 

concentrations in the liquid phase need to be considered for this purpose. Thus in general 

terms, for each of the involved species, there is a single ordinary differential equation,  

 ( ) X

L

X

L

X

LLL SY
t

Γ+=
∂
∂

ρα .       (1) 

Here,
X

LY  is the mass fraction of species X in the liquid phase at the measurement point, Lρ is 

the density of the liquid mixture, and αL is the liquid volume fraction. Assuming that the 

solvent is present in large excess, its mass fraction can be calculated from the constraint 

1=∑X

X

LY  and differential equations need to be solved only for the solute species. The 

source terms due to reaction, 
X

LS , and due to transport across the phase interface, 
X

LΓ , 

require further modeling as discussed below. For the source terms due to reaction, mass 

conservation requires that 0=∑X

X

LS . For absorption of species X, 0>ΓX

L .  

For bubbles consisting of pure CO2 as in the experiment of Darmana et al. (2007) resistance 

to mass transfer occurs only on the liquid side. Then 
X

LΓ  is a function of the difference in 

concentration of the transferred species on the liquid side of the interface and in the bulk 

liquid. Using Henry’ law to relate concentrations on the gas and liquid sides of the interface 

one gets 

 







−=Γ X

L

L

GX

G

X

LIL

X

L YYHeakE
ρ
ρ

ρ .      (2) 

Models for the enhancement factor E are described in the next section. For the liquid side 

mass transfer coefficient kL a correlation due to Brauer (1981)  

 ( )7.089.0015.02 ScRe
d

D
k

B

X

L
L += ,      (3) 

is chosen over other possibilities (Rzehak, 2016) to match the simulations of Darmana et al. 

(2007). Here, Reynolds and Schmidt numbers are defined as
1−= LLBrelduRe µρ and 

( ) 1−
= X

LLL DSc ρµ . 

Assuming spherical bubbles the interfacial area concentration aI can be obtained as  

 
B

G
I

d
a

α6
= .         (4) 

The Henry constant 
X

He as well as the diffusion coefficient 
X

LD  are material properties for 

which correlations are taken from the literature as discussed in appendix A. Liquid density ρL 

and viscosity µL are taken as constants for the pure solvent assuming dilute solution. The gas 

density ρG is also taken as a constant corresponding to room conditions since pressure 

variations are small. Values for bubble size dB, relative velocity urel = |uG - uL| and gas 

fraction αG = 1-αL are prescribed according to the experiment. 
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3.1 Reactions of CO2 in aqueous NaOH  

 

Further discussion requires specification of the system to be considered, namely the reactive 

absorption of CO2 in aqueous NaOH. The reactions of CO2 in aqueous solution are rather 

well studied (e.g. Wang et al., 2010; Zeebe and Wolf-Gladrow, 2001; Stumm and Morgan, 

1996). A diagram of the reaction network is shown in Fig. 2. It can be seen that there are two 

pathways, where the initial reaction is between the dissolved CO2 and either hydroxide ions 

or water, respectively. Both result in a formation of bicarbonate ions which further react to 

form carbonate ions. It should be noted that the hydration reaction in the second branch can 

proceed either directly or via the formation of carbonic acid (Eigen et al., 1961). However, 

because it is neither possible nor necessary to distinguish between these two possibilities, it 

has been customary to simplify them to a single overall reaction (e.g. Sugai-Guérios et al., 

2014; Johnson, 1982; Eigen et al., 1961) as shown on the diagram in Fig. 2. Here, the 

hydroxylation of CO2 is denoted by a superscript I, the consecutive reaction which results in 

the formation of carbonate ions by a superscript II, and the hydration of CO2 by a superscript 

III. Forward reactions are denoted by a superscript + and backward reactions by a superscript 

−. 

 

 
 

Figure 2:  Reaction scheme of CO2 in aqueous solution. 

 

The relative importance of the two pathways, i.e. hydroxylation and hydration, depends on 

the pH-value. Only, the hydroxide path path was considered by Darmana et al. (2007), which 

dominates for pH > 10 (Kern, 1960).  

It consists of two steps 

 CO2     + OH
−
  ⇌  HCO3

−
  ,         (5) 

which can be considered as irreversible, but proceeds at a finite rate, and  

 HCO3
−
 + OH

−
  ⇌  CO3

 2−
  + H2O ,      (6) 

which takes place instantaneously, but is reversible (Kern, 1960; Pinsent et al., 1956). 

If the equilibrium of the second reaction Eq. (6) lies far on the right hand side, which may be 

expected in the initial stage of the chemisorption process due to the high pH values, this 

process may be described by a single irreversible overall reaction 

 CO2     + 2 OH
−
  →  CO3

 2−
  + H2O .        (7)  

The water path becomes important at pH < 10 and even dominant at pH < 8 (Kern, 1960). It 

also consists of two steps, the first of which, namely 

 CO2     + H2O  ⇌  HCO3
 −

  + H
+
 ,         (8)  
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is reversible (Knoche, 1980; Kern, 1960). The second step is the same as for the hydroxide 

path, i.e. Eq. (6). 

Both pathways are coupled by the auto-dissociation of water 

 H2O  ⇌  OH
−

  + H
+
 ,           (9)  

which takes place instantaneously (Eigen, 1964). 

Using the notation introduced in Fig. 2, the rates RL
Ξ±

 may be written as 

 
−++ = OH

L

CO

L

I

L

I

L CCkR 2         (10) 

 
−−− = 3HCO

L

I

L

I

L CkR .        (11) 

 
−−++ = OH

L

HCO

L

II

L

II

L CCkR 3         (12) 

 
−−− =

2
3CO

L

II

L

II

L CkR .        (13) 

 2CO

L
III
L

III
L CkR ++ = .        (14) 

 
−

−+− −−− ==
OH

L

WHCO

L
III
L

H

L

HCO

L
III
L

III
L

C

K
CkCCkR 33 .     (15) 

Note that RL
Ξ±

 is always in units of [kmol m
-3 

s
-1

], but units of the rate constant kL
Ξ±

 depend 

on the reaction order. In Eqs. (13) and (14) it is assumed that the solvent, H2O, is present in 

large excess so that its concentration does not change appreciably during the reaction. Due to 

the ionization of water with its equilibrium constant KW the molar concentration of hydrogen 

ions in Eq. (15) can be replaced by the concentration of hydroxide ions as shown above. A 

model for the rate and equilibrium constants in this reaction system is detailed in appendix A. 

 

 

Table 1: Summary of species and source terms for the absorption of CO2 in aqueous NaOH. 

 

 

The chemical species involved in the process are listed in Table 1. Na
+
 does not participate in 

the reactions, but its presence has to be considered in reaction rates and material properties. 

The source terms due to reaction, 
X

LS in Eq. (1), are given in Table 1 in terms of the reaction 

rates Eqs. (10) – (15). The source term due to transport across the phase interface, X

LΓ in Eq. 

(1), appears only for the unreacted CO2. Effects of the chemical reaction on the mass transfer 

are included in this term by means of an enhancement factor, which may be obtained from 

either film, penetration, or renewal models as described below. Once the CO2 is dissolved in 

the water no further distinction is made between film and bulk liquid such that a seamless 

treatment of fast and slow reaction regimes is possible. 

X X

LS  
X

LΓ  

CO2 M
CO2 (‒ R

I+
+ R

 I‒
 ‒ R

III+
+ R

 III‒
) ≠0 

(Na
+
)OH

‒

 M
OH‒

(‒ R
I+

+ R
 I‒ 

‒ R
II+

+ R
 II‒

 ‒ R
III+

+ R
 III‒

) 0 

(Na
+
)HCO3

‒

 M
HCO3

‒

(+ R
I+
‒ R

 I‒ 

‒ R
II+

+ R
 II‒

 + R
III+
‒ R

 III‒
) 0 

(2Na
+
)CO3

2‒
 M

 CO3
2‒

(+ R
II+
‒ R

 II‒
) 0 
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3.2 Enhancement factor models  

 

The enhancement factor is defined as the ratio between mass fluxes through the phase 

interface with and without reaction, based on the same driving force of concentration (e.g. 

Westerterp et al., 1987). Obviously it depends on the reaction considered, in particular 

whether it is single- or multi-step, reversible or irreversible, slow or fast or even 

instantaneous, and finally first or second or higher order. Models for enhancement factors 

have so far been derived predominantly from simple conceptual models of mass transfer, 

namely the film, penetration, and renewal models (e.g. Danckwerts, 1970). To obtain 

practically applicable results, significant approximations have to be introduced for almost all 

cases. Results relevant to the present reaction system are discussed in the following. 

First, a fast single-step irreversible reaction of second order A + νB B → Q is considered. 

This corresponds to the overall reaction Eq. (7), where A corresponds with CO2, B with OH
−
, 

and Q with CO3
2‒

. The stoichiometric factor of OH
−
 in this reaction is νB = 2, but the reaction 

is still of first order in both reactants. The Hatta number thus is  

 

L

B
L

A
L

I
L

k

CDk
Ha

+

= .        (16) 

Because of the irreversibility, the products Q do not matter. 

Based on the renewal model, an expression for the enhancement factor for this case has been 

derived by DeCoursey (1974) as 

 
( ) ( ) ( )

1
11412

2

2

42

+
−

+
−

+
−

−=
i

i

ii E

Ha
E

E

Ha

E

Ha
E .    (17) 

Unless the condition Ei
  
≥ 1 is violated, Eq. (17) will always give values for E which are 

greater or equal to one. Otherwise values are limited by using max(E,1) (Westerterp et al., 

1987). An expression based on the penetration model has been found by Hikita and Asai 

(1964) as 

 







−+





















+=

π
η

π

η

η
π

η
224

2

12

8

Ha
exp

Ha
erf

Ha
HaE ,   (18) 

and based on the film model, Van Krevelen and Hoftijzer (1948) and Brian et al. (1961) 

found 

 ( )η

η

Ha

Ha
E

tanh
= ,        (19) 

where ( ) ( )1/ −−= ii EEEη . 

All of these expressions involve the enhancement factor for an instantaneous reaction Ei of 

the type of Eq. (7). The first expression, Eq. (17), is explicit, while the two others, Eqs. (18) 

and (19), are implicit, i.e. require the solution of a non-linear algebraic equation, which can 

be done conveniently e.g. in MatLab. 

A comparison of all three expressions is shown in Fig. 3, where the explicit expression of Eq. 

(17) has been used as a reference. For the purpose of this comparison, Ei was treated simply 

as a parameter. It can be seen that over a wide range of values for Ha and Ei, the differences 
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between all three expressions are only minor. Thus, regardless of which model – film, 

penetration, or renewal – is used, Eq. (17) at least provides a convenient fit formula. 

 

a) b) 

Figure 3: Comparison of enhancement factors for a fast irreversible second order reaction 

obtained by different models for different values of Ha and Ei. a) penetration model Eq. (18) 

(dashed lines) versus renewal model Eq. (17) (solid lines); b) film model Eq. (19) (dashed 

lines) versus renewal model Eq. (17) (solid lines). 

 

 

To apply any of the models for the enhancement factor discussed above, an expression for the 

case of an instantaneous reaction, Ei, is needed. A solution that applies to both the penetration 

and renewal models has been given by Danckwerts (1970) as 

 

( )
( )
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( )
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L

B

L

A

IL
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L
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L

B

L

A

L
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L
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L

i
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β
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−

−
+=

=

.    (20) 

In general the second equation needs to be solved for β first, before evaluating the first 

equation for Ei . Results are shown as the solid lines in Fig. 4.  

An analytical solution is possible for D
A
 = D

B
 , where β drops out in Eq. (20) and Ei becomes 

 
A

IL

B

B

L

i
C

C
E

,

,
1

ν
∞+= .        (21) 

For the case β → 0 corresponding to Ei → ∞, a direct evaluation of Eq. (20) is also possible 

by calculating the limit of the first term on the right hand side according to de l‘Hospitals rule 

(e.g. Jeffrey, 2005). This gives an approximate explicit expression valid for Ei >> 1 as 
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IL
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This expression is shown as the dashed lines in Fig. 4a). For D
A
 = D

B
 Eq. (22) agrees with the 

exact result Eq. (21), but otherwise reasonable accuracy requires Ei
  
≥ 2 … 10 depending on 

the value of D
A
 / D

B
. In general Eq. (22) is not even guaranteed to satisfy the requirement Ei

 

 
≥ 1. Therefore, the first term is sometimes changed to 1, i.e.  

 
A

L

B

L

A

IL

B

B

L

i
D

D

C

C
E

,

,
1

ν
∞+= ,       (23) 

which gives the fat solid line in Fig. 4 irrespective of the true value of D
A
 / D

B
. Depending on 

this value the error may still be significant, but at least it remains bounded as Ei
 
approaches 1. 

The approximations Eqs. (22) and (23) are frequently quoted in reaction engineering 

textbooks (e.g. Westerterp et al., 1987), but their error should be carefully checked for each 

application. 

An explicit fit-formula that reproduces the numerical solution of the implicit Eq. (20) with 

engineering accuracy over a large range of parameters is developed in appendix B. A 

comparison between both is shown as the dashed lines in Fig. 4b). 

 

 

a)  

 

b) 

Figure 4: Comparison of expressions for the enhancement factor of an instantaneous second 

order reaction. a) Solid lines: numerical solution of the implicit equation Eq. (20); dashed 

lines: explicit approximation Eq. (22). b) Solid lines: numerical solution of the implicit 

equation Eq. (20); dashed lines: explicit fit formula Eqs. (B.4)-(B.6). 

 

 

For the film model Sherwood and Pigford (quoted by Brian et al., 1961) and Hikita and Asai 

(1964) found 

 
A

IL

A

L

B

B

L

B

L

i
CD

CD
E

,

,
1

ν
∞+= .        (24) 

For D
A
 = D

B
 this agrees with the exact result for the penetration model Eq. (21), but 

otherwise the dependence on the diffusion coefficients is wrong, which is typical for 

expressions obtained by using the film model (e.g. Cussler, 2007, Bird et al, 2002). An ad hoc 

change to a square root dependence on D
A
 and D

B
 is frequently found to give good results 
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(Glasscock and Rochelle, 1989; Chang and Rochelle, 1982; Brian et al., 1961; Olander, 

1960). If this heuristic is applied to Eq. (24), one recovers Eq. (23). As discussed above, 

depending on the value of D
A
 / D

B
 this expression may not be very accurate. However to 

avoid at least the worst inaccuracies, this replacement should nonetheless always be done 

with film model results. 

The full two-step reaction Eqs. (5) – (6), is of the form A + B → P, P + B ↔ Q, where in 

addition to the above, P corresponds with HCO3
‒

. For such a system, results based on both 

the film and penetration models have been obtained by Hikita and Asai (1976a) while no 

treatment based on the renewal model is known. 

For the penetration model, 

 
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while for the film model,  
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where  

 

 

 

 

 

           (27) 

 

 

 

Note that Eqs. (25) and (26) are exactly the same as Eqs. (18) and (19) for the single-step 

reaction, only the definition of η is changed. 

Both expressions involve the enhancement factors Ei for an instantaneous reaction where 

both steps are irreversible and Ei’ for an instantaneous reaction where the first step is 

irreversible but the second is reversible. Expressions for Ei and Ei’ will be given shortly. Also 

both expressions Eqs. (25) and (26) are implicit. 

A comparison of Eqs. (25) and (26) as functions of Ha∙η is shown in Fig. 5. It can be seen 

that the differences are only minor. 

 

2

1

,

,

,

,

,

,

,

,

'

'

2

,

,

,

,

12

1

114

1

























++
−

−
−


























+














−

−
−

















++
−

−
=

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

Q
L

P
L

Q
L

P
L

B
L

P
L

B
L

P
L

i

i

Q
L

P
L

Q
L

P
L

B
L

P
L

B
L

P
L

i

i

Q
L

P
L

Q
L

P
L

B
L

P
L

B
L

P
L

i

i

C

C

D

D

C

C

D

D

E

EE

C

C

D

D

C

C

D

D

E

EE

C

C

D

D

C

C

D

D

E

EE
η



 

 12

 

Figure 5: Comparison of expressions for the enhancement factor of the two-step reaction Eqs. 

(5) – (6). Solid line: penetration model according to Eq. (25); dashed line: film model 

according to Eq. (26). 

 

 

For the penetration model Ei is given by the same expression as for the one-step reaction, 

namely Eq. (20). Ei’ is determined from 
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Here, the second and third equations have to be solved for β1´ and β2´ first, before evaluating 

the first equation for Ei´. 

For the film model Ei is again given by the same expression as for the one-step reaction, 

namely Eq. (24). Ei’ is determined from  
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As suggested before, the film model should always be used with the heuristic replacement of 

the dependence on the diffusivities by square roots rather than linear dependence to avoid at 

least the worst inaccuracies.  
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4 RESULTS AND DISCUSSION 

 

The simplified model described in section 3, i.e. the system of equations Eq. (1) for the 

species and reactions summarized in Table 1 together with Eqs. (2) – (4) for the mass transfer 

is solved using MatLab again.  

The parameter values used with this model are as follows. The initial OH
-
 and Na

+
 mass 

concentrations are taken to be equal and determined by the initial pH-value of 12.5. All other 

mass concentrations of the species dissolved in the liquid phase are set to a tiny positive value 

to avoid divisions by zero. Since the temperature was not expressly given in Darmana et al. 

(2007), it is set to a constant value of 25°C. The density and molecular viscosity of pure 

water at that temperature are 997 kg m
-3 

and 0.890 mPa s. The mixture is assumed to be dilute 

so that these values also apply for the mixture. The gas phase is supposed to behave as an 

ideal gas. 

It is assumed that the integral gas hold up of αG = 1.2 % reported by Darmana et al. (2007) 

represents the gas volume fraction at the measurement point. Moreover the bubble diameter 

at this position is estimated as dB = 3.5 mm using the bubble size distribution shown in figure 

13 of Darmana et al. (2007). According to the well-known diagram of Clift et al. (1978), a 

relative velocity of about urel = 0.23 m/s is expected. Finally, the bubble diameter and gas 

volume fraction at the measurement point are taken as constant, although both are expected to 

increase in time, because the absorption process slows down as saturation is approached.  

 

model expression for E expression for Ei 

1A one-step, renewal model, Eq. (17) approximate formula Eq. (22) 

1B one-step, renewal model, Eq. (17) implicit Eq. (20) 

1C one-step, renewal model, Eq. (17) explicit fit formula Eqs. (B.4)-(B.6) 

2A two-step, penetration model, Eqs. 

(25) and (27) 

implicit Eqs. (20) and (28) 

2B two-step, film model, Eqs. (26) and 

(27) 

explicit Eqs. (24) and (29) with  

square root dependence on D
A
 / D

B
 

 

Table 2: Investigated enhancement factor models. 

 

 

Based on the discussion of section 3.3, a number of different models for the enhancement 

factor are considered. An overview is given in Table 2. Model 1A uses the expression for the 

enhancement factor for the one-step overall reaction Eq. (7) based on the renewal model, Eq. 

(17), together with the approximate formula Eq. (22) for the instantaneous limit. This is the 

same enhancement factor model as used by Darmana et al. (2007). As shown in section 3, the 

accuracy of the approximation Eq. (22) is only acceptable if Ei is sufficiently large. 

Otherwise, numerical evaluation of the implicit equation Eq. (20) or the fit formula from 

Appendix B should be used. This is done in models 1B and 1C, respectively. Models 2A and 

2B, finally, use the available expressions for the enhancement factor accounting for the two-

step nature of the reactions Eqs. (5) and (6). For the penetration model, 2A, expression 

Eq. (25) together with (27) is complemented by numerical evaluation of the implicit 

equations Eqs. (20) and (28) for the instantaneous limits. For the film model, 2B, expression 

Eq. (26) together with (27) is complemented by the explicit equations Eqs. (24) and (29) 

where dependences on D
A 

and D
B 

have been changed to
 
square roots. It should be noted that 

all of these models consider only the reaction of CO2 with hydroxide ions (see section 3.2). 
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Effects of including the water pathway as well will be investigated separately, since this 

reaction is too slow to cause an enhancement of the mass transfer. 

 

 

4.1 Validation of simplified approach 

 

As a first step in the investigation, we demonstrate that the simplified pointwise approach 

gives reasonable results by comparing it with the results of the full Euler-Lagrange 

simulations of Darmana et al. (2007). For this comparison the same enhancement factor 

model as in Darmana et al. (2007) is applied, i.e. model 1A in Table 2. Moreover, in addition 

to the experimental values given above, the average gas volume fraction and bubble diameter 

of αG = 1.6 % and dΒ = 4.7 mm obtained in the simulations of Darmana et al. (2007) are used 

as well. As shown in Fig. 6, the simplified model using these parameter values (smooth solid 

lines) gives results that exactly match the simulations of Darmana et al. (2007) (thick dots) 

for the pH and are very close to them for the other species concentrations. Therefore, despite 

the simplifications made, the pointwise model is suitable to assess different alternatives in 

modeling mass transfer and chemical reaction. 

Changing gas volume fraction and bubble diameter to the experimentally determined values 

has only a small effect. The difference between the pH-values calculated by the simplified 

model using these parameters (dashed lines) and the ones measured by Darmana et al. (2007) 

(noisy solid line) remains almost unchanged. To further investigate how this gap can be 

closed, the experimentally determined gas volume fraction and bubble diameter will be used 

in the following. 

 

a) b) 

Figure 6: Results of the simplified pointwise model using simulated αG = 1.6 % and 

dΒ = 4.7 mm (smooth lines) and experimentally determined αG = 1.2 % and dΒ = 3.5 mm 

(dashed lines) given by Darmana et al. (2007), compared with Euler-Lagrange simulations 

(thick dots) and measured values (noisy solid line) of Darmana et al. (2007). For the 

enhancement factor, model 1A in Table 2 is used, matching the work of Darmana et al. 

(2007). a) Time-dependent pH-value; b) time-dependent species concentrations. 
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4.2 Comparison of Enhancement Factor Models 

 

Next, we present a comparison of the five different enhancement factor models summarized 

in Table 2. In Fig. 7, the thick dots and noisy solid line again represent the simulations and 

experiments of Darmana et al. (2007) while the smooth solid line gives the present results for 

model 1A. Compared to model 1A it can be seen the results for all other models come closer 

to the experimentally determined pH-values. These other models now give good agreement 

with the experiment up about 150 s although the kink in the measured data at ~60 s is missed. 

Differences between the models except 1A are only minor.  

The improvement of models 1B and 1C over model 1A clearly demonstrates the inadequacy 

of the approximation Eq. (22) for the instantaneous enhancement factor. Curves for models 

1B and 1C completely overlap each other for the entire range of times considered. This 

proves the suitability of applying the explicit fit formula obtained in Appendix B instead of a 

numerical evaluation of the implicit equation Eq. (20). Hence from the two, only model 1C 

will be considered further. 

The agreement of the results for models 2A and 2B with model 1C means that for the 

conditions considered, the two-step nature of the reaction does not play a significant role. 

Differences between penetration and film model for the two-step reaction are only minor, 

with the latter (2B) giving marginally smaller values than the former (2A). 

 

 

Figure 7: Comparison of results for time-dependent pH-value obtained from the simplified 

pointwise calculation using different enhancement factor models (see Table 2 for 

description). Euler-Lagrange simulations (thick dots) and measured values (noisy solid line) 

of Darmana et al. (2007) are shown again for comparison. 

 

 

Understanding the reasons for the observed effects using different enhancement factor 

models is possible by comparing the resulting values of the time-dependent enhancement 

factors, Hatta numbers, species concentrations, gas absorption rates and effective reaction 

rates. Effective reaction rates are characterized by the difference of the forward and backward 

reaction rate, whereby a positive sign means domination of the forward reaction, while for a 
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negative sign the backward reaction predominates. Because the results for models 1B and 1C 

are identical, model 1B is not further considered in this discussion. Consistent with the 

similarity of the time-dependent pH-values for models 1C, 2A and 2B, the time-dependent 

species concentrations and reaction rates are also very similar. Thus it suffices to compare the 

concentrations and reaction rates for models 1A and 1C. The results are shown in Fig. 8. 

Looking first at the Hatta numbers shown in Fig. 8 a) and b), it is seen that for all models the 

values decrease over time. Up to a time of ~80 s this decrease is rather steep, while 

afterwards it becomes more gradual. This is due to the decrease in the concentration of 

hydroxide ions as they are consumed during the reaction, which appears in the definition of 

Ha (see Eq. (16)). Values are very similar for models 1C, 2A, and 2B, while for model 1A 

somewhat higher values are found. This is due to the somewhat higher concentration of 

hydroxide ions (see Fig. 8c)) for model 1A resulting from the smaller enhancement factor 

obtained for that model as will be discussed in the following. 

Comparing the time-dependent enhancement factors for models 1A and 1C in Fig. 8 a), it is 

evident that the enhancement factors decrease with decreasing Hatta numbers as expected, 

but the enhancement factors for model 1C are notably higher than for model 1A. In 

particular, the small values of Ei for model 1A, which even become less than one, clearly 

demonstrate that the approximation for Ei is not suitable here. Also the temporal evolution of 

E is different for models 1A and 1C. For model 1A the decrease in enhancement is 

approximately linear and its minimum value of one is reached rather abruptly after about 40 s 

without relation to the evolution of Ha. For model 1C the enhancement shows a less steep 

decrease and is effective until a time of ~80 s where the decrease of the Hatta number levels 

of as well at a value of Ha ≈ 0.3.  

The time-dependent enhancement factors for models 2A and 2B are shown in Fig. 8 b). 

While the time-dependent Hatta numbers are almost exactly the same for both of these 

models, the enhancement factors differ slightly from each other, with the film model, 2B, 

resulting in higher values than the penetration model, 2A. As has been shown in Fig. 5, the 

values of E as a function of Ha·η are also almost exactly the same. Therefore, the differences 

must be due to the different expressions for Ei and Ei
’
.  

Comparing the enhancement factor for models 2A and 1C between Figs. 8b) and 8a), almost 

the same values are found. The one-step enhancement factor model is applicable if all 

intermediate bicarbonate ions are further transformed into the final product, the carbonate 

ions. As will be discussed shortly, this requirement is effectively fulfilled from t = 0 s to 

about 70 s. Coincidentally, significant enhancement also occurs only within this time range. 

Turning now to the effective reaction rates shown in Fig. 8 d), the following qualitative 

behaviour is seen. As long as an enhancement of the mass transfer takes place, i.e. up to a 

time of ~40 s for model 1A and ~70 s for model 1C, the curves for the effective rate of 

reaction I overlap with those of the gas absorption rate. This means, all absorbed CO2 

molecules react with hydroxide ions to form bicarbonate ions. These in turn react with other 

hydroxide ions to form carbonate ions as long as the effective rate of reaction II remains 

positive and the transformation is almost complete if the effective rate of reaction II is of the 

same order of magnitude as that of reaction I. Due to the steep drop of the effective rate of 

reaction II in Fig. 8d) both conditions hold to a good approximation until a time of ~80 s for 

model 1A and ~70 s for model 1C. From the start of the absorption process up to this time, 

the overall reaction Eq. (7) occurs.  

In the species concentrations of Fig. 8c) this shows up by a consumption of hydroxide ions 

which is about twice as high as the production of carbonate ions and negligible presence of 

bicarbonate ions or aqueous CO2 up to times of ~80 s and ~70 s for models 1A and 1C, 

respectively. At these times a peak in the concentration of carbonate ions is reached 

corresponding to the reversal of the sign of the effective rate of reaction II. After this point, 
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the backward reaction II becomes dominant and the formation of bicarbonate ions sets in. 

The effective rates of reactions I and II then are almost equal and opposite, but reaction I is 

still consuming more hydroxide ions than released by reaction II as evidenced by the still 

decreasing pH-value. As long as the solution contains a significant amount of hydroxide ions, 

reaction I proceeds and most of the absorbed CO2 is reacted away. This leads to an almost 

constant concentration gradient at the phase interface and consequently a constant absorption 

rate. When reaction I becomes weaker and finally almost stops, reaction II follows the same 

trend due to its instantaneous equilibration, so that the CO2 concentration starts to increase 

with the same rate at which it is absorbed from the gas phase. 

 

a) b) 

 

c) 

 

d) 

 

Figure 8: Comparison of results obtained from the simplified pointwise calculation: a) time-

dependent enhancement factors and Hatta number for model 1A (dashed lines) and model 1C 

(solid lines). b) time-dependent enhancement factors and Hatta number for model 2A (solid 

lines) and model 2B (dash-dotted lines) c) time-dependent species concentrations for model 

1A (dashed lines) and model 1C (solid lines), d) time-dependent reaction and absorption rates 

for model 1A (dashed lines) and model 1C (solid lines). 
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4.3 Effect of initially added sodium carbonate 

 

The surprisingly small difference in the results of Fig. 7 for the enhancement factor models 

based on one- and the two-step reactions motivates a further investigation of conditions 

where effects of reaction II become significant. Two ways to realize such conditions come to 

mind. First, by decreasing the value of the equilibrium constant K
II
, which can be achieved 

experimentally by increasing the temperature. Second, by adding sodium carbonate to the 

initial solution, which has a similar effect to increase the backward rate of reaction II. The 

first possibility will be discussed in section 4.4. The consequences of the second possibility 

are demonstrated in Fig. 9.  

A rather high value for the initial sodium carbonate concentration of 1 kmol m
-3

 was found 

necessary to produce a sizeable effect. It should be noted that an increased concentration of 

ions also causes a strong increase of the forward rate of reaction I by a factor of about 3, a 

reduction of the CO2 solubility by ~50% and a decrease of the CO2 diffusivity of ~25% (see 

Appendix A). All of these effects act together with the increased carbonate concentration. 

Fig. 9a) shows a comparison of the species concentrations for the cases with (dashed lines) 

and without (solid lines) initial carbonate ions calculated using the enhancement factor model 

2A which is appropriate for the two-step reaction. For the carbonate ions, the difference to 

the initial concentration is shown to improve comparability. It is seen that initially along with 

the added carbonate ions, there are also some more hydroxide and bicarbonate ions present. 

This is due to the instantaneous equilibration of reaction II.  

The carbonate concentration at first increases and goes through a maximum at times of 

~110 s with and ~70 s without added carbonate. At the peak of the carbonate concentration, 

the bicarbonate concentration profile reaches its highest slope. The later stage of the process, 

where the bicarbonate concentration reaches its final value and the concentration of dissolved 

CO2 begins to rise, is beyond the monitoring period for the case with added carbonate. The 

slower progression of the absorption process with added carbonate is caused by the fact that 

mass transfer is the limiting step and the solubility decreases upon addition of the carbonate. 

The increase in the carbonate concentration corresponds with a positive value of the effective 

rate of reaction II as shown in Fig. 9b). However, comparing the cases with and without 

added carbonate, the effective rate of reaction II is clearly reduced upon the addition of the 

carbonate and shows a more gradual temporal progress. Furthermore, in the initial stage, the 

difference between the effective rates of reactions I and II is increased. This corresponds with 

a higher concentration of bicarbonate and hydroxide visible in Fig. 9a). At the time where the 

carbonate concentration reaches its maximum, the effective rate of reaction II changes its sign 

for both cases. Again, the later stage of the process, where both reactions come to a halt, i.e. 

their effective rates vanish, is beyond the monitoring period for the case with added 

carbonate.  

With added carbonate, the reduced consumption of hydroxide ions by reaction II together 

with the increased rate constant of reaction I, kL
I+

, due to the higher ionic strength results in 

larger enhancement factors and a larger value of the Hatta number as shown in Fig. 9c). After 

~50 s, E even becomes greater than Ei. Clearly this is only possible due to the presence of Ei´ 

in the two-step enhancement factor model 2A, which assumes a large value of Ei´≈ 50 that 

changes only little throughout the monitoring period (not shown in the figure for the sake of 

clarity). 

In Fig. 9d) finally, a comparison of enhancement factors and Hatta number is given between 

the two-step model 2A and the simpler one-step model 1C. It is seen that the initial values of 

Hatta number and Ei are almost the same, but the enhancement factor E is notably higher for 

the two-step model 2A and this difference becomes greater with temporal progress. Again 
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this must be due to the presence of Ei´ in the two-step model 2A. This shows that a one-step 

model is not suitable for the case with added carbonate.  

 

 

 
a) 

c) 

  
b)

d) 

 

Figure 9: Effect of adding carbonate ions with a concentration of 1 kmol m
-3 

to the initial 

solution. Comparison of results obtained from the simplified pointwise calculation. Parts 

a)-c) compare cases with (dashed lines) and without (solid lines) initial carbonate ions using 

enhancement factor model 2A showing time-dependent species concentrations, time-

dependent effective reaction and absorption rates, and time-dependent enhancement factors 

and Hatta number, respectively. Note that the curve for 
−2

3CO

LC in part a) gives the difference to 

the initial concentration. Part d) compares results for enhancement factor models 1C (solid 

lines) and 2A (dashed lines) for the case with initial carbonate ions. Only the time-dependent 

enhancement factors and Hatta number are shown. 

 

4.4 Effect of an increased temperature 

 

As already mentioned above, an increase in temperature causes a decrease of the equilibrium 

constant K
II
 whereby the second backward reaction gains a more pronounced influence on the 

enhancement. The resulting effects are demonstrated in Fig. 10. A moderate increase in the 
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temperature to 50°C over the previous value of 25°C already gave a notable change in the 

results. In addition to shifting the equilibrium of the second reaction, this also increases the 

forward rate constant of reaction I by a factor of almost 4, decreases the CO2 solubility by 

~33% and increases the CO2 diffusivity by ~75%. Again, all of these effects act together. The 

density and molecular viscosity of pure water at 50°C are 988 kg m
-3 

and 0.547 mPa s. 

Fig. 10a) shows a comparison of the species concentrations for the cases with process 

temperatures of 50°C (dashed lines) and 25°C (solid lines) calculated using the enhancement 

factor model 2A which is appropriate for the two-step reaction. It can be seen that the effect 

on the species concentrations is not as big as that of the initial addition of 1 kmol m
-3

 of 

sodium carbonate discussed in the preceding section and the overall temporal evolution 

remains more similar. In the initial stage of the process some bicarbonate is obtained and the 

peak in the carbonate concentration is a bit lower if the temperature is increased.  

These findings are in accordance with the difference between the effective rates of reactions I 

and II being somewhat larger for the case with higher temperature as shown in Fig. 10b). In 

the initial stage of the process the absorption rates for both cases are almost the same despite 

the lower solubility at the higher temperature. This can be explained by a compensating 

increase in the mass transfer coefficient due to the higher diffusivity as well as the larger 

enhancement factor (see Fig. 10d). At later times where the enhancement effect has ceased, 

smaller gas absorption rates due to reduced CO2 solubility are clearly visible in Fig. 10b). As 

before, peaks in the maximum carbonate concentration coincide with zero crossings of the 

effective rate of reaction II. 

From Fig. 10d) it is seen that when the temperature is increased the Hatta number becomes 

larger, which is caused by both the increased rate constant of reaction I and the increased 

diffusivity of CO2. Correspondingly a larger value of the enhancement factor is expected for 

the case with increased temperature. For this case, the value of E is even higher than that of 

Ei throughout the monitoring period. This is caused by the higher value of Ei´ which again 

points to the importance of the two-step nature of the reaction. 

To further quantify the error that incurs for the simpler one-step models the time-dependent 

pH-value, which is easily measurable, is considered in Fig. 10c). The calculation result using 

model 1C (dash-dotted line) gives higher values than obtained for model 2A (dashed line) for 

the temperature of 50°C. Compared with the difference to the case with 25°C temperature 

this overprediction amounts to 25 … 30%. 

In summary, the results by adding sodium carbonate to the initial solution or increasing the 

temperature demonstrate that under certain circumstances, a two-step enhancement factor 

model is appropriate for the CO2/NaOH system. In general, the choice of a one-step model is 

justified if throughout the entire time span during which enhancement occurs, the effective 

rate of the consecutive reaction remains positive and is of the same order of magnitude as the 

effective rate of reaction I. Under this condition, all bicarbonate will be converted to 

carbonate. Since this is true for the case of Darmana et al. (2007), the enhancement factor 

model for a one-step reaction based on the renewal model Eq. (17) together with the fit 

formula for the instantaneous limit Eqs. (B.4-B.6) will be used for the final investigation 

concerning the importance of the water pathway Eq. (8).  



 

 21

a) 

c) 

b) 

d) 

 

Figure 10: Effect of increasing temperature from 25°C (solid lines) to 50°C (dashed lines) 

using enhancement factor model 2A. Comparison of results obtained from the simplified 

pointwise calculation: a) time-dependent species concentrations, b) time-dependent effective 

reaction and absorption rates c) time-dependent pH-value, d) time-dependent enhancement 

factors and Hatta number. Part c) in addition includes the result using one-step enhancement 

factor model 1C (dash-dotted lines) at 50°C for comparison. 

 

 

4.5 Inclusion of the water pathway 

 

The discussion so far has ignored the water pathway, i.e. reaction III, in the reaction model of 

section 3, which becomes relevant at pH-values below 10. If this is taken into account, the 

results can be further improved as shown in Fig. 11, comparing cases with the water pathway 

included (smooth solid lines) or neglected (dash-dotted lines). It should be noted that reaction 

III is too slow to cause an enhancement of mass transfer. The enhancement due to reaction I 

is described by model 1C for the present purpose.  

Up to a time of about 100 s no differences are observable between both cases. For the pH-

value in Fig. 11a), the steep drop occurring at ~ 150s in the experimental data (noisy solid 

line) can also be observed in the model calculations upon including the water pathway. It still 



 

 22

sets in a bit later than in the experiment, but the shape of the curve is improved substantially. 

In the other species concentrations in Fig. 11c), only small differences are visible between 

150 and 200 s. The enhancement factor in Fig. 11b) is unaffected by the change, because the 

enhancement effect has already ceased at a much earlier stage of the process. Also only tiny 

differences are seen in the Hatta number. 

 
 

a) 

 

c) 

 

b) 

 

              
d) 

 

Figure 11: Comparison of results with the water pathway included (smooth solid lines) or 

neglected (dash-dotted lines) for the enhancement factor model 1C: a) time-dependent pH-

value, with Euler-Lagrange simulations of Darmana et al. (2007) (thick dots) and measured 

values of Darmana et al. (2007) (noisy solid line) shown again for comparison, b) Time-

dependent enhancement factors and Hatta number, c) time-dependent species concentrations, 

d) time-dependent effective reaction and absorption rates. 

 

 

The effective rate of reaction III in Fig. 11 d) clearly shows that the water pathway becomes 

important if the pH-value falls below 10, which occurs at t ≈ 100 s. As the pH-value further 

decreases below a value of 8, which occurs at t ≈ 170 s, reaction III prevails over reaction I. It 
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is notable that along with the increase in the rate of reaction III, the rate of reaction I becomes 

smaller than for the case without the water pathway. This is due to the consumption of 

aqueous CO2 by reaction III. In fact, the sum of the effective rates of reactions I and III, 

which gives the total consumption of CO2, is close to the effective rate of reaction I, when the 

water pathway is neglected. However, in the range from ~130 … 170 s a slightly higher 

consumption of CO2 is visible if the water pathway is included, which finally leads to the 

faster decrease in pH-value. Furthermore, the backward reaction II proceeds a bit faster, 

resulting in the slightly faster decrease in carbonate concentration and the slightly faster 

increase in bicarbonate concentration seen in Fig. 11c). 

 

 

5 CONCLUSIONS AND OUTLOOK 

 

The reactive absorption of CO2 into aqueous NaOH in a bubble column has been analysed by 

means of a simplified treatment looking only at a single measurement point. Experimental 

data of Darmana et al. (2007) were used to compare different enhancement factor models for 

this reaction. By substituting values from the experiment to determine the mass transfer 

coefficient and interfacial area concentration, possible inaccuracies from the fluid-dynamic 

part of a more complete model were avoided. The validity of this simplified approach was 

assured by comparison with Euler-Lagrange simulation results also given by Darmana et al. 

(2007). 

The comparison between different enhancement factor models showed that approximate 

expressions for the enhancement of an instantaneous second order reaction that appear 

frequently in reaction engineering textbooks should be considered with care. A fit formula 

was presented that gives much better accuracy. Making use of this formula, expressions 

derived from renewal, penetration, and film models agree with each other rather well. The 

two-step nature of the reaction system did not play a significant role for the conditions of the 

experiment of Darmana et al. (2007). However, its consequences may be notable if additional 

carbonate is present initially or the temperature is increased. Detailed examples have been 

presented to guide the design of future experiments, where effects of the two-step reaction 

can be observed. 

However, consideration of the reaction between CO2 and water was found essential to capture 

the behaviour at lower pH-values as the neutral point is approached. Good agreement with 

the experimental data was reached once this additional reaction pathway was included in 

addition to the reaction between CO2 and hydroxide ions. A full model for the reaction 

kinetics involving both pathways and the subsequent carbonate-bicarbonate equilibrium was 

given. 

After the proper modeling of the reaction and the resulting enhancement of the mass transfer 

has now been ascertained, the next step is to integrate this into a full multiphase CFD 

simulation. This will be presented in a sequel paper using a previously validated Euler-Euler 

model for fluid-dynamics and mass transfer in bubbly flows (Rzehak and Krepper, 2013 and 

2015; Rzehak and Kriebitzsch, 2015; Rzehak and Krepper, 2016).  
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7 APPENDIX A: REACTION AND MATERIAL MODEL 
 

A model for the kinetics of the reaction Eqs. (10) - (15), as well as diffusivity and solubility of 

the reactants, which contains the dependence on temperature and ionic effects as much as 

available from the literature, is presented in the following. The development extends the model 

proposed by Darmana et al. (2007) and offers some further discussion. Compared with the 

original references from which the correlations have been taken, some adjustments have been 

made to obtain consistent units and a sensible number of significant digits in numerical 

parameter values. 

 

 

7.1 Solubility 

 

Under the condition of low solute concentration, the solubility of CO2 in water is described by 

a Henry constant He. From different definitions in use, the dimensionless ratio of the 

concentration in the liquid to the concentration in the gas at equilibrium is the most convenient 

for the present purpose. A correlation for the temperature-dependence in pure water has been 

given by Versteeg and van Swaaij (1988) based on own measurements as 
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A more complex expression has been given in a comprehensive literature review by Crovetto 

(1991) for which validity up to P = 1 MPa has been ascertained. Since deviations between both 

are restricted to T close to 0°C the simpler expression Eq. (A.1) has been used herein following 

Rzehak and Krepper (2016). 

Due to the salting-out effect in electrolytic solutions, the solubility of most gases is decreasing 

with increasing salt concentration. Weisenberger and Schumpe (1996) presented a method 

which is able to predict the solubility of different gases in different salt solutions by extension of 

a model developed by Schumpe (1993). The resulting expression is  

 ( )( )∑ +−= I

L

ACO

W

CO
ChhHeHe I^1022 ,      (A.2) 

where ( )][15.2980 KThhh A

T

AA −+= . The required constants for the present system are given 

in table A.1. For the case of Darmana et al. (2007), application of Eq. (A.2) to include the 

ionic effects leads to a maximum decrease of 1.5 % in solubility of CO2 compared to its 

solubility in pure water. For other conditions such as the case with added carbonate 

considered in section 4.3, the ionic effect may be about 50 %. 

 

 

Ion I
h  [m

3
 kmol

-1
] Gas A

h0  [m
3
 kmol

-1
] A

Th  [m
3
 kmol

-1
 K

-1
] 

Na
+ 

0.1143 CO2 -0.0172 -0.338·10
-3 

OH
-
 0.0839    

HCO3
- 

0.0967    

CO3
2- 

0.1423    

 

Table A.1: Parameters for Eq. (A.2). 
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7.2 Diffusivity 

 

The temperature dependence of the molecular diffusivity of CO2 in water has also been 

correlated by Versteeg and van Swaaij (1988) based on a review of earlier literature data as  
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More recent data have been provided by Frank et al. (1996) which match Eq. (A.3) as well. 

All of these data have been taken at atmospheric pressure. Data of Lu et al. (2013) at 

P = 20 MPa still fall within the scatter of the atmospheric pressure values. Since all data 

match very well with the correlation Eq. (A.3), this is adopted for the present work again 

following Rzehak and Krepper (2016). 

The molecular diffusivity of CO2 in electrolytic solutions containing relatively small ions in 

moderate concentrations can be calculated with a method suggested by Ratcliff and Holdcroft 

(1963) as 

 ( )∑+= I

L
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W

CO
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The required constants b
I
 are shown in Table A.2. For the case of Darmana et al. (2007), the 

decrease in the diffusivity of CO2 with respect to its diffusivity in pure water due to this ionic 

effect is less than 0.5 %. When higher concentrations are involved as in the example discussed in 

section 4.3, the effect can be in the range of 25%. 

 

 

Ion I
b  [m

3
 kmol

-1
] 

Na
+ 

-0.0857 

OH
-
 -0.1088 

HCO3
- 

-0.1150 

CO3
2- 

-0.2450 

 

Table A.2: Parameters for Eq. (A.4). 

 

 

The temperature dependent molecular diffusion coefficients of the other species in solution are 

determined by power-law fits of the type 
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as suggested by Zeebe (2011). The constants I
D0 , 

IT , and 
Iγ  are given in table A.3. For 

bicarbonate and carbonate ions these have been found by Zeebe (2011) from fits to molecular 

dynamics simulation results. The constants for the sodium ion are obtained by fitting them to 

the results of a molecular dynamics simulation of Bastug and Kuyucak (2005). The constants 

for the diffusivity coefficient of hydroxide ions are based on the conductivity measurements 

of Light et al. (2005). The simulations of Zeebe (2011) and experiments of Light et al. (2005) 

were performed at infinite dilution. Bastug and Kuyucak (2005) performed their simulations 

for a 0.1 M solution, but give a comparison with experimental data which suggests that the 

results are also applicable at infinite dilution. 



 

 26

 

 

Ion 9
0 10⋅I

D  [m
2
 s

-1
] IT  [K] 

Iγ  [-] 

Na
+ 

    5.391 209.7 1.619 

OH
-
 26.65 216.5 1.658 

HCO3
- 

    7.016 204.0 2.394 

CO3
2- 

    5.447 210.3 2.193 

 

Table A.3: Parameters for Eq. (A.5). 

 

 

7.3 Reaction Rate constants 

 

The rate constant of the first forward reaction (Eq. (5)) was investigated by Pohorecki and 

Moniuk (1988) using a laminar jet technique. They found that it depends on ionic strength 

and temperature as  
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where the temperature dependent rate constant at infinite dilution of ions, ∞+,I
Lk , is given 

by  
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The ionic strength I is defined in terms of the concentration and the valency z of the 

dissolved ions 
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Since reaction I plays a role only for pH ≥ 8, at which the concentration of H+ ions is 

hundered times lower than that of OH- ions, the former have been neglected in this 

expression. For the case of Darmana et al. (2007), the first forward reaction rate constant 

may be increased by a maximum of 2.5 % due to this ionic effect described by Eqs. (A.6) 

and (A.8). For other conditions such as the case with added carbonate considered in 

section 4.3, the ionic effect may be a factor of 3. 

Pohorecki and Moniuk (1988) also offer a more refined consideration of reaction I in 

mixed electrolyte systems showing that each ionic species ought to appear with an 

individual coefficient in the reaction rate, rather than lumped together in terms of the ionic 

strength. However, the coefficient for one important ion species, namely HCO3
-
, was not 

determined in their work, so that unfortunately their refined model cannot be used for the 

present purpose. 

The first reaction, Eq. (5), is coupled with the third one, Eq. (8) by the auto-dissociation of 

water. Therefore the equilibrium constant K
W

 of the ionization of water is needed. 

Tsonopoulos et al. (1976) proposed an equation describing the temperature dependence of 

KW as 
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Considering the equilibrium constant K
III

 of reaction III (Eq. (8)), which is determined 

from a relation found by Edwards et al. (1978) 
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the backward reaction rate constant of reaction I (Eq. (5)) is obtained as 
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It should be mentioned that for higher concentrations, K
III

 also depends significantly on 

ionic strength (Millero et al., 2006; Zeebe and Wolf-Gladrow, 2001; Johnson, 1982;  

Knoche, 1980) which corresponds with the ionic nature of the backward reaction of 

reaction III (Eq. (8)). 

The forward reaction rate constant kL
II+

 of the second reaction (Eq. (6)) is in the order of 

10
10

…10
11

 m
3
 kmol

-1
 s

-1
 as determined by Eigen (1954). This extremely high reaction rate 

constant is due to the fact that only a proton transfer occurs. As shown by Darmana et al. 

(2007) a significantly smaller value can be used as long as this reaction remains much 

faster than all others, most importantly kL
II+

>> kL
I+

. We have determined that even with 

kL
II+

 = 10
4 

m
3
 kmol

-1
 s

-1
 there is negligible influence on the results.  

As suggested by Hikita et al. (1976), the equilibrium constant K
II
 of the second reaction 

considering dependence on the sodium concentration is determined as 
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where 
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is the temperature dependent rate at infinite dilution of sodium ions. 

The backward reaction rate constant kL
II-

 then is calculated from 
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Since only uncharged molecules are involved in the third forward reaction (Eq. (8)) the 

reaction rate constant kL
III+ 

depends on temperature but not ionic strength. According to 

Johnson (1982) it can be determined as 
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The backward reaction rate constant kL
III-

 is calculated with the aid of the previously 

introduced equilibrium constant K
III

 (Eq. (A.10)) 
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8 APPENDIX B: FIT FORMULA FOR THE ENHANCEMENT FACTOR OF AN 

INSTANTANEOUS ONE-STEP REACTION OF SECOND-ORDER  

 

As described in section 3.2, the solution of the penetration model for an instantaneous second 

order reaction results in an implicit expression, Eq. (20), for the enhancement factor Ei. This 

expression contains two parameters,  
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and 
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D
=δ .         (B.2) 

The numerical evaluation of Eq. (20) shown as the solid lines in Fig. 4b) reveals for both 

small and large values of the parameter χ a linear dependence  

 χslopeEi +=1 ,        (B.3) 

which manifests itself as straight lines with slope one on the log-log plot. Values of the slope 

determined for small values of the parameter χ  are shown in Fig. B.1 as a function of 1/δ. It 

may be seen that the slope is close, although not exactly equal, to 1/δ. 

 

 

 

 

Figure B.1: Slope in Eq. (B.3) determined from the numerical evaluation of Eq. (20) for 

small values of χ. The inset shows an enlarged view of the region near the origin. 

 

 

Based on these observations a fit is sought for χδ)1( −iE . The result for δ  > 1 is  
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while for  δ  < 1 
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Note that for  δ  = 1 both expressions give the same value 

 ( ) 11 =−
χ
δ

iE ,         (B.6) 

which coincides with the exact result Eq. (21) for this case. 

Here, the function )1)ln(exp( −x  maps its arguments, which are always positive, to the entire 

real line. The function )
2

arctan(
2

x
π

α
π

 then maps the real line to the finite interval [-1,1], 

which is finally shifted and scaled to the desired range between 1 for small χ and δ for large 

χ. The appearance of √δ  in the innermost argument in Eq. (B.5) and the value of α = 0.2 were 

found by trial and error. 

The fit formula for χδ)1( −iE  is compared to results from the numerical evaluation of Eq. 

(20) in Fig. B.2. A comparison for the final results on Ei has been shown in Fig. 4. Within a 

fairly wide range of parameter values, namely  
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the relative deviation between the fit formula and the numerical evaluation of Eq. (20) for Ei 

is no more than 20%. 

 

  

Figure B.2: Comparison of fit formula for χδ)1( −iE , Eqs. (B.4) – (B.6) (dashed lines) 

with results from numerical evaluation of Eq. (20) (solid lines). 
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9 NOMENCLATURE 
 

 

Notation Unit Denomination 

aI m
-1

 interfacial area concentration 

CL kmol m
-3 

molecular species concentration in the bulk liquid 

dB m bubble diameter 

D
X

 m
2
 s

-1
 diffusion coefficient of species X 

E - enhancement factor 

Ha - Hatta number 

He - Henry constant  

I kmol m
-3

 ionic strength 

JL m s
-1

 liquid volumetric flux = superficial velocity 

kL
Ξ± 

(m
3

 kmol
-1

)
ξ−1

 s
-1 for- (+) and backward (-) rate constant of reaction Ξ with 

total reaction order ξ 

kL m s
-1

 mass transfer coefficient  

KL
Ξ
 (m

3
 kmol

-1
)
ξ+− ξ−

 
equilibrium constant of reaction Ξ with total reaction 

orders ξ± for- (+) and backward (-) reaction 

KW kmol
2
 m

-6
 ionization constant of water 

M kg kmol
–1

 molar mass  

Mo - Morton Number 

P Pa = N m
-2

 pressure 

RL
 Ξ±

 kmol m
-3

 s
-1

 for- (+) and backward (-) rate of reaction Ξ 

Re
 

-
 

Reynolds number 

S kg m
-3

 s
-1

 mass source due to reactions 

Sc - Schmidt number 

T K temperature 

urel m s
-1

 relative velocity  

X - mole fraction  

Y - mass fraction  

z - valency 

α - phase fraction 

Γ kg m
-3

 s
-1

 mass source due to absorption 

µ m
2
 s

-1
 dynamic viscosity 

ρ kg m
-3

 density 
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Subscript Denomination 

B bubble 

G gas phase 

i instantaneous 

I phase interface 

L liquid phase 

W pure water 

∞ bulk of liquid phase 

 

Superscript Denomination 

I first reaction (Eq. (5)) 

II second reaction (Eq. (6)) 

III third reaction (Eq. (8)) 

+ forward reaction 

- backward reaction 
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